Word codes of computer

Список из 256 символов и их коды в ASCII.

1

Управляющие символы

DEC OCT HEX BIN Символ Escape послед. HTML код Описание
0 000 0x00 00000000 NUL � Нулевой байт
1 001 0x01 00000001 SOH  Начало заголовка
2 002 0x02 00000010 STX  Начало текста
3 003 0x03 00000011 ETX  Конец «текста»
4 004 0x04 00000100 EOT  конец передачи
5 005 0x05 00000101 ENQ  «Прошу подтверждения!»
6 006 0x06 00000110 ACK  «Подтверждаю!»
7 007 0x07 00000111 BEL a  Звуковой сигнал – звонок
8 010 0x08 00001000 BS b  Возврат на один символ (BACKSPACE)
9 011 0x09 00001001 TAB t Табуляция
10 012 0x0A 00001010 LF n Перевод строки
11 013 0x0B 00001011 VT v  Вертикальная табуляция
12 014 0x0C 00001100 FF f  Прогон страницы, новая страница
13 015 0x0D 00001101 CR r Возврат каретки
14 016 0x0E 00001110 SO  Переключиться на другую ленту (кодировку)
15 017 0x0F 00001111 SI  Переключиться на исходную ленту (кодировку)
16 020 0x10 00010000 DLE  Экранирование канала данных
17 021 0x11 00010001 DC1  1-й символ управления устройством
18 022 0x12 00010010 DC2  2-й символ управления устройством
19 023 0x13 00010011 DC3  3-й символ управления устройством
20 024 0x14 00010100 DC4  4-й символ управления устройством
21 025 0x15 00010101 NAK  «Не подтверждаю!»
22 026 0x16 00010110 SYN  Символ для синхронизации
23 027 0x17 00010111 ETB  Конец текстового блока
24 030 0x18 00011000 CAN  Отмена
25 031 0x19 00011001 EM  Конец носителя
26 032 0x1A 00011010 SUB  Подставить
27 033 0x1B 00011011 ESC e  Escape (Расширение)
28 034 0x1C 00011100 FS  Разделитель файлов
29 035 0x1D 00011101 GS  Разделитель групп
30 036 0x1E 00011110 RS  Разделитель записей
31 037 0x1F 00011111 US  Разделитель юнитов
127 177 0x7F 01111111 Delete  Символ для удаления (на перфолентах)

2

Печатные символы

DEC OCT HEX BIN Символ HTML код Мнемоника
32 040 0x20 00100000 Пробел
33 041 0x21 00100001 ! !
34 042 0x22 00100010 « " "
35 043 0x23 00100011 # #
36 044 0x24 00100100 $ $
37 045 0x25 00100101 % %
38 046 0x26 00100110 & & &
39 047 0x27 00100111 ' '
40 050 0x28 00101000 ( (
41 051 0x29 00101001 ) )
42 052 0x2A 00101010 * *
43 053 0x2B 00101011 + +
44 054 0x2C 00101100 , ,
45 055 0x2D 00101101 -
46 056 0x2E 00101110 . .
47 057 0x2F 00101111 / /
48 060 0x30 00110000 0 0
49 061 0x31 00110001 1 1
50 062 0x32 00110010 2 2
51 063 0x33 00110011 3 3
52 064 0x34 00110100 4 4
53 065 0x35 00110101 5 5
54 066 0x36 00110110 6 6
55 067 0x37 00110111 7 7
56 070 0x38 00111000 8 8
57 071 0x39 00111001 9 9
58 072 0x3A 00111010 : :
59 073 0x3B 00111011 ; ;
60 074 0x3C 00111100 < < &lt;
61 075 0x3D 00111101 = =
62 076 0x3E 00111110 > > &gt;
63 077 0x3F 00111111 ? ?
64 100 0x40 01000000 @ @
65 101 0x41 01000001 A A
66 102 0x42 01000010 B B
67 103 0x43 01000011 C C
68 104 0x44 01000100 D D
69 105 0x45 01000101 E E
70 106 0x46 01000110 F F
71 107 0x47 01000111 G G
72 110 0x48 01001000 H H
73 111 0x49 01001001 I I
74 112 0x4A 01001010 J J
75 113 0x4B 01001011 K K
76 114 0x4C 01001100 L L
77 115 0x4D 01001101 M M
78 116 0x4E 01001110 N N
79 117 0x4F 01001111 O O
80 120 0x50 01010000 P P
81 121 0x51 01010001 Q Q
82 122 0x52 01010010 R R
83 123 0x53 01010011 S S
84 124 0x54 01010100 T T
85 125 0x55 01010101 U U
86 126 0x56 01010110 V V
87 127 0x57 01010111 W W
88 130 0x58 01011000 X X
89 131 0x59 01011001 Y Y
90 132 0x5A 01011010 Z Z
91 133 0x5B 01011011 [ [
92 134 0x5C 01011100 \
93 135 0x5D 01011101 ] ]
94 136 0x5E 01011110 ^ ^
95 137 0x5F 01011111 _ _
96 140 0x60 01100000 ` `
97 141 0x61 01100001 a a
98 142 0x62 01100010 b b
99 143 0x63 01100011 c c
100 144 0x64 01100100 d d
101 145 0x65 01100101 e e
102 146 0x66 01100110 f f
103 147 0x67 01100111 g g
104 150 0x68 01101000 h h
105 151 0x69 01101001 i i
106 152 0x6A 01101010 j j
107 153 0x6B 01101011 k k
108 154 0x6C 01101100 l l
109 155 0x6D 01101101 m m
110 156 0x6E 01101110 n n
111 157 0x6F 01101111 o o
112 160 0x70 01110000 p p
113 161 0x71 01110001 q q
114 162 0x72 01110010 r r
115 163 0x73 01110011 s s
116 164 0x74 01110100 t t
117 165 0x75 01110101 u u
118 166 0x76 01110110 v v
119 167 0x77 01110111 w w
120 170 0x78 01111000 x x
121 171 0x79 01111001 y y
122 172 0x7A 01111010 z z
123 173 0x7B 01111011 { {
124 174 0x7C 01111100 | |
125 175 0x7D 01111101 } }
126 176 0x7E 01111110 ~ ~

3

Расширенные символы ASCII Win-1251 кириллица

DEC OCT HEX BIN Символ HTML код Мнемоника
128 200 0x80 10000000 Ђ
129 201 0x81 10000001 Ѓ 
130 202 0x82 10000010 &sbquo;
131 203 0x83 10000011 ѓ ƒ
132 204 0x84 10000100 &bdquo;
133 205 0x85 10000101 &hellip;
134 206 0x86 10000110 &dagger;
135 207 0x87 10000111 &Dagger;
136 210 0x88 10001000 ˆ &euro;
137 211 0x89 10001001 &permil;
138 212 0x8A 10001010 Љ Š
139 213 0x8B 10001011 &lsaquo;
140 214 0x8C 10001100 Њ Œ
141 215 0x8D 10001101 Ќ 
142 216 0x8E 10001110 Ћ Ž
143 217 0x8F 10001111 Џ 
144 220 0x90 10010000 Ђ 
145 221 0x91 10010001 &lsquo;
146 222 0x92 10010010 &rsquo;
147 223 0x93 10010011 &ldquo;
148 224 0x94 10010100 &rdquo;
149 225 0x95 10010101 &bull;
150 226 0x96 10010110 &ndash;
151 227 0x97 10010111 &mdash;
152 230 0x98 10011000 Начало строки ˜
153 231 0x99 10011001 &trade;
154 232 0x9A 10011010 љ š
155 233 0x9B 10011011 &rsaquo;
156 234 0x9C 10011100 њ œ
157 235 0x9D 10011101 ќ 
158 236 0x9E 10011110 ћ ž
159 237 0x9F 10011111 џ Ÿ
160 240 0xA0 10100000 Неразрывный пробел   &nbsp;
161 241 0xA1 10100001 Ў ¡
162 242 0xA2 10100010 ў ¢
163 243 0xA3 10100011 Ј £
164 244 0xA4 10100100 ¤ ¤ &curren;
165 245 0xA5 10100101 Ґ ¥
166 246 0xA6 10100110 ¦ ¦ &brvbar;
167 247 0xA7 10100111 § § &sect;
168 250 0xA8 10101000 Ё ¨
169 251 0xA9 10101001 © © &copy;
170 252 0xAA 10101010 Є ª
171 253 0xAB 10101011 « « &laquo;
172 254 0xAC 10101100 ¬ ¬ &not;
173 255 0xAD 10101101 Мягкий перенос ­ &shy;
174 256 0xAE 10101110 ® ® &reg;
175 257 0xAF 10101111 Ї ¯
176 260 0xB0 10110000 ° ° &deg;
177 261 0xB1 10110001 ± ± &plusmn;
178 262 0xB2 10110010 І ²
179 263 0xB3 10110011 і ³
180 264 0xB4 10110100 ґ ´
181 265 0xB5 10110101 µ µ &micro;
182 266 0xB6 10110110 &para;
183 267 0xB7 10110111 · · &middot;
184 270 0xB8 10111000 ё ¸
185 271 0xB9 10111001 ¹
186 272 0xBA 10111010 є º
187 273 0xBB 10111011 » » &raquo;
188 274 0xBC 10111100 ј ¼
189 275 0xBD 10111101 Ѕ ½
190 276 0xBE 10111110 ѕ ¾
191 277 0xBF 10111111 ї ¿
192 300 0xC0 11000000 А À
193 301 0xC1 11000001 Б Á
194 302 0xC2 11000010 В Â
195 303 0xC3 11000011 Г Ã
196 304 0xC4 11000100 Д Ä
197 305 0xC5 11000101 Е Å
198 306 0xC6 11000110 Ж Æ
199 307 0xC7 11000111 З Ç
200 310 0xC8 11001000 И È
201 311 0xC9 11001001 Й É
202 312 0xCA 11001010 К Ê
203 313 0xCB 11001011 Л Ë
204 314 0xCC 11001100 М Ì
205 315 0xCD 11001101 Н Í
206 316 0xCE 11001110 О Î
207 317 0xCF 11001111 П Ï
208 320 0xD0 11010000 Р Ð
209 321 0xD1 11010001 С Ñ
210 322 0xD2 11010010 Т Ò
211 323 0xD3 11010011 У Ó
212 324 0xD4 11010100 Ф Ô
213 325 0xD5 11010101 Х Õ
214 326 0xD6 11010110 Ц Ö
215 327 0xD7 11010111 Ч ×
216 330 0xD8 11011000 Ш Ø
217 331 0xD9 11011001 Щ Ù
218 332 0xDA 11011010 Ъ Ú
219 333 0xDB 11011011 Ы Û
220 334 0xDC 11011100 Ь Ü
221 335 0xDD 11011101 Э Ý
222 336 0xDE 11011110 Ю Þ
223 337 0xDF 11011111 Я ß
224 340 0xE0 11100000 а à
225 341 0xE1 11100001 б á
226 342 0xE2 11100010 в â
227 343 0xE3 11100011 г ã
228 344 0xE4 11100100 д ä
229 345 0xE5 11100101 е å
230 346 0xE6 11100110 ж æ
231 347 0xE7 11100111 з ç
232 350 0xE8 11101000 и è
233 351 0xE9 11101001 й é
234 352 0xEA 11101010 к ê
235 353 0xEB 11101011 л ë
236 354 0xEC 11101100 м ì
237 355 0xED 11101101 н í
238 356 0xEE 11101110 о î
239 357 0xEF 11101111 п ï
240 360 0xF0 11110000 р ð
241 361 0xF1 11110001 с ñ
242 362 0xF2 11110010 т ò
243 363 0xF3 11110011 у ó
244 364 0xF4 11110100 ф ô
245 365 0xF5 11110101 х õ
246 366 0xF6 11110110 ц ö
247 367 0xF7 11110111 ч ÷
248 370 0xF8 11111000 ш ø
249 371 0xF9 11111001 щ ù
250 372 0xFA 11111010 ъ ú
251 373 0xFB 11111011 ы û
252 374 0xFC 11111100 ь ü
253 375 0xFD 11111101 э ý
254 376 0xFE 11111110 ю þ
255 377 0xFF 11111111 я ÿ

alpharithms printable ascii table chart

Printable ASCII Table (Click to Enlarge)

The American Standard Code for Information Interchange (ASCII) is a means of encoding characters for digital communications. It was originally developed in the early 1960s as early networked communications were being developed.

A 1969 RFC20 outlined the recommendation for adopting this 7-bit system for numerical representation within network interchange. By the late 1980s, the American National Standards Institute (ANSI) had assumed oversight of the ASCII standard.

Control Characters

Note the first 32 characters, decimal values 0-31, have been reserved for non-display characters. These are referred to as control characters and were originally intended as machine control signals to trigger events like system sounds (beep), network acknowledgments (ACK), and end of text (EOT).

Printable Characters

The ASCII-encoded characters for decimal values 0-31 do not print or render to displays like other characters. As such, attempting to use these characters for non-control functions typically results in the display of a default missing character symbol or other unwanted (and irrelevant) characters.

Modern Expanded ASCII

With the rise of 16, 32, and 64-bit machines, ASCII has seen several significant expansions over the years. The first expansion, called extended ASCII, used an 8-bit representation and extended to the range of 0-255. This range included common symbols and some internationalized versions of the American English alphabet.

This expansion to the original ASCII character codes has evolved in response to the growing need for more sophisticated ways to represent language around the world. After all, we’re a ways past the Internet being limited to a few researchers sending messages around the Southern California area.

ASCII Chart Uses

Today, ASCII is still used for certain internet mail protocols like SMTP (7-bit ASCII) such that transmitted data is first encoded into 7-bit ASCII, send across the network, and then decoded by the receiving host. This works for all kinds of files, including media!

Hexadecimal to ASCII

Hexadecimal can represent a wide range of values and is suited for use with modern 64-bit architectures. When converting hex to binary, decimal, or even octal—it can be convenient to have an easy reference to more commonly used values: like 5, 8, or 13. As such, ASCII number charts like the one here are often shown to include hexadecimal values.

Modern Integrations

Basic text editors like Notepad++ create ASCII text and more advanced programs like Microsoft Word generally have a “save as text” option. In addition, other more advanced encoding sets like UTF and Unicode are considered “supersets” of ASCII and mirror the first 128 characters to the ASCII characters. More than just a tribute; this mapping allows better compatibility across varying programs and programming languages. For example, Python’s ord() built-in function will return the ASCII value of any value character.

This article is about the character encoding. For other uses, see ASCII (disambiguation).

ASCII

USASCII code chart.png

ASCII chart from MIL-STD-188-100 (1972)

MIME / IANA us-ascii
Alias(es) ISO-IR-006,[1] ANSI_X3.4-1968, ANSI_X3.4-1986, ISO_646.irv:1991, ISO646-US, us, IBM367, cp367[2]
Language(s) English (made for; does not support all loanwords), Malay, Rotokas, Interlingua, Ido, and X-SAMPA
Classification ISO/IEC 646 series
Extensions
  • Unicode
  • ISO/IEC 8859 (series)
  • KOI-8
  • OEM (series)
  • Windows-125x (series)
  • Others
Preceded by ITA 2, FIELDATA
Succeeded by ISO/IEC 8859, ISO/IEC 10646 (Unicode)
  • v
  • t
  • e

ASCII ( ASS-kee),[3]: 6  abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Because of technical limitations of computer systems at the time it was invented, ASCII has just 128 code points, of which only 95 are printable characters, which severely limited its scope. Many computer systems instead use Unicode, which has millions of code points, but the first 128 of these are the same as the ASCII set.

The Internet Assigned Numbers Authority (IANA) prefers the name US-ASCII for this character encoding.[2]

ASCII is one of the IEEE milestones.

Overview[edit]

ASCII was developed from telegraph code. Its first commercial use was as a seven-bit teleprinter code promoted by Bell data services.[when?] Work on the ASCII standard began in May 1961, with the first meeting of the American Standards Association’s (ASA) (now the American National Standards Institute or ANSI) X3.2 subcommittee. The first edition of the standard was published in 1963,[4][5] underwent a major revision during 1967,[6][7] and experienced its most recent update during 1986.[8] Compared to earlier telegraph codes, the proposed Bell code and ASCII were both ordered for more convenient sorting (i.e., alphabetization) of lists and added features for devices other than teleprinters.[8]

The use of ASCII format for Network Interchange was described in 1969.[9] That document was formally elevated to an Internet Standard in 2015.[10]

Originally based on the (modern) English alphabet, ASCII encodes 128 specified characters into seven-bit integers as shown by the ASCII chart above.[11] Ninety-five of the encoded characters are printable: these include the digits 0 to 9, lowercase letters a to z, uppercase letters A to Z, and punctuation symbols. In addition, the original ASCII specification included 33 non-printing control codes which originated with Teletype machines; most of these are now obsolete,[12] although a few are still commonly used, such as the carriage return, line feed, and tab codes.

For example, lowercase i would be represented in the ASCII encoding by binary 1101001 = hexadecimal 69 (i is the ninth letter) = decimal 105.

Despite being an American standard, ASCII does not have a code point for the cent (¢). It also does not support English terms with diacritical marks such as résumé and jalapeño, or proper nouns with diacritical marks such as Beyoncé.

History[edit]

ASCII (1963). Control Pictures of equivalent controls are shown where they exist, or a grey dot otherwise.

The American Standard Code for Information Interchange (ASCII) was developed under the auspices of a committee of the American Standards Association (ASA), called the X3 committee, by its X3.2 (later X3L2) subcommittee, and later by that subcommittee’s X3.2.4 working group (now INCITS). The ASA later became the United States of America Standards Institute (USASI),[3]: 211  and ultimately became the American National Standards Institute (ANSI).

With the other special characters and control codes filled in, ASCII was published as ASA X3.4-1963,[5][13] leaving 28 code positions without any assigned meaning, reserved for future standardization, and one unassigned control code.[3]: 66, 245  There was some debate at the time whether there should be more control characters rather than the lowercase alphabet.[3]: 435  The indecision did not last long: during May 1963 the CCITT Working Party on the New Telegraph Alphabet proposed to assign lowercase characters to sticks[a][14] 6 and 7,[15] and International Organization for Standardization TC 97 SC 2 voted during October to incorporate the change into its draft standard.[16] The X3.2.4 task group voted its approval for the change to ASCII at its May 1963 meeting.[17] Locating the lowercase letters in sticks[a][14] 6 and 7 caused the characters to differ in bit pattern from the upper case by a single bit, which simplified case-insensitive character matching and the construction of keyboards and printers.

The X3 committee made other changes, including other new characters (the brace and vertical bar characters),[18] renaming some control characters (SOM became start of header (SOH)) and moving or removing others (RU was removed).[3]: 247–248  ASCII was subsequently updated as USAS X3.4-1967,[6][19] then USAS X3.4-1968, ANSI X3.4-1977, and finally, ANSI X3.4-1986.[8][20]

Revisions of the ASCII standard:

  • ASA X3.4-1963[3][5][19][20]
  • ASA X3.4-1965 (approved, but not published, nevertheless used by IBM 2260 & 2265 Display Stations and IBM 2848 Display Control)[3]: 423, 425–428, 435–439 [21][19][20]
  • USAS X3.4-1967[3][6][20]
  • USAS X3.4-1968[3][20]
  • ANSI X3.4-1977[20]
  • ANSI X3.4-1986[8][20]
  • ANSI X3.4-1986 (R1992)
  • ANSI X3.4-1986 (R1997)
  • ANSI INCITS 4-1986 (R2002)[22]
  • ANSI INCITS 4-1986 (R2007)[23]
  • (ANSI) INCITS 4-1986[R2012][24]
  • (ANSI) INCITS 4-1986[R2017][25]

In the X3.15 standard, the X3 committee also addressed how ASCII should be transmitted (least significant bit first),[3]: 249–253 [26] and how it should be recorded on perforated tape. They proposed a 9-track standard for magnetic tape, and attempted to deal with some punched card formats.

Design considerations[edit]

Bit width[edit]

The X3.2 subcommittee designed ASCII based on the earlier teleprinter encoding systems. Like other character encodings, ASCII specifies a correspondence between digital bit patterns and character symbols (i.e. graphemes and control characters). This allows digital devices to communicate with each other and to process, store, and communicate character-oriented information such as written language. Before ASCII was developed, the encodings in use included 26 alphabetic characters, 10 numerical digits, and from 11 to 25 special graphic symbols. To include all these, and control characters compatible with the Comité Consultatif International Téléphonique et Télégraphique (CCITT) International Telegraph Alphabet No. 2 (ITA2) standard of 1924,[27][28] FIELDATA (1956[citation needed]), and early EBCDIC (1963), more than 64 codes were required for ASCII.

ITA2 was in turn based on the 5-bit telegraph code that Émile Baudot invented in 1870 and patented in 1874.[28]

The committee debated the possibility of a shift function (like in ITA2), which would allow more than 64 codes to be represented by a six-bit code. In a shifted code, some character codes determine choices between options for the following character codes. It allows compact encoding, but is less reliable for data transmission, as an error in transmitting the shift code typically makes a long part of the transmission unreadable. The standards committee decided against shifting, and so ASCII required at least a seven-bit code.[3]: 215 §13.6, 236 §4 

The committee considered an eight-bit code, since eight bits (octets) would allow two four-bit patterns to efficiently encode two digits with binary-coded decimal. However, it would require all data transmission to send eight bits when seven could suffice. The committee voted to use a seven-bit code to minimize costs associated with data transmission. Since perforated tape at the time could record eight bits in one position, it also allowed for a parity bit for error checking if desired.[3]: 217 §c, 236 §5  Eight-bit machines (with octets as the native data type) that did not use parity checking typically set the eighth bit to 0.[29]

Internal organization[edit]

The code itself was patterned so that most control codes were together and all graphic codes were together, for ease of identification. The first two so-called ASCII sticks[a][14] (32 positions) were reserved for control characters.[3]: 220, 236 8, 9)  The «space» character had to come before graphics to make sorting easier, so it became position 20hex;[3]: 237 §10  for the same reason, many special signs commonly used as separators were placed before digits. The committee decided it was important to support uppercase 64-character alphabets, and chose to pattern ASCII so it could be reduced easily to a usable 64-character set of graphic codes,[3]: 228, 237 §14  as was done in the DEC SIXBIT code (1963). Lowercase letters were therefore not interleaved with uppercase. To keep options available for lowercase letters and other graphics, the special and numeric codes were arranged before the letters, and the letter A was placed in position 41hex to match the draft of the corresponding British standard.[3]: 238 §18  The digits 0–9 are prefixed with 011, but the remaining 4 bits correspond to their respective values in binary, making conversion with binary-coded decimal straightforward (for example, 5 in encoded to 0110101, where 5 is 0101 in binary).

Many of the non-alphanumeric characters were positioned to correspond to their shifted position on typewriters; an important subtlety is that these were based on mechanical typewriters, not electric typewriters.[30] Mechanical typewriters followed the de facto standard set by the Remington No. 2 (1878), the first typewriter with a shift key, and the shifted values of 23456789- were "#$%_&'() – early typewriters omitted 0 and 1, using O (capital letter o) and l (lowercase letter L) instead, but 1! and 0) pairs became standard once 0 and 1 became common. Thus, in ASCII !"#$% were placed in the second stick,[a][14] positions 1–5, corresponding to the digits 1–5 in the adjacent stick.[a][14] The parentheses could not correspond to 9 and 0, however, because the place corresponding to 0 was taken by the space character. This was accommodated by removing _ (underscore) from 6 and shifting the remaining characters, which corresponded to many European typewriters that placed the parentheses with 8 and 9. This discrepancy from typewriters led to bit-paired keyboards, notably the Teletype Model 33, which used the left-shifted layout corresponding to ASCII, differently from traditional mechanical typewriters.

Electric typewriters, notably the IBM Selectric (1961), used a somewhat different layout that has become de facto standard on computers – following the IBM PC (1981), especially Model M (1984) – and thus shift values for symbols on modern keyboards do not correspond as closely to the ASCII table as earlier keyboards did. The /? pair also dates to the No. 2, and the ,< .> pairs were used on some keyboards (others, including the No. 2, did not shift , (comma) or . (full stop) so they could be used in uppercase without unshifting). However, ASCII split the ;: pair (dating to No. 2), and rearranged mathematical symbols (varied conventions, commonly -* =+) to :* ;+ -=.

Some then-common typewriter characters were not included, notably ½ ¼ ¢, while ^ ` ~ were included as diacritics for international use, and < > for mathematical use, together with the simple line characters | (in addition to common /). The @ symbol was not used in continental Europe and the committee expected it would be replaced by an accented À in the French variation, so the @ was placed in position 40hex, right before the letter A.[3]: 243 

The control codes felt essential for data transmission were the start of message (SOM), end of address (EOA), end of message (EOM), end of transmission (EOT), «who are you?» (WRU), «are you?» (RU), a reserved device control (DC0), synchronous idle (SYNC), and acknowledge (ACK). These were positioned to maximize the Hamming distance between their bit patterns.[3]: 243–245 

Character order[edit]

ASCII-code order is also called ASCIIbetical order.[31] Collation of data is sometimes done in this order rather than «standard» alphabetical order (collating sequence). The main deviations in ASCII order are:

  • All uppercase come before lowercase letters; for example, «Z» precedes «a»
  • Digits and many punctuation marks come before letters

An intermediate order converts uppercase letters to lowercase before comparing ASCII values.

Character groups[edit]

Control characters[edit]

Early symbols assigned to the 32 control characters, space and delete characters. (MIL-STD-188-100, 1972)

ASCII reserves the first 32 codes (numbers 0–31 decimal) for control characters, which are characters originally intended not to represent printable information, but rather to control devices (such as printers) that make use of ASCII, or to provide meta-information about data streams such as those stored on magnetic tape.

For example, character 0x0A represents the «line feed» function (which causes a printer to advance its paper), and character 8 represents «backspace». RFC 2822 refers to control characters that do not include carriage return, line feed or white space as non-whitespace control characters.[32] Except for the control characters that prescribe elementary line-oriented formatting, ASCII does not define any mechanism for describing the structure or appearance of text within a document. Other schemes, such as markup languages, address page and document layout and formatting.

The original ASCII standard used only short descriptive phrases for each control character. The ambiguity this caused was sometimes intentional, for example where a character would be used slightly differently on a terminal link than on a data stream, and sometimes accidental, for example with the meaning of «delete».

Probably the most influential single device affecting the interpretation of these characters was the Teletype Model 33 ASR, which was a printing terminal with an available paper tape reader/punch option. Paper tape was a very popular medium for long-term program storage until the 1980s, less costly and in some ways less fragile than magnetic tape. In particular, the Teletype Model 33 machine assignments for codes 17 (control-Q, DC1, also known as XON), 19 (control-S, DC3, also known as XOFF), and 127 (delete) became de facto standards. The Model 33 was also notable for taking the description of control-G (code 7, BEL, meaning audibly alert the operator) literally, as the unit contained an actual bell which it rang when it received a BEL character. Because the keytop for the O key also showed a left-arrow symbol (from ASCII-1963, which had this character instead of underscore), a noncompliant use of code 15 (control-O, shift in) interpreted as «delete previous character» was also adopted by many early timesharing systems but eventually became neglected.

When a Teletype 33 ASR equipped with the automatic paper tape reader received a control-S (XOFF, an abbreviation for transmit off), it caused the tape reader to stop; receiving control-Q (XON, transmit on) caused the tape reader to resume. This so-called flow control technique became adopted by several early computer operating systems as a «handshaking» signal warning a sender to stop transmission because of impending buffer overflow; it persists to this day in many systems as a manual output control technique. On some systems, control-S retains its meaning but control-Q is replaced by a second control-S to resume output.

The 33 ASR also could be configured to employ control-R (DC2) and control-T (DC4) to start and stop the tape punch; on some units equipped with this function, the corresponding control character lettering on the keycap above the letter was TAPE and TAPE respectively.[33]

Delete vs backspace[edit]

The Teletype could not move its typehead backwards, so it did not have a key on its keyboard to send a BS (backspace). Instead, there was a key marked RUB OUT that sent code 127 (DEL). The purpose of this key was to erase mistakes in a manually-input paper tape: the operator had to push a button on the tape punch to back it up, then type the rubout, which punched all holes and replaced the mistake with a character that was intended to be ignored.[34] Teletypes were commonly used with the less-expensive computers from Digital Equipment Corporation (DEC); these systems had to use what keys were available, and thus the DEL character was assigned to erase the previous character.[35][36] Because of this, DEC video terminals (by default) sent the DEL character for the key marked «Backspace» while the separate key marked «Delete» sent an escape sequence; many other competing terminals sent a BS character for the backspace key.

The Unix terminal driver could only use one character to erase the previous character, this could be set to BS or DEL, but not both, resulting in recurring situations of ambiguity where users had to decide depending on what terminal they were using (shells that allow line editing, such as ksh, bash, and zsh, understand both). The assumption that no key sent a BS character allowed control+H to be used for other purposes, such as the «help» prefix command in GNU Emacs.[37]

Escape[edit]

Many more of the control characters have been assigned meanings quite different from their original ones. The «escape» character (ESC, code 27), for example, was intended originally to allow sending of other control characters as literals instead of invoking their meaning, an «escape sequence». This is the same meaning of «escape» encountered in URL encodings, C language strings, and other systems where certain characters have a reserved meaning. Over time this interpretation has been co-opted and has eventually been changed.

In modern usage, an ESC sent to the terminal usually indicates the start of a command sequence usually in the form of a so-called «ANSI escape code» (or, more properly, a «Control Sequence Introducer») from ECMA-48 (1972) and its successors, beginning with ESC followed by a «[» (left-bracket) character. In contrast, an ESC sent from the terminal is most often used as an out-of-band character used to terminate an operation or special mode, as in the TECO and vi text editors. In graphical user interface (GUI) and windowing systems, ESC generally causes an application to abort its current operation or to exit (terminate) altogether.

End of line[edit]

The inherent ambiguity of many control characters, combined with their historical usage, created problems when transferring «plain text» files between systems. The best example of this is the newline problem on various operating systems. Teletype machines required that a line of text be terminated with both «carriage return» (which moves the printhead to the beginning of the line) and «line feed» (which advances the paper one line without moving the printhead). The name «carriage return» comes from the fact that on a manual typewriter the carriage holding the paper moves while the typebars that strike the ribbon remain stationary. The entire carriage had to be pushed (returned) to the right in order to position the paper for the next line.

DEC operating systems (OS/8, RT-11, RSX-11, RSTS, TOPS-10, etc.) used both characters to mark the end of a line so that the console device (originally Teletype machines) would work. By the time so-called «glass TTYs» (later called CRTs or «dumb terminals») came along, the convention was so well established that backward compatibility necessitated continuing to follow it. When Gary Kildall created CP/M, he was inspired by some of the command line interface conventions used in DEC’s RT-11 operating system.

Until the introduction of PC DOS in 1981, IBM had no influence in this because their 1970s operating systems used EBCDIC encoding instead of ASCII, and they were oriented toward punch-card input and line printer output on which the concept of «carriage return» was meaningless. IBM’s PC DOS (also marketed as MS-DOS by Microsoft) inherited the convention by virtue of being loosely based on CP/M,[38] and Windows in turn inherited it from MS-DOS.

Requiring two characters to mark the end of a line introduces unnecessary complexity and ambiguity as to how to interpret each character when encountered by itself. To simplify matters, plain text data streams, including files, on Multics used line feed (LF) alone as a line terminator.[39]: 357  Unix and Unix-like systems, and Amiga systems, adopted this convention from Multics. On the other hand, the original Macintosh OS, Apple DOS, and ProDOS used carriage return (CR) alone as a line terminator; however, since Apple has now replaced these obsolete operating systems with the Unix-based macOS operating system, they now use line feed (LF) as well. The Radio Shack TRS-80 also used a lone CR to terminate lines.

Computers attached to the ARPANET included machines running operating systems such as TOPS-10 and TENEX using CR-LF line endings; machines running operating systems such as Multics using LF line endings; and machines running operating systems such as OS/360 that represented lines as a character count followed by the characters of the line and which used EBCDIC rather than ASCII encoding. The Telnet protocol defined an ASCII «Network Virtual Terminal» (NVT), so that connections between hosts with different line-ending conventions and character sets could be supported by transmitting a standard text format over the network. Telnet used ASCII along with CR-LF line endings, and software using other conventions would translate between the local conventions and the NVT.[40] The File Transfer Protocol adopted the Telnet protocol, including use of the Network Virtual Terminal, for use when transmitting commands and transferring data in the default ASCII mode.[41][42] This adds complexity to implementations of those protocols, and to other network protocols, such as those used for E-mail and the World Wide Web, on systems not using the NVT’s CR-LF line-ending convention.[43][44]

End of file/stream[edit]

The PDP-6 monitor,[35] and its PDP-10 successor TOPS-10,[36] used control-Z (SUB) as an end-of-file indication for input from a terminal. Some operating systems such as CP/M tracked file length only in units of disk blocks, and used control-Z to mark the end of the actual text in the file.[45] For these reasons, EOF, or end-of-file, was used colloquially and conventionally as a three-letter acronym for control-Z instead of SUBstitute. The end-of-text character (ETX), also known as control-C, was inappropriate for a variety of reasons, while using control-Z as the control character to end a file is analogous to the letter Z’s position at the end of the alphabet, and serves as a very convenient mnemonic aid. A historically common and still prevalent convention uses the ETX character convention to interrupt and halt a program via an input data stream, usually from a keyboard.

The Unix terminal driver uses the end-of-transmission character (EOT), also known as control-D, to indicate the end of a data stream.

In the C programming language, and in Unix conventions, the null character is used to terminate text strings; such null-terminated strings can be known in abbreviation as ASCIZ or ASCIIZ, where here Z stands for «zero».

Control code chart[edit]

Binary Oct Dec Hex Abbreviation Unicode Control Pictures[b] Caret notation[c] C escape sequence[d] Name (1967)
1963 1965 1967
000 0000 000 0 00 NULL NUL ^@ Null
000 0001 001 1 01 SOM SOH ^A Start of Heading
000 0010 002 2 02 EOA STX ^B Start of Text
000 0011 003 3 03 EOM ETX ^C End of Text
000 0100 004 4 04 EOT ^D End of Transmission
000 0101 005 5 05 WRU ENQ ^E Enquiry
000 0110 006 6 06 RU ACK ^F Acknowledgement
000 0111 007 7 07 BELL BEL ^G a Bell
000 1000 010 8 08 FE0 BS ^H b Backspace[e][f]
000 1001 011 9 09 HT/SK HT ^I t Horizontal Tab[g]
000 1010 012 10 0A LF ^J n Line Feed
000 1011 013 11 0B VTAB VT ^K v Vertical Tab
000 1100 014 12 0C FF ^L f Form Feed
000 1101 015 13 0D CR ^M r Carriage Return[h]
000 1110 016 14 0E SO ^N Shift Out
000 1111 017 15 0F SI ^O Shift In
001 0000 020 16 10 DC0 DLE ^P Data Link Escape
001 0001 021 17 11 DC1 ^Q Device Control 1 (often XON)
001 0010 022 18 12 DC2 ^R Device Control 2
001 0011 023 19 13 DC3 ^S Device Control 3 (often XOFF)
001 0100 024 20 14 DC4 ^T Device Control 4
001 0101 025 21 15 ERR NAK ^U Negative Acknowledgement
001 0110 026 22 16 SYNC SYN ^V Synchronous Idle
001 0111 027 23 17 LEM ETB ^W End of Transmission Block
001 1000 030 24 18 S0 CAN ^X Cancel
001 1001 031 25 19 S1 EM ^Y End of Medium
001 1010 032 26 1A S2 SS SUB ^Z Substitute
001 1011 033 27 1B S3 ESC ^[ e[i] Escape[j]
001 1100 034 28 1C S4 FS ^ File Separator
001 1101 035 29 1D S5 GS ^] Group Separator
001 1110 036 30 1E S6 RS ^^[k] Record Separator
001 1111 037 31 1F S7 US ^_ Unit Separator
111 1111 177 127 7F DEL ^? Delete[l][f]

Other representations might be used by specialist equipment, for example ISO 2047 graphics or hexadecimal numbers.

Printable characters[edit]

Codes 20hex to 7Ehex, known as the printable characters, represent letters, digits, punctuation marks, and a few miscellaneous symbols. There are 95 printable characters in total.[m]

Code 20hex, the «space» character, denotes the space between words, as produced by the space bar of a keyboard. Since the space character is considered an invisible graphic (rather than a control character)[3]: 223 [46] it is listed in the table below instead of in the previous section.

Code 7Fhex corresponds to the non-printable «delete» (DEL) control character and is therefore omitted from this chart; it is covered in the previous section’s chart. Earlier versions of ASCII used the up arrow instead of the caret (5Ehex) and the left arrow instead of the underscore (5Fhex).[5][47]

Binary Oct Dec Hex Glyph
1963 1965 1967
010 0000 040 32 20  space
010 0001 041 33 21 !
010 0010 042 34 22 «
010 0011 043 35 23 #
010 0100 044 36 24 $
010 0101 045 37 25 %
010 0110 046 38 26 &
010 0111 047 39 27
010 1000 050 40 28 (
010 1001 051 41 29 )
010 1010 052 42 2A *
010 1011 053 43 2B +
010 1100 054 44 2C ,
010 1101 055 45 2D
010 1110 056 46 2E .
010 1111 057 47 2F /
011 0000 060 48 30 0
011 0001 061 49 31 1
011 0010 062 50 32 2
011 0011 063 51 33 3
011 0100 064 52 34 4
011 0101 065 53 35 5
011 0110 066 54 36 6
011 0111 067 55 37 7
011 1000 070 56 38 8
011 1001 071 57 39 9
011 1010 072 58 3A :
011 1011 073 59 3B ;
011 1100 074 60 3C <
011 1101 075 61 3D =
011 1110 076 62 3E >
011 1111 077 63 3F ?
100 0000 100 64 40 @ ` @
100 0001 101 65 41 A
100 0010 102 66 42 B
100 0011 103 67 43 C
100 0100 104 68 44 D
100 0101 105 69 45 E
100 0110 106 70 46 F
100 0111 107 71 47 G
100 1000 110 72 48 H
100 1001 111 73 49 I
100 1010 112 74 4A J
100 1011 113 75 4B K
100 1100 114 76 4C L
100 1101 115 77 4D M
100 1110 116 78 4E N
100 1111 117 79 4F O
101 0000 120 80 50 P
101 0001 121 81 51 Q
101 0010 122 82 52 R
101 0011 123 83 53 S
101 0100 124 84 54 T
101 0101 125 85 55 U
101 0110 126 86 56 V
101 0111 127 87 57 W
101 1000 130 88 58 X
101 1001 131 89 59 Y
101 1010 132 90 5A Z
101 1011 133 91 5B [
101 1100 134 92 5C ~
101 1101 135 93 5D ]
101 1110 136 94 5E ^
101 1111 137 95 5F _
110 0000 140 96 60 @ `
110 0001 141 97 61 a
110 0010 142 98 62 b
110 0011 143 99 63 c
110 0100 144 100 64 d
110 0101 145 101 65 e
110 0110 146 102 66 f
110 0111 147 103 67 g
110 1000 150 104 68 h
110 1001 151 105 69 i
110 1010 152 106 6A j
110 1011 153 107 6B k
110 1100 154 108 6C l
110 1101 155 109 6D m
110 1110 156 110 6E n
110 1111 157 111 6F o
111 0000 160 112 70 p
111 0001 161 113 71 q
111 0010 162 114 72 r
111 0011 163 115 73 s
111 0100 164 116 74 t
111 0101 165 117 75 u
111 0110 166 118 76 v
111 0111 167 119 77 w
111 1000 170 120 78 x
111 1001 171 121 79 y
111 1010 172 122 7A z
111 1011 173 123 7B {
111 1100 174 124 7C ACK ¬ |
111 1101 175 125 7D }
111 1110 176 126 7E ESC | ~

Character set[edit]

ASCII (1977/1986)
0 1 2 3 4 5 6 7 8 9 A B C D E F
0x NUL SOH STX ETX EOT ENQ ACK BEL  BS   HT   LF   VT   FF   CR   SO   SI 
1x DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN  EM  SUB ESC  FS   GS   RS   US 
2x  SP  ! » # $ % & ( ) * + , . /
3x 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4x @ A B C D E F G H I J K L M N O
5x P Q R S T U V W X Y Z [ ] ^ _
6x ` a b c d e f g h i j k l m n o
7x p q r s t u v w x y z { | } ~ DEL

  Changed or added in 1963 version

  Changed in both 1963 version and 1965 draft

Usage[edit]

ASCII was first used commercially during 1963 as a seven-bit teleprinter code for American Telephone & Telegraph’s TWX (TeletypeWriter eXchange) network. TWX originally used the earlier five-bit ITA2, which was also used by the competing Telex teleprinter system. Bob Bemer introduced features such as the escape sequence.[4] His British colleague Hugh McGregor Ross helped to popularize this work – according to Bemer, «so much so that the code that was to become ASCII was first called the Bemer–Ross Code in Europe».[48] Because of his extensive work on ASCII, Bemer has been called «the father of ASCII».[49]

On March 11, 1968, US President Lyndon B. Johnson mandated that all computers purchased by the United States Federal Government support ASCII, stating:[50][51][52]

I have also approved recommendations of the Secretary of Commerce [Luther H. Hodges] regarding standards for recording the Standard Code for Information Interchange on magnetic tapes and paper tapes when they are used in computer operations.
All computers and related equipment configurations brought into the Federal Government inventory on and after July 1, 1969, must have the capability to use the Standard Code for Information Interchange and the formats prescribed by the magnetic tape and paper tape standards when these media are used.

ASCII was the most common character encoding on the World Wide Web until December 2007, when UTF-8 encoding surpassed it; UTF-8 is backward compatible with ASCII.[53][54][55]

Variants and derivations[edit]

As computer technology spread throughout the world, different standards bodies and corporations developed many variations of ASCII to facilitate the expression of non-English languages that used Roman-based alphabets. One could class some of these variations as «ASCII extensions», although some misuse that term to represent all variants, including those that do not preserve ASCII’s character-map in the 7-bit range. Furthermore, the ASCII extensions have also been mislabelled as ASCII.

7-bit codes[edit]

From early in its development,[56] ASCII was intended to be just one of several national variants of an international character code standard.

Other international standards bodies have ratified character encodings such as ISO 646 (1967) that are identical or nearly identical to ASCII, with extensions for characters outside the English alphabet and symbols used outside the United States, such as the symbol for the United Kingdom’s pound sterling (£); e.g. with code page 1104. Almost every country needed an adapted version of ASCII, since ASCII suited the needs of only the US and a few other countries. For example, Canada had its own version that supported French characters.

Many other countries developed variants of ASCII to include non-English letters (e.g. é, ñ, ß, Ł), currency symbols (e.g. £, ¥), etc. See also YUSCII (Yugoslavia).

It would share most characters in common, but assign other locally useful characters to several code points reserved for «national use». However, the four years that elapsed between the publication of ASCII-1963 and ISO’s first acceptance of an international recommendation during 1967[57] caused ASCII’s choices for the national use characters to seem to be de facto standards for the world, causing confusion and incompatibility once other countries did begin to make their own assignments to these code points.

ISO/IEC 646, like ASCII, is a 7-bit character set. It does not make any additional codes available, so the same code points encoded different characters in different countries. Escape codes were defined to indicate which national variant applied to a piece of text, but they were rarely used, so it was often impossible to know what variant to work with and, therefore, which character a code represented, and in general, text-processing systems could cope with only one variant anyway.

Because the bracket and brace characters of ASCII were assigned to «national use» code points that were used for accented letters in other national variants of ISO/IEC 646, a German, French, or Swedish, etc. programmer using their national variant of ISO/IEC 646, rather than ASCII, had to write, and, thus, read, something such as

ä aÄiÜ = 'Ön'; ü

instead of

{ a[i] = 'n'; }

C trigraphs were created to solve this problem for ANSI C, although their late introduction and inconsistent implementation in compilers limited their use. Many programmers kept their computers on US-ASCII, so plain-text in Swedish, German etc. (for example, in e-mail or Usenet) contained «{, }» and similar variants in the middle of words, something those programmers got used to. For example, a Swedish programmer mailing another programmer asking if they should go for lunch, could get «N{ jag har sm|rg}sar» as the answer, which should be «Nä jag har smörgåsar» meaning «No I’ve got sandwiches».

In Japan and Korea, still as of the 2020s, a variation of ASCII is used, in which the backslash (5C hex) is rendered as ¥ (a Yen sign, in Japan) or ₩ (a Won sign, in Korea). This means that, for example, the file path C:UsersSmith is shown as C:¥Users¥Smith (in Japan) or C:₩Users₩Smith (in Korea).

In Europe, teletext character sets, which are variants of ASCII, are used for broadcast TV subtitles, defined by World System Teletext and broadcast using the DVB-TXT standard for embedding teletext into DVB transmissions.[58] In the case that the subtitles were initially authored for teletext and converted, the derived subtitle formats are constrained to the same character sets.

8-bit codes[edit]

Eventually, as 8-, 16-, and 32-bit (and later 64-bit) computers began to replace 12-, 18-, and 36-bit computers as the norm, it became common to use an 8-bit byte to store each character in memory, providing an opportunity for extended, 8-bit relatives of ASCII. In most cases these developed as true extensions of ASCII, leaving the original character-mapping intact, but adding additional character definitions after the first 128 (i.e., 7-bit) characters.

Encodings include ISCII (India), VISCII (Vietnam). Although these encodings are sometimes referred to as ASCII, true ASCII is defined strictly only by the ANSI standard.

Most early home computer systems developed their own 8-bit character sets containing line-drawing and game glyphs, and often filled in some or all of the control characters from 0 to 31 with more graphics. Kaypro CP/M computers used the «upper» 128 characters for the Greek alphabet.

The PETSCII code Commodore International used for their 8-bit systems is probably unique among post-1970 codes in being based on ASCII-1963, instead of the more common ASCII-1967, such as found on the ZX Spectrum computer. Atari 8-bit computers and Galaksija computers also used ASCII variants.

The IBM PC defined code page 437, which replaced the control characters with graphic symbols such as smiley faces, and mapped additional graphic characters to the upper 128 positions. Operating systems such as DOS supported these code pages, and manufacturers of IBM PCs supported them in hardware. Digital Equipment Corporation developed the Multinational Character Set (DEC-MCS) for use in the popular VT220 terminal as one of the first extensions designed more for international languages than for block graphics. The Macintosh defined Mac OS Roman and Postscript defined another character set: both sets contained «international» letters, typographic symbols and punctuation marks instead of graphics, more like modern character sets.

The ISO/IEC 8859 standard (derived from the DEC-MCS) finally provided a standard that most systems copied (at least as accurately as they copied ASCII, but with many substitutions). A popular further extension designed by Microsoft, Windows-1252 (often mislabeled as ISO-8859-1), added the typographic punctuation marks needed for traditional text printing. ISO-8859-1, Windows-1252, and the original 7-bit ASCII were the most common character encodings until 2008 when UTF-8 became more common.[54]

ISO/IEC 4873 introduced 32 additional control codes defined in the 80–9F hexadecimal range, as part of extending the 7-bit ASCII encoding to become an 8-bit system.[59]

Unicode[edit]

Unicode and the ISO/IEC 10646 Universal Character Set (UCS) have a much wider array of characters and their various encoding forms have begun to supplant ISO/IEC 8859 and ASCII rapidly in many environments. While ASCII is limited to 128 characters, Unicode and the UCS support more characters by separating the concepts of unique identification (using natural numbers called code points) and encoding (to 8-, 16-, or 32-bit binary formats, called UTF-8, UTF-16, and UTF-32, respectively).

ASCII was incorporated into the Unicode (1991) character set as the first 128 symbols, so the 7-bit ASCII characters have the same numeric codes in both sets. This allows UTF-8 to be backward compatible with 7-bit ASCII, as a UTF-8 file containing only ASCII characters is identical to an ASCII file containing the same sequence of characters. Even more importantly, forward compatibility is ensured as software that recognizes only 7-bit ASCII characters as special and does not alter bytes with the highest bit set (as is often done to support 8-bit ASCII extensions such as ISO-8859-1) will preserve UTF-8 data unchanged.[60]

See also[edit]

  • 3568 ASCII, an asteroid named after the character encoding
  • Alt codes – Method for entering characters into a computer
  • ASCII 8 – ASCII code 08, «BS» or Backspace
  • ASCII art – Computer art form using text characters
  • ASCII Ribbon Campaign – Campaign for plain text (only) emails
  • Basic Latin (Unicode block) (ASCII as a subset of Unicode)
  • Extended ASCII – Nick-name for 8-bit ASCII-derived character sets
  • HTML decimal character rendering
  • Jargon File, a glossary of computer programmer slang which includes a list of common slang names for ASCII characters
  • List of computer character sets
  • List of Unicode characters

Notes[edit]

  1. ^ a b c d e The 128 characters of the 7-bit ASCII character set are divided into eight 16-character groups called sticks 0–7, associated with the three most-significant bits.[14] Depending on the horizontal or vertical representation of the character map, sticks correspond with either table rows or columns.
  2. ^ The Unicode characters from the «Control Pictures» area U+2400 to U+2421 reserved for representing control characters when it is necessary to print or display them rather than have them perform their intended function. Some browsers may not display these properly.
  3. ^ Caret notation is often used to represent control characters on a terminal. On most text terminals, holding down the Ctrl key while typing the second character will type the control character. Sometimes the shift key is not needed, for instance ^@ may be typable with just Ctrl and 2.
  4. ^ Character escape sequences in C programming language and many other languages influenced by it, such as Java and Perl (though not all implementations necessarily support all escape sequences).
  5. ^ The Backspace character can also be entered by pressing the ← Backspace key on some systems.
  6. ^ a b The ambiguity of Backspace is due to early terminals designed assuming the main use of the keyboard would be to manually punch paper tape while not connected to a computer. To delete the previous character, one had to back up the paper tape punch, which for mechanical and simplicity reasons was a button on the punch itself and not the keyboard, then type the rubout character. They therefore placed a key producing rubout at the location used on typewriters for backspace. When systems used these terminals and provided command-line editing, they had to use the «rubout» code to perform a backspace, and often did not interpret the backspace character (they might echo «^H» for backspace). Other terminals not designed for paper tape made the key at this location produce Backspace, and systems designed for these used that character to back up. Since the delete code often produced a backspace effect, this also forced terminal manufacturers to make any Delete key produce something other than the Delete character.
  7. ^ The Tab character can also be entered by pressing the Tab ↹ key on most systems.
  8. ^ The Carriage Return character can also be entered by pressing the ↵ Enter or Return key on most systems.
  9. ^ The e escape sequence is not part of ISO C and many other language specifications. However, it is understood by several compilers, including GCC.
  10. ^ The Escape character can also be entered by pressing the Esc key on some systems.
  11. ^ ^^ means Ctrl+^ (pressing the «Ctrl» and caret keys).
  12. ^ The Delete character can sometimes be entered by pressing the ← Backspace key on some systems.
  13. ^ Printed out, the characters are:
     !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]^_`abcdefghijklmnopqrstuvwxyz{|}~

References[edit]

  1. ^ ANSI (1975-12-01). ISO-IR-6: ASCII Graphic character set (PDF). ITSCJ/IPSJ. Archived from the original (PDF) on 2022-03-10.
  2. ^ a b «Character Sets». Internet Assigned Numbers Authority (IANA). 2007-05-14. Retrieved 2019-08-25.
  3. ^ a b c d e f g h i j k l m n o p q r s Mackenzie, Charles E. (1980). Coded Character Sets, History and Development (PDF). The Systems Programming Series (1 ed.). Addison-Wesley Publishing Company, Inc. pp. 6, 66, 211, 215, 217, 220, 223, 228, 236–238, 243–245, 247–253, 423, 425–428, 435–439. ISBN 978-0-201-14460-4. LCCN 77-90165. Archived (PDF) from the original on May 26, 2016. Retrieved August 25, 2019.
  4. ^ a b Brandel, Mary (1999-07-06). «1963: The Debut of ASCII». CNN. Archived from the original on 2013-06-17. Retrieved 2008-04-14.
  5. ^ a b c d «American Standard Code for Information Interchange, ASA X3.4-1963». American Standards Association (ASA). 1963-06-17. Retrieved 2020-06-06.
  6. ^ a b c USA Standard Code for Information Interchange, USAS X3.4-1967 (Technical report). United States of America Standards Institute (USASI). 1967-07-07.
  7. ^ Jennings, Thomas Daniel (2016-04-20) [1999]. «An annotated history of some character codes or ASCII: American Standard Code for Information Infiltration». Sensitive Research (SR-IX). Retrieved 2020-03-08.
  8. ^ a b c d American National Standard for Information Systems — Coded Character Sets — 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII), ANSI X3.4-1986 (Technical report). American National Standards Institute (ANSI). 1986-03-26.
  9. ^ Vint Cerf (1969-10-16). ASCII format for Network Interchange. IETF. doi:10.17487/RFC0020. RFC 20.
  10. ^ Barry Leiba (2015-01-12). «Correct classification of RFC 20 (ASCII format) to Internet Standard». IETF.
  11. ^ Shirley, R. (August 2007). Internet Security Glossary, Version 2. doi:10.17487/RFC4949. RFC 4949. Retrieved 2016-06-13.
  12. ^ Maini, Anil Kumar (2007). Digital Electronics: Principles, Devices and Applications. John Wiley and Sons. p. 28. ISBN 978-0-470-03214-5. In addition, it defines codes for 33 nonprinting, mostly obsolete control characters that affect how the text is processed.
  13. ^ Bukstein, Ed (July 1964). «Binary Computer Codes and ASCII». Electronics World. 72 (1): 28–29. Archived from the original on 2016-03-03. Retrieved 2016-05-22.
  14. ^ a b c d e f Bemer, Robert William (1980). «Chapter 1: Inside ASCII» (PDF). General Purpose Software. Best of Interface Age. Vol. 2. Portland, OR, USA: dilithium Press. pp. 1–50. ISBN 978-0-918398-37-6. LCCN 79-67462. Archived from the original on 2016-08-27. Retrieved 2016-08-27, from:
    • Bemer, Robert William (May 1978). «Inside ASCII – Part I». Interface Age. 3 (5): 96–102.
    • Bemer, Robert William (June 1978). «Inside ASCII – Part II». Interface Age. 3 (6): 64–74.
    • Bemer, Robert William (July 1978). «Inside ASCII – Part III». Interface Age. 3 (7): 80–87.

  15. ^ Brief Report: Meeting of CCITT Working Party on the New Telegraph Alphabet, May 13–15, 1963.
  16. ^ Report of ISO/TC/97/SC 2 – Meeting of October 29–31, 1963.
  17. ^ Report on Task Group X3.2.4, June 11, 1963, Pentagon Building, Washington, DC.
  18. ^ Report of Meeting No. 8, Task Group X3.2.4, December 17 and 18, 1963
  19. ^ a b c Winter, Dik T. (2010) [2003]. «US and International standards: ASCII». Archived from the original on 2010-01-16.
  20. ^ a b c d e f g Salste, Tuomas (January 2016). «7-bit character sets: Revisions of ASCII». Aivosto Oy. urn:nbn:fi-fe201201011004. Archived from the original on 2016-06-13. Retrieved 2016-06-13.
  21. ^ «Information». Scientific American (special edition). 215 (3). September 1966. JSTOR e24931041.
  22. ^ Korpela, Jukka K. (2014-03-14) [2006-06-07]. Unicode Explained – Internationalize Documents, Programs, and Web Sites (2nd release of 1st ed.). O’Reilly Media, Inc. p. 118. ISBN 978-0-596-10121-3.
  23. ^ ANSI INCITS 4-1986 (R2007): American National Standard for Information Systems – Coded Character Sets – 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII), 2007 [1986]
  24. ^ «INCITS 4-1986[R2012]: Information Systems — Coded Character Sets — 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII)». 2012-06-15. Archived from the original on 2020-02-28. Retrieved 2020-02-28.
  25. ^ «INCITS 4-1986[R2017]: Information Systems — Coded Character Sets — 7-Bit American National Standard Code for Information Interchange (7-Bit ASCII)». 2017-11-02 [2017-06-09]. Archived from the original on 2020-02-28. Retrieved 2020-02-28.
  26. ^ Bit Sequencing of the American National Standard Code for Information Interchange in Serial-by-Bit Data Transmission, American National Standards Institute (ANSI), 1966, X3.15-1966
  27. ^ «BruXy: Radio Teletype communication». 2005-10-10. Archived from the original on 2016-04-12. Retrieved 2016-05-09. The transmitted code use International Telegraph Alphabet No. 2 (ITA-2) which was introduced by CCITT in 1924.
  28. ^ a b Smith, Gil (2001). «Teletype Communication Codes» (PDF). Baudot.net. Archived (PDF) from the original on 2008-08-20. Retrieved 2008-07-11.
  29. ^ Sawyer, Stanley A.; Krantz, Steven George (1995). A TeX Primer for Scientists. CRC Press. p. 13. Bibcode:1995tps..book…..S. ISBN 978-0-8493-7159-2. Archived from the original on 2016-12-22. Retrieved 2016-10-29.
  30. ^ Savard, John J. G. «Computer Keyboards». Archived from the original on 2014-09-24. Retrieved 2014-08-24.
  31. ^ «ASCIIbetical definition». PC Magazine. Archived from the original on 2013-03-09. Retrieved 2008-04-14.
  32. ^ Resnick, P. (April 2001). Resnick, P (ed.). Internet Message Format. doi:10.17487/RFC2822. RFC 2822. Retrieved 2016-06-13. (NB. NO-WS-CTL.)
  33. ^ McConnell, Robert; Haynes, James; Warren, Richard. «Understanding ASCII Codes». Archived from the original on 2014-02-27. Retrieved 2014-05-11.
  34. ^ Barry Margolin (2014-05-29). «Re: editor and word processor history (was: Re: RTF for emacs)». help-gnu-emacs (Mailing list). Archived from the original on 2014-07-14. Retrieved 2014-07-11.
  35. ^ a b «PDP-6 Multiprogramming System Manual» (PDF). Digital Equipment Corporation (DEC). 1965. p. 43. Archived (PDF) from the original on 2014-07-14. Retrieved 2014-07-10.
  36. ^ a b «PDP-10 Reference Handbook, Book 3, Communicating with the Monitor» (PDF). Digital Equipment Corporation (DEC). 1969. p. 5-5. Archived (PDF) from the original on 2011-11-15. Retrieved 2014-07-10.
  37. ^ «Help — GNU Emacs Manual». Archived from the original on 2018-07-11. Retrieved 2018-07-11.
  38. ^ Tim Paterson (2007-08-08). «Is DOS a Rip-Off of CP/M?». DosMan Drivel. Archived from the original on 2018-04-20. Retrieved 2018-04-19.
  39. ^ Ossanna, J. F.; Saltzer, J. H. (November 17–19, 1970). «Technical and human engineering problems in connecting terminals to a time-sharing system» (PDF). Proceedings of the November 17–19, 1970, Fall Joint Computer Conference (FJCC). AFIPS Press. pp. 355–362. Archived (PDF) from the original on 2012-08-19. Retrieved 2013-01-29. Using a «new-line» function (combined carriage-return and line-feed) is simpler for both man and machine than requiring both functions for starting a new line; the American National Standard X3.4-1968 permits the line-feed code to carry the new-line meaning.
  40. ^ O’Sullivan, T. (1971-05-19). TELNET Protocol. Internet Engineering Task Force (IETF). pp. 4–5. doi:10.17487/RFC0158. RFC 158. Retrieved 2013-01-28.
  41. ^ Neigus, Nancy J. (1973-08-12). File Transfer Protocol. Internet Engineering Task Force (IETF). doi:10.17487/RFC0542. RFC 542. Retrieved 2013-01-28.
  42. ^ Postel, Jon (June 1980). File Transfer Protocol. Internet Engineering Task Force (IETF). doi:10.17487/RFC0765. RFC 765. Retrieved 2013-01-28.
  43. ^ «EOL translation plan for Mercurial». Mercurial. Archived from the original on 2016-06-16. Retrieved 2017-06-24.
  44. ^ Bernstein, Daniel J. «Bare LFs in SMTP». Archived from the original on 2011-10-29. Retrieved 2013-01-28.
  45. ^ CP/M 1.4 Interface Guide (PDF). Digital Research. 1978. p. 10. Archived (PDF) from the original on 2019-05-29. Retrieved 2017-10-07.
  46. ^ Cerf, Vinton Gray (1969-10-16). ASCII format for Network Interchange. Network Working Group. doi:10.17487/RFC0020. RFC 20. Retrieved 2016-06-13. (NB. Almost identical wording to USAS X3.4-1968 except for the intro.)
  47. ^ Haynes, Jim (2015-01-13). «First-Hand: Chad is Our Most Important Product: An Engineer’s Memory of Teletype Corporation». Engineering and Technology History Wiki (ETHW). Retrieved 2023-02-14. There was the change from 1961 ASCII to 1968 ASCII. Some computer languages used characters in 1961 ASCII such as up arrow and left arrow. These characters disappeared from 1968 ASCII. We worked with Fred Mocking, who by now was in Sales at Teletype, on a type cylinder that would compromise the changing characters so that the meanings of 1961 ASCII were not totally lost. The underscore character was made rather wedge-shaped so it could also serve as a left arrow.
  48. ^ Bemer, Robert William. «Bemer meets Europe (Computer Standards) – Computer History Vignettes». Trailing-edge.com. Archived from the original on 2013-10-17. Retrieved 2008-04-14. (NB. Bemer was employed at IBM at that time.)
  49. ^ «Robert William Bemer: Biography». 2013-03-09. Archived from the original on 2016-06-16.
  50. ^ Johnson, Lyndon Baines (1968-03-11). «Memorandum Approving the Adoption by the Federal Government of a Standard Code for Information Interchange». The American Presidency Project. Archived from the original on 2007-09-14. Retrieved 2008-04-14.
  51. ^ Richard S. Shuford (1996-12-20). «Re: Early history of ASCII?». Newsgroup: alt.folklore.computers. Usenet: Pine.SUN.3.91.961220100220.13180C-100000@duncan.cs.utk.edu.
  52. ^ Folts, Harold C.; Karp, Harry, eds. (1982-02-01). Compilation of Data Communications Standards (2nd revised ed.). McGraw-Hill Inc. ISBN 978-0-07-021457-6.
  53. ^ Dubost, Karl (2008-05-06). «UTF-8 Growth on the Web». W3C Blog. World Wide Web Consortium. Archived from the original on 2016-06-16. Retrieved 2010-08-15.
  54. ^ a b Davis, Mark (2008-05-05). «Moving to Unicode 5.1». Official Google Blog. Archived from the original on 2016-06-16. Retrieved 2010-08-15.
  55. ^ Davis, Mark (2010-01-28). «Unicode nearing 50% of the web». Official Google Blog. Archived from the original on 2016-06-16. Retrieved 2010-08-15.
  56. ^ «Specific Criteria», attachment to memo from R. W. Reach, «X3-2 Meeting – September 14 and 15», September 18, 1961
  57. ^ Maréchal, R. (1967-12-22), ISO/TC 97 – Computers and Information Processing: Acceptance of Draft ISO Recommendation No. 1052
  58. ^ «DVB-TXT (Teletext) Specification for conveying ITU-R System B Teletext in DVB bitstreams».
  59. ^ The Unicode Consortium (2006-10-27). «Chapter 13: Special Areas and Format Characters» (PDF). In Allen, Julie D. (ed.). The Unicode standard, Version 5.0. Upper Saddle River, New Jersey, US: Addison-Wesley Professional. p. 314. ISBN 978-0-321-48091-0. Archived (PDF) from the original on 2022-10-09. Retrieved 2015-03-13.
  60. ^ «utf-8(7) – Linux manual page». Man7.org. 2014-02-26. Archived from the original on 2014-04-22. Retrieved 2014-04-21.

Further reading[edit]

  • Bemer, Robert William (1960). «A Proposal for Character Code Compatibility». Communications of the ACM. 3 (2): 71–72. doi:10.1145/366959.366961. S2CID 9591147.
  • Bemer, Robert William (2003-05-23). «The Babel of Codes Prior to ASCII: The 1960 Survey of Coded Character Sets: The Reasons for ASCII». Archived from the original on 2013-10-17. Retrieved 2016-05-09, from:
    • Bemer, Robert William (December 1960). «Survey of coded character representation». Communications of the ACM. 3 (12): 639–641. doi:10.1145/367487.367493. S2CID 21403172.
    • Smith, H. J.; Williams, F. A. (December 1960). «Survey of punched card codes». Communications of the ACM. 3 (12): 642. doi:10.1145/367487.367491.
  • «American National Standard Code for Information Interchange | ANSI X3.4-1977» (PDF). National Institute for Standards. 1977. Archived (PDF) from the original on 2022-10-09. (facsimile, not machine readable)
  • Robinson, G. S.; Cargill, C. (1996). «History and impact of computer standards». Computer. Vol. 29, no. 10. pp. 79–85. doi:10.1109/2.539725.
  • Mullendore, Ralph Elvin (1964) [1963]. Ptak, John F. (ed.). «On the Early Development of ASCII – The History of ASCII». JF Ptak Science Books (published March 2012). Archived from the original on 2016-05-26. Retrieved 2016-05-26.

External links[edit]

Wikimedia Commons has media related to ASCII.

  • «C0 Controls and Basic Latin – Range: 0000–007F» (PDF). The Unicode Standard 8.0. Unicode, Inc. 2015 [1991]. Archived (PDF) from the original on 2016-05-26. Retrieved 2016-05-26.
  • Fischer, Eric. «The Evolution of Character Codes, 1874–1968». CiteSeerX 10.1.1.96.678. [1]

На чтение 9 мин Просмотров 2.1к. Опубликовано 07.05.2019

Содержание

  1. Определение
  2. Какими бывают
  3. Где искать в Windows
  4. В MS Word
  5. Способы обработки кода
  6. В этой статье
  7. Вставка символа ASCII или Юникода в документ
  8. Вставка символов ASCII
  9. Вставка символов Юникода
  10. Использование таблицы символов
  11. Word. Библиотека значков или как вставить забавный рисунок в текст документа

Таблица кодов символов в современных компьютерах может быть использована любым юзером. Что это такое? И где найти подобный элемент? Как им пользоваться и для каких целей? Далее постараемся дать ответы на все перечисленные вопросы. Обычно таблицы символов позволяют печатать уникальные знаки в текстовых документов. Главное — знать, какими они бывают, а также где искать соответствующую информацию. Все намного проще, чем кажется.

Определение

Что такое таблица кодов символов? Это, как нетрудно догадаться, база данных. В ней пользователи могут увидеть сочетание числовых значений, при обработке которых в указанное место текста вставляется символ. Например, знак ♥ или ♫. На клавиатуре таких символов нет и быть не может.

Таблица символов помогает пользователям вставлять уникальные знаки в текстовые документы. Здесь можно увидеть кодировку элемента и способ его интерпретации.

Какими бывают

Кодировки символов — тип сочетания букв, цифр и знаков, которые после обработки операционной системой преобразовываются в знак. Они бывают разными.

Сегодня можно столкнуться с такими кодировками:

  1. ASCII — способ печати специальных знаков, уникальные коды которых представлены цифрами. Это самый распространенный тип кодировки. Он был разработан в 1963 году в США. Кодировка является семибитной.
  2. Windows-1251 — стандартная кодировка для русскоязычной «Виндовс». Она не слишком обширна и почти не пользуется спросом у юзеров.
  3. Unicode — 16-битная кодировка для современных операционных систем. Она служит для представления символов и букв на любом языке. Используется современными пользователями наравне с ASCII.

Теперь понятно, какими бывают кодировки. Заострим внимание на первом и последнем варианте. Они пользуются самым большим спросом у современных пользователей ПК.

Где искать в Windows

Таблицы кодов символов по умолчанию вмонтированы в операционную систему «Виндовс». С их помощью юзер сможет печатать буквы и специальные знаки в любом текстовом редакторе или документе.

Для того, чтобы найти таблицу символов в «Виндовс», нужно:

  1. Открыть пункт меню «Пуск».
  2. Развернуть раздел «Все программы».
  3. Выбрать папку «Стандартные»
  4. Кликнуть по надписи «Служебные».
  5. Заглянуть в приложение «Таблица символов».

Дело сделано. Теперь можно изучить все возможные знаки, которые только могут восприниматься операционной системой. Если дважды кликнуть по миниатюре того или иного символа, а затем щелкнуть по кнопке «Скопировать», соответствующий знак будет перенесен в буфер обмена. Из него можно выгрузить данные в текстовый документ.

Важно: в нижней части окна справа можно увидеть сочетание клавиш для быстрой печати выбранного элемента, а слева — «Юникод» для набора в тексте.

В MS Word

Таблицу кодов символов можно найти даже в текстовых редакторах. Рассмотрим алгоритм действий в MS Word. Это наиболее популярная и распространенная утилита для работы с документами в «Виндовс».

Открытие таблицы кодов символов осуществляется так:

  1. Зайти в Word на компьютере. Можно открыть как пустой документ, так и с текстом.
  2. Нажать в верхней части она по пункту «Вставка». Желательно развернуть весь список опций.
  3. Навести курсор и щелкнуть ЛКМ по надписи «Специальный знак. «.

Вот и все. По центру экрана появится таблица символов. Здесь можно посмотреть таблицу ASCII, «Юникода» и не только. Для этого в нижней части окна в выпадающем списке нужно выбрать после надписи «из. » подходящую кодировку.

Вставка знака может осуществляться через двойной клик по элементу в таблице или путем активации кнопки «Вставить».

Способы обработки кода

Как мы уже говорили, таблица кодов символов помогает изучить цифро-алфавитный код того или иного символа. Как можно провести преобразование оных?

Как правило, «Юникод» обрабатывается следующим образом:

  1. Пользователь пишет уникальный код подходящего символа. Обычно он начинается с U+.
  2. Юзер нажимает сочетание клавиш Alt + X в текстовом редакторе.
  3. Операционная система считывает код, после чего на месте записи появляется специальный знак.

Коды обрабатываются по одному. Это крайне важно. ASCII обрабатываются аналогичным образом.

Некоторые символы можно напечатать при помощи кнопки Alt. Обычно ее нужно зажать, а затем на цифирной панели клавиатуры набрать подходящий код. В этом случае придется заранее активировать режим Num Lock.

Примечание: Мы стараемся как можно оперативнее обеспечивать вас актуальными справочными материалами на вашем языке. Эта страница переведена автоматически, поэтому ее текст может содержать неточности и грамматические ошибки. Для нас важно, чтобы эта статья была вам полезна. Просим вас уделить пару секунд и сообщить, помогла ли она вам, с помощью кнопок внизу страницы. Для удобства также приводим ссылку на оригинал (на английском языке).

С помощью кодировок символов ASCII и Юникода можно хранить данные на компьютере и обмениваться ими с другими компьютерами и программами. Ниже перечислены часто используемые латинские символы ASCII и Юникода. Наборы символов Юникода, отличные от латинских, можно посмотреть в соответствующих таблицах, упорядоченных по наборам.

В этой статье

Вставка символа ASCII или Юникода в документ

Если вам нужно ввести только несколько специальных знаков или символов, можно использовать таблицу символов или сочетания клавиш. Список символов ASCII см. в следующих таблицах или статье Вставка букв национальных алфавитов с помощью сочетаний клавиш.

В многих языках есть символы, которые не удалось уместить в расширенный набор ACSII (256 символов). Поэтому существуют вариации наборов ASCII и Юникода с региональными знаками и символами (см. таблицы символов Юникода, упорядоченные по наборам).

Если у вас возникают проблемы с вводом кода необходимого символа, попробуйте использовать таблицу символов.

Вставка символов ASCII

Чтобы вставить символ ASCII, нажмите и удерживайте клавишу ALT, вводя код символа. Например, чтобы вставить символ градуса (º), нажмите и удерживайте клавишу ALT, затем введите 0176 на цифровой клавиатуре.

Для ввода чисел используйте цифровую клавиатуру, а не цифры на основной клавиатуре. Если на цифровой клавиатуре необходимо ввести цифры, убедитесь, что включен индикатор NUM LOCK.

Вставка символов Юникода

Чтобы вставить символ Юникода, введите код символа, затем последовательно нажмите клавиши ALT и X. Например, чтобы вставить символ доллара ($), введите 0024 и последовательно нажмите клавиши ALT и X. Все коды символов Юникода см. в таблицах символов Юникода, упорядоченных по наборам.

Важно: Некоторые программы Microsoft Office, например PowerPoint и InfoPath, не поддерживают преобразование кодов Юникода в символы. Если вам необходимо вставить символ Юникода в одной из таких программ, используйте таблицу символов.

Если после нажатия клавиш ALT+X отображается неправильный символ Юникода, выберите правильный код, а затем снова нажмите ALT+X.

Кроме того, перед кодом следует ввести «U+». Например, если ввести «1U+B5» и нажать клавиши ALT+X, отобразится текст «1µ», а если ввести «1B5» и нажать клавиши ALT+X, отобразится символ «Ƶ».

Использование таблицы символов

Таблица символов — это программа, встроенная в Microsoft Windows, которая позволяет просматривать символы, доступные для выбранного шрифта.

С помощью таблицы символов можно копировать отдельные символы или группу символов в буфер обмена и вставлять их в любую программу, поддерживающую отображение этих символов. Открытие таблицы символов

В Windows 10 Введите слово «символ» в поле поиска на панели задач и выберите таблицу символов в результатах поиска.

В Windows 8 Введите слово «символ» на начальном экране и выберите таблицу символов в результатах поиска.

В Windows 7 нажмите кнопку Пуск, последовательно выберите Все программы, Стандартные, Служебные и щелкните Таблица символов.

Символы группируются по шрифту. Щелкните список шрифтов, чтобы выбрать подходящий набор символов. Чтобы выбрать символ, щелкните его, затем нажмите кнопку Выбрать. Чтобы вставить символ, щелкните правой кнопкой мыши нужное место в документе и выберите Вставить.

Office 365, AD, Active Directory, Sharepoint, C#, Powershell. Технические статьи и заметки.

Word. Библиотека значков или как вставить забавный рисунок в текст документа

Дано: Word 2016 (обновляемый по подписке Office 365).
Задача: добавить на страницу рисунок (значок) из готовой коллекции рисунков.

Не так давно в Word появилась бесплатная коллекция значков, которые можно вставить в документ.
Значков более 500 штук по разным тематикам.
Для деловых документов, можно использовать бизнес-значки, значки с людьми, с техникой (компьютеры, принтеры), значки связи и аналитики и т.п.
Для оформления праздничных поздравлений есть также специальные значки.
Имеются медицинские и спортивные значки.

Как вставить значок в документ:
1) Щелкаем в нужное место в документе
2) Затем на ленте вкладка «Вставка»
3) Группа значков «Иллюстрации»
4) Кнопка «Значки»

Далее стиль значка можно менять: изменить цвет, размер, сделать его контурным, перевернуть и так далее. Для этого:
1) Щелкаем на рисунке
2) На ленте вкладка «Формат»
3) Группа кнопок «Стили рисунка»
4) Выбираем нужный стиль

Но помните, что вставить за раз можно не более 50 штук. Чтобы вставить больше, нужно сначала выделить 50 и вставить, затем снова открыть окно вставки значков, снова выделить нужное количество и вставить, и так повторить столько раз, сколько требуется значков.

Далее привожу примеры имеющихся значков.

  • Значки «Люди»
  • Значки на тему «Техника и электроника»
  • Значки на тему «Связь»
  • Значки на тему «Бизнес»
  • Значки на тему «Аналитика»
  • Значки на тему «Коммерция»
  • Значки на тему «Образование»
  • Значки на тему «Искусство»
  • Значки на тему «Праздник»
  • Значки «Лица» (смайлы)
  • Значки на тему «Знаки и символы» (любовь, руки, предупреждения)
  • Значки «Стрелки»
  • Значки на тему «Интерфейс»
  • Значки на тему «Природа» (отдых, путешествия)
  • Значки на тему «Животные» (дикие, домашние)
  • Значки на тему «Еда и напитки»
  • Значки на тему «Погода» (времена года)
  • Значки на тему «Местоположение» (карты, указатели)
  • Значки на тему «Транспорт»
  • Значки на тему «Здания» (дома)
  • Значки на тему «Спорт» (спортивный инвентарь)
  • Значки на тему «Безопасность и правосудие» (юридические)
  • Значки на тему «Медицина»
  • Значки на тему «Инструменты, строительство»
  • Значки на тему «Дом» (мебель, вещи)
  • Значки на тему «Одежда»

While a Program, as we all know, is, A set of instructions that specify the operations, operands, and the sequence by which processing has to occur. An instruction code is a group of bits that tells the computer to perform a specific operation part.

Instruction Code: Operation Code

The operation code of an instruction is a group of bits that define operations such as add, subtract, multiply, shift and compliment. The number of bits required for the operation code depends upon the total number of operations available on the computer. The operation code must consist of at least n bits for a given 2^n operations. The operation part of an instruction code specifies the operation to be performed.


Instruction Code: Register Part

The operation must be performed on the data stored in registers. An instruction code therefore specifies not only operations to be performed but also the registers where the operands(data) will be found as well as the registers where the result has to be stored.


Stored Program Organisation

The simplest way to organize a computer is to have Processor Register and instruction code with two parts. The first part specifies the operation to be performed and second specifies an address. The memory address tells where the operand in memory will be found.

Instructions are stored in one section of memory and data in another.

Instruction Codes

Computers with a single processor register is known as Accumulator (AC). The operation is performed with the memory operand and the content of AC.


Common Bus System

The basic computer has 8 registers, a memory unit and a control unit. Paths must be provided to transfer data from one register to another. An efficient method for transferring data in a system is to use a Common Bus System. The output of registers and memory are connected to the common bus.


Load(LD)

The lines from the common bus are connected to the inputs of each register and data inputs of memory. The particular register whose LD input is enabled receives the data from the bus during the next clock pulse transition.

Before studying about instruction formats lets first study about the operand address parts.

When the 2nd part of an instruction code specifies the operand, the instruction is said to have immediate operand. And when the 2nd part of the instruction code specifies the address of an operand, the instruction is said to have a direct address. And in indirect address, the 2nd part of instruction code, specifies the address of a memory word in which the address of the operand is found.


Computer Instructions

The basic computer has three instruction code formats. The Operation code (opcode) part of the instruction contains 3 bits and remaining 13 bits depends upon the operation code encountered.

There are three types of formats:

1. Memory Reference Instruction

It uses 12 bits to specify the address and 1 bit to specify the addressing mode (I). I is equal to 0 for direct address and 1 for indirect address.

2. Register Reference Instruction

These instructions are recognized by the opcode 111 with a 0 in the left most bit of instruction. The other 12 bits specify the operation to be executed.

3. Input-Output Instruction

These instructions are recognized by the operation code 111 with a 1 in the left most bit of instruction. The remaining 12 bits are used to specify the input-output operation.


Format of Instruction

The format of an instruction is depicted in a rectangular box symbolizing the bits of an instruction. Basic fields of an instruction format are given below:

  1. An operation code field that specifies the operation to be performed.
  2. An address field that designates the memory address or register.
  3. A mode field that specifies the way the operand of effective address is determined.

Computers may have instructions of different lengths containing varying number of addresses. The number of address field in the instruction format depends upon the internal organization of its registers.



Want to learn coding and don’t know where to start?

Try out our

Interactive Courses

for Free 🥳 😯 🤩

learn to code footer Ad

Понравилась статья? Поделить с друзьями:
  • Word codes for numbers
  • Word codes for alphabet
  • Word code for return
  • Word code for enter
  • Word coat of arms