Word cloud example in к

[This article was first published on One R Tip A Day, and kindly contributed to R-bloggers]. (You can report issue about the content on this page here)


Want to share your content on R-bloggers? click here if you have a blog, or here if you don’t.

A word cloud (or tag cloud) can be an handy tool when you need to highlight the most commonly cited words in a text using a quick visualization. Of course, you can use one of the several on-line services, such as wordle or tagxedo , very feature rich and with a nice GUI. Being an R enthusiast, I always wanted to produce this kind of images within R and now, thanks to the recently released Ian Fellows’ wordcloud package, finally I can!
In order to test the package I retrieved the titles of the XKCD web comics included in my RXKCD package and produced a word cloud based on the titles’ word frequencies calculated using the powerful tm package for text mining (I know, it is like killing a fly with a bazooka!).

library(RXKCD)
library(tm)
library(wordcloud)
library(RColorBrewer)
path <- system.file("xkcd", package = "RXKCD")
datafiles <- list.files(path)
xkcd.df <- read.csv(file.path(path, datafiles))
xkcd.corpus <- Corpus(DataframeSource(data.frame(xkcd.df[, 3])))
xkcd.corpus <- tm_map(xkcd.corpus, removePunctuation)
xkcd.corpus <- tm_map(xkcd.corpus, tolower)
xkcd.corpus <- tm_map(xkcd.corpus, function(x) removeWords(x, stopwords("english")))
tdm <- TermDocumentMatrix(xkcd.corpus)
m <- as.matrix(tdm)
v <- sort(rowSums(m),decreasing=TRUE)
d <- data.frame(word = names(v),freq=v)
pal <- brewer.pal(9, "BuGn")
pal <- pal[-(1:2)]
png("wordcloud.png", width=1280,height=800)
wordcloud(d$word,d$freq, scale=c(8,.3),min.freq=2,max.words=100, random.order=T, rot.per=.15, colors=pal, vfont=c("sans serif","plain"))
dev.off()

As a second example,  inspired by this post from the eKonometrics blog, I created a word cloud from the description of  3177 available R packages listed at http://cran.r-project.org/web/packages.

require(XML)
require(tm)
require(wordcloud)
require(RColorBrewer)
u = "http://cran.r-project.org/web/packages/available_packages_by_date.html"
t = readHTMLTable(u)[[1]]
ap.corpus <- Corpus(DataframeSource(data.frame(as.character(t[,3]))))
ap.corpus <- tm_map(ap.corpus, removePunctuation)
ap.corpus <- tm_map(ap.corpus, tolower)
ap.corpus <- tm_map(ap.corpus, function(x) removeWords(x, stopwords("english")))
ap.tdm <- TermDocumentMatrix(ap.corpus)
ap.m <- as.matrix(ap.tdm)
ap.v <- sort(rowSums(ap.m),decreasing=TRUE)
ap.d <- data.frame(word = names(ap.v),freq=ap.v)
table(ap.d$freq)
pal2 <- brewer.pal(8,"Dark2")
png("wordcloud_packages.png", width=1280,height=800)
wordcloud(ap.d$word,ap.d$freq, scale=c(8,.2),min.freq=3,
max.words=Inf, random.order=FALSE, rot.per=.15, colors=pal2)
dev.off()

As a third example, thanks to Jim’s comment, I take advantage of Duncan Temple Lang’s RNYTimes package to access user-generate content on the NY Times and produce a wordcloud of ‘today’ comments on articles.
Caveat: in order to use the RNYTimes package you need a API key from The New York Times which you can get by registering to the The New York Times Developer Network (free of charge) from here.

require(XML)
require(tm)
require(wordcloud)
require(RColorBrewer)
install.packages(packageName, repos = "http://www.omegahat.org/R", type = "source")
require(RNYTimes)
my.key <- "your API key here"
what= paste("by-date", format(Sys.time(), "%Y-%m-%d"),sep="/")
# what="recent"
recent.news <- community(what=what, key=my.key)
pagetree <- htmlTreeParse(recent.news, error=function(...){}, useInternalNodes = TRUE)
x <- xpathSApply(pagetree, "//*/body", xmlValue)
# do some clean up with regular expressions
x <- unlist(strsplit(x, "n"))
x <- gsub("t","",x)
x <- sub("^[[:space:]]*(.*?)[[:space:]]*$", "\1", x, perl=TRUE)
x <- x[!(x %in% c("", "|"))]
ap.corpus <- Corpus(DataframeSource(data.frame(as.character(x))))
ap.corpus <- tm_map(ap.corpus, removePunctuation)
ap.corpus <- tm_map(ap.corpus, tolower)
ap.corpus <- tm_map(ap.corpus, function(x) removeWords(x, stopwords("english")))
ap.tdm <- TermDocumentMatrix(ap.corpus)
ap.m <- as.matrix(ap.tdm)
ap.v <- sort(rowSums(ap.m),decreasing=TRUE)
ap.d <- data.frame(word = names(ap.v),freq=ap.v)
table(ap.d$freq)
pal2 <- brewer.pal(8,"Dark2")
png("wordcloud_NewYorkTimes_Community.png", width=1280,height=800)
wordcloud(ap.d$word,ap.d$freq, scale=c(8,.2),min.freq=2,
max.words=Inf, random.order=FALSE, rot.per=.15, colors=pal2)
dev.off()

Improve Article

Save Article

Like Article

  • Read
  • Discuss
  • Improve Article

    Save Article

    Like Article

    Word Cloud is a data visualization technique used for representing text data in which the size of each word indicates its frequency or importance. Significant textual data points can be highlighted using a word cloud. Word clouds are widely used for analyzing data from social network websites.
     

    Why Word Cloud?

    The reasons one should use word clouds to present the text data are:
     

    • Word clouds add simplicity and clarity. The most used keywords stand out better in a word cloud
    • Word clouds are a potent communication tool. They are easy to understand, to be shared, and are impactful.
    • Word clouds are visually engaging than a table data.

    Implementation in R

    Here are steps to create a word cloud in R Programming.
     

    Step 1: Create a Text File

    Copy and paste the text in a plain text file (e.g:file.txt) and save the file.

    Step 2: Install and Load the Required Packages

    Python3

    install.packages("tm")          

    install.packages("SnowballC")   

    install.packages("wordcloud")   

    install.packages("RColorBrewer")

    library("tm")

    library("SnowballC")

    library("wordcloud")

    library("RColorBrewer")

    Step 3: Text Mining

    • Load the Text: 
      The text is loaded using Corpus() function from text mining(tm) package. Corpus is a list of a document. 
      1. Start by importing text file created in step 1: 
        To import the file saved locally in your computer, type the following R code. You will be asked to choose the text file interactively.

        Python3

        text = readLines(file.choose())

      2.  Load the data as a corpus:

        Python3

        docs = Corpus(VectorSource(text))   

      3.  Text transformation: 
        Transformation is performed using tm_map() function to replace, for example, special characters from the text like “@”, “#”, “/”.

        Python3

        toSpace = content_transformer

                     (function (x, pattern)

                      gsub(pattern, " ", x))

        docs1 = tm_map(docs, toSpace, "/")

        docs1 = tm_map(docs, toSpace, "@")

        docs1 = tm_map(docs, toSpace, "#")

    • Cleaning the Text: 
      The tm_map() function is used to remove unnecessary white space, to convert the text to lower case, to remove common stopwords. Numbers can be removed using removeNumbers. 
       

      Python3

      docs1 = tm_map(docs1, 

              content_transformer(tolower))

      docs1 = tm_map(docs1, removeNumbers)

      docs1 = tm_map(docs1, stripWhitespace)

    Step 4: Build a term-document Matrix

    Document matrix is a table containing the frequency of the words. Column names are words and row names are documents. The function TermDocumentMatrix() from text mining package can be used as follows. 
     

    Python3

    dtm = TermDocumentMatrix(docs)

    m = as.matrix(dtm)

    v = sort(rowSums(m), decreasing = TRUE)

    d = data.frame(word = names(v), freq = v)

    head(d, 10)

    Step 5: Generate the Word Cloud

    The importance of words can be illustrated as a word cloud as follows. 
     

    Python3

    wordcloud(words = d$word, 

              freq = d$freq,

              min.freq = 1

              max.words = 200,

              random.order = FALSE, 

              rot.per = 0.35

              colors = brewer.pal(8, "Dark2"))

    The complete code for the word cloud in R is given below.
     

    Python3

    install.packages("tm")          

    install.packages("SnowballC")   

    install.packages("wordcloud")   

    install.packages("RColorBrewer")

    library("tm")

    library("SnowballC")

    library("wordcloud")

    library("RColorBrewer")

    text = readLines(file.choose())

    docs = Corpus(VectorSource(text))   

    toSpace = content_transformer(

                  function (x, pattern)

                  gsub(pattern, " ", x))

    docs1 = tm_map(docs, toSpace, "/")

    docs1 = tm_map(docs, toSpace, "@")

    docs1 = tm_map(docs, toSpace, "#")

    strwrap(docs1)

    docs1 = tm_map(docs1, content_transformer(tolower))

    docs1 = tm_map(docs1, removeNumbers)

    docs1 = tm_map(docs1, stripWhitespace)

    dtm = TermDocumentMatrix(docs)

    m = as.matrix(dtm)

    v = sort(rowSums(m), 

             decreasing = TRUE)

    d = data.frame(word = names(v),

                   freq = v)

    head(d, 10)

    wordcloud(words = d$word, 

              freq = d$freq,

              min.freq = 1

              max.words = 200,

              random.order = FALSE, 

              rot.per = 0.35

              colors = brewer.pal(8, "Dark2"))

    Output: 
     

    output screen

    output screen

    Advantages of Word Clouds

    • Analyzing customer and employee feedback.
    • Identifying new SEO keywords to target.
    • Word clouds are killer visualisation tools. They present text data in a simple and clear format
    • Word clouds are great communication tools. They are incredibly handy for anyone wishing to communicate a basic insight

    Drawbacks of Word Clouds

    • Word Clouds are not perfect for every situation.
    • Data should be optimized for context.
    • Word clouds typically fail to give the actionable insights that needs to improve and grow the business.

    Like Article

    Save Article

    So you’ve heard that Word Cloud is a great way to spark excitement in your presentations, lessons and team meetings. You’re really onto something here…

    Still, knowing this and knowing how to use a live word cloud for free to the best of its abilities are two very different things.

    Below are 101 live word cloud examples that will show you the path to mega engagement at work, school or any event you’re looking to make memorable.

    • How Does a Live Word Cloud Generator Work?
    • 40 Ice Breaker Word Cloud Examples
    • 40 School Word Cloud Examples
    • 21 Pointless Word Cloud Examples
    • Best Practices for Word Clouds

    More Tips with AhaSlides

    • Discover the best collaborative word cloud tools that can earn you total engagement, wherever you need it
    • Check out how to add Word Cloud to Powerpoint Slides by Powerpoint Word Cloud.
    • Make your own word cloud with AhaSlides Live Word Cloud Generator!

    How Does a Live Word Cloud Work?

    A live word cloud is a tool that lets a group of people contribute to a one-word cloud. The more popular a response is, the larger it will appear on the screen. The most popular answer will sit as the largest answer in the middle of the cloud

    a word cloud with words relating to how someone is feeling.
    Judge the mood in the room with a well-timed word cloud! – Word Cloud Examples

    With most live word cloud software, all you have to do is write the question and choose the settings for your cloud. Then, share the unique URL code of the word cloud with your audience, who type it into their phone’s browser.

    After this, they can read your question and input their own word to the cloud 👇

    a GIF of responses to a live word cloud with the question 'how's everyone doing today'?
    A word collage examples – Audience responses being inputted to the this word cloud example.

    40 Ice Breaker Word Cloud Examples

    Need a Word Cloud Sample? Climbers break the ice with pickaxes, facilitators break the ice with word clouds.

    The following word cloud examples and ideas offer different ways for employees and students to connect, catch up remotely, motivate each other and solve teambuilding riddles together.

    10 Hilariously Controversial Questions

    1. What TV series is disgustingly overrated?
    2. What’s your favourite swear word?
    3. What is the worst pizza topping?
    4. What’s the most useless Marvel superhero?
    5. What’s the sexiest accent?
    6. What’s the best cutlery to use for eating rice?
    7. What’s the largest acceptable age gap when dating?
    8. What’s the cleanest pet to own?
    9. What’s the worst singing competition series?
    10. What’s the most annoying emoji?
    A word cloud example for the question 'what's the most annoying emoji'?
    Word cloud for Sentences – An Idea as Word Cloud Examples!

    10 remote team catch-up questions

    1. How are you feeling?
    2. What is your biggest hurdle with working remotely?
    3. What communication channels do you prefer?
    4. What Netflix series have you been watching?
    5. If you weren’t at home, where would you be?
    6. What’s your favourite work-from-home item of clothing?
    7. How many minutes before work starts do you get out of bed?
    8. What’s a must-have item in your remote office (not your laptop)?
    9. How do you relax during lunch?
    10. What have you omitted from your morning routine since going remote?
    A word cloud full of number responses to a question for remote workers.
    Word Cloud Examples

    10 motivating questions for students/employees

    1. Who nailed their work this week?
    2. Who’s been your main motivator this week?
    3. Who made you laugh the most this week?
    4. Who have you spoken with the most outside of work/school?
    5. Who’s got your vote for employee/student of the month?
    6. If you had a super tight deadline, who would you turn to for help?
    7. Who do you think is next in line for my job?
    8. Who’s the best at dealing with difficult customers/problems?
    9. Who’s the best at dealing with tech issues?
    10. Who’s your unsung hero?
    An example of a word cloud for raising motivation between staff.
    Word Cloud Examples

    10 team riddles

    1. What has to be broken before you can use it? Egg
    2. What has branches but no trunk, roots or leaves? Bank
    3. What becomes bigger the more you remove from it? Hole
    4. Where does today come before yesterday? Dictionary
    5. What kind of band never plays music? Rubber
    6. What building has the most stories? Library
    7. If two’s a company, and three’s a crowd, what are four and five? Nine
    8. What begins with an “e” and only contains one letter? Envelope
    9. What five-letter word has one left when two are removed? Stone
    10. What can fill a room but takes up no space? Light (or air)
    A riddle presented in the form of a word cloud example.

    🧊 Want more icebreaker games to play with your team? Check them out!

    40 School Word Cloud Examples

    Whether you’re getting to know a new class or letting your students have their say, these word cloud activities for your classroom can illustrate opinions and ignite discussion whenever it’s needed.

    10 questions to learn about your students

    1. What’s your favourite food?
    2. What’s your favourite genre of movie?
    3. What’s your favourite subject?
    4. What’s your least favourite subject?
    5. What attributes make the perfect teacher?
    6. What software do you use the most in your learning?
    7. Give me 3 words to describe yourself.
    8. What’s your main hobby outside of school?
    9. Where’s your dream field trip?
    10. Which friend do you rely on the most in class?
    Ascertaining students' dream place to go on a field trip.
    Word Cloud Examples – Team Word Cloud

    10 end-of-lesson review questions

    1. What did we learn about today?
    2. What’s the most interesting topic from today?
    3. What topic did you find difficult today?
    4. What would you like to review next lesson?
    5. Give me one of the keywords from this lesson.
    6. How did you find the pace of this lesson?
    7. Which activity did you like the most today?
    8. How much did you enjoy today’s lesson? Give me a number from 1 – 10.
    9. What would you like to learn about the next lesson?
    10. How included did you feel in class today?
    A word cloud used to review a lesson, asking for a keyword from that lesson.
    Is it hard building a word cloud? AhaSlides Word Cloud Sample

    10 virtual learning review questions

    1. How do you find learning online?
    2. What’s the best thing about learning online?
    3. What’s the worst thing about learning online?
    4. In which room is your computer?
    5. Do you like your at-home learning environment?
    6. In your opinion, the perfect online lesson is how many minutes long?
    7. How do you relax in between your online lessons?
    8. What’s your favourite software that we use in online lessons?
    9. How many times do you go outside your house in a day?
    10. How much do you miss sitting with your classmates?
    A question for students, asking them their opinions on software used during online lessons.
    Word Cloud Examples

    10 book club questions

    Note: Questions 77 – 80 are for asking about a specific book in a book club.

    1. What’s your favourite genre of book?
    2. What’s your favourite book or series?
    3. Who’s your favourite author?
    4. Who’s your favourite book character of all time?
    5. Which book would you love to see made into a movie?
    6. Who would be the actor to play your favourite character in a movie?
    7. What word would you use to describe the main villain of this book?
    8. If you were in this book, which character would you be?
    9. Give me a keyword from this book.
    10. What word would you use to describe the main villain of this book?
    a word cloud example question to be used in a book club at school

    21 Pointless Word Cloud Examples

    Explainer: In Pointless, the aim is to get the most obscure correct answer possible. Ask a word cloud question then delete the most popular answers one by one. The winner(s) is whoever submitted a correct answer that no one else submitted 👇

    A GIF of the quiz game pointless played on AhaSlides.

    Give me the name of the most obscure…

    1. … country beginning with ‘B’.
    2. … Harry Potter character.
    3. … manager of the England national football team.
    4. … Roman emperor.
    5. … war in the 20th century.
    6. … album by The Beatles.
    7. … city with a population of over 15 million.
    8. … fruit with 5 letters in it.
    9. … a bird that can’t fly.
    10. … type of nut.
    11. … impressionist painter.
    12. … method for cooking an egg.
    13. … state in America.
    14. … noble gas.
    15. … animal beginning with ‘M’.
    16. … character on Friends.
    17. … English word with 7 syllables or more.
    18. … generation 1 Pokémon.
    19. … Pope in the 21st century.
    20. … member of the English royal family.
    21. … luxury car company.

    Try it Out!

    A screenshot of the AhaSlides live demo mode.

    Put these word cloud examples into action. Try a demo to see how our free interactive word cloud works 👇

    Best Practices for Word Clouds

    If the word cloud examples and ideas above have inspired you to create your own, here are a few quick guidelines to get the most out of your word cloud session.

    • Avoid yes/no – Make sure your questions are open-ended. A word cloud with just ‘yes’ and ‘no’ responses is missing the point of a word cloud (it’s better to use a multiple choice slide for yes / no questions.
    • More word cloud – discover the best collaborative word cloud tools that can earn you total engagement, wherever you need it. Let’s dive in!
    • Keep it short – Phrase your question in a way that encourages just one or two-word responses. Not only do short answers look better in a word cloud, they also lessen the chance that someone will write the same thing in a different way. Learn how to create a word cloud with images to keep it short easily! Or, check out the Powerpoint Word Cloud
    • Ask for opinions, not answers – Unless you’re running something like this live word cloud example, it’s always best to use this tool for gathering opinions, rather than assessing knowledge of a certain topic. If you’re looking to assess knowledge then a live quiz is the way to go!

    Introduction: What is a Word Cloud?

    Word Clouds have become quite a popular way for marketing campaigns. As more and more information is shown to the viewer, these Word Cloud present a modern graphic way to represent an idea or focus around which the whole concept is born. 

    Let us start with simple Word Cloud examples with the topic web 2.0. We can see the main topic in the center (web 2.0) and multiple related topics around that. Here, size and words after the main topic define the importance or relation to the overall topic.

    , How To Create A Word Cloud In R ? – A 5 Step Guide For 2021

    A Word Cloud for terms related to Web 2.0 Source

    A larger font size depicts the higher weight of the particular subject in a given Word Cloud topic. So the topic of Usability, Design, Convergence, Standardization, Economy, and Participation has more influence than Web Standards, Mobility, Data-Driven, CSS, Simplicity, and Microformats. 

    On a general note, these are also known as a tag cloud, or wordle, or a weighted list. Many online platforms use the tag cloud to represent specific items or tags that are found on that website. Suppose a website has hundreds of posts or content on a website. A tag cloud can separate the use of words on these posts to define the number of views on a specific analysis. 

    Word Clouds have three main types as frequency, Significance, and Categorization based on meaning rather than their visual appearances. In this post, we will learn step by step process for how to make a Word Cloud in R language. 

    1. Who is using Word Clouds?
    2. Reason to use Word Clouds to present your text data
    3. Main steps to create Word Cloud in R
    4. Word Cloud examples
    5. When you should use Word Clouds 

    1. Who is using Word Clouds?

    With data analysis gaining focus in almost every industry, these Word Clouds are gaining a lot of importance in getting facts and discovering patterns. Word Clouds are now used across multiple domains as in topics of:

    • Research to conclude qualitative information from large amount and multiple forms of data
    • Social Media Sites to collect and analyze data in discovering potential current trends, separate miscreant or offenders, and upcoming changes in user behaviors.
    • Marketing to uncover present trends, user behavior, and trending products.
    • Education to bring more focus on the essential issues that need more attention.
    • Politicians and Journalists to get more attention from users.

    2. Reason to use Word Clouds to present your text data

    Here are the main reasons to use Word Clouds in presenting text data.

    • Keeps the Focus: Word Cloud represents a sophisticated communication tool for modern viewers to focus on the main factors or reasons rather than going through the whole document.
    • Simple and precise information: A Word Cloud will bring the exact information to the viewers instantly.
    • Highly engaging: Word Clouds are more visually engaging in the viewer’s eye.
    • Enhance user experience: Overall Word Cloud is a great way to improvise user experience.

    3. Main steps to create Word Cloud in R

    Here is your guide for creating the first Word Cloud in R. 

    Step 1: Starting by creating a text file 

    The first step is choosing the topic or selecting the data and creating a text file for easy processing. You can take any speech from a Politician leader or thousands of social media posts. You can use any editor from your system or online to copy-paste the data and create a specific text file for building a Word Cloud.  

    Step 2: Install and loading the WordCloud package in R

    Then open the RStudio. And for generating Word Cloud in R, you must have the WordCloud package in R and RcolorBrewer package for representing colors, respectively. Here are the commands to use these packages in the RStudio:

    #Installalation and loading of packages 
    install.packages(“wordcloud”) 
    library(wordcloud)
    install.packages(“RColorBrewer”)
    library(RColorBrewer)

    Users also have the option to use the WordCloud2 package that offers extra designs and funny applications for developing a more engaging Word Cloud in R. Here is the command for that:

    install.packages(“wordcloud2)
    library(wordcloud2)

    Now data or texts take center stage for the whole analysis. Now you need to load your text data as a corpus. Here tm package can help you in this process.

    install.packages(“tm”)
    library(tm)
    #Command for creating a vector containing only the text
    text <- data$text

    #Command to Create a corpus 
    docs <- Corpus(VectorSource(text))

    And in case you are using Twitter data, then there is a separate rtweet package that can ease your process too.

    Step 3: Text Mining in R: Cleaning the data 

    Once the text is available with Corpus() function via the text mining ™, then cleaning the data is the next stage. Now you must remove the special characters, punctuation, or any numbers from the complete text for separating words. This will help the WordCloud to focus on words only and be more productive in delivering insights precisely.

    There are multiple packages to help you clean data when using the corpus. For the tm package, you can use the following list of commands.

    docs <- docs %>%
    tm_map(removeNumbers) %>%
    tm_map(removePunctuation) %>%
    tm_map(stripWhitespace)
    docs <- tm_map(docs, content_transformer(tolower))
    docs <- tm_map(docs, removeWords, stopwords(“english”))

    Text mining in R can have numerous key points in the process.

    • Removes all the number present in the data or text (removeNumbers argument)
    • Removes all the punctuation marks from the sentences (remove punctuation argument)
    • Strips the text for any white space (stripWhitespace argument)
    • Transforms all the words into lower case (content_transformer(tolower))
    • Removing common stop words such as “we”, “I”, or “the” in the whole document. (removeWords, stopwords )

    And in case you are working with Twitter data. Here is a code for refining data for a sample of tweets to clean your texts.

    gsub(“https\S*”, “”, tweets$text)
    gsub(“@\S*”, “”, tweets$text)
    gsub(“amp”, “”, tweets$text)
    gsub(“[rn]”, “”, tweets$text)
    gsub(“[[:punct:]]”, “”, data$text)

    Here is a complete list of R Codes to help you in the text mining process.

    # Transforming the text to lower case docs <- tm_map(docs, content_transformer(tolower)) 
    # Removing the numbers docs <- tm_map(docs, removeNumbers) 
    # Remove english common stopwords docs <- tm_map(docs, removeWords, stopwords(“english”)) 
    # Remove own stop word for any specific document# specify stopwords as a character vector docs <- tm_map(docs, removeWords, c(“example1”, “example2”)) 
    # Removing punctuations docs <- tm_map(docs, removePunctuation) 
    # Eliminating all the rest of the extra white spaces docs <- tm_map(docs, stripWhitespace) 
    # Text stemming from the document  docs <- tm_map(docs, stemDocument)

    Step 4: Creating a document-term-matrix

    In the next step, we create a document-term-matrix that defines a mathematical matrix with the frequency of words in a given document.

    Once executed, this creates a data frame with two columns, one as a word and the second as their frequency in the document. Here is the code for building a document term matrix for the tm package using the TermDocumentMatrix function.

    dtm <- TermDocumentMatrix(docs)
    matrix <- as.matrix(dtm)
    words <- sort(rowSums(matrix),decreasing=TRUE)
    df <- data.frame(word = names(words),freq=words)

    There is a tidytext package you can use for creating a document term-matrix more specifically for working with tweets.

    tweets_words <-  tweets %>%
    select(text) %>%
    unnest_tokens(word, text)
    words <- tweets_words %>% count(word, sort=TRUE)

    Step 5: Generating the Word Cloud 

    Now you can simply use the wordcloud function to generate a Word Cloud from the text. You can set limits for a number of words, frequency, and more to get a final presentation for the Word Cloud.

    set.seed(1234) # for reproducibility 
    wordcloud(words = df$word, freq = df$freq, min.freq = 1,max.words=100, random.order=FALSE, rot.per=0.35,            colors=brewer.pal(8, “Dark2”))

    , How To Create A Word Cloud In R ? – A 5 Step Guide For 2021

    Here are parameters to help you build a more specific Word Cloud.

    • words: To define words that you want to see in the cloud
    • freq: To define word frequencies
    • min.freq: To define the minimum frequency of words to be listed in the Cloud
    • max.words: To defines the maximum number of words in the cloud (otherwise you might see every word in the graphic)
    • random.order: To represent words in the cloud in random order. (For selecting false you will get them in decreasing order)
    • rot.per: To define the vertical text percentage in the given data
    • colors: To defines a wide variety of choice for colors in representing data
    • Scale: to manage the font size between the smallest and largest words

    You may also find some words that are often cropped or don’t show up in the Word Cloud. You can adjust them as per your preference and get more productive by enhancing the quality of results. Another common mistake that one sees in Word Cloud is the use of many words with little frequency. Here you can use min.freq function to further limit the use of words respectively.

    4. Word Cloud examples

    Here is a collective result for a document term matrix from Martin Luther King’s speech titled ‘I have a dream speech.

                word freqwill         will   17freedom   freedom   13ring         ring   12day           day   11dream       dream   11let           let   11every       every    9able         able    8one           one    8together together    7

    A matrix showing the words and their corresponding frequency in the data And the result for that Word Cloud will be as below:

    , How To Create A Word Cloud In R ? – A 5 Step Guide For 2021

    On analysis, you can visualize that the top words that came in his speech were will, freedom, let, dream, ringday, every, able, one, together, and then decreasing thereafter.

    The WordCloud2 package has more added visualizations and features for users. This package allows you to give custom shapes to the Word Cloud, such as Pentagon or a particular letter ‘L’. Here are your code and visual presentation of UN speeches given by presidents. 

    wordcloud2(data=df, size=1.6, color=’random-dark’)

    , How To Create A Word Cloud In R ? – A 5 Step Guide For 2021

    wordcloud2(data=df, size = 0.7, shape = ‘pentagon’)

    , How To Create A Word Cloud In R ? – A 5 Step Guide For 2021

    5. When you should use Word Clouds 

    Communication: With the right use of Word Clouds, writers can know the focus points of content and build their content around that. Especially for fiction writing, writers can use Word Clouds to know the importance of any particular character, scene, or emotion to collaborate into a final product. 

     Business Insights: Here, Word Clouds can help in discovering customers’ strong or weak points from their feedback analysis to be more close to their emotions. Things such as getting the main topic in Word Cloud as long delays showing an essential weaker point in their procedure can be done easily.

     While for Business to Consumer analysis, Word Clouds can also pinpoint the specific technical information or Jargon in creating a balance of different words in a single piece of content.

    Conclusion 

    In this age of data analysis, Word Cloud presents a unique and engaging way to simplify data into graphical presentations. Today, organizations and businesses around the world are making sure to build more engaging content. This guide is a comprehensive guide to build Word Cloud examples in R from scratch and get more user attention for their data analysis.

    You start by selecting the text file and then learn how to install Wordcloud and other packages. Text mining in R is quite a sophisticated technique to draw Word Cloud and get more user engagement for their platforms. Then create a document-term-matrix and enjoy your first Word Cloud output.

    Though Word Cloud in R has gained a lot of popularity with the prominence of Data analysis and provides an engaging way for qualitative insight, still, Word Cloud can’t be used to represent the whole research or any statistical analysis. While many researchers, online platforms, and marketing professionals enjoy showcasing Word Cloud in their field to get more user focus towards their focus, products, or services.

    If you are interested in making a career in the Data Science domain, our 11-month in-person Postgraduate Certificate Diploma in Data Science course can help you immensely in becoming a successful Data Science professional. 


    This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
    Learn more about bidirectional Unicode characters

    Show hidden characters

    library(wordcloud)
    library(RColorBrewer)
    conventions <- read.table(«conventions.csv«,
    header = TRUE,
    sep = «,«)
    png(«dnc.png«)
    wordcloud(conventions$wordper25k, # words
    conventions$democrats, # frequencies
    scale = c(4,1), # size of largest and smallest words
    colors = brewer.pal(9,«Blues«), # number of colors, palette
    rot.per = 0) # proportion of words to rotate 90 degrees
    dev.off()
    png(«rnc.png«)
    wordcloud(conventions$wordper25k,
    conventions$republicans,
    scale = c(4,1),
    colors = brewer.pal(9,«Reds«),
    rot.per = 0)
    dev.off()
    • R tag cloud generator function : rquery.wordcloud
      • Usage
      • Required R packages
      • Create a word cloud from a plain text file
      • Change the color of the word cloud
      • Operations on the result of rquery.wordcloud() function
        • Frequency table of words
        • Operations on term-document matrix
      • Create a word cloud of a web page
      • R code of rquery.wordcloud function
    • Infos

    As you may know, a word cloud (or tag cloud) is a text mining method to find the most frequently used words in a text. The procedure to generate a word cloud using R software has been described in my previous post available here : Text mining and word cloud fundamentals in R : 5 simple steps you should know.

    The goal of this tutorial is to provide a simple word cloud generator function in R programming language. This function can be used to create a word cloud from different sources including :

    • an R object containing plain text
    • a txt file containing plain text. It works with local and online hosted txt files
    • A URL of a web page

    tag cloud generator, word cloud and text mining, I have a dream speech from Martin luther king

    Creating word clouds requires at least five main text-mining steps (described in my previous post). All theses steps can be performed with one line R code using rquery.wordcloud() function described in the next section.

    R tag cloud generator function : rquery.wordcloud

    The source code of the function is provided at the end of this page.

    Usage

    The format of rquery.wordcloud() function is shown below :

    rquery.wordcloud(x, type=c("text", "url", "file"), 
            lang="english", excludeWords = NULL, 
            textStemming = FALSE,  colorPalette="Dark2",
            max.words=200)

    • x : character string (plain text, web URL, txt file path)
    • type : specify whether x is a plain text, a web page URL or a .txt file path
    • lang : the language of the text. This is important to be specified in order to remove the common stopwords (like ‘the’, ‘we’, ‘is’, ‘are’) from the text before further analysis. Supported languages are danish, dutch, english, finnish, french, german, hungarian, italian, norwegian, portuguese, russian, spanish and swedish.
    • excludeWords : a vector containing your own stopwords to be eliminated from the text. e.g : c(“word1”, “word2”)
    • textStemming : reduces words to their root form. Default value is FALSE. A stemming process reduces the words “moving” and “movement” to the root word, “move”.
    • colorPalette : Possible values are :
      • a name of color palette taken from RColorBrewer package (e.g.: colorPalette = “Dark2”)
      • color name (e.g. : colorPalette = “red”)
      • a color code (e.g. : colorPalette = “#FF1245”)
    • min.freq : words with frequency below min.freq will not be plotted
    • max.words : maximum number of words to be plotted. least frequent terms dropped

    Note that, rquery.wordcloud() function returns a list, containing two objects :
    — tdm : term-document matrix which can be explored as illustrated in the next sections. — freqTable : Frequency table of words

    Required R packages

    The following packages are required for the rquery.wordcloud() function :

    • tm for text mining
    • SnowballC for text stemming
    • wordcloud for generating word cloud images
    • RCurl and XML packages to download and parse web pages
    • RColorBrewer for color palettes

    Install these packages, before using the function rquery.wordcloud, as follow :

    install.packages(c("tm", "SnowballC", "wordcloud", "RColorBrewer", "RCurl", "XML")

    Create a word cloud from a plain text file

    Plain text file can be easily created using your favorite text editor (e.g : Word). “I have a dream speech” (from Martin Luther King) is processed in the following example but you can use any text you want :

    • Copy and paste your text in a plain text file
    • Save the file (e.g : ml.txt)

    Generate the word cloud using the R code below :

    source('http://www.sthda.com/upload/rquery_wordcloud.r')
    filePath <- "http://www.sthda.com/sthda/RDoc/example-files/martin-luther-king-i-have-a-dream-speech.txt"
    res<-rquery.wordcloud(filePath, type ="file", lang = "english")

    text mining, word cloud, tag cloud generator, martin luther king, i have a dream speech

    Change the arguments max.words and min.freq to plot more words :

    • max.words : maximum number of words to be plotted.
    • min.freq : words with frequency below min.freq will not be plotted
    res<-rquery.wordcloud(filePath, type ="file", lang = "english",
                     min.freq = 1,  max.words = 200)

    text mining, word cloud, tag cloud generator, martin luther king, i have a dream speech

    The above image clearly shows that “Will”, “freedom”, “dream”, “day” and “together” are the five most frequent words in Martin Luther KingI have a dream speech”.

    Change the color of the word cloud

    The color of the word cloud can be changed using the argument colorPalette.

    Allowed values for colorPalete :

    • a color name (e.g.: colorPalette = “blue”)
    • a color code (e.g.: colorPalette = “#FF1425”)
    • a name of a color palette taken from RColorBrewer package (e.g.: colorPalette = “Dark2”)

    The color palettes associated to RColorBrewer package are shown below :

    Rcolorbrewer palettes

    Color palette can be changed as follow :

    # Reds color palette
    res<-rquery.wordcloud(filePath, type ="file", lang = "english",
                          colorPalette = "Reds")
    # RdBu color palette
    res<-rquery.wordcloud(filePath, type ="file", lang = "english",
                          colorPalette = "RdBu")
    # use unique color
    res<-rquery.wordcloud(filePath, type ="file", lang = "english",
                          colorPalette = "black")

    text mining, word cloud, tag cloud generator, martin luther king, i have a dream speechtext mining, word cloud, tag cloud generator, martin luther king, i have a dream speechtext mining, word cloud, tag cloud generator, martin luther king, i have a dream speech

    Operations on the result of rquery.wordcloud() function

    As mentioned above, the result of rquery.wordcloud() is a list containing two objects :

    • tdm : term-document matrix
    • freqTable : frequency table
    tdm <- res$tdm
    freqTable <- res$freqTable

    Frequency table of words

    The frequency of the first top10 words can be displayed and plotted as follow :

    # Show the top10 words and their frequency
    head(freqTable, 10)
                 word freq
    will         will   17
    freedom   freedom   13
    ring         ring   12
    day           day   11
    dream       dream   11
    let           let   11
    every       every    9
    able         able    8
    one           one    8
    together together    7
    # Bar plot of the frequency for the top10
    barplot(freqTable[1:10,]$freq, las = 2, 
            names.arg = freqTable[1:10,]$word,
            col ="lightblue", main ="Most frequent words",
            ylab = "Word frequencies")

    text mining, word cloud, tag cloud generator, martin luther king, i have a dream speech

    Operations on term-document matrix

    You can explore the frequent terms and their associations. In the following example, we want to identify words that occur at least four times :

    findFreqTerms(tdm, lowfreq = 4)
     [1] "able"     "day"      "dream"    "every"    "faith"    "free"     "freedom"  "let"      "mountain" "nation"  
    [11] "one"      "ring"     "shall"    "together" "will"    

    You could also analyze the correlation (or association) between frequent terms. The R code below identifies which words are associated with “freedom” in I have a dream speech :

    findAssocs(tdm, terms = "freedom", corlimit = 0.3)
                 freedom
    let             0.89
    ring            0.86
    mississippi     0.34
    mountainside    0.34
    stone           0.34
    every           0.32
    mountain        0.32
    state           0.32

    Create a word cloud of a web page

    In this section we’ll make a tag cloud of the following web page :

    http://www.sthda.com/english/wiki/create-and-format-powerpoint-documents-from-r-software

    url = "http://www.sthda.com/english/wiki/create-and-format-powerpoint-documents-from-r-software"
    rquery.wordcloud(x=url, type="url")

    text mining, word cloud, tag cloud generator

    The above word cloud shows that “powerpoint”, “doc”, “slide”, “reporters” are among the most important words on the analyzed web page. This confirms the fact that the article is about creating PowerPoint document using ReporteRs package in R

    R code of rquery.wordcloud function

    #++++++++++++++++++++++++++++++++++
    # rquery.wordcloud() : Word cloud generator
    # - http://www.sthda.com
    #+++++++++++++++++++++++++++++++++++
    # x : character string (plain text, web url, txt file path)
    # type : specify whether x is a plain text, a web page url or a file path
    # lang : the language of the text
    # excludeWords : a vector of words to exclude from the text
    # textStemming : reduces words to their root form
    # colorPalette : the name of color palette taken from RColorBrewer package, 
      # or a color name, or a color code
    # min.freq : words with frequency below min.freq will not be plotted
    # max.words : Maximum number of words to be plotted. least frequent terms dropped
    # value returned by the function : a list(tdm, freqTable)
    rquery.wordcloud <- function(x, type=c("text", "url", "file"), 
                              lang="english", excludeWords=NULL, 
                              textStemming=FALSE,  colorPalette="Dark2",
                              min.freq=3, max.words=200)
    { 
      library("tm")
      library("SnowballC")
      library("wordcloud")
      library("RColorBrewer") 
      
      if(type[1]=="file") text <- readLines(x)
      else if(type[1]=="url") text <- html_to_text(x)
      else if(type[1]=="text") text <- x
      
      # Load the text as a corpus
      docs <- Corpus(VectorSource(text))
      # Convert the text to lower case
      docs <- tm_map(docs, content_transformer(tolower))
      # Remove numbers
      docs <- tm_map(docs, removeNumbers)
      # Remove stopwords for the language 
      docs <- tm_map(docs, removeWords, stopwords(lang))
      # Remove punctuations
      docs <- tm_map(docs, removePunctuation)
      # Eliminate extra white spaces
      docs <- tm_map(docs, stripWhitespace)
      # Remove your own stopwords
      if(!is.null(excludeWords)) 
        docs <- tm_map(docs, removeWords, excludeWords) 
      # Text stemming
      if(textStemming) docs <- tm_map(docs, stemDocument)
      # Create term-document matrix
      tdm <- TermDocumentMatrix(docs)
      m <- as.matrix(tdm)
      v <- sort(rowSums(m),decreasing=TRUE)
      d <- data.frame(word = names(v),freq=v)
      # check the color palette name 
      if(!colorPalette %in% rownames(brewer.pal.info)) colors = colorPalette
      else colors = brewer.pal(8, colorPalette) 
      # Plot the word cloud
      set.seed(1234)
      wordcloud(d$word,d$freq, min.freq=min.freq, max.words=max.words,
                random.order=FALSE, rot.per=0.35, 
                use.r.layout=FALSE, colors=colors)
      
      invisible(list(tdm=tdm, freqTable = d))
    }
    #++++++++++++++++++++++
    # Helper function
    #++++++++++++++++++++++
    # Download and parse webpage
    html_to_text<-function(url){
      library(RCurl)
      library(XML)
      # download html
      html.doc <- getURL(url)  
      #convert to plain text
      doc = htmlParse(html.doc, asText=TRUE)
     # "//text()" returns all text outside of HTML tags.
     # We also don’t want text such as style and script codes
      text <- xpathSApply(doc, "//text()[not(ancestor::script)][not(ancestor::style)][not(ancestor::noscript)][not(ancestor::form)]", xmlValue)
      # Format text vector into one character string
      return(paste(text, collapse = " "))
    }

    Infos

    This analysis has been performed using R (ver. 3.1.0).

    Enjoyed this article? I’d be very grateful if you’d help it spread by emailing it to a friend, or sharing it on Twitter, Facebook or Linked In.

    Show me some love with the like buttons below… Thank you and please don’t forget to share and comment below!!

    Avez vous aimé cet article? Je vous serais très reconnaissant si vous aidiez à sa diffusion en l’envoyant par courriel à un ami ou en le partageant sur Twitter, Facebook ou Linked In.

    Montrez-moi un peu d’amour avec les like ci-dessous … Merci et n’oubliez pas, s’il vous plaît, de partager et de commenter ci-dessous!

    ×

    Post on:

    Twitter

    Facebook

    Google+


    Or copy & paste this link into an email or IM:

    Время на прочтение
    4 мин

    Количество просмотров 3.4K

    Всем привет! Хочу продемонстрировать вам, как я использовал библиотеку WordCloud для создания подарка для друга/подруги. Я решил составить облако слов по переписке с человеком, чтобы выделить основные темы, которые мы обсуждаем.

    Выгружаем переписку

    Для начала нам нужно будет выгрузить переписку из ВК. Как это сделать? Очень просто! Я пользовался расширением для браузера «VkOpt». Скачиваем его и устанавливаем. Теперь заходим в диалог с человеком, переписку с которым хотим скачать.

    Наводим на три точки и выбираем «сохранить переписку». Далее будет окно с выбором типа файла. Я предпочитаю json.

    Обработка переписки

    Импортируем json и открываем наш файл с перепиской.

    import json
    vk = open('vk2.json', 'r', encoding='utf8')
    vk = json.load(vk)

    Теперь давайте выведем его и посмотрим как он выглядит.

    Ну в общем всё ясно, массив таких вот сообщений. Каждый элемент соответствует одному облако-сообщению.

    Давайте теперь вытащим из каждого сообщения его текст и разделим этот текст на слова.

    mas = []
    for i in range(len(vk)):
        mas.append(vk[i]['body'].split())
        
    data = []
    for i in mas:
        for j in range(len(i)):
            data.append(i[j].lower())
    

    Теперь у нас есть массив data, в котором каждый элемент — это одно слово. Далее создадим большую строку, в которую просто запишем через пробел все наши слова.

    big_string=''
    for i in range(len(data)):
        big_string+=(data[i]+' ')

    WordCloud

    Почти всё готово, теперь давайте воспользуемся библиотекой WordCloud и построим наше облако слов.

    pip install wordcloud
    
    import matplotlib.pyplot as plt
    %matplotlib inline
    
    from wordcloud import WordCloud, STOPWORDS
    wordCloud = WordCloud(width = 10000, height = 10000, random_state=1, background_color='black', colormap='Set2', collocations=False).generate(big_string)
    
    plt.figure(figsize=(5,5))
    plt.imshow(wordCloud)

    Убираем стоп-слова

    Так, и что же это? Не очень похоже на оригинальный подарок. Естественно всё не так просто. Дело в том, что в нашей речи и сообщениях встречается куча стоп-слов. Собственно, эти слова вы и видите на картинке. Они встречались в диалоге чаще всего, поэтому алгоритм выделил их крупным шрифтом.

    Теперь наша задача: почистить строку от ненужный слов. Для этого скачаем словарик стоп-слов русского языка(https://snipp.ru/seo/stop-ru-words). Он представлен как обычный txt-шник, а значит прочитаем его и разделим по переносу строки.

    stop_words = open('stop-ru.txt', 'r', encoding='utf8')
    stop_words = stop_words.read()
    stop_words = stop_words.split('n')

    Далее создадим массив clear_data, куда будем заносить слова из массива data, которые не содержатся в списке стоп-слов(т. е. нормальные слова).

    clear_data=[]
    for i in data:
        if(i not in stop_words):
            clear_data.append(i)

    А теперь формируем нашу большую строку, только теперь из нового массива и заново строим WordCloud.

    big_string=''
    for i in range(len(clear_data)):
        big_string+=(clear_data[i]+' ')
        
    wordCloud = WordCloud(width = 10000, height = 10000, random_state=1, background_color='black', colormap='Set2', collocations=False).generate(big_string)
    plt.figure(figsize=(5,5))
    plt.imshow(wordCloud)

    Результат на лицо. Начинает проявляться оттенок переписки с тем или иным человеком. Ну и, естественно, куда же мы русского могучего, он тоже начинает проявляться на изображении, приходится его замазывать :)

    Переходим на ручное управление

    Так, вроде стоп-слова убрали, но картинка всё равно не выглядит привлекательной. В выборке остались различные выражения, которые мы часто используем в переписке. Например, мои слова паразиты: «ок», «ща», «крч». Что делать? Все просто. Открываем наш текстовик с русскими стоп-слова и просто вписываем туда слова, которые не должны присутствовать в новом облаке слов(не забудьте сохранить текстовик, перед повторным чтением).

    P.S. На самом деле есть и второй вариант удалить слова паразиты. Создадим массив, который заполним словами паразитами, и подадим его как параметр в WordCloud. Тоже хороший вариант, но мне больше нравится с текстовиком.

    stopw = ['а', 'ок', 'крч'] #массив слов, которые хотим удалить
    #подадим массив stopw в WordCloud как параметр stopwords
    wordCloud = WordCloud(width = 1000, height = 1000, random_state=1, 
                          background_color='black', colormap='Set2', 
                          collocations=False, stopwords=stopw).generate(big_string)

    Таким образом, мы всё глубже и глубже погружаемся в чертоги нашей переписки. Обычно появляются слова, соответствующие темам, которые вы и ваш друг часто обсуждаете.

    Форма облака слов

    Теперь давайте воспользуемся одной фишкой WordCloud. Оформим наше облако слов в виде какой-то картинки. Я выберу банальное сердечко)

    from PIL import Image
    original_image = Image.open('путь до картинки')
    image = original_image.resize([2000,2000], Image.ANTIALIAS)
    image = np.array(image)

    Подадим в функцию нашу картинку как параметр mask.

    wordCloud = WordCloud(width = 1000, height = 1000, random_state=1, 
                          background_color='black', colormap='Set2', 
                          collocations=False, stopwords=stopw, mask=image).generate(big_string)

    Вот такая штука у меня получилась.

    По-хорошему, нужно удалить ещё около десятка слов, для более-менее приятной картины, но я уверен ту вы справитесь сами)

    P.S. Выбирайте черно-белые изображения предметов. Лучше всего, если они выглядят как силуэты. С .png у меня не прошло, поэтому я сохранял в .jpg, может быть у вас получится.

    Итог

    Я нарисовал облако слов, которое отражает тональность переписки с тем или иным человеком. Дополнительно, в облаке содержатся слова, которые соответствуют тем темам, которые вы часто обсуждали в диалоге. Как вариант, можно сохранить эту картинку, распечатать, поставить в рамочку и вручить как подарок вашему собеседнику. Ему будет очень приятно, ведь всегда интересно посмотреть на то, как оценивает вашу переписку алгоритм)

    Like this post? Please share to your friends:
  • Word cloud create online
  • Word cloud and phrases
  • Word cloud after effects
  • Word cloths in french
  • Word closes with email