Word размер в байтах

Думаю, вся путаница возникла из-за того, что когда то разработчики Интела (я так думаю) назвали два байта — словом (word) — тогда 16 битные процессоры были прорывом. Соответственно, 4 байта — двойным словом. (DWORD, double word). Это сохранилось и в многих языках программирования (в том числе в с/с++). Почему два байта — слово? да видимо от того, что байт это как буква. А две буквы — это уже слово. (Хотя сейчас прибегут филологи и скажут, что это скорее всего слог, чем слово). В википедии есть хорошая фраза «* Для 32-битных процессоров x86: исторически машинным словом считается 16 бит, реально — 32 бита.»

А вот словосочетание «двойное машинное слово» я никогда не слышал. Даже гугл мало находит статей с таким сочетанием. А вот «двойное слово» или «машинное слово» — это нормально.

То есть как я понимаю если процессор 32-битный он может за один такт принять и обработать с оперативной памяти 32 бита информации

не все так просто. Далеко не факт, что он может даже принять 32 бита. Современные процессоры сложные, имеют кеш. Имеют сложные комманды, которые за один раз (не так, а именно раз) могут обработать до 16 байт памяти (всякие mmx и sse).

Обычно, машинным словом называют «разрядность процессора», так как разрядность обычно показывает оптимальный размер данных внутри процессора (регистры 32битного процессора 32 битные и с 32битными данными в основном все команды и работают). В некоторых процессорах слово было 60 бит:)

В любом случае рекомендую всегда всматриваться в контекст. Если о «слове» говорит программист на С/С++ — это 16 бит, если программист на ассемблере под 32 битные ARM процессоры — то скорее всего слово — это 32 бита.

From Wikipedia, the free encyclopedia

In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits[a] in a word (the word size, word width, or word length) is an important characteristic of any specific processor design or computer architecture.

The size of a word is reflected in many aspects of a computer’s structure and operation; the majority of the registers in a processor are usually word-sized and the largest datum that can be transferred to and from the working memory in a single operation is a word in many (not all) architectures. The largest possible address size, used to designate a location in memory, is typically a hardware word (here, «hardware word» means the full-sized natural word of the processor, as opposed to any other definition used).

Documentation for older computers with fixed word size commonly states memory sizes in words rather than bytes or characters. The documentation sometimes uses metric prefixes correctly, sometimes with rounding, e.g., 65 kilowords (KW) meaning for 65536 words, and sometimes uses them incorrectly, with kilowords (KW) meaning 1024 words (210) and megawords (MW) meaning 1,048,576 words (220). With standardization on 8-bit bytes and byte addressability, stating memory sizes in bytes, kilobytes, and megabytes with powers of 1024 rather than 1000 has become the norm, although there is some use of the IEC binary prefixes.

Several of the earliest computers (and a few modern as well) use binary-coded decimal rather than plain binary, typically having a word size of 10 or 12 decimal digits, and some early decimal computers have no fixed word length at all. Early binary systems tended to use word lengths that were some multiple of 6-bits, with the 36-bit word being especially common on mainframe computers. The introduction of ASCII led to the move to systems with word lengths that were a multiple of 8-bits, with 16-bit machines being popular in the 1970s before the move to modern processors with 32 or 64 bits.[1] Special-purpose designs like digital signal processors, may have any word length from 4 to 80 bits.[1]

The size of a word can sometimes differ from the expected due to backward compatibility with earlier computers. If multiple compatible variations or a family of processors share a common architecture and instruction set but differ in their word sizes, their documentation and software may become notationally complex to accommodate the difference (see Size families below).

Uses of words[edit]

Depending on how a computer is organized, word-size units may be used for:

Fixed-point numbers
Holders for fixed point, usually integer, numerical values may be available in one or in several different sizes, but one of the sizes available will almost always be the word. The other sizes, if any, are likely to be multiples or fractions of the word size. The smaller sizes are normally used only for efficient use of memory; when loaded into the processor, their values usually go into a larger, word sized holder.
Floating-point numbers
Holders for floating-point numerical values are typically either a word or a multiple of a word.
Addresses
Holders for memory addresses must be of a size capable of expressing the needed range of values but not be excessively large, so often the size used is the word though it can also be a multiple or fraction of the word size.
Registers
Processor registers are designed with a size appropriate for the type of data they hold, e.g. integers, floating-point numbers, or addresses. Many computer architectures use general-purpose registers that are capable of storing data in multiple representations.
Memory–processor transfer
When the processor reads from the memory subsystem into a register or writes a register’s value to memory, the amount of data transferred is often a word. Historically, this amount of bits which could be transferred in one cycle was also called a catena in some environments (such as the Bull GAMMA 60 [fr]).[2][3] In simple memory subsystems, the word is transferred over the memory data bus, which typically has a width of a word or half-word. In memory subsystems that use caches, the word-sized transfer is the one between the processor and the first level of cache; at lower levels of the memory hierarchy larger transfers (which are a multiple of the word size) are normally used.
Unit of address resolution
In a given architecture, successive address values designate successive units of memory; this unit is the unit of address resolution. In most computers, the unit is either a character (e.g. a byte) or a word. (A few computers have used bit resolution.) If the unit is a word, then a larger amount of memory can be accessed using an address of a given size at the cost of added complexity to access individual characters. On the other hand, if the unit is a byte, then individual characters can be addressed (i.e. selected during the memory operation).
Instructions
Machine instructions are normally the size of the architecture’s word, such as in RISC architectures, or a multiple of the «char» size that is a fraction of it. This is a natural choice since instructions and data usually share the same memory subsystem. In Harvard architectures the word sizes of instructions and data need not be related, as instructions and data are stored in different memories; for example, the processor in the 1ESS electronic telephone switch has 37-bit instructions and 23-bit data words.

Word size choice[edit]

When a computer architecture is designed, the choice of a word size is of substantial importance. There are design considerations which encourage particular bit-group sizes for particular uses (e.g. for addresses), and these considerations point to different sizes for different uses. However, considerations of economy in design strongly push for one size, or a very few sizes related by multiples or fractions (submultiples) to a primary size. That preferred size becomes the word size of the architecture.

Character size was in the past (pre-variable-sized character encoding) one of the influences on unit of address resolution and the choice of word size. Before the mid-1960s, characters were most often stored in six bits; this allowed no more than 64 characters, so the alphabet was limited to upper case. Since it is efficient in time and space to have the word size be a multiple of the character size, word sizes in this period were usually multiples of 6 bits (in binary machines). A common choice then was the 36-bit word, which is also a good size for the numeric properties of a floating point format.

After the introduction of the IBM System/360 design, which uses eight-bit characters and supports lower-case letters, the standard size of a character (or more accurately, a byte) becomes eight bits. Word sizes thereafter are naturally multiples of eight bits, with 16, 32, and 64 bits being commonly used.

Variable-word architectures[edit]

Early machine designs included some that used what is often termed a variable word length. In this type of organization, an operand has no fixed length. Depending on the machine and the instruction, the length might be denoted by a count field, by a delimiting character, or by an additional bit called, e.g., flag, or word mark. Such machines often use binary-coded decimal in 4-bit digits, or in 6-bit characters, for numbers. This class of machines includes the IBM 702, IBM 705, IBM 7080, IBM 7010, UNIVAC 1050, IBM 1401, IBM 1620, and RCA 301.

Most of these machines work on one unit of memory at a time and since each instruction or datum is several units long, each instruction takes several cycles just to access memory. These machines are often quite slow because of this. For example, instruction fetches on an IBM 1620 Model I take 8 cycles (160 μs) just to read the 12 digits of the instruction (the Model II reduced this to 6 cycles, or 4 cycles if the instruction did not need both address fields). Instruction execution takes a variable number of cycles, depending on the size of the operands.

Word, bit and byte addressing[edit]

The memory model of an architecture is strongly influenced by the word size. In particular, the resolution of a memory address, that is, the smallest unit that can be designated by an address, has often been chosen to be the word. In this approach, the word-addressable machine approach, address values which differ by one designate adjacent memory words. This is natural in machines which deal almost always in word (or multiple-word) units, and has the advantage of allowing instructions to use minimally sized fields to contain addresses, which can permit a smaller instruction size or a larger variety of instructions.

When byte processing is to be a significant part of the workload, it is usually more advantageous to use the byte, rather than the word, as the unit of address resolution. Address values which differ by one designate adjacent bytes in memory. This allows an arbitrary character within a character string to be addressed straightforwardly. A word can still be addressed, but the address to be used requires a few more bits than the word-resolution alternative. The word size needs to be an integer multiple of the character size in this organization. This addressing approach was used in the IBM 360, and has been the most common approach in machines designed since then.

When the workload involves processing fields of different sizes, it can be advantageous to address to the bit. Machines with bit addressing may have some instructions that use a programmer-defined byte size and other instructions that operate on fixed data sizes. As an example, on the IBM 7030[4] («Stretch»), a floating point instruction can only address words while an integer arithmetic instruction can specify a field length of 1-64 bits, a byte size of 1-8 bits and an accumulator offset of 0-127 bits.

In a byte-addressable machine with storage-to-storage (SS) instructions, there are typically move instructions to copy one or multiple bytes from one arbitrary location to another. In a byte-oriented (byte-addressable) machine without SS instructions, moving a single byte from one arbitrary location to another is typically:

  1. LOAD the source byte
  2. STORE the result back in the target byte

Individual bytes can be accessed on a word-oriented machine in one of two ways. Bytes can be manipulated by a combination of shift and mask operations in registers. Moving a single byte from one arbitrary location to another may require the equivalent of the following:

  1. LOAD the word containing the source byte
  2. SHIFT the source word to align the desired byte to the correct position in the target word
  3. AND the source word with a mask to zero out all but the desired bits
  4. LOAD the word containing the target byte
  5. AND the target word with a mask to zero out the target byte
  6. OR the registers containing the source and target words to insert the source byte
  7. STORE the result back in the target location

Alternatively many word-oriented machines implement byte operations with instructions using special byte pointers in registers or memory. For example, the PDP-10 byte pointer contained the size of the byte in bits (allowing different-sized bytes to be accessed), the bit position of the byte within the word, and the word address of the data. Instructions could automatically adjust the pointer to the next byte on, for example, load and deposit (store) operations.

Powers of two[edit]

Different amounts of memory are used to store data values with different degrees of precision. The commonly used sizes are usually a power of two multiple of the unit of address resolution (byte or word). Converting the index of an item in an array into the memory address offset of the item then requires only a shift operation rather than a multiplication. In some cases this relationship can also avoid the use of division operations. As a result, most modern computer designs have word sizes (and other operand sizes) that are a power of two times the size of a byte.

Size families[edit]

As computer designs have grown more complex, the central importance of a single word size to an architecture has decreased. Although more capable hardware can use a wider variety of sizes of data, market forces exert pressure to maintain backward compatibility while extending processor capability. As a result, what might have been the central word size in a fresh design has to coexist as an alternative size to the original word size in a backward compatible design. The original word size remains available in future designs, forming the basis of a size family.

In the mid-1970s, DEC designed the VAX to be a 32-bit successor of the 16-bit PDP-11. They used word for a 16-bit quantity, while longword referred to a 32-bit quantity; this terminology is the same as the terminology used for the PDP-11. This was in contrast to earlier machines, where the natural unit of addressing memory would be called a word, while a quantity that is one half a word would be called a halfword. In fitting with this scheme, a VAX quadword is 64 bits. They continued this 16-bit word/32-bit longword/64-bit quadword terminology with the 64-bit Alpha.

Another example is the x86 family, of which processors of three different word lengths (16-bit, later 32- and 64-bit) have been released, while word continues to designate a 16-bit quantity. As software is routinely ported from one word-length to the next, some APIs and documentation define or refer to an older (and thus shorter) word-length than the full word length on the CPU that software may be compiled for. Also, similar to how bytes are used for small numbers in many programs, a shorter word (16 or 32 bits) may be used in contexts where the range of a wider word is not needed (especially where this can save considerable stack space or cache memory space). For example, Microsoft’s Windows API maintains the programming language definition of WORD as 16 bits, despite the fact that the API may be used on a 32- or 64-bit x86 processor, where the standard word size would be 32 or 64 bits, respectively. Data structures containing such different sized words refer to them as:

  • WORD (16 bits/2 bytes)
  • DWORD (32 bits/4 bytes)
  • QWORD (64 bits/8 bytes)

A similar phenomenon has developed in Intel’s x86 assembly language – because of the support for various sizes (and backward compatibility) in the instruction set, some instruction mnemonics carry «d» or «q» identifiers denoting «double-«, «quad-» or «double-quad-«, which are in terms of the architecture’s original 16-bit word size.

An example with a different word size is the IBM System/360 family. In the System/360 architecture, System/370 architecture and System/390 architecture, there are 8-bit bytes, 16-bit halfwords, 32-bit words and 64-bit doublewords. The z/Architecture, which is the 64-bit member of that architecture family, continues to refer to 16-bit halfwords, 32-bit words, and 64-bit doublewords, and additionally features 128-bit quadwords.

In general, new processors must use the same data word lengths and virtual address widths as an older processor to have binary compatibility with that older processor.

Often carefully written source code – written with source-code compatibility and software portability in mind – can be recompiled to run on a variety of processors, even ones with different data word lengths or different address widths or both.

Table of word sizes[edit]

key: bit: bits, c: characters, d: decimal digits, w: word size of architecture, n: variable size, wm: Word mark
Year Computer
architecture
Word size w Integer
sizes
Floating­point
sizes
Instruction
sizes
Unit of address
resolution
Char size
1837 Babbage
Analytical engine
50 d w Five different cards were used for different functions, exact size of cards not known. w
1941 Zuse Z3 22 bit w 8 bit w
1942 ABC 50 bit w
1944 Harvard Mark I 23 d w 24 bit
1946
(1948)
{1953}
ENIAC
(w/Panel #16[5])
{w/Panel #26[6]}
10 d w, 2w
(w)
{w}

(2 d, 4 d, 6 d, 8 d)
{2 d, 4 d, 6 d, 8 d}


{w}
1948 Manchester Baby 32 bit w w w
1951 UNIVAC I 12 d w 12w w 1 d
1952 IAS machine 40 bit w 12w w 5 bit
1952 Fast Universal Digital Computer M-2 34 bit w? w 34 bit = 4-bit opcode plus 3×10 bit address 10 bit
1952 IBM 701 36 bit 12w, w 12w 12w, w 6 bit
1952 UNIVAC 60 n d 1 d, … 10 d 2 d, 3 d
1952 ARRA I 30 bit w w w 5 bit
1953 IBM 702 n c 0 c, … 511 c 5 c c 6 bit
1953 UNIVAC 120 n d 1 d, … 10 d 2 d, 3 d
1953 ARRA II 30 bit w 2w 12w w 5 bit
1954
(1955)
IBM 650
(w/IBM 653)
10 d w
(w)
w w 2 d
1954 IBM 704 36 bit w w w w 6 bit
1954 IBM 705 n c 0 c, … 255 c 5 c c 6 bit
1954 IBM NORC 16 d w w, 2w w w
1956 IBM 305 n d 1 d, … 100 d 10 d d 1 d
1956 ARMAC 34 bit w w 12w w 5 bit, 6 bit
1956 LGP-30 31 bit w 16 bit w 6 bit
1957 Autonetics Recomp I 40 bit w, 79 bit, 8 d, 15 d 12w 12w, w 5 bit
1958 UNIVAC II 12 d w 12w w 1 d
1958 SAGE 32 bit 12w w w 6 bit
1958 Autonetics Recomp II 40 bit w, 79 bit, 8 d, 15 d 2w 12w 12w, w 5 bit
1958 Setun 6 trit (~9.5 bits)[b] up to 6 tryte up to 3 trytes 4 trit?
1958 Electrologica X1 27 bit w 2w w w 5 bit, 6 bit
1959 IBM 1401 n c 1 c, … 1 c, 2 c, 4 c, 5 c, 7 c, 8 c c 6 bit + wm
1959
(TBD)
IBM 1620 n d 2 d, …
(4 d, … 102 d)
12 d d 2 d
1960 LARC 12 d w, 2w w, 2w w w 2 d
1960 CDC 1604 48 bit w w 12w w 6 bit
1960 IBM 1410 n c 1 c, … 1 c, 2 c, 6 c, 7 c, 11 c, 12 c c 6 bit + wm
1960 IBM 7070 10 d[c] w, 1-9 d w w w, d 2 d
1960 PDP-1 18 bit w w w 6 bit
1960 Elliott 803 39 bit
1961 IBM 7030
(Stretch)
64 bit 1 bit, … 64 bit,
1 d, … 16 d
w 12w, w bit (integer),
12w (branch),
w (float)
1 bit, … 8 bit
1961 IBM 7080 n c 0 c, … 255 c 5 c c 6 bit
1962 GE-6xx 36 bit w, 2 w w, 2 w, 80 bit w w 6 bit, 9 bit
1962 UNIVAC III 25 bit w, 2w, 3w, 4w, 6 d, 12 d w w 6 bit
1962 Autonetics D-17B
Minuteman I Guidance Computer
27 bit 11 bit, 24 bit 24 bit w
1962 UNIVAC 1107 36 bit 16w, 13w, 12w, w w w w 6 bit
1962 IBM 7010 n c 1 c, … 1 c, 2 c, 6 c, 7 c, 11 c, 12 c c 6 b + wm
1962 IBM 7094 36 bit w w, 2w w w 6 bit
1962 SDS 9 Series 24 bit w 2w w w
1963
(1966)
Apollo Guidance Computer 15 bit w w, 2w w
1963 Saturn Launch Vehicle Digital Computer 26 bit w 13 bit w
1964/1966 PDP-6/PDP-10 36 bit w w, 2 w w w 6 bit
7 bit (typical)
9 bit
1964 Titan 48 bit w w w w w
1964 CDC 6600 60 bit w w 14w, 12w w 6 bit
1964 Autonetics D-37C
Minuteman II Guidance Computer
27 bit 11 bit, 24 bit 24 bit w 4 bit, 5 bit
1965 Gemini Guidance Computer 39 bit 26 bit 13 bit 13 bit, 26 —bit
1965 IBM 1130 16 bit w, 2w 2w, 3w w, 2w w 8 bit
1965 IBM System/360 32 bit 12w, w,
1 d, … 16 d
w, 2w 12w, w, 112w 8 bit 8 bit
1965 UNIVAC 1108 36 bit 16w, 14w, 13w, 12w, w, 2w w, 2w w w 6 bit, 9 bit
1965 PDP-8 12 bit w w w 8 bit
1965 Electrologica X8 27 bit w 2w w w 6 bit, 7 bit
1966 SDS Sigma 7 32 bit 12w, w w, 2w w 8 bit 8 bit
1969 Four-Phase Systems AL1 8 bit w ? ? ?
1970 MP944 20 bit w ? ? ?
1970 PDP-11 16 bit w 2w, 4w w, 2w, 3w 8 bit 8 bit
1971 CDC STAR-100 64 bit 12w, w 12w, w 12w, w bit 8 bit
1971 TMS1802NC 4 bit w ? ?
1971 Intel 4004 4 bit w, d 2w, 4w w
1972 Intel 8008 8 bit w, 2 d w, 2w, 3w w 8 bit
1972 Calcomp 900 9 bit w w, 2w w 8 bit
1974 Intel 8080 8 bit w, 2w, 2 d w, 2w, 3w w 8 bit
1975 ILLIAC IV 64 bit w w, 12w w w
1975 Motorola 6800 8 bit w, 2 d w, 2w, 3w w 8 bit
1975 MOS Tech. 6501
MOS Tech. 6502
8 bit w, 2 d w, 2w, 3w w 8 bit
1976 Cray-1 64 bit 24 bit, w w 14w, 12w w 8 bit
1976 Zilog Z80 8 bit w, 2w, 2 d w, 2w, 3w, 4w, 5w w 8 bit
1978
(1980)
16-bit x86 (Intel 8086)
(w/floating point: Intel 8087)
16 bit 12w, w, 2 d
(2w, 4w, 5w, 17 d)
12w, w, … 7w 8 bit 8 bit
1978 VAX 32 bit 14w, 12w, w, 1 d, … 31 d, 1 bit, … 32 bit w, 2w 14w, … 1414w 8 bit 8 bit
1979
(1984)
Motorola 68000 series
(w/floating point)
32 bit 14w, 12w, w, 2 d
(w, 2w, 212w)
12w, w, … 712w 8 bit 8 bit
1985 IA-32 (Intel 80386) (w/floating point) 32 bit 14w, 12w, w
(w, 2w, 80 bit)
8 bit, … 120 bit
14w … 334w
8 bit 8 bit
1985 ARMv1 32 bit 14w, w w 8 bit 8 bit
1985 MIPS I 32 bit 14w, 12w, w w, 2w w 8 bit 8 bit
1991 Cray C90 64 bit 32 bit, w w 14w, 12w, 48 bit w 8 bit
1992 Alpha 64 bit 8 bit, 14w, 12w, w 12w, w 12w 8 bit 8 bit
1992 PowerPC 32 bit 14w, 12w, w w, 2w w 8 bit 8 bit
1996 ARMv4
(w/Thumb)
32 bit 14w, 12w, w w
(12w, w)
8 bit 8 bit
2000 IBM z/Architecture
(w/vector facility)
64 bit 14w, 12w, w
1 d, … 31 d
12w, w, 2w 14w, 12w, 34w 8 bit 8 bit, UTF-16, UTF-32
2001 IA-64 64 bit 8 bit, 14w, 12w, w 12w, w 41 bit (in 128-bit bundles)[7] 8 bit 8 bit
2001 ARMv6
(w/VFP)
32 bit 8 bit, 12w, w
(w, 2w)
12w, w 8 bit 8 bit
2003 x86-64 64 bit 8 bit, 14w, 12w, w 12w, w, 80 bit 8 bit, … 120 bit 8 bit 8 bit
2013 ARMv8-A and ARMv9-A 64 bit 8 bit, 14w, 12w, w 12w, w 12w 8 bit 8 bit
Year Computer
architecture
Word size w Integer
sizes
Floating­point
sizes
Instruction
sizes
Unit of address
resolution
Char size
key: bit: bits, d: decimal digits, w: word size of architecture, n: variable size

[8][9]

See also[edit]

  • Integer (computer science)

Notes[edit]

  1. ^ Many early computers were decimal, and a few were ternary
  2. ^ The bit equivalent is computed by taking the amount of information entropy provided by the trit, which is log _{2}(3). This gives an equivalent of about 9.51 bits for 6 trits.
  3. ^ Three-state sign

References[edit]

  1. ^ a b Beebe, Nelson H. F. (2017-08-22). «Chapter I. Integer arithmetic». The Mathematical-Function Computation Handbook — Programming Using the MathCW Portable Software Library (1 ed.). Salt Lake City, UT, USA: Springer International Publishing AG. p. 970. doi:10.1007/978-3-319-64110-2. ISBN 978-3-319-64109-6. LCCN 2017947446. S2CID 30244721.
  2. ^ Dreyfus, Phillippe (1958-05-08) [1958-05-06]. Written at Los Angeles, California, USA. System design of the Gamma 60 (PDF). Western Joint Computer Conference: Contrasts in Computers. ACM, New York, NY, USA. pp. 130–133. IRE-ACM-AIEE ’58 (Western). Archived (PDF) from the original on 2017-04-03. Retrieved 2017-04-03. […] Internal data code is used: Quantitative (numerical) data are coded in a 4-bit decimal code; qualitative (alpha-numerical) data are coded in a 6-bit alphanumerical code. The internal instruction code means that the instructions are coded in straight binary code.
    As to the internal information length, the information quantum is called a «catena,» and it is composed of 24 bits representing either 6 decimal digits, or 4 alphanumerical characters. This quantum must contain a multiple of 4 and 6 bits to represent a whole number of decimal or alphanumeric characters. Twenty-four bits was found to be a good compromise between the minimum 12 bits, which would lead to a too-low transfer flow from a parallel readout core memory, and 36 bits or more, which was judged as too large an information quantum. The catena is to be considered as the equivalent of a character in variable word length machines, but it cannot be called so, as it may contain several characters. It is transferred in series to and from the main memory.
    Not wanting to call a «quantum» a word, or a set of characters a letter, (a word is a word, and a quantum is something else), a new word was made, and it was called a «catena.» It is an English word and exists in Webster’s although it does not in French. Webster’s definition of the word catena is, «a connected series;» therefore, a 24-bit information item. The word catena will be used hereafter.
    The internal code, therefore, has been defined. Now what are the external data codes? These depend primarily upon the information handling device involved. The Gamma 60 [fr] is designed to handle information relevant to any binary coded structure. Thus an 80-column punched card is considered as a 960-bit information item; 12 rows multiplied by 80 columns equals 960 possible punches; is stored as an exact image in 960 magnetic cores of the main memory with 2 card columns occupying one catena. […]
  3. ^ Blaauw, Gerrit Anne; Brooks, Jr., Frederick Phillips; Buchholz, Werner (1962). «4: Natural Data Units» (PDF). In Buchholz, Werner (ed.). Planning a Computer System – Project Stretch. McGraw-Hill Book Company, Inc. / The Maple Press Company, York, PA. pp. 39–40. LCCN 61-10466. Archived (PDF) from the original on 2017-04-03. Retrieved 2017-04-03. […] Terms used here to describe the structure imposed by the machine design, in addition to bit, are listed below.
    Byte denotes a group of bits used to encode a character, or the number of bits transmitted in parallel to and from input-output units. A term other than character is used here because a given character may be represented in different applications by more than one code, and different codes may use different numbers of bits (i.e., different byte sizes). In input-output transmission the grouping of bits may be completely arbitrary and have no relation to actual characters. (The term is coined from bite, but respelled to avoid accidental mutation to bit.)
    A word consists of the number of data bits transmitted in parallel from or to memory in one memory cycle. Word size is thus defined as a structural property of the memory. (The term catena was coined for this purpose by the designers of the Bull GAMMA 60 [fr] computer.)
    Block refers to the number of words transmitted to or from an input-output unit in response to a single input-output instruction. Block size is a structural property of an input-output unit; it may have been fixed by the design or left to be varied by the program. […]
  4. ^ «Format» (PDF). Reference Manual 7030 Data Processing System (PDF). IBM. August 1961. pp. 50–57. Retrieved 2021-12-15.
  5. ^ Clippinger, Richard F. [in German] (1948-09-29). «A Logical Coding System Applied to the ENIAC (Electronic Numerical Integrator and Computer)». Aberdeen Proving Ground, Maryland, US: Ballistic Research Laboratories. Report No. 673; Project No. TB3-0007 of the Research and Development Division, Ordnance Department. Retrieved 2017-04-05.{{cite web}}: CS1 maint: url-status (link)
  6. ^ Clippinger, Richard F. [in German] (1948-09-29). «A Logical Coding System Applied to the ENIAC». Aberdeen Proving Ground, Maryland, US: Ballistic Research Laboratories. Section VIII: Modified ENIAC. Retrieved 2017-04-05.{{cite web}}: CS1 maint: url-status (link)
  7. ^ «4. Instruction Formats» (PDF). Intel Itanium Architecture Software Developer’s Manual. Vol. 3: Intel Itanium Instruction Set Reference. p. 3:293. Retrieved 2022-04-25. Three instructions are grouped together into 128-bit sized and aligned containers called bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template field.
  8. ^ Blaauw, Gerrit Anne; Brooks, Jr., Frederick Phillips (1997). Computer Architecture: Concepts and Evolution (1 ed.). Addison-Wesley. ISBN 0-201-10557-8. (1213 pages) (NB. This is a single-volume edition. This work was also available in a two-volume version.)
  9. ^ Ralston, Anthony; Reilly, Edwin D. (1993). Encyclopedia of Computer Science (3rd ed.). Van Nostrand Reinhold. ISBN 0-442-27679-6.

stesl писал(а): ↑23 мар 2021, 10:37
Тип Word — это целочисленный беззнаковый тип данных, в два байта. Диапазон 0-65535. Используется везде, где оказывается нужным.

Не путайте Word с UInt (unsigned integer16), он не относится к целочисленным, так как не кодирует числовые значения и не совместим с математическими операциями.
Потому что:

Sergy6661 писал(а): ↑23 мар 2021, 12:54
Вот для упаковки-распаковки битовых переменных и используется в основном.

Но не в основном, а только для этого. Если конечно в конкретном ПЛК не срабатывает неявное преобразование, из-за которого кажется, что Word — это целое число.

Отправлено спустя 21 минуту 7 секунд:
Не, иначе объясню:
Word — это когда ты в 16 бит записал 16 булевых значений, каждый из которых что-то значит в смысле true/false. Например, при управлении сервоприводом или частотником.
Int16, UInt16 — это числа, отдельные биты не представляют интереса (хотя бывают редкие исключения).
Математические операции умеют работать с числами, то есть Add(), Sub(), Mul(), Div() работают с Int16/UInt16, а с Word работает подозрительно, подсвечивает типа «глянь, что за дрянь ты задумал?», но воспринимает как число 0-65535. Извините, правда, зачем вы складываете слово управления частотника с числом -85?
Зато сдвиговые операции и операции со словами типа ANDW(), ORW(), NOT(W), XORW() работают именно со словами и подозрительно с целыми числами.

Это разные типы данных, хотя все они 16 бит.

From Wikipedia, the free encyclopedia

In computing, a word is the natural unit of data used by a particular processor design. A word is a fixed-sized datum handled as a unit by the instruction set or the hardware of the processor. The number of bits or digits[a] in a word (the word size, word width, or word length) is an important characteristic of any specific processor design or computer architecture.

The size of a word is reflected in many aspects of a computer’s structure and operation; the majority of the registers in a processor are usually word-sized and the largest datum that can be transferred to and from the working memory in a single operation is a word in many (not all) architectures. The largest possible address size, used to designate a location in memory, is typically a hardware word (here, «hardware word» means the full-sized natural word of the processor, as opposed to any other definition used).

Documentation for older computers with fixed word size commonly states memory sizes in words rather than bytes or characters. The documentation sometimes uses metric prefixes correctly, sometimes with rounding, e.g., 65 kilowords (KW) meaning for 65536 words, and sometimes uses them incorrectly, with kilowords (KW) meaning 1024 words (210) and megawords (MW) meaning 1,048,576 words (220). With standardization on 8-bit bytes and byte addressability, stating memory sizes in bytes, kilobytes, and megabytes with powers of 1024 rather than 1000 has become the norm, although there is some use of the IEC binary prefixes.

Several of the earliest computers (and a few modern as well) use binary-coded decimal rather than plain binary, typically having a word size of 10 or 12 decimal digits, and some early decimal computers have no fixed word length at all. Early binary systems tended to use word lengths that were some multiple of 6-bits, with the 36-bit word being especially common on mainframe computers. The introduction of ASCII led to the move to systems with word lengths that were a multiple of 8-bits, with 16-bit machines being popular in the 1970s before the move to modern processors with 32 or 64 bits.[1] Special-purpose designs like digital signal processors, may have any word length from 4 to 80 bits.[1]

The size of a word can sometimes differ from the expected due to backward compatibility with earlier computers. If multiple compatible variations or a family of processors share a common architecture and instruction set but differ in their word sizes, their documentation and software may become notationally complex to accommodate the difference (see Size families below).

Uses of words[edit]

Depending on how a computer is organized, word-size units may be used for:

Fixed-point numbers
Holders for fixed point, usually integer, numerical values may be available in one or in several different sizes, but one of the sizes available will almost always be the word. The other sizes, if any, are likely to be multiples or fractions of the word size. The smaller sizes are normally used only for efficient use of memory; when loaded into the processor, their values usually go into a larger, word sized holder.
Floating-point numbers
Holders for floating-point numerical values are typically either a word or a multiple of a word.
Addresses
Holders for memory addresses must be of a size capable of expressing the needed range of values but not be excessively large, so often the size used is the word though it can also be a multiple or fraction of the word size.
Registers
Processor registers are designed with a size appropriate for the type of data they hold, e.g. integers, floating-point numbers, or addresses. Many computer architectures use general-purpose registers that are capable of storing data in multiple representations.
Memory–processor transfer
When the processor reads from the memory subsystem into a register or writes a register’s value to memory, the amount of data transferred is often a word. Historically, this amount of bits which could be transferred in one cycle was also called a catena in some environments (such as the Bull GAMMA 60 [fr]).[2][3] In simple memory subsystems, the word is transferred over the memory data bus, which typically has a width of a word or half-word. In memory subsystems that use caches, the word-sized transfer is the one between the processor and the first level of cache; at lower levels of the memory hierarchy larger transfers (which are a multiple of the word size) are normally used.
Unit of address resolution
In a given architecture, successive address values designate successive units of memory; this unit is the unit of address resolution. In most computers, the unit is either a character (e.g. a byte) or a word. (A few computers have used bit resolution.) If the unit is a word, then a larger amount of memory can be accessed using an address of a given size at the cost of added complexity to access individual characters. On the other hand, if the unit is a byte, then individual characters can be addressed (i.e. selected during the memory operation).
Instructions
Machine instructions are normally the size of the architecture’s word, such as in RISC architectures, or a multiple of the «char» size that is a fraction of it. This is a natural choice since instructions and data usually share the same memory subsystem. In Harvard architectures the word sizes of instructions and data need not be related, as instructions and data are stored in different memories; for example, the processor in the 1ESS electronic telephone switch has 37-bit instructions and 23-bit data words.

Word size choice[edit]

When a computer architecture is designed, the choice of a word size is of substantial importance. There are design considerations which encourage particular bit-group sizes for particular uses (e.g. for addresses), and these considerations point to different sizes for different uses. However, considerations of economy in design strongly push for one size, or a very few sizes related by multiples or fractions (submultiples) to a primary size. That preferred size becomes the word size of the architecture.

Character size was in the past (pre-variable-sized character encoding) one of the influences on unit of address resolution and the choice of word size. Before the mid-1960s, characters were most often stored in six bits; this allowed no more than 64 characters, so the alphabet was limited to upper case. Since it is efficient in time and space to have the word size be a multiple of the character size, word sizes in this period were usually multiples of 6 bits (in binary machines). A common choice then was the 36-bit word, which is also a good size for the numeric properties of a floating point format.

After the introduction of the IBM System/360 design, which uses eight-bit characters and supports lower-case letters, the standard size of a character (or more accurately, a byte) becomes eight bits. Word sizes thereafter are naturally multiples of eight bits, with 16, 32, and 64 bits being commonly used.

Variable-word architectures[edit]

Early machine designs included some that used what is often termed a variable word length. In this type of organization, an operand has no fixed length. Depending on the machine and the instruction, the length might be denoted by a count field, by a delimiting character, or by an additional bit called, e.g., flag, or word mark. Such machines often use binary-coded decimal in 4-bit digits, or in 6-bit characters, for numbers. This class of machines includes the IBM 702, IBM 705, IBM 7080, IBM 7010, UNIVAC 1050, IBM 1401, IBM 1620, and RCA 301.

Most of these machines work on one unit of memory at a time and since each instruction or datum is several units long, each instruction takes several cycles just to access memory. These machines are often quite slow because of this. For example, instruction fetches on an IBM 1620 Model I take 8 cycles (160 μs) just to read the 12 digits of the instruction (the Model II reduced this to 6 cycles, or 4 cycles if the instruction did not need both address fields). Instruction execution takes a variable number of cycles, depending on the size of the operands.

Word, bit and byte addressing[edit]

The memory model of an architecture is strongly influenced by the word size. In particular, the resolution of a memory address, that is, the smallest unit that can be designated by an address, has often been chosen to be the word. In this approach, the word-addressable machine approach, address values which differ by one designate adjacent memory words. This is natural in machines which deal almost always in word (or multiple-word) units, and has the advantage of allowing instructions to use minimally sized fields to contain addresses, which can permit a smaller instruction size or a larger variety of instructions.

When byte processing is to be a significant part of the workload, it is usually more advantageous to use the byte, rather than the word, as the unit of address resolution. Address values which differ by one designate adjacent bytes in memory. This allows an arbitrary character within a character string to be addressed straightforwardly. A word can still be addressed, but the address to be used requires a few more bits than the word-resolution alternative. The word size needs to be an integer multiple of the character size in this organization. This addressing approach was used in the IBM 360, and has been the most common approach in machines designed since then.

When the workload involves processing fields of different sizes, it can be advantageous to address to the bit. Machines with bit addressing may have some instructions that use a programmer-defined byte size and other instructions that operate on fixed data sizes. As an example, on the IBM 7030[4] («Stretch»), a floating point instruction can only address words while an integer arithmetic instruction can specify a field length of 1-64 bits, a byte size of 1-8 bits and an accumulator offset of 0-127 bits.

In a byte-addressable machine with storage-to-storage (SS) instructions, there are typically move instructions to copy one or multiple bytes from one arbitrary location to another. In a byte-oriented (byte-addressable) machine without SS instructions, moving a single byte from one arbitrary location to another is typically:

  1. LOAD the source byte
  2. STORE the result back in the target byte

Individual bytes can be accessed on a word-oriented machine in one of two ways. Bytes can be manipulated by a combination of shift and mask operations in registers. Moving a single byte from one arbitrary location to another may require the equivalent of the following:

  1. LOAD the word containing the source byte
  2. SHIFT the source word to align the desired byte to the correct position in the target word
  3. AND the source word with a mask to zero out all but the desired bits
  4. LOAD the word containing the target byte
  5. AND the target word with a mask to zero out the target byte
  6. OR the registers containing the source and target words to insert the source byte
  7. STORE the result back in the target location

Alternatively many word-oriented machines implement byte operations with instructions using special byte pointers in registers or memory. For example, the PDP-10 byte pointer contained the size of the byte in bits (allowing different-sized bytes to be accessed), the bit position of the byte within the word, and the word address of the data. Instructions could automatically adjust the pointer to the next byte on, for example, load and deposit (store) operations.

Powers of two[edit]

Different amounts of memory are used to store data values with different degrees of precision. The commonly used sizes are usually a power of two multiple of the unit of address resolution (byte or word). Converting the index of an item in an array into the memory address offset of the item then requires only a shift operation rather than a multiplication. In some cases this relationship can also avoid the use of division operations. As a result, most modern computer designs have word sizes (and other operand sizes) that are a power of two times the size of a byte.

Size families[edit]

As computer designs have grown more complex, the central importance of a single word size to an architecture has decreased. Although more capable hardware can use a wider variety of sizes of data, market forces exert pressure to maintain backward compatibility while extending processor capability. As a result, what might have been the central word size in a fresh design has to coexist as an alternative size to the original word size in a backward compatible design. The original word size remains available in future designs, forming the basis of a size family.

In the mid-1970s, DEC designed the VAX to be a 32-bit successor of the 16-bit PDP-11. They used word for a 16-bit quantity, while longword referred to a 32-bit quantity; this terminology is the same as the terminology used for the PDP-11. This was in contrast to earlier machines, where the natural unit of addressing memory would be called a word, while a quantity that is one half a word would be called a halfword. In fitting with this scheme, a VAX quadword is 64 bits. They continued this 16-bit word/32-bit longword/64-bit quadword terminology with the 64-bit Alpha.

Another example is the x86 family, of which processors of three different word lengths (16-bit, later 32- and 64-bit) have been released, while word continues to designate a 16-bit quantity. As software is routinely ported from one word-length to the next, some APIs and documentation define or refer to an older (and thus shorter) word-length than the full word length on the CPU that software may be compiled for. Also, similar to how bytes are used for small numbers in many programs, a shorter word (16 or 32 bits) may be used in contexts where the range of a wider word is not needed (especially where this can save considerable stack space or cache memory space). For example, Microsoft’s Windows API maintains the programming language definition of WORD as 16 bits, despite the fact that the API may be used on a 32- or 64-bit x86 processor, where the standard word size would be 32 or 64 bits, respectively. Data structures containing such different sized words refer to them as:

  • WORD (16 bits/2 bytes)
  • DWORD (32 bits/4 bytes)
  • QWORD (64 bits/8 bytes)

A similar phenomenon has developed in Intel’s x86 assembly language – because of the support for various sizes (and backward compatibility) in the instruction set, some instruction mnemonics carry «d» or «q» identifiers denoting «double-«, «quad-» or «double-quad-«, which are in terms of the architecture’s original 16-bit word size.

An example with a different word size is the IBM System/360 family. In the System/360 architecture, System/370 architecture and System/390 architecture, there are 8-bit bytes, 16-bit halfwords, 32-bit words and 64-bit doublewords. The z/Architecture, which is the 64-bit member of that architecture family, continues to refer to 16-bit halfwords, 32-bit words, and 64-bit doublewords, and additionally features 128-bit quadwords.

In general, new processors must use the same data word lengths and virtual address widths as an older processor to have binary compatibility with that older processor.

Often carefully written source code – written with source-code compatibility and software portability in mind – can be recompiled to run on a variety of processors, even ones with different data word lengths or different address widths or both.

Table of word sizes[edit]

key: bit: bits, c: characters, d: decimal digits, w: word size of architecture, n: variable size, wm: Word mark
Year Computer
architecture
Word size w Integer
sizes
Floating­point
sizes
Instruction
sizes
Unit of address
resolution
Char size
1837 Babbage
Analytical engine
50 d w Five different cards were used for different functions, exact size of cards not known. w
1941 Zuse Z3 22 bit w 8 bit w
1942 ABC 50 bit w
1944 Harvard Mark I 23 d w 24 bit
1946
(1948)
{1953}
ENIAC
(w/Panel #16[5])
{w/Panel #26[6]}
10 d w, 2w
(w)
{w}

(2 d, 4 d, 6 d, 8 d)
{2 d, 4 d, 6 d, 8 d}


{w}
1948 Manchester Baby 32 bit w w w
1951 UNIVAC I 12 d w 12w w 1 d
1952 IAS machine 40 bit w 12w w 5 bit
1952 Fast Universal Digital Computer M-2 34 bit w? w 34 bit = 4-bit opcode plus 3×10 bit address 10 bit
1952 IBM 701 36 bit 12w, w 12w 12w, w 6 bit
1952 UNIVAC 60 n d 1 d, … 10 d 2 d, 3 d
1952 ARRA I 30 bit w w w 5 bit
1953 IBM 702 n c 0 c, … 511 c 5 c c 6 bit
1953 UNIVAC 120 n d 1 d, … 10 d 2 d, 3 d
1953 ARRA II 30 bit w 2w 12w w 5 bit
1954
(1955)
IBM 650
(w/IBM 653)
10 d w
(w)
w w 2 d
1954 IBM 704 36 bit w w w w 6 bit
1954 IBM 705 n c 0 c, … 255 c 5 c c 6 bit
1954 IBM NORC 16 d w w, 2w w w
1956 IBM 305 n d 1 d, … 100 d 10 d d 1 d
1956 ARMAC 34 bit w w 12w w 5 bit, 6 bit
1956 LGP-30 31 bit w 16 bit w 6 bit
1957 Autonetics Recomp I 40 bit w, 79 bit, 8 d, 15 d 12w 12w, w 5 bit
1958 UNIVAC II 12 d w 12w w 1 d
1958 SAGE 32 bit 12w w w 6 bit
1958 Autonetics Recomp II 40 bit w, 79 bit, 8 d, 15 d 2w 12w 12w, w 5 bit
1958 Setun 6 trit (~9.5 bits)[b] up to 6 tryte up to 3 trytes 4 trit?
1958 Electrologica X1 27 bit w 2w w w 5 bit, 6 bit
1959 IBM 1401 n c 1 c, … 1 c, 2 c, 4 c, 5 c, 7 c, 8 c c 6 bit + wm
1959
(TBD)
IBM 1620 n d 2 d, …
(4 d, … 102 d)
12 d d 2 d
1960 LARC 12 d w, 2w w, 2w w w 2 d
1960 CDC 1604 48 bit w w 12w w 6 bit
1960 IBM 1410 n c 1 c, … 1 c, 2 c, 6 c, 7 c, 11 c, 12 c c 6 bit + wm
1960 IBM 7070 10 d[c] w, 1-9 d w w w, d 2 d
1960 PDP-1 18 bit w w w 6 bit
1960 Elliott 803 39 bit
1961 IBM 7030
(Stretch)
64 bit 1 bit, … 64 bit,
1 d, … 16 d
w 12w, w bit (integer),
12w (branch),
w (float)
1 bit, … 8 bit
1961 IBM 7080 n c 0 c, … 255 c 5 c c 6 bit
1962 GE-6xx 36 bit w, 2 w w, 2 w, 80 bit w w 6 bit, 9 bit
1962 UNIVAC III 25 bit w, 2w, 3w, 4w, 6 d, 12 d w w 6 bit
1962 Autonetics D-17B
Minuteman I Guidance Computer
27 bit 11 bit, 24 bit 24 bit w
1962 UNIVAC 1107 36 bit 16w, 13w, 12w, w w w w 6 bit
1962 IBM 7010 n c 1 c, … 1 c, 2 c, 6 c, 7 c, 11 c, 12 c c 6 b + wm
1962 IBM 7094 36 bit w w, 2w w w 6 bit
1962 SDS 9 Series 24 bit w 2w w w
1963
(1966)
Apollo Guidance Computer 15 bit w w, 2w w
1963 Saturn Launch Vehicle Digital Computer 26 bit w 13 bit w
1964/1966 PDP-6/PDP-10 36 bit w w, 2 w w w 6 bit
7 bit (typical)
9 bit
1964 Titan 48 bit w w w w w
1964 CDC 6600 60 bit w w 14w, 12w w 6 bit
1964 Autonetics D-37C
Minuteman II Guidance Computer
27 bit 11 bit, 24 bit 24 bit w 4 bit, 5 bit
1965 Gemini Guidance Computer 39 bit 26 bit 13 bit 13 bit, 26 —bit
1965 IBM 1130 16 bit w, 2w 2w, 3w w, 2w w 8 bit
1965 IBM System/360 32 bit 12w, w,
1 d, … 16 d
w, 2w 12w, w, 112w 8 bit 8 bit
1965 UNIVAC 1108 36 bit 16w, 14w, 13w, 12w, w, 2w w, 2w w w 6 bit, 9 bit
1965 PDP-8 12 bit w w w 8 bit
1965 Electrologica X8 27 bit w 2w w w 6 bit, 7 bit
1966 SDS Sigma 7 32 bit 12w, w w, 2w w 8 bit 8 bit
1969 Four-Phase Systems AL1 8 bit w ? ? ?
1970 MP944 20 bit w ? ? ?
1970 PDP-11 16 bit w 2w, 4w w, 2w, 3w 8 bit 8 bit
1971 CDC STAR-100 64 bit 12w, w 12w, w 12w, w bit 8 bit
1971 TMS1802NC 4 bit w ? ?
1971 Intel 4004 4 bit w, d 2w, 4w w
1972 Intel 8008 8 bit w, 2 d w, 2w, 3w w 8 bit
1972 Calcomp 900 9 bit w w, 2w w 8 bit
1974 Intel 8080 8 bit w, 2w, 2 d w, 2w, 3w w 8 bit
1975 ILLIAC IV 64 bit w w, 12w w w
1975 Motorola 6800 8 bit w, 2 d w, 2w, 3w w 8 bit
1975 MOS Tech. 6501
MOS Tech. 6502
8 bit w, 2 d w, 2w, 3w w 8 bit
1976 Cray-1 64 bit 24 bit, w w 14w, 12w w 8 bit
1976 Zilog Z80 8 bit w, 2w, 2 d w, 2w, 3w, 4w, 5w w 8 bit
1978
(1980)
16-bit x86 (Intel 8086)
(w/floating point: Intel 8087)
16 bit 12w, w, 2 d
(2w, 4w, 5w, 17 d)
12w, w, … 7w 8 bit 8 bit
1978 VAX 32 bit 14w, 12w, w, 1 d, … 31 d, 1 bit, … 32 bit w, 2w 14w, … 1414w 8 bit 8 bit
1979
(1984)
Motorola 68000 series
(w/floating point)
32 bit 14w, 12w, w, 2 d
(w, 2w, 212w)
12w, w, … 712w 8 bit 8 bit
1985 IA-32 (Intel 80386) (w/floating point) 32 bit 14w, 12w, w
(w, 2w, 80 bit)
8 bit, … 120 bit
14w … 334w
8 bit 8 bit
1985 ARMv1 32 bit 14w, w w 8 bit 8 bit
1985 MIPS I 32 bit 14w, 12w, w w, 2w w 8 bit 8 bit
1991 Cray C90 64 bit 32 bit, w w 14w, 12w, 48 bit w 8 bit
1992 Alpha 64 bit 8 bit, 14w, 12w, w 12w, w 12w 8 bit 8 bit
1992 PowerPC 32 bit 14w, 12w, w w, 2w w 8 bit 8 bit
1996 ARMv4
(w/Thumb)
32 bit 14w, 12w, w w
(12w, w)
8 bit 8 bit
2000 IBM z/Architecture
(w/vector facility)
64 bit 14w, 12w, w
1 d, … 31 d
12w, w, 2w 14w, 12w, 34w 8 bit 8 bit, UTF-16, UTF-32
2001 IA-64 64 bit 8 bit, 14w, 12w, w 12w, w 41 bit (in 128-bit bundles)[7] 8 bit 8 bit
2001 ARMv6
(w/VFP)
32 bit 8 bit, 12w, w
(w, 2w)
12w, w 8 bit 8 bit
2003 x86-64 64 bit 8 bit, 14w, 12w, w 12w, w, 80 bit 8 bit, … 120 bit 8 bit 8 bit
2013 ARMv8-A and ARMv9-A 64 bit 8 bit, 14w, 12w, w 12w, w 12w 8 bit 8 bit
Year Computer
architecture
Word size w Integer
sizes
Floating­point
sizes
Instruction
sizes
Unit of address
resolution
Char size
key: bit: bits, d: decimal digits, w: word size of architecture, n: variable size

[8][9]

See also[edit]

  • Integer (computer science)

Notes[edit]

  1. ^ Many early computers were decimal, and a few were ternary
  2. ^ The bit equivalent is computed by taking the amount of information entropy provided by the trit, which is log _{2}(3). This gives an equivalent of about 9.51 bits for 6 trits.
  3. ^ Three-state sign

References[edit]

  1. ^ a b Beebe, Nelson H. F. (2017-08-22). «Chapter I. Integer arithmetic». The Mathematical-Function Computation Handbook — Programming Using the MathCW Portable Software Library (1 ed.). Salt Lake City, UT, USA: Springer International Publishing AG. p. 970. doi:10.1007/978-3-319-64110-2. ISBN 978-3-319-64109-6. LCCN 2017947446. S2CID 30244721.
  2. ^ Dreyfus, Phillippe (1958-05-08) [1958-05-06]. Written at Los Angeles, California, USA. System design of the Gamma 60 (PDF). Western Joint Computer Conference: Contrasts in Computers. ACM, New York, NY, USA. pp. 130–133. IRE-ACM-AIEE ’58 (Western). Archived (PDF) from the original on 2017-04-03. Retrieved 2017-04-03. […] Internal data code is used: Quantitative (numerical) data are coded in a 4-bit decimal code; qualitative (alpha-numerical) data are coded in a 6-bit alphanumerical code. The internal instruction code means that the instructions are coded in straight binary code.
    As to the internal information length, the information quantum is called a «catena,» and it is composed of 24 bits representing either 6 decimal digits, or 4 alphanumerical characters. This quantum must contain a multiple of 4 and 6 bits to represent a whole number of decimal or alphanumeric characters. Twenty-four bits was found to be a good compromise between the minimum 12 bits, which would lead to a too-low transfer flow from a parallel readout core memory, and 36 bits or more, which was judged as too large an information quantum. The catena is to be considered as the equivalent of a character in variable word length machines, but it cannot be called so, as it may contain several characters. It is transferred in series to and from the main memory.
    Not wanting to call a «quantum» a word, or a set of characters a letter, (a word is a word, and a quantum is something else), a new word was made, and it was called a «catena.» It is an English word and exists in Webster’s although it does not in French. Webster’s definition of the word catena is, «a connected series;» therefore, a 24-bit information item. The word catena will be used hereafter.
    The internal code, therefore, has been defined. Now what are the external data codes? These depend primarily upon the information handling device involved. The Gamma 60 [fr] is designed to handle information relevant to any binary coded structure. Thus an 80-column punched card is considered as a 960-bit information item; 12 rows multiplied by 80 columns equals 960 possible punches; is stored as an exact image in 960 magnetic cores of the main memory with 2 card columns occupying one catena. […]
  3. ^ Blaauw, Gerrit Anne; Brooks, Jr., Frederick Phillips; Buchholz, Werner (1962). «4: Natural Data Units» (PDF). In Buchholz, Werner (ed.). Planning a Computer System – Project Stretch. McGraw-Hill Book Company, Inc. / The Maple Press Company, York, PA. pp. 39–40. LCCN 61-10466. Archived (PDF) from the original on 2017-04-03. Retrieved 2017-04-03. […] Terms used here to describe the structure imposed by the machine design, in addition to bit, are listed below.
    Byte denotes a group of bits used to encode a character, or the number of bits transmitted in parallel to and from input-output units. A term other than character is used here because a given character may be represented in different applications by more than one code, and different codes may use different numbers of bits (i.e., different byte sizes). In input-output transmission the grouping of bits may be completely arbitrary and have no relation to actual characters. (The term is coined from bite, but respelled to avoid accidental mutation to bit.)
    A word consists of the number of data bits transmitted in parallel from or to memory in one memory cycle. Word size is thus defined as a structural property of the memory. (The term catena was coined for this purpose by the designers of the Bull GAMMA 60 [fr] computer.)
    Block refers to the number of words transmitted to or from an input-output unit in response to a single input-output instruction. Block size is a structural property of an input-output unit; it may have been fixed by the design or left to be varied by the program. […]
  4. ^ «Format» (PDF). Reference Manual 7030 Data Processing System (PDF). IBM. August 1961. pp. 50–57. Retrieved 2021-12-15.
  5. ^ Clippinger, Richard F. [in German] (1948-09-29). «A Logical Coding System Applied to the ENIAC (Electronic Numerical Integrator and Computer)». Aberdeen Proving Ground, Maryland, US: Ballistic Research Laboratories. Report No. 673; Project No. TB3-0007 of the Research and Development Division, Ordnance Department. Retrieved 2017-04-05.{{cite web}}: CS1 maint: url-status (link)
  6. ^ Clippinger, Richard F. [in German] (1948-09-29). «A Logical Coding System Applied to the ENIAC». Aberdeen Proving Ground, Maryland, US: Ballistic Research Laboratories. Section VIII: Modified ENIAC. Retrieved 2017-04-05.{{cite web}}: CS1 maint: url-status (link)
  7. ^ «4. Instruction Formats» (PDF). Intel Itanium Architecture Software Developer’s Manual. Vol. 3: Intel Itanium Instruction Set Reference. p. 3:293. Retrieved 2022-04-25. Three instructions are grouped together into 128-bit sized and aligned containers called bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template field.
  8. ^ Blaauw, Gerrit Anne; Brooks, Jr., Frederick Phillips (1997). Computer Architecture: Concepts and Evolution (1 ed.). Addison-Wesley. ISBN 0-201-10557-8. (1213 pages) (NB. This is a single-volume edition. This work was also available in a two-volume version.)
  9. ^ Ralston, Anthony; Reilly, Edwin D. (1993). Encyclopedia of Computer Science (3rd ed.). Van Nostrand Reinhold. ISBN 0-442-27679-6.

Уважаемые коллеги, мы рады предложить вам, разрабатываемый нами учебный курс по программированию ПЛК фирмы Beckhoff с применением среды автоматизации TwinCAT. Курс предназначен исключительно для самостоятельного изучения в ознакомительных целях. Перед любым применением изложенного материала в коммерческих целях просим связаться с нами. Текст из предложенных вам статей скопированный и размещенный в других источниках, должен содержать ссылку на наш сайт heaviside.ru. Вы можете связаться с нами по любым вопросам, в том числе создания для вас систем мониторинга и АСУ ТП.


Типы данных в языках стандарта МЭК 61131-3

Уважаемые коллеги, в этой статье мы будем рассматривать важнейшую для написания программ тему — типы данных. Чтобы читатели понимали, в чем отличие одних типов данных от других и зачем они вообще нужны, мы подробно разберем, каким образом данные представлены в процессоре. В следующем занятии будет большая практическая работа, выполняя которую, можно будет потренироваться объявлять переменные и на практике познакомится с особенностями выполнения математических операций с различными типами данных.

Простые типы данных

В прошлой статье мы научились записывать цифры в двоичной системе счисления. Именно такую систему счисления используют все компьютеры, микропроцессоры и прочая вычислительная техника. Теперь мы будем изучать типы данных.

Любая переменная, которую вы используете в своем коде, будь то показания датчиков, состояние выхода или выхода, состояние катушки или просто любая промежуточная величина, при выполнении программы будет хранится в оперативной памяти. Чтобы под каждую используемую переменную на этапе компиляции проекта была выделена оперативная память, мы объявляем переменные при написании программы. Компиляция, это перевод исходного кода, написанного программистом, в команды на языке ассемблера понятные процессору. Причем в зависимости от вида применяемого процессора один и тот же исходный код может транслироваться в разные ассемблерные команды (вспомним что ПЛК Beckhoff, как и персональные компьютеры работают на процессорах семейства x86).

Как помните, из статьи Знакомство с языком LD, при объявлении переменной необходимо указать, к какому типу данных будет принадлежать переменная. Как вы уже можете понять, число B016 будет занимать гораздо меньший объем памяти чем число 4 C4E5 01E7 7A9016. Также одни и те же операции с разными типами данных будут транслироваться в разные ассемблерные команды. В TwinCAT используются следующие типы данных:

Классификация типов данных TwinCAT 3

Биты

BOOL — это простейший тип данных, как уже было сказано, этот тип данных может принимать только два значения ​0 и 1. Так же в TwinCAT, как и в большинстве языков программирования, эти значения, наравне с 0 и 1, обозначаются как TRUE и FALSE и несут в себе количество информации, соответствующее одному биту. Минимальным объемом данных, который читается из памяти за один раз, является байт, то есть восемь бит. Поэтому, для оптимизации скорости доступа к данным, переменная типа BOOL занимает восемь бит памяти. Для хранения самой переменной используется нулевой бит, а биты с первого по седьмой заполнены нулями. Впрочем, на практике о таком нюансе приходится вспоминать достаточно редко.

BIT — то же самое, что и BOOL, но в памяти занимает 1 бит. Как можно догадаться, операции с этим типом данных медленнее чем с типом BOOL, но он занимает меньше места в памяти. Тип данных BIT отсутствует в стандарте МЭК 61131-3 и поддерживается исключительно в TwinCAT, поэтому стоит отдавать предпочтение типу BOOL, когда у вас нет явных поводов использовать тип BIT.

Целочисленные типы данных

BYTE — тип данных, по размеру соответствующий одному байту. Хоть с типом BYTE можно производить математические операции, но в первую очередь он предназначен для хранения набора из ​8 ​бит. Иногда в таком виде удобнее, чем побитно, передавать данные по цифровым интерфейсам, работать с входами выходами и так далее. С такими вопросами мы будем знакомится далее по мере изучения курса. В переменную типа BYTE ​можно записать числа из диапазона 0..255 (0..28-1).

WORD — то же самое, что и BYTE, но размером ​16​ бит. В переменную типа WORD можно записать числа из диапазона 0..65 535​ ​(0..216-1). Тип данных WORD переводится с английского как «слово». Давным-давно термином машинное слово называли группу бит, обрабатываемых вычислительной машиной за один раз. Была уместна фраза «Программа состоит из машинных слов.». Со временем этим термином перестали пользоваться в прямом его значении, и сейчас под термином «машинное слово» обычно подразумевается группа из 16​ бит.

DWORD — то же самое, что и BYTE, но размером 32 бит. В переменную типа DWORD можно записать числа из диапазона 0..4 294 967 295​​ ​(0..232-1). DWORD — это сокращение от double word, что переводится как двойное слово. Довольно часто буква «D» перед каким-либо типом данных значит, что этот тип данных в два раза длиннее, чем исходный.

LWORD — то же самое, что и BYTE, но размером 64 ;бит. В переменную типа LWORD можно записать числа из диапазона 0..18 446 744 073 709 551 615 (0..264-1). LWORD — это сокращение от long word, что переводится как длинное слово. Приставка «L» перед типом данных, как правило, означает что такой тип имеет длину 64 бита.

SINT — знаковый тип данных, длинной 8 бит. В переменную типа SINT можно записать числа из диапазона -128..127​​ ​(-27..27-1). В отличии от всех предыдущих типов данных этот тип данных предназначен для хранения именно чисел, а не набора бит. Слово знаковый в описании типа означает, что такой тип данных может хранить как положительные, так и отрицательные значения. Для хранения знака числа предназначен старший, в данном случае седьмой, разряд числа. Если старший разряд имеет значение 0, то число интерпретируется как положительное, если 1, то число интерпретируется как отрицательное. Приставка «S» означает short, что переводится с английского как короткий. Как вы догадались, SINT короткий вариант типа INT.

USINT — беззнаковый тип данных, длинной 8 бит. В переменную типа USINT можно записать числа из диапазона 0..255​​ ​(0..28-1). Приставка «U» означает unsigned, переводится как беззнаковый.

Остальные целочисленные типы аналогичны уже описанным и отличаются только размером. Сведем все целочисленные типы в таблицу.

Тип данных Нижний предел Верхний предел Занимаемая память
BYTE 0 255 8 бит
WORD 0 65 535 16 бит
DWORD 0 4 294 967 295 32 бит
LWORD 0 264-1 64 бит
SINT -128 127 8 бит
USINT 0 255 8 бит
INT -32 768 32 767 16 бит
UINT 0 65 535 16 бит
DINT -2 147 483 648 2 147 483 647 32 бит
UDINT 0 4 294 967 295 32 бит
LINT -263 -263-1 64 бит
ULINT 0 -264-1 64 бит

Выше мы рассматривали целочисленные типы данных, то есть такие типы данных, в которых отсутствует запятая. При совершении математических операций с целочисленными типами данных есть некоторые особенности:

  • Округление при делении: округление всегда выполняется вниз. То есть дробная часть просто отбрасывается. Если делимое меньше делителя, то частное всегда будет равно нулю, например, 10/11 = 0.
  • Переполнение: если к целочисленной переменной, например, SINT, имеющей значение 255, прибавить 1, переменная переполнится и примет значение 0. Если прибавить 2, переменная примет значение 1 и так далее. При операции 0 — 1 результатом будет 255. Это свойство очень схоже с устройством стрелочных часов. Если сейчас 2 часа, то 5 часов назад было 9 часов. Только шкала часов имеет пределы не 1..12, а 0..255. Иногда такое свойство может использоваться при написании программ, но как правило не стоит допускать переполнения переменных.

Подробно такие нюансы разбираются в пособиях по дискретной математике. Мы на них пока что останавливаться не будем, но о приведенных двух особенностях не стоит забывать при написании программ.

Можно встретить упоминания о данных с фиксированной запятой, это такие данные, в которых количество знаков после запятой строго фиксировано. В TwinCAT типы данных с фиксированной запятой отсутствуют в чистом виде. TwinCAT поддерживает типы данных с плавающей запятой, то есть количество знаков до и после запятой может быть любым в пределах поддерживаемого диапазона.

Типы данных с плавающей запятой

REAL — тип данных с плавающей запятой длинной 32 бита. В переменную типа REAL можно записать числа из диапазона -3.402 82*1038..3.402 82*1038​​.

LREAL — тип данных с плавающей запятой длинной 64 бита. В переменную типа LREAL можно записать числа из диапазона -1.797 693 134 862 315 8*10308..1.797 693 134 862 315 8*10308​​.

При присваивании значения типам REAL и LREAL присваиваемое значение должно содержать целую часть, разделительную точку и дробную часть, например, 7.4 или 560.0.

Так же при записи значения типа REAL и LREAL использовать экспоненциальную (научную) форму. Примером экспоненциальной формы записи будет Me+P, в этом примере

  • M называется мантиссой.
  • e называется экспонентой (от англ. «exponent»), означающая «·10^» («…умножить на десять в степени…»),
  • P называется порядком.

Примерами такой формы записи будет:

  • 1.64e+3 расшифровывается как 1.64e+3 = 1.64*103 = 1640.
  • 9.764e+5 расшифровывается как 9.764e+5 = 9.764*105 = 976400.
  • 0.3694e+2 расшифровывается как 0.3694e+2 = 0.3694*102 = 36.94.

Еще один способ записи присваиваемого значения переменной типа REAL и LREAL, это добавить к числу префикс REAL#, например, REAL#7.4 или REAL#560. В таком случае можно не указывать дробную часть.

Старший, 31-й бит переменной типа REAL представляет собой знак. Следующие восемь бит, с 30-го по 23-й отведены под экспоненту. Оставшиеся 23 бита, с 22-го по 0-й используются для записи мантиссы.

В переменной типа LREAL старший, 63-й бит также используется для записи знака. В следующие 11 бит, с 62 по 52-й, записана экспонента. Оставшиеся 52 бита, с 51-го по 0-й, используются для записи мантиссы.

При записи числа с большим количеством значащих цифр в переменные типа REAL и LREAL производится округление. Необходимо не забывать об этом в расчетах, к которым предъявляются строгие требования по точности. Еще одна особенность, вытекающая из прошлой, если вы хотите сравнить два числа типа REAL или LREAL, прямое сравнение мало применимо, так как если в результате округления числа отличаются хоть на малую долю результат сравнения будет FALSE. Чтобы выполнить сравнение более корректно, можно вычесть одно число из другого, а потом оценить больше или меньше модуль получившегося результата вычитания, чем наибольшая допустимая разность. Поведение системы при переполнении переменных с плавающей запятой не определенно стандартом МЭК 61131-3, допускать его не стоит.

Строковые типы данных

STRING — тип данных для хранения символов. Каждый символ в переменной типа STRING хранится в 1 байте, в кодировке Windows-1252, это значит, что переменные такого типа поддерживают только латинские символы. При объявлении переменной количество символов в переменной указывается в круглых или квадратных скобках. Если размер не указан, при объявлении по умолчанию он равен 80 символам. Для данных типа STRING количество содержащихся в переменной символов не ограниченно, но функции для обработки строк могут принять до 255 символов.

Объем памяти, необходимый для переменной STRING, всегда составляет 1 байт на символ +1 дополнительный байт, например, переменная объявленная как «STRING [80]» будет занимать 81 байт. Для присвоения константного значения переменной типа STRING присваемый текст необходимо заключить в одинарные кавычки.

Пример объявления строки на 35 символов:

sVar : STRING(35) := 'This is a String'; (*Пример объявления переменной типа STRING*)

WSTRING — этот тип данных схож с типом STRING, но использует по 2 байта на символ и кодировку Unicode. Это значит что переменные типа WSTRING поддерживают символы кириллицы. Для присвоения константного значения переменной типа WSTRING присваемый текст необходимо заключить в двойные кавычки.

Пример объявления переменной типа WSTRING:

wsVar : WSTRING := "This is a WString"; (*Пример объявления переменной типа WSTRING*)

Если значение, присваиваемое переменной STRING или WSTRING, содержит знак доллара ($), следующие два символа интерпретируются как шестнадцатеричный код в соответствии с кодировкой Windows-1252. Код также соответствует кодировке ASCII.

Код со знаком доллара Его значение в переменной
$<восьмибитное число> Восьмибитное число интерпретируется как символ в кодировке ISO / IEC 8859-1
‘$41’ A
‘$9A’ ©
‘$40’ @
‘$0D’, ‘$R’, ‘$r’ Разрыв строки
‘$0A’, ‘$L’, ‘$l’, ‘$N’, ‘$n’ Новая строка
‘$P’, ‘$p’ Конец страницы
‘$T’, ‘$t’ Табуляция
‘$$’ Знак доллара
‘$’ ‘ Одиночная кавычка

Такое разнообразие кодировок связанно с тем, что у всех из них первые 128 символов соответствуют кодовой таблице ASCII, но в статье для каждого случая кодировка указывалась так же, как она указана в infosys.

Пример:

  1. VAR CONSTANT

  2. sConstA : STRING :='Hello world';

  3. sConstB : STRING :='Hello world $21'; (*Пример объявления переменной типа STRING с спец символом*)

  4. END_VAR

Типы данных времени

TIME — тип данных, предназначенный для хранения временных промежутков. Размер типа данных 32 бита. Этот тип данных интерпретируется в TwinCAT, как переменная типа DWORD, содержащая время в миллисекундах. Нижний допустимый предел 0 (0 мс), верхний предел 4 294 967 295 (49 дней, 17 часов, 2 минуты, 47 секунд, 295 миллисекунд). Для записи значений в переменные типа TIME используется префикс T# и суффиксы d: дни, h: часы, m: минуты, s: секунды, ms: миллисекунды, которые должны располагаться в порядке убывания.

Примеры корректного присваивания значения переменной типа TIME:

TIME1 : TIME := T#14ms;
TIME1 : TIME := T#100s12ms; // Допускается переполнение в старшем отрезке времени.
TIME1 : TIME := t#12h34m15s;

Примеры некорректного присваивания значения переменной типа TIME, при компиляции будет выдана ошибка:

TIME1 : TIME := t#5m68s;   // Переполнение не в старшем отрезке времени недопустимо
TIME1 : TIME := 15ms;   // Пропущен префикс T#
TIME1 : TIME := t#4ms13d;   // Не соблюден порядок записи временных отрезок

LTIME — тип данных аналогичен TIME, но его размер составляет 64 бита, а временные отрезки хранятся в наносекундах. Нижний допустимый предел 0, верхний предел 213 503 дней, 23 часов, 34 минуты, 33 секунд, 709 миллисекунд, 551 микросекунд и 615 наносекунд. Для записи значений в переменные типа LTIME используется префикс LTIME#. Помимо суффиксов, используемых для записи типа TIME для LTIME, используются µs: микросекунды и ns: наносекунды.

Пример:

LTIME1 : LTIME := LTIME#1000d15h23m12s34ms2us44ns; (*Пример объявления переменной типа LTIME*)

TIME_OF_DAY (TOD) — тип данных для записи времени суток. Имеет размер 32 бита. Нижнее допустимое значение 0, верхнее допустимое значение 23 часа, 59 минут, 59 секунд, 999 миллисекунд. Для записи значений в переменные типа TOD используется префикс TIME_OF_DAY# или TOD#, значение записывается в виде <часы : минуты : секунды> . В остальном этот тип данных аналогичен типу TIME.

Пример:

TIME_OF_DAY#15:36:30.123
tod#00:00:00

Date — тип данных для записи даты. Имеет размер 32 бита. Нижнее допустимое значение 0 (01.01.1970), верхнее допустимое значение 4 294 967 295  (7 февраля 2106), да, здесь присутствует возможный компьютерный апокалипсис, но учитывая запас по верхнему пределу, эта проблема не слишком актуальна. Для записи значений в переменные типа TOD используется префикс DATE# или D#, значение записывается в виде <год — месяц — дата>. В остальном этот тип данных аналогичен типу TIME.

DATE#1996-05-06
d#1972-03-29

DATE_AND_TIME (DT) — тип данных для записи даты и времени. Имеет размер 32 бита. Нижнее допустимое значение 0 (01.01.1970), верхнее допустимое значение 4 294 967 295 (7 февраля 2106, 6:28:15). Для записи значений в переменные типа DT используется префикс DATE_AND_TIME # или DT#, значение записывается в виде <год — месяц — дата — час : минута : секунда>. В остальном этот тип данных аналогичен типу TIME.

DATE_AND_TIME#1996-05-06-15:36:30
dt#1972-03-29-00:00:00

На этом раз мы заканчиваем рассмотрение типов данных. Сейчас мы разобрали не все типы данных, остальные можно найти в infosys по пути TwinCAT 3 → TE1000 XAE → PLC → Reference Programming → Data types.

Следующая статья будет целиком состоять из практической работы, мы напишем калькулятор на языке LD.


Базовый блок памяти, обрабатываемый компьютером

В вычислениях, слово — это естественная единица данных, используемая конкретной конструкцией процессора . Слово — это фрагмент данных фиксированного размера, обрабатываемый как единица набором команд или аппаратными средствами процессора. Количество бит в слове (размер слова, ширина слова или длина слова) является важной характеристикой любой конкретной конструкции процессора или компьютерной архитектуры.

Размер слова отражается во многих аспектах устройства и работы компьютера; большинство регистров в процессоре обычно имеют размер слова, и самый большой фрагмент данных, который может быть передан в и из рабочей памяти за одну операцию, — это слово из многих ( не все) архитектуры. Наибольший возможный размер адреса, используемый для обозначения места в памяти, обычно является аппаратным словом (здесь «аппаратное слово» означает полноразмерное естественное слово процессора, в отличие от любого другого используемого определения).

Некоторые из самых ранних компьютеров (а также несколько современных) использовали двоично-десятичное, а не обычное двоичное, обычно с размером слова 10 или 12 десятичные цифры, а некоторые ранние десятичные компьютеры вообще не имели фиксированной длины слова. Ранние двоичные системы имели тенденцию использовать длину слова, несколько кратную 6-битному, причем 36-битное слово было особенно распространено на мэйнфреймах компьютерах. Введение ASCII привело к переходу к системам с длиной слова, кратной 8-битной, с 16-битными машинами, которые были популярны в 1970-х годах до перехода на современные процессоры с 32 или 64 битами. Конструкции специального назначения, такие как процессоры цифровых сигналов, могут иметь любую длину слова от 4 до 80 бит.

Размер слова иногда может отличаться от ожидаемого из-за обратной совместимости с более ранними компьютерами. Если несколько совместимых вариантов или семейство процессоров имеют общую архитектуру и набор инструкций, но различаются размером слов, их документация и программное обеспечение могут стать сложными в системе обозначений, чтобы учесть разницу (см. Семейства размеров ниже).

Содержание

  • 1 Использование слов
  • 2 Выбор размера слова
    • 2.1 Архитектура переменных слов
    • 2.2 Адресация слов и байтов
    • 2.3 Степени двух
  • 3 Семейство размеров
  • 4 Таблица размеров слов
  • 5 См. Также
  • 6 Ссылки

Использование слов

В зависимости от того, как устроен компьютер, единицы размера слова могут использоваться для:

Фиксированной точки числа
Держатели для фиксированной точки, обычно целого числа, числовые значения могут быть доступны в одном или нескольких разных размерах, но один из доступных размеров почти всегда будет слово. Другие размеры, если таковые имеются, скорее всего, будут кратны или дроби размера слова. Меньшие размеры обычно используются только для эффективного использования памяти; при загрузке в процессор их значения обычно попадают в более крупный держатель размером с слово.
Числа с плавающей запятой
Держатели для числовых значений с плавающей запятой обычно либо слово или кратное слово.
Адреса
Держатели для адресов памяти должны иметь размер, способный выражать необходимый диапазон значений, но не быть чрезмерно большим, поэтому часто используемый размер слово, хотя оно также может быть кратным или дробной части размера слова.
Регистры
Регистры процессора имеют размер, соответствующий типу данных, которые они хранят, например целые числа, числа с плавающей запятой или адреса. Многие компьютерные архитектуры используют регистры общего назначения, которые могут хранить данные в нескольких представлениях.
Передача памяти и процессора
Когда процессор считывает данные из подсистемы памяти в зарегистрировать или записать значение регистра в память, объем передаваемых данных часто выражается словом. Исторически такое количество битов, которое могло быть передано за один цикл, в некоторых средах также называлось катеной (например, Bull GAMMA 60 [fr ]). В простых подсистемах памяти слово передается по шине данных памяти, которая обычно имеет ширину слова или полуслова. В подсистемах памяти, которые используют кеши, передача размером с слово — это передача между процессором и первым уровнем кеша; на более низких уровнях иерархии памяти обычно используются более крупные передачи (кратные размеру слова).
Единица разрешения адреса
В данной архитектуре, последовательные значения адреса обозначают последовательные единицы памяти; эта единица — единица разрешения адреса. На большинстве компьютеров единицей измерения является либо символ (например, байт), либо слово. (Некоторые компьютеры использовали битовое разрешение.) Если единицей измерения является слово, то можно получить доступ к большему объему памяти, используя адрес заданного размера за счет дополнительной сложности доступа к отдельным символам. С другой стороны, если единицей измерения является байт, то можно адресовать отдельные символы (т. Е. Выбирать во время операции с памятью).
Инструкции
Машинные команды обычно имеют размер слова архитектуры, например, в архитектурах RISC, или кратное размеру «char», составляющее его долю. Это естественный выбор, поскольку инструкции и данные обычно используют одну и ту же подсистему памяти. В гарвардской архитектуре размеры слов инструкций и данных не должны быть связаны, поскольку инструкции и данные хранятся в разных запоминающих устройствах; например, процессор в электронном телефонном коммутаторе 1ESS имел 37-битные инструкции и 23-битные слова данных.

Выбор размера слова

При проектировании компьютерной архитектуры выбор размер слова имеет существенное значение. Существуют конструктивные соображения, которые поощряют определенные размеры битовых групп для конкретных целей (например, для адресов), и эти соображения указывают на разные размеры для разных целей. Однако соображения экономии при проектировании настоятельно требуют использования одного размера или очень небольшого числа размеров, связанных кратными или дробными (частичными) размерами с основным размером. Этот предпочтительный размер становится размером слова архитектуры.

Размер символа был в прошлом (кодировка символов с предварительной переменной размером ) одно из влияний на единицу разрешения адреса и выбор размера слова. До середины 1960-х символы чаще всего хранились в шести битах; это позволяло использовать не более 64 символов, поэтому алфавит был ограничен прописными буквами. Поскольку во времени и пространстве эффективно иметь размер слова, кратный размеру символа, размеры слова в этот период обычно были кратны 6 битам (в двоичных машинах). Тогда обычным выбором было 36-битное слово, которое также является хорошим размером для числовых свойств формата с плавающей запятой.

После внедрения дизайна IBM System / 360, в котором использовались восьмибитные символы и поддерживались строчные буквы, стандартный размер символа (или более точно, байт ) стал восемью битами. После этого размер слов, естественно, был кратен восьми битам, причем обычно использовались 16, 32 и 64 бит.

Архитектуры с переменной длиной слова

Ранние разработки машин включали некоторые, в которых использовалось то, что часто называют переменной длиной слова. В этом типе организации числовой операнд не имеет фиксированной длины, а его конец обнаруживается при обнаружении символа со специальной маркировкой, часто называемой словесным знаком. Такие машины часто использовали десятичные дроби с двоичным кодом для чисел. К этому классу машин относились IBM 702, IBM 705, IBM 7080, IBM 7010, UNIVAC 1050, IBM 1401 и IBM 1620.

Большинство этих машин работают с одной единицей памяти за раз, и поскольку каждая инструкция или данные имеют длину в несколько единиц, каждая инструкция занимает несколько циклов только для доступ к памяти. Из-за этого эти машины часто довольно медленные. Например, выборка инструкций в IBM 1620 Model I занимает 8 циклов только для чтения 12 цифр инструкции (Model II сократила это до 6 циклов или 4 циклов, если инструкция не нуждалась в обоих адресных полях). Выполнение инструкции занимало совершенно разное количество циклов в зависимости от размера операндов.

Адресация слов и байтов

Модель памяти в архитектуре сильно зависит от размера слова. В частности, в качестве слова часто выбирается разрешение адреса памяти, то есть наименьшая единица, которая может быть обозначена адресом. В этом подходе используется машина с адресацией по словам, значения адресов, которые отличаются на единицу, обозначают соседние слова памяти. Это естественно для машин, которые почти всегда работают с единицами слова (или нескольких слов), и имеет то преимущество, что позволяет командам использовать поля минимального размера для хранения адресов, что позволяет использовать меньший размер команды или большее разнообразие инструкций.

Когда обработка байтов должна составлять значительную часть рабочей нагрузки, обычно более выгодно использовать байт, а не слово в качестве единицы разрешения адреса. Значения адресов, которые отличаются на единицу, обозначают соседние байты в памяти. Это позволяет напрямую обращаться к произвольному символу в строке символов. Слово все еще может быть адресовано, но используемый адрес требует на несколько бит больше, чем альтернатива разрешения слова. Размер слова должен быть целым числом, кратным размеру символа в этой организации. Такой подход к адресации использовался в IBM 360 и с тех пор является наиболее распространенным подходом в машинах, разработанных.

В машине с побайтовой ориентацией (с байтовой адресацией ) перемещение одного байта из одного произвольного местоположения в другое обычно:

  1. ЗАГРУЗИТЬ исходный байт
  2. СОХРАНИТЕ результат обратно в целевой байт

. К отдельным байтам можно получить доступ на машине, ориентированной на слова, одним из двух способов. Байтами можно манипулировать с помощью комбинации операций сдвига и маски в регистрах. Для перемещения одного байта из одного произвольного места в другое может потребоваться эквивалент следующего:

  1. ЗАГРУЗИТЬ слово, содержащее исходный байт
  2. SHIFT исходное слово, чтобы выровнять желаемый байт с правильной позицией в целевом объекте слово
  3. И исходное слово с маской для обнуления всех битов, кроме желаемых
  4. ЗАГРУЗИТЬ слово, содержащее целевой байт
  5. И целевое слово с маской до нуля из целевого байта
  6. OR регистры, содержащие исходное и целевое слова, чтобы вставить исходный байт
  7. СОХРАНИТЬ результат обратно в целевое местоположение

В качестве альтернативы многие машины, ориентированные на слова, реализуют байтовые операции с инструкциями, используя специальные байтовые указатели в регистрах или в памяти. Например, указатель байта PDP-10 содержал размер байта в битах (позволяющий получить доступ к байтам разного размера), битовую позицию байта в слове и адрес слова данные. Инструкции могут автоматически настраивать указатель на следующий байт, например, при операциях загрузки и депонирования (сохранения).

Степени двух

Разные объемы памяти используются для хранения значений данных с разной степенью точности. Обычно используемые размеры — это степень двух, кратных единице разрешения адреса (байту или слову). Преобразование индекса элемента в массиве в адрес элемента требует только операции shift, а не умножения. В некоторых случаях эта связь позволяет избежать использования операций деления. В результате большинство современных компьютерных разработок имеют размеры слова (и другие размеры операндов), которые в два раза превышают размер байта.

Семейства размеров

По мере того, как компьютерные конструкции становились все более сложными, центральное значение размера одного слова для архитектуры уменьшалось. Хотя более мощное оборудование может использовать более широкий спектр размеров данных, рыночные силы оказывают давление на поддержание обратной совместимости при одновременном расширении возможностей процессора. В результате то, что могло быть центральным размером слова в новом дизайне, должно сосуществовать в качестве альтернативного размера к исходному размеру слова в обратно совместимом дизайне. Исходный размер слова остается доступным в будущих проектах, формируя основу семейства размеров.

В середине 1970-х годов DEC разработал VAX как 32-битный преемник 16-битного PDP-11. Они использовали слово для 16-битной величины, а длинное слово — для 32-битной величины. Это отличалось от более ранних машин, где естественная единица адресации памяти называлась словом, а величина, равная половине слова, называлась полусловом. В соответствии с этой схемой квадраслово VAX составляет 64 бита. Они продолжили эту терминологию слова / длинного слова / четверного слова с 64-битным Alpha.

Другим примером является семейство x86, в котором процессоры трех разных длин слов (16-бит, позже 32- и 64-бит), а слово продолжает обозначать 16-битное количество. Поскольку программное обеспечение обычно переносится с одного слова на другое, некоторые API и документация определяют или ссылаются на более старую (и, следовательно, более короткую) длину слова, чем полная длина слова на ЦП, для которого может быть скомпилировано программное обеспечение. Кроме того, аналогично тому, как байты используются для небольших чисел во многих программах, более короткое слово (16 или 32 бита) может использоваться в контекстах, где диапазон более широкого слова не требуется (особенно когда это может сэкономить значительное пространство стека или кеш пространство памяти). Например, Microsoft Windows API поддерживает определение WORD в языке программирования как 16-битное, несмотря на то, что API может использоваться на 32- или 64-битном процессоре x86, где стандартный размер слова будет 32 или 64 бита соответственно. Структуры данных, содержащие слова разного размера, называют их СЛОВО (16 бит / 2 байта), DWORD (32 бита / 4 байта) и QWORD (64 бит / 8 байтов) соответственно. Похожее явление развилось в языке ассемблера Intel x86 — из-за поддержки различных размеров (и обратной совместимости) в наборе команд некоторые мнемоники команд содержат «d» или «q». «идентификаторы, обозначающие« двойное »,« четверное »или« двойное четверное », которые соответствуют исходному 16-разрядному размеру слова архитектуры.

В общем, новые процессоры должны использовать ту же длину слова данных и ширину виртуального адреса, что и старый процессор, чтобы иметь двоичную совместимость с этим старым процессором.

Часто тщательно написанный исходный код — написанный с учетом совместимости исходного кода и переносимости программного обеспечения — может быть перекомпилирован для работы на различных процессорах, даже с разными длины слова данных или разная ширина адреса или и то, и другое.

Таблица размеров слов

ключ: бит: биты, d: десятичные цифры, w: размер слова архитектуры, n: переменный размер
Год Компьютер. архитектура Размер слова Целочисленный. размер Размер с плавающей запятой. размер Инструкция. размеры Единица адреса. разрешение Размер символа
1837 Бэббидж. Аналитическая машина 50 d w Пять разных карт были используется для различных функций, точный размер карт неизвестен. w
1941 Цузе Z3 22 бита w 8 бит w
1942 ABC 50 бит w
1944 Harvard Mark I 23 d w 24 бит
1946. (1948). {1953} ENIAC. (с панелью №16). {с панелью №26} 10 d w, 2w. (w). {w} —. (2 d, 4 d, 6 d, 8 d). {2 d, 4 d, 6 d, 8 d} —. —. {w}
1948 Manchester Baby 32 bit w w w
1951 UNIVAC I 12 d w ​⁄2w w 1 d
1952 Машина IAS 40 бит w ​⁄2w w 5 бит
1952 Быстрый универсальный цифровой компьютер M-2 34 бит w? w 34 бита = 4-битный код операции плюс 3 × 10-битный адрес 10 бит
1952 IBM 701 36 бит ​⁄2w, w ​⁄2w ​⁄2w, w 6 бит
1952 UNIVAC 60 nd 1 d,… 10 d 2 d, 3 d
1952 ARRA I 30 бит w w w 5 бит
1953 IBM 702 nd 0 d,… 511 d 5 d d 1 d
1953 UNIVAC 120 nd 1 d,… 10 d 2 d, 3 d
1953 30 бит w 2w ​⁄2w w 5 бит
1954. (1955) IBM 650. (w / IBM 653 ) 10 d w —. (w) w w 2 d
1954 IBM 704 36 бит w w w w 6 бит
1954 IBM 705 nd 0 d,… 255 d 5 d d 1 d
1954 IBM NORC 16 d w w, 2w w w
1956 IBM 305 nd 1 d,… 100 d 10 d d 1 d
1956 34 бит w w ​⁄2w w 5 бит, 6 бит
1957 40 бит w, 79 бит, 8 d, 15 d ​⁄2w ​⁄2w, w 5 бит
1958 UNIVAC II 12 d w ​⁄2w w 1 d
1958 SAGE 32 бит ​⁄2w w w 6 бит
1958 Autonetics Recomp II 40 бит w, 79 бит, 8 d, 15 d 2w ​⁄2w ​⁄2w, w 5 бит
1958 Setun 6 trit (~ 9,5 бит) до 6 tryte до 3 tryte 4 trit
1958 Electrologica X1 27 бит w 2w w w 5 бит, 6 бит
1959 IBM 1401 nd 1 d,… 1 d, 2 d, 4 d, 5 d, 7 d, 8 d d 1 d
1959. (TBD) IBM 1620 nd 2 d,… —. (4 d,… 102 d) 12 d d 2 d
1960 LARC 12 d w, 2w w, 2w w w 2 d
1960 CDC 1604 48 бит w w ​⁄2w w 6 бит
1960 IBM 1410 nd 1 d,… 1 d, 2 d, 6 d, 7 d, 11 d, 12 d d 1 d
1960 IBM 7070 10 d w w w w, d 2 d
1960 PDP -1 18 бит w w w 6 бит
1960 Elliott 803 39 бит
1961 IBM 7030. (Stretch) 64 бит 1 бит,… 64 бит,. 1 d,… 16 d w ​⁄2w, w b, ⁄ 2 w, w 1 бит,… 8 бит
1961 IBM 7080 nd 0 d,… 255 d 5 d d 1 д
1962 GE-6xx 36 бит w, 2 w w, 2 w, 80 бит w w 6 бит, 9 бит
1962 UNIVAC III 25 бит w, 2w, 3w, 4w, 6 d, 12 d w w 6 бит
1962 Autonetics D-17B. Minuteman I Компьютер навигации 27 бит 11 бит, 24 бит 24 бит w
1962 UNIVAC 1107 36 бит ​⁄6w, ⁄ 3 w, ⁄ 2 w, w w w w 6 бит
1962 IBM 7010 nd 1 d,… 1 d, 2 d, 6 d, 7 d, 11 d, 12 d d 1 d
1962 IBM 7094 36 бит w w, 2w w w 6 бит
1962 SDS 9 Series 24 бит w 2w w w
1963. (1966) Компьютер управления Apollo 15 бит w w, 2w w
1963 Цифровой компьютер ракеты-носителя Saturn 26 бит w 13 бит w
1964/1966 PDP-6 / PDP-10 36 бит w w, 2 w w w 6 бит, 9 бит (типовое значение)
1964 Titan 48 бит w w w w w
1964 CDC 6600 60 бит w w ​⁄4w, ⁄ 2w w 6 бит
1964 Autonetics D-37C. Minuteman II Компьютер навигации 27 бит 11 бит, 24 бит 24 бит w 4 бит, 5 бит
1965 Компьютер навигации Gemini 39 бит 26 бит 13 бит 13 бит, 26 — бит
1965 IBM 360 32 бит ​⁄2w, w,. 1 d,… 16 d w, 2w ​⁄2w, w, 1 ⁄ 2w 8 бит 8 бит
1965 UNIVAC 1108 36 бит ​⁄6w, ⁄ 4 w, ⁄ 3 w, ⁄ 2 w, w, 2w w, 2w w w 6 бит, 9 бит
1965 PDP-8 12 бит w w w 8 бит
1965 Electrologica X8 27 бит w 2w w w 6 бит, 7 бит
1966 SDS Sigma 7 32 бит ​⁄2w, w w, 2w w 8 бит 8 бит
1969 Четырехфазные системы AL1 8 бит w ? ? ?
1970 MP944 20 бит w ? ? ?
1970 PDP-11 16 бит w 2w, 4w w, 2w, 3w 8 бит 8 бит
1971 TMS1802NC 4 бит w ? ?
1971 Intel 4004 4 бит w, d 2w, 4w w
1972 Intel 8008 8 бит w, 2 d w, 2w, 3w w 8 бит
1972 9 бит w w, 2w w 8 бит
1974 Intel 8080 8 бит w, 2w, 2 d w, 2w, 3w w 8 бит
1975 ILLIAC IV 64 бит w w, ⁄ 2w w w
1975 Motorola 6800 8 бит w, 2 d w, 2w, 3w w 8 бит
1975 MOS Tech. 6501. MOS Tech. 6502 8 бит w, 2 d w, 2w, 3w w 8 бит
1976 Cray-1 64 бит 24 бита, w w ​⁄4w, ⁄ 2w w 8 бит
1976 Zilog Z80 8 бит w, 2w, 2 d w, 2w, 3w, 4w, 5w w 8 бит
1978. (1980) 16-бит x86 (Intel 8086 ). (w / с плавающей точкой: Intel 8087 ) 16 бит ​⁄2w, w, 2 d —. (2w, 4w, 5w, 17 d) ​⁄2w, w,… 7w 8 бит 8 бит
1978 VAX 32 бит ​⁄4w, ⁄ 2 w, w, 1 d,… 31 d, 1 бит,… 32 бит w, 2w ​⁄4w,… 14 ⁄ 4w 8 бит 8 бит
1979. (1984) Motorola 68000 series. (с плавающей запятой) 32-бит ​⁄4w, ⁄ 2 w, w, 2 d —. (w, 2w, 2 ⁄ 2 w) ​⁄2w, w,… 7 ⁄ 2w 8 бит 8 бит
1985 IA-32 (Intel 80386 ) (с плавающей запятой) 32-битный ​⁄4w, ⁄ 2 w, w —. (w, 2w, 80 бит) 8 бит,… 120 бит. ​⁄4w… 3 ⁄ 4w 8 бит 8 бит
1985 ARMv1 32-битный ​⁄4w, w w 8-битный 8 бит
1985 MIPS 32 бит ​⁄4w, ⁄ 2 w, w w, 2w w 8 бит 8 бит
1991 Cray C90 64 бит 32 бит, w w ​⁄4w, ⁄ 2 w, 48 бит w 8 бит
1992 Alpha 64 бит 8 бит, ⁄ 4 w, ⁄ 2 w, w ​⁄2w, w ​⁄2w 8 бит 8 бит
1992 PowerPC 32 бит ​⁄4w, ⁄ 2 w, w w, 2w w 8 бит 8 бит
1996 ARMv4. (w / Thumb ) 32 bit ​⁄4w, ⁄ 2 w, w w. (⁄ 2 w, w) 8 бит 8 бит
2000 IBM z / Architecture. (с векторной функцией) 64-битная ​⁄4w, ⁄ 2 w, w. 1 d,… 31 d ​⁄2w, w, 2w ​⁄4w, ⁄ 2 w, ⁄ 4w 8 бит 8 бит, UTF-16, UTF-32
2001 IA-64 64 бит 8 бит, ⁄ 4 w, ⁄ 2 w, w ​⁄2w, w 41 бит 8 бит 8 бит
2001 ARMv6. (w / VFP) 32 бит 8 бит, ⁄ 2 w, w —. (w, 2w) ​⁄2w, w 8 бит 8 бит
2003 x86-64 64-битный 8-битный, ⁄ 4 w, ⁄ 2 w, w ​⁄2w, w, 80 бит 8 бит,… 120 бит 8 бит 8 бит
2013 ARMv8-A 64 бит 8 бит, ⁄ 4 w, ⁄ 2 w, w ​⁄2w, w ​⁄2w 8 бит 8 бит
Год Компьютер. архитектура Размер слова Целочисленный. размер Размер с плавающей запятой. размер Инструкция. размеры Единица адреса. разрешение Размер символа
ключ: бит: биты, d: десятичные цифры, w: размер слова архитектуры, n: переменный размер

См. Также

Ссылки

Разрядность архитектуры компьютера
Немного
  • 1
  • 4
  • 8
  • 12
  • 16
  • 18
  • 24
  • 26
  • 28
  • 30
  • 31
  • 32
  • 36
  • 40
  • 45
  • 48
  • 60
  • 64
  • 128
  • 256
  • 512
  • битовая нарезка
заявка
  • 8
  • 16
  • 32
  • 64
Двоичная с плавающей точкой точность
  • 16 (×½)
  • 24
  • 32 (×1)
  • 40
  • 64 (×2)
  • 80
  • 128 (×4)
  • 256 (×8)
Десятичное число с плавающей точкой точность
  • 32
  • 64
  • 128

В вычисление, а слово естественная единица данных, используемая конкретным процессор дизайн. Слово фиксированного размера часть данных обрабатывается как единое целое Набор инструкций или аппаратное обеспечение процессора. Номер биты одним словом ( размер слова, ширина слова, или длина слова) является важной характеристикой любой конкретной конструкции процессора или компьютерная архитектура.

Размер слова отражается во многих аспектах структуры и работы компьютера; большинство регистры в процессоре обычно имеют размер слова и самый большой фрагмент данных, который может быть передан в и из рабочая память в одной операции есть слово во многих (не во всех) архитектурах. Максимально возможный адрес Размер, используемый для обозначения места в памяти, обычно представляет собой аппаратное слово (здесь «аппаратное слово» означает полноразмерное естественное слово процессора, в отличие от любого другого используемого определения).

Некоторые из самых ранних компьютеров (а также несколько современных) использовали двоично-десятичная дробь а не просто двоичный, обычно имеющий размер слова 10 или 12 десятичная дробь цифры, а некоторые ранние десятичные компьютеры не имел фиксированной длины слова вообще. Ранние двоичные системы имели тенденцию использовать длину слова, несколько кратную 6-битному, причем 36-битное слово было особенно распространено в мэйнфрейм компьютеры. Вступление к ASCII привел к переходу к системам с длиной слова, кратной 8-битной, с 16-битными машинами, которые были популярны в 1970-х годах до перехода на современные процессоры с 32 или 64 битами.[1] Конструкции специального назначения, такие как цифровые сигнальные процессоры, может иметь любую длину слова от 4 до 80 бит.[1]

Размер слова иногда может отличаться от ожидаемого из-за Обратная совместимость с более ранними компьютерами. Если несколько совместимых вариантов или семейство процессоров имеют общую архитектуру и набор инструкций, но различаются размером слов, их документация и программное обеспечение могут стать сложными в нотации, чтобы учесть разницу (см. Размер семьи ниже).

Использование слов

В зависимости от того, как устроен компьютер, единицы размера слова могут использоваться для:

Числа с фиксированной точкой
Держатели для фиксированная точка, обычно целое число числовые значения могут быть одного или нескольких разных размеров, но один из доступных размеров почти всегда будет подходящим. Остальные размеры, если таковые имеются, скорее всего, будут кратны или дроби размера слова. Меньшие размеры обычно используются только для эффективного использования памяти; при загрузке в процессор их значения обычно попадают в более крупный держатель размером с слово.
Числа с плавающей запятой
Держатели для плавающая точка числовые значения обычно представляют собой либо слово, либо кратное ему слово.
Адреса
Держатели адресов памяти должны иметь размер, способный выражать необходимый диапазон значений, но не быть чрезмерно большим, поэтому часто используется размер слова, хотя он также может быть кратным или долей размера слова.
Регистры
Регистры процессора разработаны с размером, соответствующим типу данных, которые они хранят, например целые числа, числа с плавающей запятой или адреса. Многие компьютерные архитектуры используют регистры общего назначения которые способны хранить данные в нескольких представлениях.
Перенос памяти и процессора
Когда процессор считывает из подсистемы памяти в регистр или записывает значение регистра в память, количество передаваемых данных часто является словом. Исторически такое количество битов, которое может быть передано за один цикл, также называлось катена в некоторых средах (например, Бык ГАММА 60 [fr ]).[2][3] В простых подсистемах памяти слово передается по памяти. шина данных, который обычно имеет ширину в слово или полуслове. В подсистемах памяти, которые используют тайники, передача размером в слово — это передача между процессором и первым уровнем кэша; на более низких уровнях иерархия памяти Обычно используются более крупные переводы (кратные размеру слова).
Единица разрешения адреса
В данной архитектуре последовательные значения адреса обозначают последовательные единицы памяти; эта единица — единица разрешения адреса. На большинстве компьютеров единицей измерения является либо символ (например, байт), либо слово. (Несколько компьютеров использовали битовое разрешение.) Если единицей измерения является слово, то можно получить доступ к большему объему памяти, используя адрес заданного размера за счет дополнительной сложности доступа к отдельным символам. С другой стороны, если единица измерения является байтом, то можно адресовать отдельные символы (т.е. выбрать во время операции с памятью).
инструкции
Машинные инструкции обычно размером с слово архитектуры, например, в RISC-архитектуры, или кратное размеру char, составляющему его долю. Это естественный выбор, поскольку инструкции и данные обычно используют одну и ту же подсистему памяти. В Гарвардские архитектуры размеры слов инструкций и данных не обязательно должны быть связаны, поскольку инструкции и данные хранятся в разных запоминающих устройствах; Например, процессор в коммутаторе электронного телефона 1ESS имел 37-битные инструкции и 23-битные слова данных.

Выбор размера слова

Когда проектируется компьютерная архитектура, выбор размера слова имеет большое значение. Существуют конструктивные соображения, которые поощряют определенные размеры группы битов для конкретных целей (например, для адресов), и эти соображения указывают на разные размеры для разных целей. Однако соображения экономии при проектировании настоятельно требуют использования одного размера или очень небольшого числа размеров, связанных кратными или дробными (частичными) размерами с основным размером. Этот предпочтительный размер становится размером слова архитектуры.

символ размер был в прошлом (предварительно изменяемый размер кодировка символов ) одно из влияний на единицу разрешения адреса и выбор размера слова. До середины 1960-х символы чаще всего хранились в шести битах; это позволяло использовать не более 64 символов, поэтому алфавит ограничивался верхним регистром. Поскольку во времени и пространстве эффективно иметь размер слова, кратный размеру символа, размеры слова в этот период обычно были кратны 6 битам (в двоичных машинах). Обычным выбором тогда был 36-битное слово, который также является хорошим размером для числовых свойств формата с плавающей запятой.

После введения IBM Система / 360 дизайн, в котором используются восьмибитные символы и поддерживаются строчные буквы, стандартный размер символа (или, точнее, байт ) стало восемь бит. После этого размер слов, естественно, был кратен восьми битам, причем обычно использовались 16, 32 и 64 бит.

Переменная архитектура слов

Ранние конструкции машин включали некоторые, в которых использовалось то, что часто называют переменная длина слова. В этом типе организации числовой операнд не имеет фиксированной длины, а его конец обнаруживается, когда символ со специальной маркировкой, часто называемой словесный знак, встречался. Такие машины часто используются двоично-десятичная дробь для чисел. К этому классу машин относились IBM 702, IBM 705, IBM 7080, IBM 7010, UNIVAC 1050, IBM 1401, и IBM 1620.

Большинство этих машин работают с одной единицей памяти за раз, и поскольку каждая инструкция или данные имеют длину в несколько единиц, каждая инструкция занимает несколько циклов только для доступа к памяти. Из-за этого эти машины часто довольно медленные. Например, инструкция загружается на IBM 1620 Модель I потребуется 8 циклов, чтобы прочитать 12 цифр инструкции ( Модель II уменьшил это до 6 циклов или 4 циклов, если инструкции не нужны были оба поля адреса). Выполнение инструкции занимало совершенно переменное количество циклов, в зависимости от размера операндов.

Пословная и байтовая адресация

Модель памяти в архитектуре сильно зависит от размера слова. В частности, в качестве слова часто выбирается разрешение адреса памяти, то есть наименьшая единица, которая может быть обозначена адресом. При таком подходе адресный по слову машинный подход, значения адресов, которые отличаются на единицу, обозначают соседние слова памяти. Это естественно для машин, которые почти всегда работают с единицами слова (или нескольких слов), и имеет то преимущество, что позволяет командам использовать поля минимального размера для хранения адресов, что позволяет использовать меньший размер команды или большее разнообразие инструкций.

Когда обработка байтов должна составлять значительную часть рабочей нагрузки, обычно более выгодно использовать байт, а не слово, как единица разрешения адреса. Значения адресов, которые отличаются на единицу, обозначают соседние байты в памяти. Это позволяет напрямую обращаться к произвольному символу в строке символов. Слово все еще может быть адресовано, но используемый адрес требует на несколько бит больше, чем альтернатива разрешения слова. Размер слова должен быть целым числом, кратным размеру символа в этой организации. Такой подход к адресации использовался в IBM 360 и с тех пор является наиболее распространенным подходом в машинах, разработанных.

В байтовом (с байтовой адресацией ) машина, перемещение одного байта из одного произвольного места в другое обычно:

  1. ЗАГРУЗИТЬ исходный байт
  2. СОХРАНИТЬ результат обратно в целевой байт

К отдельным байтам можно получить доступ на машине, ориентированной на слова, одним из двух способов. Байтами можно манипулировать с помощью комбинации операций сдвига и маски в регистрах. Для перемещения одного байта из одного произвольного места в другое может потребоваться эквивалент следующего:

  1. ЗАГРУЗИТЬ слово, содержащее исходный байт
  2. СДВИГ исходное слово, чтобы выровнять желаемый байт с правильной позицией в целевом слове
  3. И исходное слово с маской для обнуления всех битов, кроме желаемых
  4. ЗАГРУЗИТЬ слово, содержащее целевой байт
  5. И целевое слово с маской для обнуления целевого байта
  6. ИЛИ регистры, содержащие исходное и целевое слова для вставки исходного байта
  7. СОХРАНИТЬ результат обратно в целевое местоположение

В качестве альтернативы многие машины, ориентированные на слова, реализуют байтовые операции с инструкциями, используя специальные байтовые указатели в регистрах или памяти. Например, PDP-10 Указатель байта содержит размер байта в битах (позволяющий получить доступ к байтам разного размера), битовую позицию байта в слове и адрес слова данных. Инструкции могут автоматически настраивать указатель на следующий байт, например, при операциях загрузки и депонирования (сохранения).

Полномочия двух

Разные объемы памяти используются для хранения значений данных с разной степенью точности. Обычно используемые размеры: сила двух кратное единице разрешения адреса (байт или слово). Преобразование индекса элемента в массиве в адрес элемента требует только сдвиг операция, а не умножение. В некоторых случаях эта связь позволяет избежать использования операций деления. В результате большинство современных компьютерных разработок имеют размеры слова (и другие размеры операндов), которые в два раза превышают размер байта.

Размер семьи

По мере того, как компьютерные конструкции становились все более сложными, центральная важность одного размера слова для архитектуры уменьшалась. Хотя более производительное оборудование может использовать данные более широкого диапазона размеров, рыночные силы оказывают давление на поддержание Обратная совместимость при расширении возможностей процессора. В результате то, что могло бы быть центральным размером слова в новом дизайне, должно сосуществовать в качестве альтернативного размера исходному размеру слова в обратно совместимом дизайне. Исходный размер слов остается доступным в будущих проектах, формируя основу семейства размеров.

В середине 1970-х гг. DEC разработал VAX быть 32-битным преемником 16-битного PDP-11. Они использовали слово для 16-битного количества, а длинное слово относится к 32-битной величине. Это отличалось от более ранних машин, где естественная единица адресации памяти называлась слово, а величина, равная полуслову, будет называться полуслова. В соответствии с этой схемой VAX четырехслово составляет 64 бита. Они продолжили эту терминологию слова / длинного слова / четверного слова с 64-битной Альфа.

Другой пример — x86 семейство, из которых были выпущены процессоры с тремя разными длинами слов (16-бит, позже 32- и 64-бит), а слово продолжает обозначать 16-битное количество. Поскольку программное обеспечение обычно портирован от одного слова к другому, некоторые API и документация определяет или ссылается на более старую (и, следовательно, более короткую) длину слова, чем полная длина слова на ЦП, для которого может быть скомпилировано программное обеспечение. Кроме того, аналогично тому, как байты используются для небольших чисел во многих программах, более короткое слово (16 или 32 бита) может использоваться в контекстах, где диапазон более широкого слова не требуется (особенно когда это может сэкономить значительное пространство стека или кеш пространство памяти). Например, Microsoft Windows API поддерживает язык программирования значение СЛОВО как 16 бит, несмотря на то, что API можно использовать на 32- или 64-битном процессоре x86, где стандартный размер слова будет 32 или 64 бит соответственно. Структуры данных, содержащие слова разного размера, называют их СЛОВО (16 бит / 2 байта), DWORD (32 бита / 4 байта) и QWORD (64 бита / 8 байт) соответственно. Подобное явление развилось в Intel x86 язык ассемблера — из-за поддержки различных размеров (и обратной совместимости) в наборе команд некоторые мнемоники команд несут идентификаторы «d» или «q», обозначающие «двойной», «четырехугольный» или «двухчетверенный», которые являются с точки зрения оригинального 16-битного размера слова архитектуры.

Как правило, новые процессоры должны использовать ту же длину слова данных и ширину виртуального адреса, что и старый процессор, чтобы иметь двоичная совместимость с этим старым процессором.

Часто тщательно написанный исходный код — написанный с совместимость исходного кода и переносимость программного обеспечения в виду — может быть перекомпилирован для работы на множестве процессоров, даже с разной длиной слова данных или разной шириной адреса, или и тем, и другим.

Таблица размеров слов

ключ: немного: биты, d: десятичные цифры, ш: размер слова архитектуры, п: переменный размер
Год Компьютер
архитектура
Размер слова ш Целое число
размеры
Плавающая точка
размеры
Инструкция
размеры
Единица адреса
разрешающая способность
Размер символа
1837 Бэббидж
Аналитическая машина
50 дн. ш Для разных функций использовалось пять разных карт, точный размер карт неизвестен. ш
1941 Цузе Z3 22 бит ш 8 бит ш
1942 ABC 50 бит ш
1944 Гарвард Марк I 23 дн. ш 24 бит
1946
(1948)
{1953}
ENIAC
(с панелью №16[4])
{с панелью №26[5]}
10 дней ш, 2ш
(ш)
{w}

(2 д, 4 д, 6 д, 8 д)
{2 д, 4 д, 6 д, 8 д}


{w}
1948 Манчестер Бэби 32 бит ш ш ш
1951 UNIVAC I 12 дн. ш 12ш ш 1 день
1952 Машина IAS 40 бит ш 12ш ш 5 бит
1952 Быстрый универсальный цифровой компьютер М-2 34 бит ш? ш 34 бита = 4-битный код операции плюс 3 × 10-битный адрес 10 бит
1952 IBM 701 36 бит 12ш, ш 12ш 12ш, ш 6 бит
1952 UNIVAC 60 п d 1 дн, … 10 дн 2 д, 3 д
1952 ARRA I 30 бит ш ш ш 5 бит
1953 IBM 702 п d 0 дн, … 511 дн 5 дней d 1 день
1953 UNIVAC 120 п d 1 дн, … 10 дн 2 д, 3 д
1953 ARRA II 30 бит ш 2ш 12ш ш 5 бит
1954
(1955)
IBM 650
(ж /IBM 653 )
10 дней ш
(ш)
ш ш 2 дн.
1954 IBM 704 36 бит ш ш ш ш 6 бит
1954 IBM 705 п d 0 дн, … 255 дн 5 дней d 1 день
1954 IBM NORC 16 дней ш ш, 2ш ш ш
1956 IBM 305 п d 1 дн, … 100 дн 10 дней d 1 день
1956 ARMAC 34 бит ш ш 12ш ш 5 бит, 6 бит
1957 Autonetics Recomp I 40 бит ш, 79 бит, 8 д, 15 д 12ш 12ш, ш 5 бит
1958 UNIVAC II 12 дн. ш 12ш ш 1 день
1958 Шалфей 32 бит 12ш ш ш 6 бит
1958 Autonetics Recomp II 40 бит ш, 79 бит, 8 д, 15 д 2ш 12ш 12ш, ш 5 бит
1958 Сетунь 6 трость (~ 9,5 бит)[требуется разъяснение ] до 6трите до 3-х попыток 4 трита?
1958 Electrologica X1 27 бит ш 2ш ш ш 5 бит, 6 бит
1959 IBM 1401 п d 1 д, … 1 д, 2 д, 4 д, 5 д, 7 д, 8 д d 1 день
1959
(Подлежит уточнению)
IBM 1620 п d 2 д, …
(4 д, … 102 д)
12 дн. d 2 дн.
1960 LARC 12 дн. ш, 2ш ш, 2ш ш ш 2 дн.
1960 CDC 1604 48 бит ш ш 12ш ш 6 бит
1960 IBM 1410 п d 1 д, … 1 д, 2 д, 6 д, 7 д, 11 д, 12 д d 1 день
1960 IBM 7070 10 дней ш ш ш ш, d 2 дн.
1960 PDP-1 18 бит ш ш ш 6 бит
1960 Эллиот 803 39 бит
1961 IBM 7030
(Протяжение)
64 бит 1 бит, … 64 бит,
1 д, … 16 дн
ш 12ш, ш б,12ш, ш 1 бит, … 8 бит
1961 IBM 7080 п d 0 дн, … 255 дн 5 дней d 1 день
1962 GE-6xx 36 бит ш, 2 ш ш, 2 ш, 80 бит ш ш 6 бит, 9 бит
1962 UNIVAC III 25 бит ш, 2ш, 3ш, 4ш, 6 д, 12 д ш ш 6 бит
1962 Автонетика Д-17Б
Минитмен I Компьютер навигации
27 бит 11 бит, 24 бит 24 бит ш
1962 UNIVAC 1107 36 бит 16ш, ​13ш, ​12ш, ш ш ш ш 6 бит
1962 IBM 7010 п d 1 д, … 1 д, 2 д, 6 д, 7 д, 11 д, 12 д d 1 день
1962 IBM 7094 36 бит ш ш, 2ш ш ш 6 бит
1962 SDS 9 серии 24 бит ш 2ш ш ш
1963
(1966)
Компьютер наведения Apollo 15 бит ш ш, 2ш ш
1963 Цифровой компьютер ракеты-носителя «Сатурн» 26 бит ш 13 бит ш
1964/1966 PDP-6 /PDP-10 36 бит ш ш, 2 ш ш ш 6 бит, 9 бит (типовая)
1964 Титан 48 бит ш ш ш ш ш
1964 CDC 6600 60 бит ш ш 14ш, ​12ш ш 6 бит
1964 Автонетика D-37C
Минитмен II Компьютер навигации
27 бит 11 бит, 24 бит 24 бит ш 4 бит, 5 бит
1965 Компьютер наведения Gemini 39 бит 26 бит 13 бит 13 бит, 26 -немного
1965 IBM 360 32 бит 12ш, ш,
1 д, … 16 дн
ш, 2ш 12ш, ш, 1​12ш 8 бит 8 бит
1965 UNIVAC 1108 36 бит 16ш, ​14ш, ​13ш, ​12ш, ш, 2ш ш, 2ш ш ш 6 бит, 9 бит
1965 PDP-8 12 бит ш ш ш 8 бит
1965 Electrologica X8 27 бит ш 2ш ш ш 6 бит, 7 бит
1966 SDS Sigma 7 32 бит 12ш, ш ш, 2ш ш 8 бит 8 бит
1969 Четырехфазные системы AL1 8 бит ш ? ? ?
1970 MP944 20 бит ш ? ? ?
1970 PDP-11 16 бит ш 2ш, 4ш ш, 2ш, 3ш 8 бит 8 бит
1971 TMS1802NC 4 бит ш ? ?
1971 Intel 4004 4 бит ш, d 2ш, 4ш ш
1972 Intel 8008 8 бит ш, 2 дн ш, 2ш, 3ш ш 8 бит
1972 Calcomp 900 9 бит ш ш, 2ш ш 8 бит
1974 Intel 8080 8 бит ш, 2ш, 2 дн. ш, 2ш, 3ш ш 8 бит
1975 ИЛЛИАК IV 64 бит ш ш, ​12ш ш ш
1975 Motorola 6800 8 бит ш, 2 дн ш, 2ш, 3ш ш 8 бит
1975 MOS Tech. 6501
MOS Tech. 6502
8 бит ш, 2 дн ш, 2ш, 3ш ш 8 бит
1976 Крей-1 64 бит 24 бит, ш ш 14ш, ​12ш ш 8 бит
1976 Зилог Z80 8 бит ш, 2ш, 2 дн. ш, 2ш, 3ш, 4ш, 5ш ш 8 бит
1978
(1980)
16 бит x86 (Intel 8086 )
(с плавающей точкой: Intel 8087 )
16 бит 12ш, ш, 2 дн.
(2ш, 4ш, 5ш, 17 г)
12ш, ш, … 7ш 8 бит 8 бит
1978 VAX 32 бит 14ш, ​12ш, ш, 1 d, … 31 d, 1 бит, … 32 бит ш, 2ш 14ш, … 14​14ш 8 бит 8 бит
1979
(1984)
Motorola 68000 серии
(с плавающей точкой)
32 бит 14ш, ​12ш, ш, 2 дн.
(ш, 2ш, 2​12ш)
12ш, ш, … 7​12ш 8 бит 8 бит
1985 IA-32 (Intel 80386 ) (с плавающей точкой) 32 бит 14ш, ​12ш, ш
(ш, 2ш, 80 бит)
8 бит, … 120 бит
14ш … 3​34ш
8 бит 8 бит
1985 ARMv1 32 бит 14ш, ш ш 8 бит 8 бит
1985 MIPS 32 бит 14ш, ​12ш, ш ш, 2ш ш 8 бит 8 бит
1991 Cray C90 64 бит 32 бит, ш ш 14ш, ​12ш, 48 бит ш 8 бит
1992 Альфа 64 бит 8 бит,14ш, ​12ш, ш 12ш, ш 12ш 8 бит 8 бит
1992 PowerPC 32 бит 14ш, ​12ш, ш ш, 2ш ш 8 бит 8 бит
1996 ARMv4
(ж /Большой палец )
32 бит 14ш, ​12ш, ш ш
(​12ш, ш)
8 бит 8 бит
2000 IBM z / Архитектура
(с векторным оборудованием)
64 бит 14ш, ​12ш, ш
1 д, … 31 д
12ш, ш, 2ш 14ш, ​12ш, ​34ш 8 бит 8 бит, UTF-16, UTF-32
2001 IA-64 64 бит 8 бит,14ш, ​12ш, ш 12ш, ш 41 бит 8 бит 8 бит
2001 ARMv6
(с VFP)
32 бит 8 бит,12ш, ш
(ш, 2 нед)
12ш, ш 8 бит 8 бит
2003 x86-64 64 бит 8 бит,14ш, ​12ш, ш 12ш, ш, 80 бит 8 бит, … 120 бит 8 бит 8 бит
2013 ARMv8-A 64 бит 8 бит,14ш, ​12ш, ш 12ш, ш 12ш 8 бит 8 бит
Год Компьютер
архитектура
Размер слова ш Целое число
размеры
Плавающая точка
размеры
Инструкция
размеры
Единица адреса
разрешающая способность
Размер символа
ключ: bit: биты, d: десятичные цифры, ш: размер слова архитектуры, п: переменный размер

[6][7]

Смотрите также

  • Целое число (информатика)

использованная литература

  1. ^ а б Биби, Нельсон Х. Ф. (22 августа 2017 г.). «Глава I. Целочисленная арифметика». Справочник по вычислению математических функций — Программирование с использованием переносимой программной библиотеки MathCW (1-е изд.). Солт-Лейк-Сити, Юта, США: Springer International Publishing AG. п. 970. Дои:10.1007/978-3-319-64110-2. ISBN  978-3-319-64109-6. LCCN  2017947446. S2CID  30244721.
  2. ^ Дрейфус, Филипп (1958-05-08) [1958-05-06]. Написано в Лос-Анджелесе, Калифорния, США. Системный дизайн Gamma 60 (PDF). Западная совместная компьютерная конференция: Контрасты в компьютерах. ACM, Нью-Йорк, Нью-Йорк, США. С. 130–133. IRE-ACM-AIEE ’58 (западный). В архиве (PDF) из оригинала от 03.04.2017. Получено 2017-04-03. […] Используется внутренний код данных: количественные (числовые) данные кодируются в 4-битном десятичном коде; качественные (буквенно-цифровые) данные кодируются в 6-битном буквенно-цифровом коде. внутренний код инструкции означает, что инструкции закодированы в прямом двоичном коде.
    Что касается длины внутренней информации, то информационный квант называется «катена, «и состоит из 24 битов, представляющих либо 6 десятичных цифр, либо 4 буквенно-цифровых символа. Этот квант должен содержать кратное 4 и 6 битам для представления целого числа десятичных или буквенно-цифровых символов. Было обнаружено, что 24 бита хороший компромисс между минимальными 12 битами, которые привели бы к слишком низкому потоку передачи из параллельного считывающего ядра памяти, и 36 битами или более, которые были сочтены слишком большими квантами информации. Катена должна рассматриваться как эквивалент характер в машинах с переменной длиной слова, но его нельзя так называть, так как он может содержать несколько символов. Он последовательно передается в основную память и из нее.
    Не желая называть «квант» словом или набор символов буквой (слово — это слово, а квант — это что-то еще), было создано новое слово, которое было названо «катена». Это английское слово существует в Вебстера хотя это не по-французски. Вебстер определяет слово «катена» как «связный ряд»; следовательно, 24-битный информационный элемент. Слово катена будет использоваться в дальнейшем.
    Таким образом, внутренний код был определен. Каковы же коды внешних данных? Они зависят в первую очередь от задействованного устройства обработки информации. В Гамма 60 [fr ] предназначен для обработки информации, относящейся к любой структуре с двоичным кодом. Таким образом, перфокарта с 80 столбцами считается 960-битным информационным элементом; 12 строк, умноженных на 80 столбцов, равняются 960 возможным ударам; хранится в виде точного изображения в 960 магнитных сердечниках основной памяти с двумя столбцами карты, занимающими одну катену. […]
  3. ^ Блаау, Геррит Энн; Брукс младший, Фредерик Филлипс; Бухгольц, Вернер (1962). «4: Естественные единицы данных» (PDF). В Бухгольц, Вернер (ред.). Планирование компьютерной системы — Project Stretch. McGraw-Hill Book Company, Inc. / The Maple Press Company, Йорк, Пенсильвания. С. 39–40. LCCN  61-10466. В архиве (PDF) из оригинала от 03.04.2017. Получено 2017-04-03. […] Термины, используемые здесь для описания конструкции, обусловленной конструкцией машины, в дополнение к немного, перечислены ниже.
    Байт обозначает группу битов, используемых для кодирования символа, или количество битов, передаваемых параллельно в блоки ввода-вывода и из них. Термин, отличный от характер используется здесь, потому что данный символ может быть представлен в разных приложениях более чем одним кодом, а разные коды могут использовать разное количество бит (т. е. разные размеры байтов). При передаче ввода-вывода группировка битов может быть совершенно произвольной и не иметь отношения к реальным символам. (Термин придуман из кусать, но переделан, чтобы избежать случайной мутации в немного.)
    А слово состоит из количества битов данных, передаваемых параллельно из памяти или в память за один цикл памяти. Размер слова таким образом определяется как структурное свойство памяти. (Период, термин катена был придуман для этой цели дизайнерами Бык ГАММА 60 [fr ] компьютер.)
    Блокировать относится к количеству слов, переданных в или из блока ввода-вывода в ответ на одну команду ввода-вывода. Размер блока — это структурное свойство устройства ввода-вывода; это могло быть исправлено разработкой или оставлено для изменения программой. […]
  4. ^ Клиппер, Ричард Ф. (1948-09-29). «Система логического кодирования, применяемая к ENIAC (электронный числовой интегратор и компьютер)». Абердинский испытательный полигон, Мэриленд, США: Баллистические исследовательские лаборатории. Отчет № 673; Проект № TB3-0007 Отдела исследований и разработок Управления боеприпасов.. Получено 2017-04-05.
  5. ^ Клиппер, Ричард Ф. (1948-09-29). «Система логического кодирования, применяемая к ENIAC». Абердинский испытательный полигон, Мэриленд, США: Баллистические исследовательские лаборатории. Раздел VIII: Модифицированный ENIAC. Получено 2017-04-05.
  6. ^ Блаау, Геррит Энн; Брукс младший, Фредерик Филлипс (1997). Компьютерная архитектура: концепции и эволюция (1-е изд.). Эддисон-Уэсли. ISBN  0-201-10557-8. (1213 страниц) (NB. Это однотомное издание. Этот труд был также доступен в двухтомном варианте.)
  7. ^ Ральстон, Энтони; Рейли, Эдвин Д. (1993). Энциклопедия компьютерных наук (3-е изд.). Ван Ностранд Рейнхольд. ISBN  0-442-27679-6.

Размер машинного слова и типы данных

Размер машинного слова и типы данных

Машинное слово (word) — это количество данных, которые процессор может обработать за одну операцию. Здесь можно применить аналогию документа, состоящего из символов (character, 8 бит) и страниц (много слов). Слово— это некоторое количество битов, как правило 16, 32 или 64. Когда говорят о «n-битовой» машине, то чаще всего имеют в виду размер машинного слова. Например, когда говорят, что процессор Intel Pentium — это 32-разрядный процессор, то обычно имеют в виду размер машинного слова, равный 32 бит, или 4 байт.

Размер процессорных регистров общего назначения равен размеру машинного слова этого процессора. Обычно разрядность остальных компонентов этой же аппаратной платформы в точности равна размеру машинного слова. Кроме того, по крайней мере для аппаратных платформ, которые поддерживаются ОС Linux, размер адресного пространства соответствует размеру машинного слова[92]. Следовательно, размер указателя равен размеру машинного слова. В дополнение к этому, размер типа long языка С также равен размеру машинного слова. Например, для аппаратной платформы Alpha размер машинного слова равен 64 бит. Следовательно, регистры, указатели и тип long имеют размер 64 бит. Тип int для этой платформы имеет размер 32 бит. Машины платформы Alpha могут обработать 64 бит — одно слово с помощью одной операции.

Слова, двойные слова и путаница

Для некоторых операционных систем и процессоров стандартную порцию данных не называют машинным словом. Вместо этого, словом называется некоторая фиксированная порция данных, название которой выбрано случайным образом или имеет исторические корни. Например, в некоторых системах данные могут разбиваться на байты (byte — 8 бит), слова (word — 16 бит), двойные слова (double word — 32 бит) и четверные слова (quad word — 64 бит), несмотря на то что на самом деле система является 32-разрядной. В этой книге и вообще в контексте операционной системы Linux под машинным словом понимают стандартную порцию данных процессора, как обсуждалось ранее.

Для каждой аппаратной платформы, поддерживаемой операционной системой Linux, в файле <asm/types.h> определяется константа BITTS_PER_LONG, которая равна размеру типа long языка С и совпадает с размером машинного слова системы. Полный список всех поддерживаемых аппаратных платформ и их размеры машинного слова приведены в табл. 19.1.

Таблица 19.1. Поддерживаемые аппаратные платформы

Аппаратная платформа
Описание
Размер машинного слова

alpha
Digital Alpha
64 бит

arm
ARM и StrongARM
32 бит

cris
CRIS
32 бит

h8300
H8/300
32 бит

I386
Intel x86
32 бит

ia64
IA-64
64 бит

m68k
Motorola 68k
32 бит

m86knommu
m68k без устройства MMU
32 бит

mips
MIPS
32 бит

mips64
64-разрядная MIPS
64 бит

parisc
HP PA-RISC
32 бит, или 64 бит

ppc
PowerPC
32 бит

ppc64
POWER
64 бит

s390
IBM S/390
32 бит, или 64 бит

sh
Hitachi SH
32 бит

sparс
SPARC
32 бит

sparc64
UltraSPARC
64 бит

um
Usermode Linux
32 бит, или 64 бит

v850
v850
32 бит

x86_64
X86-64
64 бит

Стандарт языка С явно указывает, что размер памяти, которую занимают переменные стандартных типов данных, зависит от аппаратной реализации[93], при этом также определяется минимально возможный размер типа. Неопределенность размеров стандартных типов языка С для различных аппаратных платформ имеет свои положительные и отрицательные стороны. К плюсам можно отнести то, что для стандартных типов языка С можно пользоваться преимуществами, связанными с размером машинного слова, а также отсутствие необходимости явного указания размера. Для ОС Linux размер типа long гарантированно равен размеру машинного слова. Это не совсем соответствует стандарту ANSI С, однако является стандартной практикой в ОС Linux. Как недостаток можно отметить, что при разработке кода нельзя рассчитывать на то, что данные определенного типа занимают в памяти определенный размер. Более того, нельзя гарантировать, что переменные типа int занимают столько же памяти, сколько и переменные типа long[94].

Ситуация еще более запутывается тем, что одни и те же типы данных в пространстве пользователя и в пространстве ядра не обязательно должны соответствовать друг другу. Аппаратная платформа sparc64 предоставляет 32-разрядное пространство пользователя, а поэтому указатели, типы int и long имеют размер 32 бит. Однако в пространстве ядра для аппаратной платформы размер типа int равен 32 бит, а размер указателей и типа long равен 64 бит. Тем не менее такая ситуация не является обычной.

Всегда необходимо помнить о следующем.

• Как и требует стандарт языка С, размер типа char всегда равен 8 бит (1 байт),

• Нет никакой гарантии, что размер типа int для всех поддерживаемых аппаратных платформ будет равен 32 бит, хотя сейчас для всех платформ он равен именно этому числу.

• То же касается и типа short, который для всех поддерживаемых аппаратных платформ сейчас равен 16 бит.

• Никогда нельзя надеяться, что тип long или указатель имеет некоторый заданный размер. Этот размер для поддерживаемых аппаратных платформ может быть равен 32, или 64 бит.

• Так как размер типа long разный для различных аппаратных платформ, никогда нельзя предполагать, что sizeof(int) == sizeof(long).

• Точно так же нельзя предполагать, что размер типа int и размер указателя совпадают.

Читайте также

Типы данных

Типы данных
Приведенные в этой главе таблицы взяты непосредственно из оперативной справочной системы и представляют единую модель данных Windows (Windows Uniform Data Model). Определения типов можно найти в заголовочном файле BASETSD.H, входящем в состав интегрированной среды разработки

Типы данных 

Типы данных 
В JScript поддерживаются шесть типов данных, главными из которых являются числа, строки, объекты и логические данные. Оставшиеся два типа — это null (пустой тип) и undefined (неопределенный

14.5.1 Типы данных

14.5.1 Типы данных
Файл может содержать текст ASCII, EBCDIC или двоичный образ данных (существует еще тип, называемый локальным или логическим байтом и применяемый для компьютеров с размером байта в 11 бит). Текстовый файл может содержать обычный текст или текст, форматированный

20.10.3 Типы данных MIB

20.10.3 Типы данных MIB
Причиной широкого распространения SNMP стало то, что проектировщики придерживались правила «Будь проще!»? Все данные MIB состоят из простых скалярных переменных, хотя отдельные части MIB могут быть логически организованы в таблицы.? Только небольшое число

Типы данных

Типы данных
Несмотря на то, что типы данных подробно описаны в документации (см. [1, гл. 4]), необходимо рассмотреть ряд понятий, которые будут часто использоваться в последующих главах книги. Помимо изложения сведений общего характера будут рассмотрены также примеры

Типы данных

Типы данных
Один из этапов проектирования базы данных заключается в объявлении типа каждого поля, что позволяет процессору базы данных эффективно сохранять и извлекать данные. В SQL Server предусмотрено использование 21 типа данных, которые перечислены в табл. 1.1.Таблица 1.1.

Глава 2 Ввод данных. Типы, или форматы, данных

Глава 2
Ввод данных. Типы, или форматы, данных
Работа с документами Excel сопряжена с вводом и обработкой различных данных, то есть ин формации, которая может быть текстовой, числовой, финансовой, статистической и т. д.
МУЛЬТИМЕДИЙНЫЙ КУРС
Методы ввода и обработки данных

Ключевые слова, используемые для спецификации типа данных

Ключевые слова, используемые для спецификации типа данных
Ключевые слова для спецификации типов данных в операторах DDL представлены здесь в качестве краткой справки. Точный синтаксис см. в соответствующей главе, связанной с типами данных этой части книги, а также в

Типы данных

Типы данных
Многие языки программирования при объявлении переменной требуют указывать, какой тип данных будет ей присваиваться. Например, в языке Java кодint i = 15;объявит переменную целого типа int с именем i и присвоит ей значение 15. В этом случае тип данных ставится в

12.2. Типы баз данных

12.2. Типы баз данных
Группу связанных между собой элементов данных называют обычно записью. Известны три основных типа организации данных и связей между ними: иерархический (в виде дерева), сетевой и реляционный.Иерархическая БДВ иерархической БД существует

5.2.4. Типы данных

5.2.4. Типы данных
Мы можем вводить в ячейки следующие данные: текст, числа, даты, также приложение Numbers предоставляет возможность добавлять флажки, ползунки и другие элементы управления. Аналогично MS Excel для выравнивания чисел, дат и текстовых данных в Numbers существуют

Слова, слова, слова… Автор: Евгений Козловский.

Слова, слова, слова…

Автор: Евгений Козловский.
© 2004, Издательский дом | http://www.computerra.ru/Журнал «Домашний компьютер» | http://dk.compulenta.ru/Этот материал Вы всегда сможете найти по его постоянному адресу:  /2006/120/276445/Интересно, сколько двенадцатизначных чисел вы способны оперативно

Размер головного мозга и размер социального окружения

Размер головного мозга и размер социального окружения
Дискуссии по поводу взаимосвязи между размером головного мозга какого-либо организма и размером группы, к которой этот организм принадлежит, ведутся нейробиологами уже давно. При этом взаимосвязь с социальной

В VC ++ 6.0 BYTE, WORD, DWORD — это целое число без знака, которое определено в WINDEF.h

typedef unsigned char BYTE;

typedef unsigned short WORD;

typedef unsigned long DWORD;

Другими словами, BYTE — это тип без знака, WORD — беззнаковый короткий тип, а DWORD — беззнаковый длинный тип.

В VC ++ 6.0 1 байт символа, short — 2 байта, int и long — 4 байта, поэтому можно считать, что переменные, определяемые BYTE, WORD, DWORD, — это 1 раздел, 2 байта, 4 слова. Раздел.

То есть: BYTE = unsigned char, WORD = unsigned short, DWORD = unsigned long

DWORD обычно используется для сохранения адреса или сохранения указателя

Разница между словом и словом

Определение WORD и DWORD в основном для: 1. Легко трансплантировать; 2. Более строгая проверка типов

WORD фиксируется на 2 байта, DWORD фиксируется на 4 байта

Int, с разными операционными системами, имеет разное количество байтов, в 32-битной операционной системе — 4 байта, в 16-битной операционной системе — 2 байта

В операции сериализации, поскольку сериализация хранится в соответствии с потоком байтов, чтобы гарантировать, что она не будет выровнена, необходимо использовать тип данных с четким числом байтов.

Понравилась статья? Поделить с друзьями:
  • Word размер буфера обмена
  • Word размер бумаги по умолчанию
  • Word размер абзацного отступа
  • Word различная нумерация страниц в разделах
  • Word разделы что это