Word problems for grade 6

Estimation word problems for 6th Grade

Grade 6 math word problem worksheets with answersEstimation word problems for 6th Grade are made of the following Math skills for kids: estimate to solve word problems, multi steps word problems, identifying word problems with extra or missing information, distance direction to starting point word problems, using logical reasoning to find the order, guest and check word problems. All these exercises have been created to generate interest and eagerness for more math word problems operations.

5 stars on the best of 6th grade math worksheets categories6th GRADE MATH PRINTABLES

Best of FREE 6th Grade Math Worksheets Categories

    • Whole numbers
    • Multiplication
    • Division
    • Exponents and square roots
    • Number theory
    • Decimals
    • Add & subtract decimals
    • Multiply & divide decimals
    • Fractions & mixed numbers
    • Add & subtract fractions
    • Multiply fractions
    • Divide fractions
    • Integers
    • Operations with integers
    • Mixed operations
    • Rational numbers
    • Problems solving
    • Ratio & proportions
    • Percentages
    • Measuring units
    • Money math
    • Consumer math
    • Telling time
    • Coordinate graph
    • Algebraic expressions
    • One step equations
    • Solving and graphing inequalities
    • Two-step equations
    • 2D Geometry
    • Symmetry & transformation
    • 3D Shapes
    • Geometry measurement
    • Data and Graphs
    • Statistics
    • Probability
  • FREE 6th GRADE ONLINE PRACTICE

Important facts about word problems solving and estimation for Grade 6

In a significant way, our super amazing problem solving and estimation worksheets will help your young math learners to quickly understand the relevance of estimation skills in math concepts and real life.

It should be noted that, not only are these problem solving and estimation skills a key part in math concepts, but are equally an important approach to boast your kid’s mental math skills, logical and creative thinking abilities.

How can estimation skills enhance kid’s accuracy and experts in math?

If your kids can vividly estimate reasonably, then there’ll be no doubt that their accuracy in math will increase, thus math experts.

Moreover, with estimation skills, they can quickly determine whether their answer is within a reasonable range or not.

Given that estimation skill enhances kid’s mental math competency, your 6th grader will be able to arrive at reasonable or concrete answers within a twinkle of an eye.

Most importantly, these problem solving and estimation skills will not only strengthen kid’s skills on basic math operations, but will prepare them for areas of advanced math, such as probability, statistics, geometry and algebra. At this point, they will be required to apply logical reasoning and estimation skills.

How is estimation skill relevant in our daily lives?

Whether at home, in the market, on the street or among friends, our activities will always be surrounded around estimation. This is true as we keep on using the phrase “Let’s say…….”.

So, problem solving and estimation skills will help your kids to easily;

  • Estimate recipes when cooking, baking, etc.
  • Estimate the cost of items in a grocery store, i.e. if you want to stay within a budget 
  • Estimate the number of people you’ll invite for your coming event, depending on the budget available.
  • Estimate and know how to manage or spend your precious time. This will prevent careless distractions and as well encourage you to accomplish your task.

Vital strategies, best for solving estimation word problems for 6th grade

Our grade 6 math word problem worksheets with answers are a perfect example for kids to grab vital strategies, best for solving estimation word problems for 6th grade.

What then are those peculiar strategies to consider when faced with situations of problem solving and estimation?

Most at times, math word problems require a step-by-step solving procedure. This is relevant to our multi steps word problems exercise. But before we begin solving these word problems, we need to;

  • Carefully read the entire problem, twice, in order to better understand its key words.
  • Having understood the problem well, endeavor to estimate the answer before solving.
  • When solving, show a step-by-step calculation, making visible diverse operation signs where necessary.

Finally, check the reasonableness of your answer by comparing it with the one you estimated above.

Grade 6 maths word problems with answers are presented. Some of these problems are challenging and need more time to solve. Also detailed solutions and full explanations are included.

  1. Two numbers N and 16 have LCM = 48 and GCF = 8. Find N.
  2. If the area of a circle is 81pi square feet, find its circumference.
  3. Find the greatest common factor of 24, 40 and 60.
  4. In a given school, there are 240 boys and 260 girls.

    a) What is the ratio of the number of girls to the number of boys?

    b) What is the ratio of the number of boys to the total number of pupils in the school?
  5. If Tim had lunch at $50.50 and he gave 20% tip, how much did he spend?

  6. Find k if 64 � k = 4.
  7. Little John had $8.50. He spent $1.25 on sweets and gave to his two friends $1.20 each. How much money was left?
  8. What is x if x + 2y = 10 and y = 3?
  9. A telephone company charges initially $0.50 and then $0.11 for every minute. Write an expression that gives the cost of a call that lasts N minutes.
  10. A car gets 40 kilometers per gallon of gasoline. How many gallons of gasoline would the car need to travel 180 kilometers?
  11. A machine fills 150 bottles of water every 8 minutes. How many minutes it takes this machine to fill 675 bottles?
  12. A car travels at a speed of 65 miles per hour. How far will it travel in 5 hours?
  13. A small square of side 2x is cut from the corner of a rectangle with a width of 10 centimeters and length of 20 centimeters. Write an expression in terms of x for the area of the remaining shape.
  14. A rectangle A with length 10 centimeters and width 5 centimeters is similar to another rectangle B whose length is 30 centimeters. Find the area of rectangle B.
  15. A school has 10 classes with the same number of students in each class. One day, the weather was bad and many students were absent. 5 classes were half full, 3 classes were 3/4 full and 2 classes were 1/8 empty. A total of 70 students were absent. How many students are in this school when no students are absent?

  16. A large square is made of 16 congruent squares. What is the total number of squares of different sizes are there?

    problem 16.

  17. The perimeter of square A is 3 times the perimeter of square B. What is the ratio of the area of square A to the area of square B.
  18. John gave half of his stamps to Jim. Jim gave gave half of his stamps to Carla. Carla gave 1/4 of the stamps given to her to Thomas and kept the remaining 12. How many stamps did John start with?
  19. Two balls A and B rotate along a circular track. Ball A makes 4 full rotations in 120 seconds. Ball B makes 3 full rotation in 60 seconds. If they start rotating now from the same point, when will they be at the same starting point again?


  20. A segment is 3 units long. It is divided into 9 parts. What fraction of a unit are 2 parts of the segment?

  21. Mary wants to make a box. She starts with a piece of cardboard whose length is 15 centimeters and width is 10 centimeters. Then she cuts 4 congruent squares with sides of 3 centimeters at the four corners and folded at the broken lines to make the box. What is the volume of the box?

    problem 21
    .

  22. A car is traveling 75 kilometers per hour. How many meters does the car travel in one minute?
  23. Carla is 5 years old and Jim is 13 years younger than Peter. One year ago, Peter’s age was twice the sum of Carla’s & Jim’s age. Find the present age of each one of them.
  24. Linda spent 3/4 of her savings on furniture. She then spent 1/2 of her remaining savings on a fridge. If the fridge cost her $150, what were her original savings?
  25. The distance bewteen Harry and Kate is 2500 meters. Kate and Harry start walking toward one another and Kate’ dog start running back and forth between Harry and Kate at a speed of 120 meters per minute. Harry walks at the speed of 40 meters per minute while Kate walks at the speed of 60 meters per minute. What distsnce will the dog have travelled when Harry and Kate meet each other?

Answers to the Above Questions

  1. 24
  2. 18 Pi feet
  3. 4
  4. a) 13:12 b)12:25
  5. $60.60
  6. 16
  7. 4.85
  8. 4
  9. 0.50 + N * 0.11
  10. 4.5 gallons
  11. 36 minutes
  12. 325 miles
  13. 200 — 4x2
  14. 450 centimeters squared
  15. 200 pupils
  16. 30
  17. 9:1
  18. 64 stamps
  19. 60 seconds
  20. 2/3
  21. 108 cubic centimeters
  22. 1250 meters/minute
  23. Carla:5 years, Jim: 6 years, Peter: 19 years.
  24. $1200
  25. 3000 meters

More Middle School Maths (Grades 6, 7, 8, 9) — Free Questions and Problems With Answers

More High School Maths (Grades 10, 11 and 12) — Free Questions and Problems With Answers

More Primary Maths (Grades 4 and 5) with Free Questions and Problems With Answers

Home Page

Ezoic

The following are some examples of 6th Grade Math Word Problems that deals with ratio and fractions. These word problems are solved with the help of block diagrams or bar models (used in Singapore Math).

Example:

Adeline’s salary is of Connie’s salary.

a) Find the ratio of Adeline’s salary to Connie’s salary.
b) Find the ratio of Connie’s salary to Adeline’s salary to their total salary.

Solution:

 Ratio Fraction Problem

Total number of units = 5 + 2 = 7

From the model, we see that.
a) The ratio of Adeline’s salary to Connie’s salary is 5:2.
b) The ratio of Connie’s salary to Adeline’s salary to their total salary is 2:5:7.

Example:

Joanne’s savings is 4 times as much as Pam’s savings.

a) What is the ratio of Joanne’s savings to Pam’s savings to their total savings?
b) What fraction of their total savings is Joanne’s savings?
c) What fraction of Joanne’s savings is Pam’s savings?
d) If both girls save a total of $120, how much does Joanne save?

Solution:

a) Total number of units = 5
The ratio of Joanne’s savings to Pam’s savings to their total savings is 4:1:5.
b) The ratio of Joanne’s savings to their total savings is 4:5.
Joanne’s savings is of the total savings.
c) The ratio of Pam’s savings to Joanne’s savings is 1:4.
Pam’s savings is of Joanne’s savings.
d) From the model, we see that
5 units = $120
1 unit = = $24
4 units = 4 × $24 = $96
Joanne saves $96.

Fraction of a set word problems
This video applies multiplying a fraction by a whole number to solve word problems. It uses the Singapore math modeling strategy of a bar model and the “unitary method”.
Example:
Sean has 63 classical songs on his mp3 player. That’s 7/8 of his entire collection. How many songs does Sean have altogether?

  • Show Step-by-step Solutions

How to solve a problem involving fractions of fractions and fractions of remaining parts?
Problem:
1/4 of my trail mix recipe is raisins and the rest is nuts. 3/5 of the nuts are peanuts and the rest are almonds. What fraction of my trail mix are almonds?

  • Show Step-by-step Solutions

Model Drawing for 6th Grade
Examples:
Fraction Problems

  1. Luke sold 2/7 of his magazines last week and the rest of them this week. If he sold 30 magazines last week, how many magazines did he sell this week?
  2. At Fairview Middle School, 3/5 of the 570 students were 6th graders and 2/3 of the remaining students were 7th graders. If the rest were 8th graders, how many 8th graders were there?
  3. Kiley had 1200 markers. 2/6 of them were red, 3/6 of them were green, and 1/5 of the remaining amount were blue. The rest of the remaining markers were purple. How many purple markers were there?

Travel Rate Problems
4. A hybrid car traveled 360 miles on 6 gallon of gas. How far could that same car travel on 10 gallons of gas?
5. A tugboat traveled 1,200 miles on 60 gallons of gas. How far could this tugboat travel on 90 gallons of gas?
6. A pool is filled with water at the rate of 75 gallons every 6 minutes. How long will it take for the pool to fill with 375 gallons of water?
7. Bathroom tile is placed at a rate of 25 tiles every 5 minutes. How long will it take to place 500 tiles?

  • Show Step-by-step Solutions

Try the free Mathway calculator and
problem solver below to practice various math topics. Try the given examples, or type in your own
problem and check your answer with the step-by-step explanations.

Mathway Calculator Widget

We welcome your feedback, comments and questions about this site or page. Please submit your feedback or enquiries via our Feedback page.

Sample Problems From Every Major Math Category

Jonathan Kim/The Image Bank/Getty Images

Updated on January 21, 2020

Math is all about problem-solving skills. Children should be involved in problem-solving activities every day. One of the best ways to help children learn math is to present them with a problem in which they have to devise their own strategies to find the solution(s). Even if there’s only one correct solution, there can actually be more than one way to figure out how to solve a math problem. Children need to be given the opportunity to discover their own shortcuts and create out their own algorithms to determine the appropriate answer—or answers.

In addition (no pun intended) they should also be able to justify the solution(s) they reach by explaining the choices they made to arrive at their answers. Students should be able to describe why their solutions work and how they know it’s the right solution.

My favorite way to question children with regard to this is to ask them, «How do you know?» When they have to explain how they arrived at their answer, you immediately know the learning that has taken place and you can see the thought process they used to reach their conclusions.

Math problems for sixth-grade students should be read to them. The following math word problems are specific for children in the sixth grade and are divided into the main math categories: Number Concepts, Patterns and Algebra, Geometry and Measurement, and Data Management and Probability.

Patterns and Algebra

  • Kelly’s classroom organized an e-Pal club. 11 people joined the club. Each of them sent an email to each of the members of the club. How many emails were actually sent? How do you know?
  • Ticket sales for the bake sale were underway. Four people bought tickets on the first day of sales, twice as many people bought tickets on the second day, and each day after that, twice as many people bought tickets. How many tickets were sold after 16 days?

Data Management and Probability

  • Pet Parade: Mr. James has 14 pets: cats, dogs, and guinea pigs. What are all the possible pet combinations he could have?
  • How many different types of pizza can you make with the following toppings: pepperoni, tomatoes, bacon, onions, and green peppers? Show your answer.

Number Concepts

  • Sam bought eight ball caps, one for each of her eight friends, for $8.95 each. The cashier charged her an additional $12.07 in sales tax. Sam left the store with only $6.28 in change. How much money did she start with?

Geometry and Measurement

  • Watch your favorite television show from beginning to end. Time each of the commercials and determine the percentage of commercial time for the entire duration of the show. Now, determine the percentage of time the actual show is on the air. What fraction do the commercials make up?
  • Two squares are next to each other. One square has six times the length of the other square. How many times greater in area is the larger square? How do you know?

Math worksheets: Proportions word problems

Below are grade 6 math worksheets with proportions word problems.

Grade 6 Proportions Worksheet solving proportions word problems

Worksheet #3

Become a Member

These worksheets are available to members only.

Join K5 to save time, skip ads and access more content.
Learn More

Become a Member

This content is available to members only.

Join K5 to save time, skip ads and access more content.
Learn More

Понравилась статья? Поделить с друзьями:
  • Word problems for division and multiplication
  • Word problems for comparing
  • Word problems for algebra
  • Word problems finding the mean
  • Word problems examples solutions