What is regression analysis excel

Regression is done to define relationships between two or more variables in a data set. In statistics, regression is done by some complex formulas. But, Excel has provided us with tools for regression analysis. So, in the Excel Analysis ToolPak, click “Data Analysis” and “Regression” to conduct regression analysis in Excel.

Table of contents
  • What is Regression Analysis in Excel?
    • Explained
    • Examples
    • How to Run Regression Analysis Tool in Excel?
    • How to Use Regression Analysis Tool in Excel?
    • Steps to Create Regression Chart in Excel
    • Things to Remember
    • Recommended Articles

Explained

The Regression analysis tool performs linear regression in excelLinear Regression is a statistical excel tool that is used as a predictive analysis model to examine the relationship between two sets of data. Using this analysis, we can estimate the relationship between dependent and independent variables.read more examination using the “minimum squares” technique to fit a line through many observations. You can examine how an individual dependent variable is influenced by the estimations of at least one independent variable. For instance, you can investigate how such factors influence a sportsman’s performance as age, height, and weight. You can distribute shares in the execution measure to every one of these three components, given a lot of execution information, and then utilize the outcomes to foresee the execution of another person.

The Excel regression analysis tool helps you see how the dependent variable changes when one of the independent variables fluctuates and permits you to numerically figure out which of those variables truly has an effect.

You are free to use this image on your website, templates, etc, Please provide us with an attribution linkArticle Link to be Hyperlinked
For eg:
Source: Regression Analysis in Excel (wallstreetmojo.com)

Examples

  1. Sales of shampoo are dependent upon the advertisement. If $1 million increases advertising expenditure, sales will be expected to increase by $23 million. If there were no advertising, we would expect sales without any increment.
  2. House sales (selling price, number of bedrooms, location, size, design) predict the selling price of future sales in the same area.
  3. Soft drink sales massively increase in summer when the weather is too hot. People purchase more and more soft drinks to keep them cool. The higher the temperature, the higher the sales and vice versa.
  4. In March, exam season started, and sales increased due to students purchasing exam pads. Exam pads sale depends upon the examination season.

How to Run Regression Analysis Tool in Excel?

  1. We must enable the Analysis ToolPak Add-in.
  2. In Excel, click on the “File” on the extreme left-hand side, go and click on the “Options” at the end. 

    Regression 1

  3. On clicking on “Options,” select “Add-ins” on the left side. Excel Add-ins are chosen in the “View and manage Microsoft Add-ins” and “Manage” boxes. Then, click “Go.”

    Regression 2

  4. In the Add-in dialog box, click on Analysis Toolpak, and click OK:

    Regression 3

    It will add the “Data Analysis”  tools on the right-hand side to the Excel ribbon’s “Data” tab.

    Regression 4

How to Use Regression Analysis Tool in Excel?

We must use the data for regression analysis in Excel.

You can download this Regression Excel Template here – Regression Excel Template

Regression example 1

Once Analysis ToolpakExcel’s data analysis toolpak can be used by users to perform data analysis and other important calculations. It can be manually enabled from the addins section of the files tab by clicking on manage addins, and then checking analysis toolpak.read more is added and enabled in the Excel workbook, follow the steps mentioned below to practice the analysis of regression in Excel:

  • Step 1: On the Data tab in the Excel ribbonThe ribbon is an element of the UI (User Interface) which is seen as a strip that consists of buttons or tabs; it is available at the top of the excel sheet. This option was first introduced in the Microsoft Excel 2007.read more, click the Data Analysis

Regression example 1-1

  • Step 2: Click on the “Regression” and click “OK” to enable the function.

Regression example 1-2

  • Step 3: On clicking the “Regression dialog box, we must arrange the accompanying settings:
    • For the dependent variable, select the “Input Y Range,” which denotes the dependent data. Here, in the below-given screenshot, we have selected the range from $D$2:$D$13.

Regression example 1-3

  • Select the “Input X Range,” which denotes the independent data for the independent variable. Here, in the below-given screenshot, we have selected the range from $C$2:$C$13.

Regression example 1-4

  • Step 4: Click “OK” and analyze the data accordingly.

Regression example 1-5

When you run the regression analysis in Excel, the following output will come:

example 1-6

example 1-7

example 1-8

You can also make a scatter plot in excelScatter plot in excel is a two dimensional type of chart to represent data, it has various names such XY chart or Scatter diagram in excel, in this chart we have two sets of data on X and Y axis who are co-related to each other, this chart is mostly used in co-relation studies and regression studies of data.read more of these residuals.

Steps to Create Regression Chart in Excel

  • Step 1: Select the data as given in the below screenshot.

example 1-9

  • Step 2: Tap on the “Inset” tab. In the “Charts” gathering, tap the “Scatter” diagram or some other as a required symbol. Select the chart which suits the information.

example 1-10

  • Step 3: We can modify the chart when required and fill in the hues and lines of your decision. For instance, we can pick alternate shading and utilize a strong line of a dashed line. We can customize the graph as we want to customize it.

example 1-11

Things to Remember

  1. We must always check the dependent and independent values. Otherwise, the analysis will be wrong.
  2. If you test a huge number of data and thoroughly rank them based on their validation period statisticsStatistics is the science behind identifying, collecting, organizing and summarizing, analyzing, interpreting, and finally, presenting such data, either qualitative or quantitative, which helps make better and effective decisions with relevance.read more.
  3. Choose the data carefully to avoid any kind of error in excel analysis.
  4. We can optionally check any of the boxes at the bottom of the screen, although none of these is necessary to obtain the line best-fit formula.
  5. Start practicing with small data to understand the better analysis and run the regression analysis tool in Excel easily.

Recommended Articles

This article is a step-by-step guide to Regression Analysis in Excel. Here we discuss how to run regression in Excel, its interpretation, and use this tool along with Excel examples and downloadable Excel templates. You may also look at these useful functions in Excel: –

  • Examples of Normal Distribution Graph in Excel
  • Regression vs. ANOVABoth the Regression and ANOVA are the statistical models which are used in order to predict the continuous outcome but in case of the regression, continuous outcome is predicted on basis of the one or more than one continuous predictor variables whereas in case of ANOVA continuous outcome is predicted on basis of the one or more than one categorical predictor variables.read more
  • Excel Exponential Smoothing
  • Exponential Function ExcelExponential Excel function(EXP) is an inbuilt function in excel used to calculate the exponent raised to the power of any number you provide. In this function the exponent is constant and is also known as the base of the natural algorithm.read more

Reader Interactions

Regression analysis describes the relationships between a set of independent variables and the dependent variable. It produces an equation where the coefficients represent the relationship between each independent variable and the dependent variable.Excel performs ordinary least squares regression.

Contents

  • 1 What is the purpose of regression analysis?
  • 2 What is regression analysis in simple terms?
  • 3 How do you do regression analysis on Excel?
  • 4 Why is it called regression analysis?
  • 5 What is an example of regression?
  • 6 How do you calculate regression analysis?
  • 7 What is p-value in regression?
  • 8 What is the P-value in Excel regression?
  • 9 How do you do linear regression?
  • 10 What is regression in data analytics?
  • 11 What is linear regression with example?
  • 12 What is R-Squared in regression?
  • 13 What is B coefficient in regression?
  • 14 What is r-squared in linear regression?
  • 15 How do you interpret regression analysis?
  • 16 How do you know if a regression is significant?
  • 17 What is the type of regression?
  • 18 Is regression supervised or unsupervised?

What is the purpose of regression analysis?

Typically, a regression analysis is done for one of two purposes: In order to predict the value of the dependent variable for individuals for whom some information concerning the explanatory variables is available, or in order to estimate the effect of some explanatory variable on the dependent variable.

What is regression analysis in simple terms?

Regression analysis is a set of statistical methods used for the estimation of relationships between a dependent variable and one or more independent variablesIndependent VariableAn independent variable is an input, assumption, or driver that is changed in order to assess its impact on a dependent variable (the outcome

How do you do regression analysis on Excel?

Run regression analysis

  1. On the Data tab, in the Analysis group, click the Data Analysis button.
  2. Select Regression and click OK.
  3. In the Regression dialog box, configure the following settings: Select the Input Y Range, which is your dependent variable.
  4. Click OK and observe the regression analysis output created by Excel.

Why is it called regression analysis?

The term “regression” was coined by Francis Galton in the 19th century to describe a biological phenomenon. The phenomenon was that the heights of descendants of tall ancestors tend to regress down towards a normal average (a phenomenon also known as regression toward the mean).

What is an example of regression?

Regression is a return to earlier stages of development and abandoned forms of gratification belonging to them, prompted by dangers or conflicts arising at one of the later stages. A young wife, for example, might retreat to the security of her parents’ home after her first quarrel with her husband.

How do you calculate regression analysis?

Regression analysis is the analysis of relationship between dependent and independent variable as it depicts how dependent variable will change when one or more independent variable changes due to factors, formula for calculating it is Y = a + bX + E, where Y is dependent variable, X is independent variable, a is

P-Value is a statistical test that determines the probability of extreme results of the statistical hypothesis test,taking the Null Hypothesis to be correct. It is mostly used as an alternative to rejection points that provides the smallest level of significance at which the Null-Hypothesis would be rejected.

What is the P-value in Excel regression?

The p-values for the coefficients indicate whether the dependent variable is statistically significant. When the p-value is less than your significance level, you can reject the null hypothesis that the coefficient equals zero. Zero indicates no relationship.

How do you do linear regression?

A linear regression line has an equation of the form Y = a + bX, where X is the explanatory variable and Y is the dependent variable. The slope of the line is b, and a is the intercept (the value of y when x = 0).

What is regression in data analytics?

Regression analysis is a form of predictive modelling technique which investigates the relationship between a dependent (target) and independent variable (s) (predictor). This technique is used for forecasting, time series modelling and finding the causal effect relationship between the variables.

What is linear regression with example?

Linear regression quantifies the relationship between one or more predictor variable(s) and one outcome variable.For example, it can be used to quantify the relative impacts of age, gender, and diet (the predictor variables) on height (the outcome variable).

What is R-Squared in regression?

R-squared (R2) is a statistical measure that represents the proportion of the variance for a dependent variable that’s explained by an independent variable or variables in a regression model.

What is B coefficient in regression?

The beta coefficient is the degree of change in the outcome variable for every 1-unit of change in the predictor variable.If the beta coefficient is positive, the interpretation is that for every 1-unit increase in the predictor variable, the outcome variable will increase by the beta coefficient value.

What is r-squared in linear regression?

R-squared is a goodness-of-fit measure for linear regression models. This statistic indicates the percentage of the variance in the dependent variable that the independent variables explain collectively.After fitting a linear regression model, you need to determine how well the model fits the data.

How do you interpret regression analysis?

The sign of a regression coefficient tells you whether there is a positive or negative correlation between each independent variable and the dependent variable. A positive coefficient indicates that as the value of the independent variable increases, the mean of the dependent variable also tends to increase.

How do you know if a regression is significant?

If your regression model contains independent variables that are statistically significant, a reasonably high R-squared value makes sense. The statistical significance indicates that changes in the independent variables correlate with shifts in the dependent variable.

What is the type of regression?

The ultimate goal of the regression algorithm is to plot a best-fit line or a curve between the data and linear regression, logistic regression, ridge regression, Lasso regression, Polynomial regression are types of regression.

Is regression supervised or unsupervised?

Regression analysis is a subfield of supervised machine learning. It aims to model the relationship between a certain number of features and a continuous target variable.

Regression Analysis in Excel

Excel Regression Analysis (Table of Contents)

  • Regression Analysis in Excel
  • Explanation of Regression Mathematically
  • How to Perform Linear Regression in Excel?
    • #1 – Regression Tool Using Analysis ToolPak in Excel
    • #2 – Regression Analysis Using Scatterplot with Trendline in Excel

What is Regression Analysis in Excel

Linear regression is a statistical technique that examines the linear relationship between a dependent variable and one or more independent variables.

  • Dependent Variable (aka response/outcome variable): This is the variable of your interest and wanted to predict based on the Independent variable(s).
  • Independent Variable (aka explanatory/predictor variable): Is/are the variable(s) on which response variable is depend. This means these are the variables using which response variables can be predicted.

Linear relationship means the change in an independent variable(s) causes a change in the dependent variable.

There are basically two types of linear relationships as well.

  1. Positive Linear Relationship: When the independent variable increases, the dependent variable increases too.
  2. Negative Linear Relationship: When the independent variable increases, the dependent variable decreases.

These were some of the pre-requisites before you actually proceed towards regression analysis in excel.

There are two basic ways to perform linear regression in excel using:

  • Regression tool through Analysis ToolPak
  • Scatter chart with a trendline

There is actually one more method which is using manual formula’s to calculate linear regression. But why should you go for it when excel does calculations for you?

Therefore, we are going to talk about the two methods discussed above only.

Suppose you have data on the height and weight of 10 individuals. If you plot this information through a chart, let’s see what it gives.

Linear Regression

As the above screenshot shows, the linear relationship can be found in Height and Weight through the graph. Don’t get much involved in graphs now; we are anyhow going to dig it deep in the second portion of this article.

Explanation of Regression Mathematically

We have a mathematical expression for linear regression as below:

Y = aX + b + ε

Where,

  • Y is a dependent variable or response variable.
  • X is an independent variable or predictor.
  • a is the slope of the regression line. This represents that when X changes, there is a change in Y by “a” units.
  • b is intercepting. It is the value Y takes when the value of X is zero.
  • ε is the random error term. It occurs because Y’s predicted value will never be exactly the same as the actual value for a given X. We don’t need to worry about this error term as some software do the calculation of this error term in the backend for you. Excel is one of that software.

In that case, the equation becomes,

Y = aX + b

Which can be represented as:

Weight = a*Height + b

We’ll try to find out the values of this a and b using the methods we have discussed above.

How to Perform Linear Regression in Excel?

The further article explains the basics of regression analysis in excel and shows a few different ways to do linear regression in Excel.

You can download this Regression Analysis Excel Template here – Regression Analysis Excel Template

#1 – Regression Tool Using Analysis ToolPak in Excel

For our example, we’ll try to fit regression for Weight values (which is a dependent variable) with the help of Height values (which is an independent variable).

Independent Variables

  • In the excel spreadsheet, click on Data Analysis (present under Analysis Group) under Data.

Data Analysis

  • Search out for Regression. Could you select it and press, ok?

Regression option

  • Use the following inputs under the Regression pane, which opens up.

Inputs under Regression

  • Input Y Range: Select the cells which contain your dependent variable (in this example, B1:B11)

Inputing Y Range

  • Input X Range: Select the cells which contain your independent variable (in this example, A1:A11).

Input X Range

  • Check the box named Labels if your data have column names (in this example, we have column names).

Labels

  • The confidence level is set to 95% by default, which can be changed as per user’s requirements.

Confidence Level

  • Under Output options, you can customize where you want to see the regression analysis output in Excel. In this case, we want to see the output on the same sheet. Therefore, the given range is accordingly.

Output Range

  • Under the Residuals option, you have optional inputs like Residuals, Residual Plots, Standardized Residuals, and Line Fit Plots, which you can select as per your need. In this case, check the Residuals checkbox so that we can see the dispersion between predicted and actual values.

Residuals

  • Under the Normal Probability option, you can select Normal Probability Plots, which can help you check the normality of predictors. Click on OK.

Regression Analysis Step 1-10

  • Excel will compute Regression analysis for you in a fraction of second.

Regression Analysis Step 1-11

Till here, it was easy and not that logical. However, interpreting this output and make valuable insights from it is a tricky task.

One important part of this entire output is R Square/ Adjusted R Square under the SUMMARY OUTPUT table, which provides information on how well our model is fit. In this case, the R Square value is 0.9547, which interprets that the model has a 95.47% accuracy (good fit). Or in another language, information about the Y variable is explained 95.47% by the X variable.

Regression Analysis Step 1-12

The other important part of the entire output is a table of coefficients. It gives values of coefficients that can be used to build the model for future predictions.

Regression Analysis Step 1-13

Now our regression equation for prediction becomes:

Weight = 0.6746*Height – 38.45508 (Slope value for Height is 0.6746… and Intercept is -38.45508…)

Did you get what you have defined? You have defined a function in which you now just have to put the value of Height, and you’ll get the Weight value.

#2 – Regression Analysis Using Scatterplot with Trendline in Excel

Now, we’ll see how in excel, we can fit a regression equation on a scatterplot itself.

  • Select your entire two-columned data (including headers).
  • Click on Insert and select Scatter Plot under the graphs section, as shown in the image below.

Regression Analysis Step 2-1

  • See the output graph.

Regression Analysis Step 2-2

  • Now, we need to have the least squared regression line on this graph. To add this line, right-click on any of the graph’s data points and select Add Trendline option.

Regression Analysis Step 2-3

  • It will enable you to have a trendline of the least square of regression like below.

Regression Analysis Step 2-4

  • Under the Format Trendline option, check the box for Display Equation on Chart.

Regression Analysis Step 2-5

  • It enables you to see the equation of the least squared regression line on the graph.

Regression Analysis Step 2-6

This is the equation using which we can predict the weight values for any given set of Height values.

Things to Remember About Regression Analysis in Excel

  • You can change the layout of the trendline under the Format Trendline option in the scatter plot.
  • It is always recommended to have a look at residual plots while you are doing regression analysis using Data Analysis ToolPak in Excel. It gives you a better understanding of the spread of the actual Y values and estimated X values.
  • Simple Linear Regression in excel does not need ANOVA and Adjusted R Square to check. These features can be considered for Multiple Linear Regression, which is beyond the scope of this article.

Recommended Articles

This has been a guide to Regression Analysis in Excel. Here we discuss how to do Regression Analysis in Excel, along with excel examples and a downloadable excel template. You can also go through our other suggested articles –

  1. Excel Tool for Data Analysis
  2. Calculate ANOVA in Excel
  3. How to find Excel Moving Averages
  4. Z TEST Examples in Excel

Содержание

  • Подключение пакета анализа
  • Виды регрессионного анализа
  • Линейная регрессия в программе Excel
  • Разбор результатов анализа
  • Вопросы и ответы

Регрессивный анализ в Microsoft Excel

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Подключение пакета анализа

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.

  1. Перемещаемся во вкладку «Файл».
  2. Переход во вкладку Файл в Microsoft Excel

  3. Переходим в раздел «Параметры».
  4. Переход в параметры в программе Microsoft Excel

  5. Открывается окно параметров Excel. Переходим в подраздел «Надстройки».
  6. Переход в надстройки в программе Microsoft Excel

  7. В самой нижней части открывшегося окна переставляем переключатель в блоке «Управление» в позицию «Надстройки Excel», если он находится в другом положении. Жмем на кнопку «Перейти».
  8. Перемещение в надстройки в программе Microsoft Excel

  9. Открывается окно доступных надстроек Эксель. Ставим галочку около пункта «Пакет анализа». Жмем на кнопку «OK».

Активация пакета анализа в программе Microsoft Excel

Теперь, когда мы перейдем во вкладку «Данные», на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных».

Блок настроек Анализ в программе Microsoft Excel

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк. В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.

  1. Кликаем по кнопке «Анализ данных». Она размещена во вкладке «Главная» в блоке инструментов «Анализ».
  2. Переход в анализ данных в программе Microsoft Excel

    Lumpics.ru

  3. Открывается небольшое окошко. В нём выбираем пункт «Регрессия». Жмем на кнопку «OK».
  4. Запуск регрессии в программе Microsoft Excel

  5. Открывается окно настроек регрессии. В нём обязательными для заполнения полями являются «Входной интервал Y» и «Входной интервал X». Все остальные настройки можно оставить по умолчанию.

    В поле «Входной интервал Y» указываем адрес диапазона ячеек, где расположены переменные данные, влияние факторов на которые мы пытаемся установить. В нашем случае это будут ячейки столбца «Количество покупателей». Адрес можно вписать вручную с клавиатуры, а можно, просто выделить требуемый столбец. Последний вариант намного проще и удобнее.

    В поле «Входной интервал X» вводим адрес диапазона ячеек, где находятся данные того фактора, влияние которого на переменную мы хотим установить. Как говорилось выше, нам нужно установить влияние температуры на количество покупателей магазина, а поэтому вводим адрес ячеек в столбце «Температура». Это можно сделать теми же способами, что и в поле «Количество покупателей».

    Ввод интервала в настройках регрессии в программе Microsoft Excel

    С помощью других настроек можно установить метки, уровень надёжности, константу-ноль, отобразить график нормальной вероятности, и выполнить другие действия. Но, в большинстве случаев, эти настройки изменять не нужно. Единственное на что следует обратить внимание, так это на параметры вывода. По умолчанию вывод результатов анализа осуществляется на другом листе, но переставив переключатель, вы можете установить вывод в указанном диапазоне на том же листе, где расположена таблица с исходными данными, или в отдельной книге, то есть в новом файле.

    Параметры вывода в настройках регрессии в программе Microsoft Excel

    После того, как все настройки установлены, жмем на кнопку «OK».

Запуск регрессивного анализа в программе Microsoft Excel

Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Результат анализа регрессии в программе Microsoft Excel

Одним из основных показателей является R-квадрат. В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты». Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Содержание

  1. Regression
  2. R Square
  3. Significance F and P-values
  4. Coefficients
  5. Residuals
  6. Regression Analysis in Excel
  7. What is Regression Analysis in Excel?
  8. Explained
  9. Examples
  10. How to Run Regression Analysis Tool in Excel?
  11. How to Use Regression Analysis Tool in Excel?
  12. Steps to Create Regression Chart in Excel
  13. Things to Remember
  14. Recommended Articles
  15. Регрессионный анализ в Microsoft Excel
  16. Подключение пакета анализа
  17. Виды регрессионного анализа
  18. Линейная регрессия в программе Excel
  19. Разбор результатов анализа

Regression

This example teaches you how to run a linear regression analysis in Excel and how to interpret the Summary Output.

Below you can find our data. The big question is: is there a relation between Quantity Sold (Output) and Price and Advertising (Input). In other words: can we predict Quantity Sold if we know Price and Advertising?

1. On the Data tab, in the Analysis group, click Data Analysis.

Note: can’t find the Data Analysis button? Click here to load the Analysis ToolPak add-in.

2. Select Regression and click OK.

3. Select the Y Range (A1:A8). This is the predictor variable (also called dependent variable).

4. Select the X Range(B1:C8). These are the explanatory variables (also called independent variables). These columns must be adjacent to each other.

6. Click in the Output Range box and select cell A11.

7. Check Residuals.

Excel produces the following Summary Output (rounded to 3 decimal places).

R Square

R Square equals 0.962 , which is a very good fit. 96% of the variation in Quantity Sold is explained by the independent variables Price and Advertising. The closer to 1, the better the regression line (read on) fits the data.

Significance F and P-values

To check if your results are reliable (statistically significant), look at Significance F ( 0.001 ). If this value is less than 0.05, you’re OK. If Significance F is greater than 0.05, it’s probably better to stop using this set of independent variables. Delete a variable with a high P-value (greater than 0.05) and rerun the regression until Significance F drops below 0.05.

Most or all P-values should be below below 0.05. In our example this is the case. ( 0.000 , 0.001 and 0.005 ).

Coefficients

The regression line is: y = Quantity Sold = 8536.214 -835.722 * Price + 0.592 * Advertising. In other words, for each unit increase in price, Quantity Sold decreases with 835.722 units. For each unit increase in Advertising, Quantity Sold increases with 0.592 units. This is valuable information.

You can also use these coefficients to do a forecast. For example, if price equals $4 and Advertising equals $3000, you might be able to achieve a Quantity Sold of 8536.214 -835.722 * 4 + 0.592 * 3000 = 6970.

Residuals

The residuals show you how far away the actual data points are fom the predicted data points (using the equation). For example, the first data point equals 8500. Using the equation, the predicted data point equals 8536.214 -835.722 * 2 + 0.592 * 2800 = 8523.009, giving a residual of 8500 — 8523.009 = -23.009 .

You can also create a scatter plot of these residuals.

Источник

Regression Analysis in Excel

What is Regression Analysis in Excel?

Regression is done to define relationships between two or more variables in a data set. In statistics, regression is done by some complex formulas. But, Excel has provided us with tools for regression analysis. So, in the Excel Analysis ToolPak, click “Data Analysis” and “Regression” to conduct regression analysis in Excel.

Table of contents

Explained

The Regression analysis tool performs linear regression in excel Linear Regression In Excel Linear Regression is a statistical excel tool that is used as a predictive analysis model to examine the relationship between two sets of data. Using this analysis, we can estimate the relationship between dependent and independent variables. read more examination using the “minimum squares” technique to fit a line through many observations. You can examine how an individual dependent variable is influenced by the estimations of at least one independent variable. For instance, you can investigate how such factors influence a sportsman’s performance as age, height, and weight. You can distribute shares in the execution measure to every one of these three components, given a lot of execution information, and then utilize the outcomes to foresee the execution of another person.

The Excel regression analysis tool helps you see how the dependent variable changes when one of the independent variables fluctuates and permits you to numerically figure out which of those variables truly has an effect.

You are free to use this image on your website, templates, etc., Please provide us with an attribution link How to Provide Attribution? Article Link to be Hyperlinked
For eg:
Source: Regression Analysis in Excel (wallstreetmojo.com)

Examples

  1. Sales of shampoo are dependent upon the advertisement. If $1 million increases advertising expenditure, sales will be expected to increase by $23 million. If there were no advertising, we would expect sales without any increment.
  2. House sales (selling price, number of bedrooms, location, size, design) predict the selling price of future sales in the same area.
  3. Soft drink sales massively increase in summer when the weather is too hot. People purchase more and more soft drinks to keep them cool. The higher the temperature, the higher the sales and vice versa.
  4. In March, exam season started, and sales increased due to students purchasing exam pads. Exam pads sale depends upon the examination season.

How to Run Regression Analysis Tool in Excel?

  1. We must enable the Analysis ToolPak Add-in.

In Excel, click on the “File” on the extreme left-hand side, go and click on the “Options” at the end.

On clicking on “Options,” select “Add-ins” on the left side. Excel Add-ins are chosen in the “View and manage Microsoft Add-ins” and “Manage” boxes. Then, click “Go.”

In the Add-in dialog box, click on Analysis Toolpak, and click OK:

It will add the “Data Analysis” tools on the right-hand side to the Excel ribbon’s “Data” tab.

How to Use Regression Analysis Tool in Excel?

We must use the data for regression analysis in Excel.

  • Step 1: On the Data tab in the Excel ribbonExcel RibbonThe ribbon is an element of the UI (User Interface) which is seen as a strip that consists of buttons or tabs; it is available at the top of the excel sheet. This option was first introduced in the Microsoft Excel 2007.read more , click the Data Analysis

  • Step 2: Click on the “Regression” and click “OK” to enable the function.

  • Step 3: On clicking the “Regression dialog box, we must arrange the accompanying settings:
    • For the dependent variable,select the “Input Y Range,” which denotes the dependent data. Here, in the below-given screenshot, we have selected the range from $D$2:$D$13.

  • Select the “Input X Range,” which denotes the independent data for the independent variable. Here, in the below-given screenshot, we have selected the range from $C$2:$C$13.

  • Step 4: Click “OK” and analyze the data accordingly.

When you run the regression analysis in Excel, the following output will come:

Steps to Create Regression Chart in Excel

  • Step 1: Select the data as given in the below screenshot.

  • Step 2: Tap on the “Inset” tab. In the “Charts” gathering, tap the “Scatter” diagram or some other as a required symbol. Select the chart which suits the information.

  • Step 3: We can modify the chart when required and fill in the hues and lines of your decision. For instance, we can pick alternate shading and utilize a strong line of a dashed line. We can customize the graph as we want to customize it.

Things to Remember

  1. We must always check the dependent and independent values. Otherwise, the analysis will be wrong.
  2. If you test a huge number of data and thoroughly rank them based on their validation period statisticsStatisticsStatistics is the science behind identifying, collecting, organizing and summarizing, analyzing, interpreting, and finally, presenting such data, either qualitative or quantitative, which helps make better and effective decisions with relevance.read more .
  3. Choose the data carefully to avoid any kind of error in excel analysis.
  4. We can optionally check any of the boxes at the bottom of the screen, although none of these is necessary to obtain the line best-fit formula.
  5. Start practicing with small data to understand the better analysis and run the regression analysis tool in Excel easily.

Recommended Articles

This article is a step-by-step guide to Regression Analysis in Excel. Here we discuss how to run regression in Excel, its interpretation, and use this tool along with Excel examples and downloadable Excel templates. You may also look at these useful functions in Excel: –

Источник

Регрессионный анализ в Microsoft Excel

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Подключение пакета анализа

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.

  1. Перемещаемся во вкладку «Файл».
  2. Переходим в раздел «Параметры».

Теперь, когда мы перейдем во вкладку «Данные», на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных».

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Линейная регрессия в программе Excel

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк . В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.

    Кликаем по кнопке «Анализ данных». Она размещена во вкладке «Главная» в блоке инструментов «Анализ».

В поле «Входной интервал Y» указываем адрес диапазона ячеек, где расположены переменные данные, влияние факторов на которые мы пытаемся установить. В нашем случае это будут ячейки столбца «Количество покупателей». Адрес можно вписать вручную с клавиатуры, а можно, просто выделить требуемый столбец. Последний вариант намного проще и удобнее.

В поле «Входной интервал X» вводим адрес диапазона ячеек, где находятся данные того фактора, влияние которого на переменную мы хотим установить. Как говорилось выше, нам нужно установить влияние температуры на количество покупателей магазина, а поэтому вводим адрес ячеек в столбце «Температура». Это можно сделать теми же способами, что и в поле «Количество покупателей».

С помощью других настроек можно установить метки, уровень надёжности, константу-ноль, отобразить график нормальной вероятности, и выполнить другие действия. Но, в большинстве случаев, эти настройки изменять не нужно. Единственное на что следует обратить внимание, так это на параметры вывода. По умолчанию вывод результатов анализа осуществляется на другом листе, но переставив переключатель, вы можете установить вывод в указанном диапазоне на том же листе, где расположена таблица с исходными данными, или в отдельной книге, то есть в новом файле.

После того, как все настройки установлены, жмем на кнопку «OK».

Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Одним из основных показателей является R-квадрат. В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты». Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Источник

Regression and correlation analysis – there are statistical methods. There are the most common ways to show the dependence of some parameter from one or more independent variables.

Lover on the specific practical examples, we consider these two are very popular analysis among economists. And give an example of the receiving the results when they are combined.



Regression analysis in Excel

It shows the influence of some values (independent, substantive ones) on the dependent variable. For example, it depends on the number of economically active population from the number of enterprises, the value of wages and other parameters. Or: how to influence foreign investment, energy prices, etc. on the level of GDP.

The analysis result allows you to prioritize. And based on the main factors you may to predict, to plan the development of priorities areas, to make to the management decisions.

Regression is:

  • the linear (у = а + bx);
  • the parabolic (y = a + bx + cx2);
  • the exponential (y = a * exp(bx));
  • the power (y = a*x^b);
  • the hyperbolic (y = b/x + a);
  • the logarithmic (y = b * 1n(x) + a);
  • the exponential (y = a * b^x).

Consider the example to the construction of a regression model in Excel and the interpretation of the results. Consider the linear regression type.

The task. On 6 enterprises was analyzed the average monthly salary and the number of employees who retired. It is necessary to determine the dependence of the number of employees who retired from the average salary.

dependence.

The linear regression model is as follows:

У = а0 + а1х1 +…+акхк.

Where a – are the regression coefficients, x – the influencing variables, k – the number of factors.

In our example as Y serves the indicator of employees who retired. The influence factor – is the wage (x).

In Excel, there are built-in features with which you can calculate the parameters of the linear regression model. But faster it will make the add-on «analysis package».

Activate the powerful analytical tool:

  1. Push the button «FILE»-«Options»-«Add-Ins».
  2. Add-Ins.

  3. Below the drop-down list in the «Manage:» field is the inscription «Excel Add-Ins» (if it is not, click on the checkbox to the right and select). And click the «Go» button. Hit.
  4. Excel Add-Ins.

  5. The list of available add-ins. Select the «Analysis ToolPak» and click OK.

.

After activating the superstructure will be available on the «DATA» tab.

DATA.

We direct regression analysis now.

  1. Open the «Data Analysis» tool menu. Select the «Regression».
  2. Data Analysis.

  3. Open the menu for selecting the input values and output parameters (which display the result). In the fields for the specify range of the input data, which describes the options (Y) and influence the factor (X). The rest can not fill.
  4. input data.

  5. After you click OK, the program will display the calculations on a new page (you can choose the interval to be displayed on the current page or assign to the output to a new book).

will display the calculations.

Firstly of all pay attention to the R-squared and the ratios.

R-square – is the coefficient of the determination. In our example – there is 0. 755, or 75. 5%. This means that the model parameters estimated at 75. 5% explains the addiction between the parameters whixh are studied. The higher the coefficient of determination, the better is the model. Good — above 0. 8. Bad — less than 0. 5 (such an analysis can hardly be considered reasonable). In our example – is «not bad».

64. 1428 ratio shows how will be Y, if all the variables in the model will be equal to 0. That is, the value of the analyzed parameter is influenced by other factors, which has not been described in the model.

-0. 16285 ratio shows the weight of the variable X to Y. That is, the average monthly salary in the range of the model affects the number of resignations from the weight -0. 16285 (this is a small effect). The sign «-» indicates to a negative effect: the higher the salary, the less dismissed. That is true.



Correlation analys in Excel

The correlation analysis helps to establish whether there is between the indices in one or two samples of the connection. For example, the time between the time machine and repair costs, equipment costs and operation duration, height and weight of children, etc.

If there is the connection is available, whether the increment of one the increase parameter (positive correlation) or the decreasing (negative) of the other one. The correlation analysis helps to the analyst to determine whether it is possible for the value of one indicator to predict the potential value of the other one.

The correlation coefficient is denoted by r. It ranges from +1 to -1. The classification of correlations for different areas will be different. If the value of the coefficient is 0 linear dependence between samples does not exist.

Consider how with helping Excel tools to find the correlation coefficient.

To find the paired coefficients applied CORREL function.

The task: To determine whether there is the interrelation between the operating time of the lathe and the costing of its maintenance.

lathe and the costing.

Put the cursor in any cell and click the fx button.

  1. In «Statistics» category select to the function =CORREL().
  2. Statistics.

  3. The argument «Array 1» – is the first range of the values — while the machine: A2: A14.
  4. The argument «Array 2» – is the second range of values — the cost of repairs: B2: B14. Click OK.

CORREL.

To determine the type of connection, it is necessary to see the absolute number of the coefficient (each a scale has for each field).

Note. For the correlation analysis of several parameters (more 2) it is more convenient to use the «Data Analysis» (add-on «Analysis Package»). In the list you need to choose and mark correlation array. That`s all. These coefficients are appeared in the correlation matrix.

The regression analysis

In practice, these two techniques are often used together.

The example:

example.

  1. Build to the correlation field: «INSERT» — «Charts» — «Scatter» (enables to compare pairs). The value range – there are all the numeric dates in the table.
  2. Scatter.

  3. Click with the left mouse button on any point on the chart. Then right. In the menu, select «Add Trendline».
  4. Display R-squared value on chart.

  5. Assign the parameters for the line. Type – is «Linear». Below – «Display equation on chart» and «Display R-squared value on chart».

Display equation on chart.

Done:

Done.

They are now visible and regression analysis dates.

Regression is an Analysis Tool, which we use for analyzing large amounts of data and making forecasts and predictions in Microsoft Excel.

regression analysis excel

Want to predict the future? No, we are not going to learn astrology. We are into numbers and we will learn regression analysis in Excel today.

To predict future estimates, we will study:

  • REGRESSION ANALYSIS USING EXCEL FUNCTIONS (MANUAL REGRESSION FINDING)
  • REGRESSION ANALYSIS USING EXCEL’S ANALYSIS TOOLPAK ADD-IN
  • REGRESSION CHART IN EXCEL

Let’s do it…

Scenario:

Let’s assume you sell soft drinks. How cool will it be if you can predict:

  • How many soft drinks will be sold next year based on previous year’s data?
  • Which fields need to be focused?
  • And how can you increase your sales by changing your strategy?

It will be profitably awesome. Right?… I know. So let’s get started.

You have 11 records of salesmen and soft drinks sold.

regression analysis excel

Now based on this data you want to predict the number of salesmen required to achieve 2000 sales of soft drinks.

regression analysis in excel

The regression equation is a tool to make such close estimates. To do so, we need to know Regression first.

REGRESSION ANALYSIS USING EXCEL FUNCTIONS (MANUAL REGRESSION FINDING)

This part will make you understand regression better than just telling excel regression procedure.

Introduction:

Simple Linear Regression: 

The study of the relationship between two variables is called Simple Linear Regression. Where one variable depends on the other independent variable. The dependent variable is often called by names such as Driven, Response, and Target variable. And the independent variable is often pronounced as a Driving, Predictor or simply Independent variable. These names clearly describe them.

kcKoLq4gi

Now let’s compare this with your scenario. You want to know the number of salesmen required to achieve 2000 sales. So here, the dependent variable is the number of salesmen and the independent variable is sold soft drinks.

The independent variable is mostly denoted as x and dependent variable as y.

In our case, soft drinks are sold x and the number of salesmen is y.

unnamed (11)

If we want to know how many soft drinks will be sold if we appoint 200 salesmen, then the scenario will be vice-versa.

unnamed (12)

Moving On.

The “Simple” Math of Linear Regression Equation:

Well, it’s not simple. But Excel made it simple to do.

We need to predict the required number of salesmen for all 11 cases to get the 12th closest prediction.

pasted image 0 (39)

Let’s say:

Soft Drink Sold is x

The number of Salesmen is y

The predicted y (number of salesmen) also called Regression Equation,  would be

Now you must be wondering where the stat will you get the slope and intercept. Don’t worry, excel has functions for them. You do not need to learn how to find the slope and intercept it manually.

If you want, I will prepare a separate tutorial for that. Let me know in the comments section. These are some important data analytics tools.

Now let’s step into our calculation:

Step1: Prepare this small table

pasted image 0 (40)

Step 2: Find the slope of the regression line

Excel Function for slopes is

=SLOPE(known_y’s,known_x’s)

Your known_y’s are in range B2:B12 and known_x’s are in range C2:C12

pasted image 0 (41)

In cell B16, write the formula below

pasted image 0 (42)

(Note: Slope is also called coefficient of x in the regression equation)

You will get 0.058409. Round up to 2 decimal digits and you will get 0.06.

Step 3: Find the Intercept of Regression Line

Excel function for the intercept is

=INTERCEPT(known_y’s, known_x’s)

We know what our known x’s and y’s

In cell B17, write down this formula

pasted image 0 (43)

=INTERCEPT(B2:B12, C2:C12)

You will get a value of -1.1118969. Roundup to 2 decimal digits. You will get -1.11.

Our Linear Regression Equation is = x*0.06 + (-1.11). Now we can predict possible y depending on the target x easily.

Step 4: In D2 write the formula below

=C2*$B$16+$B$17    (Regression Equation)

You will get a value of 13.55.
pasted image 0 (44)

Select D2 to D13 and press CTRL+D to fill down the formula in the range D2:D13
pasted image 0 (45)

In cell D13 you have your required number of salesmen.

Hence, to achieve the target of 2000 Soft Drink Sales, you need an estimate of 115.71 salesmen or say 116 since it is illegal to cut humans into pieces.

Now using this you can easily conduct What-If analysis in excel. Just change the number of sales and it will show you many salesmen will it take to get that sales target achieved.

Play around it to find out:

How much workforce do you need to increase sales?

How many sales will increase if you increase your salesmen?

Make Your Estimate More Reliable:

Now you know that you need 116 salesmen to get 2000 sales done.

In analytics, nothing is just said and believed. You must give a percentage of reliability on your estimate. It is like giving a certificate of your equation.

unnamed (13)

Correlation Coefficient Formula:

The next thing you will be asked is how much these two variables are related. In static terms, you need to tell the coefficient of correlation.

Excel function for correlation is

In your case, known_x’s and Know_y’s are array1 and array2 irrespectively.

In B18 enter this formula

pasted image 0 (46)

You will have 0.919090. Formate cell B2 into the percentage. Now have 92% of correlation.

Now, what this 92% means. It means, there 92% of chances of sales increase if you increase the number of salesmen and 92% of sales decrease if you decrease the number of salesmen. It is called Positive Correlation Coefficient.

R Squire (R^2) :

R Squire value tells you, by what percentage your regression equation is not a fluke. How much it is accurate by the data provided.

The Excel function for R squire is RSQ.

RSQ(known_y’s, Known_x’s)

In our case, we will get R squire value in cell B19.

In B19 enter this formula

pasted image 0 (47)

So we have 84% of r Square value. Which is a very good explanation of our regression. It says that 84% of our data is just not by chance. Y (number of salesmen) is very much dependent on X (sales of soft drinks).

There are many other tests we can do on this data to ensure our regression. But manually it will be a complex and lengthy procedure. That is why excel provides Analysis Toolpak. Using this tool we can do this regression analysis in seconds.

REGRESSION IN EXCEL USING EXCEL’S ANALYSIS TOOLPAK ADD-IN

If you already know what regression equations are, and you just want your results quickly then this part is for you. But if you want to understand regression equations easily then scroll up to REGRESSION ANALYSIS USING EXCEL FUNCTIONS (MANUAL REGRESSION FINDING).

Excel provides a whole bunch of tools for analysis in its Analysis Toolpak. By default, it is not available in the Data tab. You need to add it. So let’s add it first.

Adding Analysis Toolpak to Excel 2016

If you don’t know where is data analysis in excel follow these steps

Step 1: Go to Excel Options: File? Options? Add-Ins

pasted image 0 (48)

Step 2: Click on Add-Ins. You will see a list of available add-Ins.

Select Analysis ToolPak and at the bottom of the window, find manage. In manage select Excel Add-Ins and Click on GO.

pasted image 0 (49)

Add-ins window will open. Here, select Analysis ToolPak. Then click the ok button.

pasted image 0 (50)

Now you can access all functions of data analysis ToolPak from Data Tab.

Using Analysis ToolPak for Regression

Step 1: Go to the Data tab, Locate Data Analysis. Then click on it.

pasted image 0 (51)

A dialogue box will pop up.

pasted image 0 (52)

Step 2: Find ‘Regression’ in Analysis Tools list and hit the OK button.

The regression input window will pop up. You will see a number of available input options. But for now, we will just concentrate on Y Range and X Range, leaving everything else to default.

pasted image 0 (53)

Step 4: Provide Inputs:

pasted image 0 (54)

No. of Salesmen is Y

Sales of soft drinks are X

Hence

  • Y Range= B2:B11

And 

  •  X Range = C2:C11

unnamed (14)

For the output range, I have selected E4 on the same sheet. You may select a new worksheet to get results on a new worksheet in the same workbook or a complete new workbook. When you are done with your inputs, hit the OK button.

Results:

You will be served with a variety of information from your data. Don’t get overwhelmed. You don’t need to consume all the dishes.

Regress Analysis Excel

We will only deal with those results which will help us to estimate the required number of salesmen

Step 5: We know the regression equation for estimation of y, that is

x*Slope+Intercept

We just need to locate Slope and Intercept in results.
pasted image 0 (56)

And here they are.

The intercept Coefficient is clearly mentioned.

The slope is written as ‘X Variable 1’, some times also mentioned as the coefficient of X. Round up them and we will get -1.11 as Intercept and 0.06 as Slope.

Step 6: From results, we can drive the Regression equation. And that would be

=x*(0.06) + (-1.11)

Prepare this table in excel.

pasted image 0 (57)

For now, x is 2000, which is in cell E2.

In Cell F2 enter this formula

=E2*F21+F20
pasted image 0 (58)

You will get a result of 115.7052757.

pasted image 0 (59)

Rounding it up will give us 116 of Required Salesmen.

So we have learned how to form the regression equation manually and using Analysis ToolPak. How can you use this equation to estimate future stats?

Now let’s understand the regression output given by Analysis Toolpak.

Understanding the Regression Output:

There is no benefit, if you do regression analysis using analysis tool pack in excel and can’t interpret its meaning.

pasted image 0 (60)

Summary Section:

As the name suggests, it is a summary of the data.

pasted image 0 (61)

    1. Multiple R: It tells how fit the regression equation is to the data. It is also called the correlation coefficient. 

In our case, it is 0.919090619 or 0.92 (roundup). This means that there is a 92% chance of an increase in sales if we increase our salesmen count.

    1. R Square: It tells the reliability of found regression. It tells us how many observations are part of our line of regression. In our case, it is 0.844727566 or 0.85. It means that our regression is fit by 85%.
    2. Adjusted R Square: Theadjusted square is just a more testified version of R square. Mainly useful in Multiple Regression Analysis.
    3. Standard Error: While R. Squire tells you how many data points fall near the regression line, the standard error tells you how far a data point can go from the regression line. 

In our case, it is 6.74.

  1. Observation: This is simply the number of observations, which is 11 in our example.

Anova Section:

This section is hardly used in linear regression.

pasted image 0 (62)

  1. df. It is a degree of freedom. It is used when calculating regression manually.
  2. SS. Sum of squares. It is just a sum of squares of variances. Used to find R squire values.
  3. MS. This means squared value.
  4. And 5. F and Significance of F. If the significance of F (p-value of the slope) is less than the F test than you can discard the null hypothesis and prove your hypothesis. In simple language, you can conclude that there is some effect of x on y when changed. 

In our case, F is 48.96264 and Significance of F is 0.000063. It means our regression fits the data.

Regression Section:

pasted image 0 (63)

In this section, we have the two most important values for our regression equation.

  1. Intercept: We have an intercept here that tells where x-intercepts on Y. This is an important part of the regression equation. It is -1.11 in our case.
  2. X variable 1 (Slope). Also called the coefficient of x. It defines the tangent of the regression line.

REGRESSION CHART IN EXCEL

In excel, it is easy to plot a regression chart. Just follow these steps. To add Regression Chart in Excel 2016, 2013, and 2010 follow these simple steps.

Step 1. Have your known x’s in the first column and know y’s in the second.

In our case, we know Known_ x’s are Soft Drinks Sold. And known_y’s are Salesmen.

pasted image 0 (64)

Step 2. Select your known x’s and y’s range.
pasted image 0 (65)

Step 3: Go to the Insert tab and click on the scatter chart.

pasted image 0 (66)

You will have a chart that looks like this.

pasted image 0 (67)

Step 4. Add the trend line: Goto layout and locate the trendline option in the analysis section.

Under the Trendline option, click on Linear Trendline.
pasted image 0 (68)

You will have your graph looking like this.

pasted image 0 (69)

This is your regression graph.

Now if you add the data below and extend the selected data. You will see a change in your graph.

For our example, we added 2000 to the Soft Drink Sold and left the Salesmen blank. And when we extend the range of the graph, this is what we will have.

It will give the required number of salesmen for doing 2000 sales of soft drinks in graphical form. Which is slightly below 120 in the graph. And from our regression equation, we know it is 116.

pasted image 0 (70)

In this article, I tried to cover everything under Excel Regression Analysis. I explained regression in excel 2016. Regression in excel 2010 and excel 2013 is same as in excel 2016.

For any further query on this topic, use the comments section. Ask a question, give an opinion or just mention my grammatical mistakes. Everything is welcome. Just don’t hesitate to use the comment section.

Related Data:
How to Use STDEV Function in Excel

How To Calculate MODE function in Excel

How To Calculate Mean function in Excel

How to Create Standard Deviation Graph

Descriptive Statistics in Microsoft Excel 2016

How to Use Excel NORMDIST Function

How to use the Pareto Chart and Analysis

Popular Articles:

50 Excel Shortcut to Increase Your Productivity

How to use the VLOOKUP Function in Excel

How to use the COUNTIF function in Excel 2016

How to use the SUMIF Function in Excel

Like this post? Please share to your friends:
  • What is spoken word performance
  • What is reduplication in word formation
  • What is spoken word artist
  • What is recordset in excel vba
  • What is sparklines in excel