What does the word internet mean

This article is about the worldwide computer network. For the global system of pages accessed via URLs, see World Wide Web. For other uses, see Internet (disambiguation).

The Internet (or internet)[a] is the global system of interconnected computer networks that uses the Internet protocol suite (TCP/IP)[b] to communicate between networks and devices. It is a network of networks that consists of private, public, academic, business, and government networks of local to global scope, linked by a broad array of electronic, wireless, and optical networking technologies. The Internet carries a vast range of information resources and services, such as the interlinked hypertext documents and applications of the World Wide Web (WWW), electronic mail, telephony, and file sharing.

The origins of the Internet date back to the development of packet switching and research commissioned by the United States Department of Defense in the late 1960s to enable time-sharing of computers.[2] The primary precursor network, the ARPANET, initially served as a backbone for the interconnection of regional academic and military networks in the 1970s to enable resource sharing. The funding of the National Science Foundation Network as a new backbone in the 1980s, as well as private funding for other commercial extensions, led to worldwide participation in the development of new networking technologies, and the merger of many networks.[3] The linking of commercial networks and enterprises by the early 1990s marked the beginning of the transition to the modern Internet,[4] and generated a sustained exponential growth as generations of institutional, personal, and mobile computers were connected to the network. Although the Internet was widely used by academia in the 1980s, commercialization incorporated its services and technologies into virtually every aspect of modern life.

Most traditional communication media, including telephone, radio, television, paper mail, and newspapers, are reshaped, redefined, or even bypassed by the Internet, giving birth to new services such as email, Internet telephone, Internet television, online music, digital newspapers, and video streaming websites. Newspaper, book, and other print publishing have adapted to website technology or have been reshaped into blogging, web feeds, and online news aggregators. The Internet has enabled and accelerated new forms of personal interaction through instant messaging, Internet forums, and social networking services. Online shopping has grown exponentially for major retailers, small businesses, and entrepreneurs, as it enables firms to extend their «brick and mortar» presence to serve a larger market or even sell goods and services entirely online. Business-to-business and financial services on the Internet affect supply chains across entire industries.

The Internet has no single centralized governance in either technological implementation or policies for access and usage; each constituent network sets its own policies.[5] The overarching definitions of the two principal name spaces on the Internet, the Internet Protocol address (IP address) space and the Domain Name System (DNS), are directed by a maintainer organization, the Internet Corporation for Assigned Names and Numbers (ICANN). The technical underpinning and standardization of the core protocols is an activity of the Internet Engineering Task Force (IETF), a non-profit organization of loosely affiliated international participants that anyone may associate with by contributing technical expertise.[6] In November 2006, the Internet was included on USA Todays list of New Seven Wonders.[7]

Terminology

The word internetted was used as early as 1849, meaning interconnected or interwoven.[8] The word Internet was used in 1945 by the United States War Department in a radio operator’s manual,[9] and 1974 as the shorthand form of Internetwork.[10] Today, the term Internet most commonly refers to the global system of interconnected computer networks, though it may also refer to any group of smaller networks.[11]

When it came into common use, most publications treated the word Internet as a capitalized proper noun; this has become less common.[11] This reflects the tendency in English to capitalize new terms and move to lowercase as they become familiar.[11][12] The word is sometimes still capitalized to distinguish the global internet from smaller networks, though many publications, including the AP Stylebook since 2016, recommend the lowercase form in every case.[11][12] In 2016, the Oxford English Dictionary found that, based on a study of around 2.5 billion printed and online sources, «Internet» was capitalized in 54% of cases.[13]

The terms Internet and World Wide Web are often used interchangeably; it is common to speak of «going on the Internet» when using a web browser to view web pages. However, the World Wide Web or the Web is only one of a large number of Internet services,[14] a collection of documents (web pages) and other web resources, linked by hyperlinks and URLs.[15]

History

In the 1960s, the Advanced Research Projects Agency (ARPA) of the United States Department of Defense (DoD) funded research into time-sharing of computers.[16][17][18] J. C. R. Licklider proposed the idea of a universal network while leading the Information Processing Techniques Office (IPTO) at ARPA. Research into packet switching, one of the fundamental Internet technologies, started in the work of Paul Baran in the early 1960s and, independently, Donald Davies in 1965.[2][19] After the Symposium on Operating Systems Principles in 1967, packet switching from the proposed NPL network was incorporated into the design for the ARPANET and other resource sharing networks such as the Merit Network and CYCLADES, which were developed in the late 1960s and early 1970s.[20]

ARPANET development began with two network nodes which were interconnected between the University of California, Los Angeles (UCLA) and SRI International (SRI) on 29 October 1969.[21] The third site was at the University of California, Santa Barbara, followed by the University of Utah. In a sign of future growth, 15 sites were connected to the young ARPANET by the end of 1971.[22][23] These early years were documented in the 1972 film Computer Networks: The Heralds of Resource Sharing.[24] Thereafter, the ARPANET gradually developed into a decentralized communications network, connecting remote centers and military bases in the United States.[25]

Early international collaborations for the ARPANET were rare. Connections were made in 1973 to the Norwegian Seismic Array (NORSAR),[26] and to University College London which provided a gateway to British academic networks forming the first international resource sharing network.[27] ARPA projects, international working groups and commercial initiatives led to the development of various protocols and standards by which multiple separate networks could become a single network or «a network of networks».[28] In 1974, Bob Kahn at DARPA and Vint Cerf at Stanford University published their ideas for «A Protocol for Packet Network Intercommunication».[29] They used the term internet as a shorthand for internetwork in RFC 675,[10] and later RFCs repeated this use.[30] Kahn and Cerf credit Louis Pouzin with important influences on the resulting TCP/IP design.[31] National PTTs and commercial providers developed the X.25 standard and deployed it on public data networks.[32]

Access to the ARPANET was expanded in 1981 when the National Science Foundation (NSF) funded the Computer Science Network (CSNET). In 1982, the Internet Protocol Suite (TCP/IP) was standardized, which permitted worldwide proliferation of interconnected networks. TCP/IP network access expanded again in 1986 when the National Science Foundation Network (NSFNet) provided access to supercomputer sites in the United States for researchers, first at speeds of 56 kbit/s and later at 1.5 Mbit/s and 45 Mbit/s.[33] The NSFNet expanded into academic and research organizations in Europe, Australia, New Zealand and Japan in 1988–89.[34][35][36][37] Although other network protocols such as UUCP and PTT public data networks had global reach well before this time, this marked the beginning of the Internet as an intercontinental network. Commercial Internet service providers (ISPs) emerged in 1989 in the United States and Australia.[38] The ARPANET was decommissioned in 1990.[39]

Steady advances in semiconductor technology and optical networking created new economic opportunities for commercial involvement in the expansion of the network in its core and for delivering services to the public. In mid-1989, MCI Mail and Compuserve established connections to the Internet, delivering email and public access products to the half million users of the Internet.[40] Just months later, on 1 January 1990, PSInet launched an alternate Internet backbone for commercial use; one of the networks that added to the core of the commercial Internet of later years. In March 1990, the first high-speed T1 (1.5 Mbit/s) link between the NSFNET and Europe was installed between Cornell University and CERN, allowing much more robust communications than were capable with satellites.[41] Six months later Tim Berners-Lee would begin writing WorldWideWeb, the first web browser, after two years of lobbying CERN management. By Christmas 1990, Berners-Lee had built all the tools necessary for a working Web: the HyperText Transfer Protocol (HTTP) 0.9,[42] the HyperText Markup Language (HTML), the first Web browser (which was also an HTML editor and could access Usenet newsgroups and FTP files), the first HTTP server software (later known as CERN httpd), the first web server,[43] and the first Web pages that described the project itself. In 1991 the Commercial Internet eXchange was founded, allowing PSInet to communicate with the other commercial networks CERFnet and Alternet. Stanford Federal Credit Union was the first financial institution to offer online Internet banking services to all of its members in October 1994.[44] In 1996, OP Financial Group, also a cooperative bank, became the second online bank in the world and the first in Europe.[45] By 1995, the Internet was fully commercialized in the U.S. when the NSFNet was decommissioned, removing the last restrictions on use of the Internet to carry commercial traffic.[46]

Worldwide Internet users[47]

Users 2005 2010 2017 2019 2021
World population[48] 6.5 billion 6.9 billion 7.4 billion 7.75 billion 7.9 billion
Worldwide 16% 30% 48% 53.6% 63%
In developing world 8% 21% 41.3% 47% 57%
In developed world 51% 67% 81% 86.6% 90%

As technology advanced and commercial opportunities fueled reciprocal growth, the volume of Internet traffic started experiencing similar characteristics as that of the scaling of MOS transistors, exemplified by Moore’s law, doubling every 18 months. This growth, formalized as Edholm’s law, was catalyzed by advances in MOS technology, laser light wave systems, and noise performance.[49]

Since 1995, the Internet has tremendously impacted culture and commerce, including the rise of near instant communication by email, instant messaging, telephony (Voice over Internet Protocol or VoIP), two-way interactive video calls, and the World Wide Web[50] with its discussion forums, blogs, social networking services, and online shopping sites. Increasing amounts of data are transmitted at higher and higher speeds over fiber optic networks operating at 1 Gbit/s, 10 Gbit/s, or more. The Internet continues to grow, driven by ever greater amounts of online information and knowledge, commerce, entertainment and social networking services.[51] During the late 1990s, it was estimated that traffic on the public Internet grew by 100 percent per year, while the mean annual growth in the number of Internet users was thought to be between 20% and 50%.[52] This growth is often attributed to the lack of central administration, which allows organic growth of the network, as well as the non-proprietary nature of the Internet protocols, which encourages vendor interoperability and prevents any one company from exerting too much control over the network.[53] As of 31 March 2011, the estimated total number of Internet users was 2.095 billion (30.2% of world population).[54] It is estimated that in 1993 the Internet carried only 1% of the information flowing through two-way telecommunication. By 2000 this figure had grown to 51%, and by 2007 more than 97% of all telecommunicated information was carried over the Internet.[55]

Governance

The Internet is a global network that comprises many voluntarily interconnected autonomous networks. It operates without a central governing body. The technical underpinning and standardization of the core protocols (IPv4 and IPv6) is an activity of the Internet Engineering Task Force (IETF), a non-profit organization of loosely affiliated international participants that anyone may associate with by contributing technical expertise. To maintain interoperability, the principal name spaces of the Internet are administered by the Internet Corporation for Assigned Names and Numbers (ICANN). ICANN is governed by an international board of directors drawn from across the Internet technical, business, academic, and other non-commercial communities. ICANN coordinates the assignment of unique identifiers for use on the Internet, including domain names, IP addresses, application port numbers in the transport protocols, and many other parameters. Globally unified name spaces are essential for maintaining the global reach of the Internet. This role of ICANN distinguishes it as perhaps the only central coordinating body for the global Internet.[56]

Regional Internet registries (RIRs) were established for five regions of the world. The African Network Information Center (AfriNIC) for Africa, the American Registry for Internet Numbers (ARIN) for North America, the Asia-Pacific Network Information Centre (APNIC) for Asia and the Pacific region, the Latin American and Caribbean Internet Addresses Registry (LACNIC) for Latin America and the Caribbean region, and the Réseaux IP Européens – Network Coordination Centre (RIPE NCC) for Europe, the Middle East, and Central Asia were delegated to assign IP address blocks and other Internet parameters to local registries, such as Internet service providers, from a designated pool of addresses set aside for each region.

The National Telecommunications and Information Administration, an agency of the United States Department of Commerce, had final approval over changes to the DNS root zone until the IANA stewardship transition on 1 October 2016.[57][58][59][60] The Internet Society (ISOC) was founded in 1992 with a mission to «assure the open development, evolution and use of the Internet for the benefit of all people throughout the world».[61] Its members include individuals (anyone may join) as well as corporations, organizations, governments, and universities. Among other activities ISOC provides an administrative home for a number of less formally organized groups that are involved in developing and managing the Internet, including: the IETF, Internet Architecture Board (IAB), Internet Engineering Steering Group (IESG), Internet Research Task Force (IRTF), and Internet Research Steering Group (IRSG). On 16 November 2005, the United Nations-sponsored World Summit on the Information Society in Tunis established the Internet Governance Forum (IGF) to discuss Internet-related issues.

Infrastructure

2007 map showing submarine fiberoptic telecommunication cables around the world

The communications infrastructure of the Internet consists of its hardware components and a system of software layers that control various aspects of the architecture. As with any computer network, the Internet physically consists of routers, media (such as cabling and radio links), repeaters, modems etc. However, as an example of internetworking, many of the network nodes are not necessarily internet equipment per se, the internet packets are carried by other full-fledged networking protocols with the Internet acting as a homogeneous networking standard, running across heterogeneous hardware, with the packets guided to their destinations by IP routers.

Service tiers

Packet routing across the Internet involves several tiers of Internet service providers.

Internet service providers (ISPs) establish the worldwide connectivity between individual networks at various levels of scope. End-users who only access the Internet when needed to perform a function or obtain information, represent the bottom of the routing hierarchy. At the top of the routing hierarchy are the tier 1 networks, large telecommunication companies that exchange traffic directly with each other via very high speed fibre optic cables and governed by peering agreements. Tier 2 and lower-level networks buy Internet transit from other providers to reach at least some parties on the global Internet, though they may also engage in peering. An ISP may use a single upstream provider for connectivity, or implement multihoming to achieve redundancy and load balancing. Internet exchange points are major traffic exchanges with physical connections to multiple ISPs. Large organizations, such as academic institutions, large enterprises, and governments, may perform the same function as ISPs, engaging in peering and purchasing transit on behalf of their internal networks. Research networks tend to interconnect with large subnetworks such as GEANT, GLORIAD, Internet2, and the UK’s national research and education network, JANET.

Access

Common methods of Internet access by users include dial-up with a computer modem via telephone circuits, broadband over coaxial cable, fiber optics or copper wires, Wi-Fi, satellite, and cellular telephone technology (e.g. 3G, 4G). The Internet may often be accessed from computers in libraries and Internet cafes. Internet access points exist in many public places such as airport halls and coffee shops. Various terms are used, such as public Internet kiosk, public access terminal, and Web payphone. Many hotels also have public terminals that are usually fee-based. These terminals are widely accessed for various usages, such as ticket booking, bank deposit, or online payment. Wi-Fi provides wireless access to the Internet via local computer networks. Hotspots providing such access include Wi-Fi cafes, where users need to bring their own wireless devices such as a laptop or PDA. These services may be free to all, free to customers only, or fee-based.

Grassroots efforts have led to wireless community networks. Commercial Wi-Fi services that cover large areas are available in many cities, such as New York, London, Vienna, Toronto, San Francisco, Philadelphia, Chicago and Pittsburgh, where the Internet can then be accessed from places such as a park bench.[62] Experiments have also been conducted with proprietary mobile wireless networks like Ricochet, various high-speed data services over cellular networks, and fixed wireless services. Modern smartphones can also access the Internet through the cellular carrier network. For Web browsing, these devices provide applications such as Google Chrome, Safari, and Firefox and a wide variety of other Internet software may be installed from app-stores. Internet usage by mobile and tablet devices exceeded desktop worldwide for the first time in October 2016.[63]

Mobile communication

Number of mobile cellular subscriptions 2012–2016

The International Telecommunication Union (ITU) estimated that, by the end of 2017, 48% of individual users regularly connect to the Internet, up from 34% in 2012.[64] Mobile Internet connectivity has played an important role in expanding access in recent years especially in Asia and the Pacific and in Africa.[65] The number of unique mobile cellular subscriptions increased from 3.89 billion in 2012 to 4.83 billion in 2016, two-thirds of the world’s population, with more than half of subscriptions located in Asia and the Pacific. The number of subscriptions is predicted to rise to 5.69 billion users in 2020.[66] As of 2016, almost 60% of the world’s population had access to a 4G broadband cellular network, up from almost 50% in 2015 and 11% in 2012.[disputed – discuss][66] The limits that users face on accessing information via mobile applications coincide with a broader process of fragmentation of the Internet. Fragmentation restricts access to media content and tends to affect poorest users the most.[65]

Zero-rating, the practice of Internet service providers allowing users free connectivity to access specific content or applications without cost, has offered opportunities to surmount economic hurdles, but has also been accused by its critics as creating a two-tiered Internet. To address the issues with zero-rating, an alternative model has emerged in the concept of ‘equal rating’ and is being tested in experiments by Mozilla and Orange in Africa. Equal rating prevents prioritization of one type of content and zero-rates all content up to a specified data cap. A study published by Chatham House, 15 out of 19 countries researched in Latin America had some kind of hybrid or zero-rated product offered. Some countries in the region had a handful of plans to choose from (across all mobile network operators) while others, such as Colombia, offered as many as 30 pre-paid and 34 post-paid plans.[67]

A study of eight countries in the Global South found that zero-rated data plans exist in every country, although there is a great range in the frequency with which they are offered and actually used in each.[68] The study looked at the top three to five carriers by market share in Bangladesh, Colombia, Ghana, India, Kenya, Nigeria, Peru and Philippines. Across the 181 plans examined, 13 per cent were offering zero-rated services. Another study, covering Ghana, Kenya, Nigeria and South Africa, found Facebook’s Free Basics and Wikipedia Zero to be the most commonly zero-rated content.[69]

Internet Protocol Suite

The Internet standards describe a framework known as the Internet protocol suite (also called TCP/IP, based on the first two components.) This is a suite of protocols that are ordered into a set of four conceptional layers by the scope of their operation, originally documented in RFC 1122 and RFC 1123. At the top is the application layer, where communication is described in terms of the objects or data structures most appropriate for each application. For example, a web browser operates in a client–server application model and exchanges information with the Hypertext Transfer Protocol (HTTP) and an application-germane data structure, such as the Hypertext Markup Language (HTML).

Below this top layer, the transport layer connects applications on different hosts with a logical channel through the network. It provides this service with a variety of possible characteristics, such as ordered, reliable delivery (TCP), and an unreliable datagram service (UDP).

Underlying these layers are the networking technologies that interconnect networks at their borders and exchange traffic across them. The Internet layer implements the Internet Protocol (IP) which enables computers to identify and locate each other by IP address, and route their traffic via intermediate (transit) networks.[70] The internet protocol layer code is independent of the type of network that it is physically running over.

At the bottom of the architecture is the link layer, which connects nodes on the same physical link, and contains protocols that do not require routers for traversal to other links. The protocol suite does not explicitly specify hardware methods to transfer bits, or protocols to manage such hardware, but assumes that appropriate technology is available. Examples of that technology include Wi-Fi, Ethernet, and DSL.

As user data is processed through the protocol stack, each abstraction layer adds encapsulation information at the sending host. Data is transmitted over the wire at the link level between hosts and routers. Encapsulation is removed by the receiving host. Intermediate relays update link encapsulation at each hop, and inspect the IP layer for routing purposes.

Internet protocol

Conceptual data flow in a simple network topology of two hosts (A and B) connected by a link between their respective routers. The application on each host executes read and write operations as if the processes were directly connected to each other by some kind of data pipe. After the establishment of this pipe, most details of the communication are hidden from each process, as the underlying principles of communication are implemented in the lower protocol layers. In analogy, at the transport layer the communication appears as host-to-host, without knowledge of the application data structures and the connecting routers, while at the internetworking layer, individual network boundaries are traversed at each router.

The most prominent component of the Internet model is the Internet Protocol (IP). IP enables internetworking and, in essence, establishes the Internet itself. Two versions of the Internet Protocol exist, IPv4 and IPv6.

IP Addresses

A DNS resolver consults three name servers to resolve the domain name user-visible «www.wikipedia.org» to determine the IPv4 Address 207.142.131.234.

For locating individual computers on the network, the Internet provides IP addresses. IP addresses are used by the Internet infrastructure to direct internet packets to their destinations. They consist of fixed-length numbers, which are found within the packet. IP addresses are generally assigned to equipment either automatically via DHCP, or are configured.

However, the network also supports other addressing systems. Users generally enter domain names (e.g. «en.wikipedia.org») instead of IP addresses because they are easier to remember, they are converted by the Domain Name System (DNS) into IP addresses which are more efficient for routing purposes.

IPv4

Internet Protocol version 4 (IPv4) defines an IP address as a 32-bit number.[70] IPv4 is the initial version used on the first generation of the Internet and is still in dominant use. It was designed to address up to ≈4.3 billion (109) hosts. However, the explosive growth of the Internet has led to IPv4 address exhaustion, which entered its final stage in 2011,[71] when the global IPv4 address allocation pool was exhausted.

IPv6

Because of the growth of the Internet and the depletion of available IPv4 addresses, a new version of IP IPv6, was developed in the mid-1990s, which provides vastly larger addressing capabilities and more efficient routing of Internet traffic. IPv6 uses 128 bits for the IP address and was standardized in 1998.[72][73][74] IPv6 deployment has been ongoing since the mid-2000s and is currently in growing deployment around the world, since Internet address registries (RIRs) began to urge all resource managers to plan rapid adoption and conversion.[75]

IPv6 is not directly interoperable by design with IPv4. In essence, it establishes a parallel version of the Internet not directly accessible with IPv4 software. Thus, translation facilities must exist for internetworking or nodes must have duplicate networking software for both networks. Essentially all modern computer operating systems support both versions of the Internet Protocol. Network infrastructure, however, has been lagging in this development. Aside from the complex array of physical connections that make up its infrastructure, the Internet is facilitated by bi- or multi-lateral commercial contracts, e.g., peering agreements, and by technical specifications or protocols that describe the exchange of data over the network. Indeed, the Internet is defined by its interconnections and routing policies.

Subnetwork

Creating a subnet by dividing the host identifier

A subnetwork or subnet is a logical subdivision of an IP network.[76]: 1, 16  The practice of dividing a network into two or more networks is called subnetting.

Computers that belong to a subnet are addressed with an identical most-significant bit-group in their IP addresses. This results in the logical division of an IP address into two fields, the network number or routing prefix and the rest field or host identifier. The rest field is an identifier for a specific host or network interface.

The routing prefix may be expressed in Classless Inter-Domain Routing (CIDR) notation written as the first address of a network, followed by a slash character (/), and ending with the bit-length of the prefix. For example, 198.51.100.0/24 is the prefix of the Internet Protocol version 4 network starting at the given address, having 24 bits allocated for the network prefix, and the remaining 8 bits reserved for host addressing. Addresses in the range 198.51.100.0 to 198.51.100.255 belong to this network. The IPv6 address specification 2001:db8::/32 is a large address block with 296 addresses, having a 32-bit routing prefix.

For IPv4, a network may also be characterized by its subnet mask or netmask, which is the bitmask that when applied by a bitwise AND operation to any IP address in the network, yields the routing prefix. Subnet masks are also expressed in dot-decimal notation like an address. For example, 255.255.255.0 is the subnet mask for the prefix 198.51.100.0/24.

Traffic is exchanged between subnetworks through routers when the routing prefixes of the source address and the destination address differ. A router serves as a logical or physical boundary between the subnets.

The benefits of subnetting an existing network vary with each deployment scenario. In the address allocation architecture of the Internet using CIDR and in large organizations, it is necessary to allocate address space efficiently. Subnetting may also enhance routing efficiency, or have advantages in network management when subnetworks are administratively controlled by different entities in a larger organization. Subnets may be arranged logically in a hierarchical architecture, partitioning an organization’s network address space into a tree-like routing structure.

Routing

Computers and routers use routing tables in their operating system to direct IP packets to reach a node on a different subnetwork. Routing tables are maintained by manual configuration or automatically by routing protocols. End-nodes typically use a default route that points toward an ISP providing transit, while ISP routers use the Border Gateway Protocol to establish the most efficient routing across the complex connections of the global Internet. The default gateway is the node that serves as the forwarding host (router) to other networks when no other route specification matches the destination IP address of a packet.[77][78]

IETF

While the hardware components in the Internet infrastructure can often be used to support other software systems, it is the design and the standardization process of the software that characterizes the Internet and provides the foundation for its scalability and success. The responsibility for the architectural design of the Internet software systems has been assumed by the Internet Engineering Task Force (IETF).[79] The IETF conducts standard-setting work groups, open to any individual, about the various aspects of Internet architecture. The resulting contributions and standards are published as Request for Comments (RFC) documents on the IETF web site. The principal methods of networking that enable the Internet are contained in specially designated RFCs that constitute the Internet Standards. Other less rigorous documents are simply informative, experimental, or historical, or document the best current practices (BCP) when implementing Internet technologies.

Applications and services

The Internet carries many applications and services, most prominently the World Wide Web, including social media, electronic mail, mobile applications, multiplayer online games, Internet telephony, file sharing, and streaming media services.

Most servers that provide these services are today hosted in data centers, and content is often accessed through high-performance content delivery networks.

World Wide Web

The World Wide Web is a global collection of documents, images, multimedia, applications, and other resources, logically interrelated by hyperlinks and referenced with Uniform Resource Identifiers (URIs), which provide a global system of named references. URIs symbolically identify services, web servers, databases, and the documents and resources that they can provide. Hypertext Transfer Protocol (HTTP) is the main access protocol of the World Wide Web. Web services also use HTTP for communication between software systems for information transfer, sharing and exchanging business data and logistic and is one of many languages or protocols that can be used for communication on the Internet.[80]

World Wide Web browser software, such as Microsoft’s Internet Explorer/Edge, Mozilla Firefox, Opera, Apple’s Safari, and Google Chrome, lets users navigate from one web page to another via the hyperlinks embedded in the documents. These documents may also contain any combination of computer data, including graphics, sounds, text, video, multimedia and interactive content that runs while the user is interacting with the page. Client-side software can include animations, games, office applications and scientific demonstrations. Through keyword-driven Internet research using search engines like Yahoo!, Bing and Google, users worldwide have easy, instant access to a vast and diverse amount of online information. Compared to printed media, books, encyclopedias and traditional libraries, the World Wide Web has enabled the decentralization of information on a large scale.

The Web has enabled individuals and organizations to publish ideas and information to a potentially large audience online at greatly reduced expense and time delay. Publishing a web page, a blog, or building a website involves little initial cost and many cost-free services are available. However, publishing and maintaining large, professional web sites with attractive, diverse and up-to-date information is still a difficult and expensive proposition. Many individuals and some companies and groups use web logs or blogs, which are largely used as easily updatable online diaries. Some commercial organizations encourage staff to communicate advice in their areas of specialization in the hope that visitors will be impressed by the expert knowledge and free information, and be attracted to the corporation as a result.

Advertising on popular web pages can be lucrative, and e-commerce, which is the sale of products and services directly via the Web, continues to grow. Online advertising is a form of marketing and advertising which uses the Internet to deliver promotional marketing messages to consumers. It includes email marketing, search engine marketing (SEM), social media marketing, many types of display advertising (including web banner advertising), and mobile advertising. In 2011, Internet advertising revenues in the United States surpassed those of cable television and nearly exceeded those of broadcast television.[81]: 19  Many common online advertising practices are controversial and increasingly subject to regulation.

When the Web developed in the 1990s, a typical web page was stored in completed form on a web server, formatted in HTML, complete for transmission to a web browser in response to a request. Over time, the process of creating and serving web pages has become dynamic, creating a flexible design, layout, and content. Websites are often created using content management software with, initially, very little content. Contributors to these systems, who may be paid staff, members of an organization or the public, fill underlying databases with content using editing pages designed for that purpose while casual visitors view and read this content in HTML form. There may or may not be editorial, approval and security systems built into the process of taking newly entered content and making it available to the target visitors.

Communication

Email is an important communications service available via the Internet. The concept of sending electronic text messages between parties, analogous to mailing letters or memos, predates the creation of the Internet.[82][83] Pictures, documents, and other files are sent as email attachments. Email messages can be cc-ed to multiple email addresses.

Internet telephony is a common communications service realized with the Internet. The name of the principle internetworking protocol, the Internet Protocol, lends its name to voice over Internet Protocol (VoIP). The idea began in the early 1990s with walkie-talkie-like voice applications for personal computers. VoIP systems now dominate many markets, and are as easy to use and as convenient as a traditional telephone. The benefit has been substantial cost savings over traditional telephone calls, especially over long distances. Cable, ADSL, and mobile data networks provide Internet access in customer premises[84] and inexpensive VoIP network adapters provide the connection for traditional analog telephone sets. The voice quality of VoIP often exceeds that of traditional calls. Remaining problems for VoIP include the situation that emergency services may not be universally available, and that devices rely on a local power supply, while older traditional phones are powered from the local loop, and typically operate during a power failure.

Data transfer

File sharing is an example of transferring large amounts of data across the Internet. A computer file can be emailed to customers, colleagues and friends as an attachment. It can be uploaded to a website or File Transfer Protocol (FTP) server for easy download by others. It can be put into a «shared location» or onto a file server for instant use by colleagues. The load of bulk downloads to many users can be eased by the use of «mirror» servers or peer-to-peer networks. In any of these cases, access to the file may be controlled by user authentication, the transit of the file over the Internet may be obscured by encryption, and money may change hands for access to the file. The price can be paid by the remote charging of funds from, for example, a credit card whose details are also passed—usually fully encrypted—across the Internet. The origin and authenticity of the file received may be checked by digital signatures or by MD5 or other message digests. These simple features of the Internet, over a worldwide basis, are changing the production, sale, and distribution of anything that can be reduced to a computer file for transmission. This includes all manner of print publications, software products, news, music, film, video, photography, graphics and the other arts. This in turn has caused seismic shifts in each of the existing industries that previously controlled the production and distribution of these products.

Streaming media is the real-time delivery of digital media for the immediate consumption or enjoyment by end users. Many radio and television broadcasters provide Internet feeds of their live audio and video productions. They may also allow time-shift viewing or listening such as Preview, Classic Clips and Listen Again features. These providers have been joined by a range of pure Internet «broadcasters» who never had on-air licenses. This means that an Internet-connected device, such as a computer or something more specific, can be used to access online media in much the same way as was previously possible only with a television or radio receiver. The range of available types of content is much wider, from specialized technical webcasts to on-demand popular multimedia services. Podcasting is a variation on this theme, where—usually audio—material is downloaded and played back on a computer or shifted to a portable media player to be listened to on the move. These techniques using simple equipment allow anybody, with little censorship or licensing control, to broadcast audio-visual material worldwide.

Digital media streaming increases the demand for network bandwidth. For example, standard image quality needs 1 Mbit/s link speed for SD 480p, HD 720p quality requires 2.5 Mbit/s, and the top-of-the-line HDX quality needs 4.5 Mbit/s for 1080p.[85]

Webcams are a low-cost extension of this phenomenon. While some webcams can give full-frame-rate video, the picture either is usually small or updates slowly. Internet users can watch animals around an African waterhole, ships in the Panama Canal, traffic at a local roundabout or monitor their own premises, live and in real time. Video chat rooms and video conferencing are also popular with many uses being found for personal webcams, with and without two-way sound. YouTube was founded on 15 February 2005 and is now the leading website for free streaming video with more than two billion users.[86] It uses an HTML5 based web player by default to stream and show video files.[87] Registered users may upload an unlimited amount of video and build their own personal profile. YouTube claims that its users watch hundreds of millions, and upload hundreds of thousands of videos daily.

The Internet has enabled new forms of social interaction, activities, and social associations. This phenomenon has given rise to the scholarly study of the sociology of the Internet.

Users

Share of population using the Internet.[88] See or edit source data.

A scatter plot showing Internet usage per capita versus GDP per capita. It shows Internet usage increasing with GDP.

Internet users per 100 population members and GDP per capita for selected countries

From 2000 to 2009, the number of Internet users globally rose from 394 million to 1.858 billion.[91] By 2010, 22 percent of the world’s population had access to computers with 1 billion Google searches every day, 300 million Internet users reading blogs, and 2 billion videos viewed daily on YouTube.[92] In 2014 the world’s Internet users surpassed 3 billion or 43.6 percent of world population, but two-thirds of the users came from richest countries, with 78.0 percent of Europe countries population using the Internet, followed by 57.4 percent of the Americas.[93] However, by 2018, Asia alone accounted for 51% of all Internet users, with 2.2 billion out of the 4.3 billion Internet users in the world coming from that region. The number of China’s Internet users surpassed a major milestone in 2018, when the country’s Internet regulatory authority, China Internet Network Information Centre, announced that China had 802 million Internet users.[94] By 2019, China was the world’s leading country in terms of Internet users, with more than 800 million users, followed closely by India, with some 700 million users, with the United States a distant third with 275 million users. However, in terms of penetration, China has[when?] a 38.4% penetration rate compared to India’s 40% and the United States’s 80%.[95] As of 2020, it was estimated that 4.5 billion people use the Internet, more than half of the world’s population.[96][97]

The prevalent language for communication via the Internet has always been English. This may be a result of the origin of the Internet, as well as the language’s role as a lingua franca and as a world language. Early computer systems were limited to the characters in the American Standard Code for Information Interchange (ASCII), a subset of the Latin alphabet.

After English (27%), the most requested languages on the World Wide Web are Chinese (25%), Spanish (8%), Japanese (5%), Portuguese and German (4% each), Arabic, French and Russian (3% each), and Korean (2%).[98] By region, 42% of the world’s Internet users are based in Asia, 24% in Europe, 14% in North America, 10% in Latin America and the Caribbean taken together, 6% in Africa, 3% in the Middle East and 1% in Australia/Oceania.[99] The Internet’s technologies have developed enough in recent years, especially in the use of Unicode, that good facilities are available for development and communication in the world’s widely used languages. However, some glitches such as mojibake (incorrect display of some languages’ characters) still remain.

In an American study in 2005, the percentage of men using the Internet was very slightly ahead of the percentage of women, although this difference reversed in those under 30. Men logged on more often, spent more time online, and were more likely to be broadband users, whereas women tended to make more use of opportunities to communicate (such as email). Men were more likely to use the Internet to pay bills, participate in auctions, and for recreation such as downloading music and videos. Men and women were equally likely to use the Internet for shopping and banking.[100]
More recent studies indicate that in 2008, women significantly outnumbered men on most social networking services, such as Facebook and Myspace, although the ratios varied with age.[101] In addition, women watched more streaming content, whereas men downloaded more.[102] In terms of blogs, men were more likely to blog in the first place; among those who blog, men were more likely to have a professional blog, whereas women were more likely to have a personal blog.[103]

Splitting by country, in 2012 Iceland, Norway, Sweden, the Netherlands, and Denmark had the highest Internet penetration by the number of users, with 93% or more of the population with access.[104]

Several neologisms exist that refer to Internet users: Netizen (as in «citizen of the net»)[105] refers to those actively involved in improving online communities, the Internet in general or surrounding political affairs and rights such as free speech,[106][107] Internaut refers to operators or technically highly capable users of the Internet,[108][109] digital citizen refers to a person using the Internet in order to engage in society, politics, and government participation.[110]

  • Internet users by language[98]

  • Website content languages[111]

Usage

The Internet allows greater flexibility in working hours and location, especially with the spread of unmetered high-speed connections. The Internet can be accessed almost anywhere by numerous means, including through mobile Internet devices. Mobile phones, datacards, handheld game consoles and cellular routers allow users to connect to the Internet wirelessly. Within the limitations imposed by small screens and other limited facilities of such pocket-sized devices, the services of the Internet, including email and the web, may be available. Service providers may restrict the services offered and mobile data charges may be significantly higher than other access methods.

Educational material at all levels from pre-school to post-doctoral is available from websites. Examples range from CBeebies, through school and high-school revision guides and virtual universities, to access to top-end scholarly literature through the likes of Google Scholar. For distance education, help with homework and other assignments, self-guided learning, whiling away spare time or just looking up more detail on an interesting fact, it has never been easier for people to access educational information at any level from anywhere. The Internet in general and the World Wide Web in particular are important enablers of both formal and informal education. Further, the Internet allows researchers (especially those from the social and behavioral sciences) to conduct research remotely via virtual laboratories, with profound changes in reach and generalizability of findings as well as in communication between scientists and in the publication of results.[114]

The low cost and nearly instantaneous sharing of ideas, knowledge, and skills have made collaborative work dramatically easier, with the help of collaborative software. Not only can a group cheaply communicate and share ideas but the wide reach of the Internet allows such groups more easily to form. An example of this is the free software movement, which has produced, among other things, Linux, Mozilla Firefox, and OpenOffice.org (later forked into LibreOffice). Internet chat, whether using an IRC chat room, an instant messaging system, or a social networking service, allows colleagues to stay in touch in a very convenient way while working at their computers during the day. Messages can be exchanged even more quickly and conveniently than via email. These systems may allow files to be exchanged, drawings and images to be shared, or voice and video contact between team members.

Content management systems allow collaborating teams to work on shared sets of documents simultaneously without accidentally destroying each other’s work. Business and project teams can share calendars as well as documents and other information. Such collaboration occurs in a wide variety of areas including scientific research, software development, conference planning, political activism and creative writing. Social and political collaboration is also becoming more widespread as both Internet access and computer literacy spread.

The Internet allows computer users to remotely access other computers and information stores easily from any access point. Access may be with computer security, i.e. authentication and encryption technologies, depending on the requirements. This is encouraging new ways of remote work, collaboration and information sharing in many industries. An accountant sitting at home can audit the books of a company based in another country, on a server situated in a third country that is remotely maintained by IT specialists in a fourth. These accounts could have been created by home-working bookkeepers, in other remote locations, based on information emailed to them from offices all over the world. Some of these things were possible before the widespread use of the Internet, but the cost of private leased lines would have made many of them infeasible in practice. An office worker away from their desk, perhaps on the other side of the world on a business trip or a holiday, can access their emails, access their data using cloud computing, or open a remote desktop session into their office PC using a secure virtual private network (VPN) connection on the Internet. This can give the worker complete access to all of their normal files and data, including email and other applications, while away from the office. It has been referred to among system administrators as the Virtual Private Nightmare,[115] because it extends the secure perimeter of a corporate network into remote locations and its employees’ homes.

By late 2010s Internet has been described as «the main source of scientific information «for the majority of the global North population».[116]: 111 

Social networking and entertainment

Many people use the World Wide Web to access news, weather and sports reports, to plan and book vacations and to pursue their personal interests. People use chat, messaging and email to make and stay in touch with friends worldwide, sometimes in the same way as some previously had pen pals. Social networking services such as Facebook have created new ways to socialize and interact. Users of these sites are able to add a wide variety of information to pages, pursue common interests, and connect with others. It is also possible to find existing acquaintances, to allow communication among existing groups of people. Sites like LinkedIn foster commercial and business connections. YouTube and Flickr specialize in users’ videos and photographs. Social networking services are also widely used by businesses and other organizations to promote their brands, to market to their customers and to encourage posts to «go viral». «Black hat» social media techniques are also employed by some organizations, such as spam accounts and astroturfing.

A risk for both individuals and organizations writing posts (especially public posts) on social networking services, is that especially foolish or controversial posts occasionally lead to an unexpected and possibly large-scale backlash on social media from other Internet users. This is also a risk in relation to controversial offline behavior, if it is widely made known. The nature of this backlash can range widely from counter-arguments and public mockery, through insults and hate speech, to, in extreme cases, rape and death threats. The online disinhibition effect describes the tendency of many individuals to behave more stridently or offensively online than they would in person. A significant number of feminist women have been the target of various forms of harassment in response to posts they have made on social media, and Twitter in particular has been criticised in the past for not doing enough to aid victims of online abuse.[117]

For organizations, such a backlash can cause overall brand damage, especially if reported by the media. However, this is not always the case, as any brand damage in the eyes of people with an opposing opinion to that presented by the organization could sometimes be outweighed by strengthening the brand in the eyes of others. Furthermore, if an organization or individual gives in to demands that others perceive as wrong-headed, that can then provoke a counter-backlash.

Some websites, such as Reddit, have rules forbidding the posting of personal information of individuals (also known as doxxing), due to concerns about such postings leading to mobs of large numbers of Internet users directing harassment at the specific individuals thereby identified. In particular, the Reddit rule forbidding the posting of personal information is widely understood to imply that all identifying photos and names must be censored in Facebook screenshots posted to Reddit. However, the interpretation of this rule in relation to public Twitter posts is less clear, and in any case, like-minded people online have many other ways they can use to direct each other’s attention to public social media posts they disagree with.

Children also face dangers online such as cyberbullying and approaches by sexual predators, who sometimes pose as children themselves. Children may also encounter material which they may find upsetting, or material that their parents consider to be not age-appropriate. Due to naivety, they may also post personal information about themselves online, which could put them or their families at risk unless warned not to do so. Many parents choose to enable Internet filtering or supervise their children’s online activities in an attempt to protect their children from inappropriate material on the Internet. The most popular social networking services, such as Facebook and Twitter, commonly forbid users under the age of 13. However, these policies are typically trivial to circumvent by registering an account with a false birth date, and a significant number of children aged under 13 join such sites anyway. Social networking services for younger children, which claim to provide better levels of protection for children, also exist.[118]

The Internet has been a major outlet for leisure activity since its inception, with entertaining social experiments such as MUDs and MOOs being conducted on university servers, and humor-related Usenet groups receiving much traffic.[citation needed] Many Internet forums have sections devoted to games and funny videos.[citation needed] The Internet pornography and online gambling industries have taken advantage of the World Wide Web. Although many governments have attempted to restrict both industries’ use of the Internet, in general, this has failed to stop their widespread popularity.[119]

Another area of leisure activity on the Internet is multiplayer gaming.[120] This form of recreation creates communities, where people of all ages and origins enjoy the fast-paced world of multiplayer games. These range from MMORPG to first-person shooters, from role-playing video games to online gambling. While online gaming has been around since the 1970s, modern modes of online gaming began with subscription services such as GameSpy and MPlayer.[121] Non-subscribers were limited to certain types of game play or certain games. Many people use the Internet to access and download music, movies and other works for their enjoyment and relaxation. Free and fee-based services exist for all of these activities, using centralized servers and distributed peer-to-peer technologies. Some of these sources exercise more care with respect to the original artists’ copyrights than others.

Internet usage has been correlated to users’ loneliness.[122] Lonely people tend to use the Internet as an outlet for their feelings and to share their stories with others, such as in the «I am lonely will anyone speak to me» thread.

A 2017 book claimed that the Internet consolidates most aspects of human endeavor into singular arenas of which all of humanity are potential members and competitors, with fundamentally negative impacts on mental health as a result. While successes in each field of activity are pervasively visible and trumpeted, they are reserved for an extremely thin sliver of the world’s most exceptional, leaving everyone else behind. Whereas, before the Internet, expectations of success in any field were supported by reasonable probabilities of achievement at the village, suburb, city or even state level, the same expectations in the Internet world are virtually certain to bring disappointment today: there is always someone else, somewhere on the planet, who can do better and take the now one-and-only top spot.[123]

Cybersectarianism is a new organizational form which involves: «highly dispersed small groups of practitioners that may remain largely anonymous within the larger social context and operate in relative secrecy, while still linked remotely to a larger network of believers who share a set of practices and texts, and often a common devotion to a particular leader. Overseas supporters provide funding and support; domestic practitioners distribute tracts, participate in acts of resistance, and share information on the internal situation with outsiders. Collectively, members and practitioners of such sects construct viable virtual communities of faith, exchanging personal testimonies and engaging in the collective study via email, online chat rooms, and web-based message boards.»[124] In particular, the British government has raised concerns about the prospect of young British Muslims being indoctrinated into Islamic extremism by material on the Internet, being persuaded to join terrorist groups such as the so-called «Islamic State», and then potentially committing acts of terrorism on returning to Britain after fighting in Syria or Iraq.

Cyberslacking can become a drain on corporate resources; the average UK employee spent 57 minutes a day surfing the Web while at work, according to a 2003 study by Peninsula Business Services.[125] Internet addiction disorder is excessive computer use that interferes with daily life. Nicholas G. Carr believes that Internet use has other effects on individuals, for instance improving skills of scan-reading and interfering with the deep thinking that leads to true creativity.[126]

Electronic business

Electronic business (e-business) encompasses business processes spanning the entire value chain: purchasing, supply chain management, marketing, sales, customer service, and business relationship. E-commerce seeks to add revenue streams using the Internet to build and enhance relationships with clients and partners. According to International Data Corporation, the size of worldwide e-commerce, when global business-to-business and -consumer transactions are combined, equate to $16 trillion for 2013. A report by Oxford Economics added those two together to estimate the total size of the digital economy at $20.4 trillion, equivalent to roughly 13.8% of global sales.[127]

While much has been written of the economic advantages of Internet-enabled commerce, there is also evidence that some aspects of the Internet such as maps and location-aware services may serve to reinforce economic inequality and the digital divide.[128] Electronic commerce may be responsible for consolidation and the decline of mom-and-pop, brick and mortar businesses resulting in increases in income inequality.[129][130][131]

Author Andrew Keen, a long-time critic of the social transformations caused by the Internet, has focused on the economic effects of consolidation from Internet businesses. Keen cites a 2013 Institute for Local Self-Reliance report saying brick-and-mortar retailers employ 47 people for every $10 million in sales while Amazon employs only 14. Similarly, the 700-employee room rental start-up Airbnb was valued at $10 billion in 2014, about half as much as Hilton Worldwide, which employs 152,000 people. At that time, Uber employed 1,000 full-time employees and was valued at $18.2 billion, about the same valuation as Avis Rent a Car and The Hertz Corporation combined, which together employed almost 60,000 people.[132]

Remote work

Remote work is facilitated by tools such as groupware, virtual private networks, conference calling, videotelephony, and VoIP so that work may be performed from any location, most conveniently the worker’s home. It can be efficient and useful for companies as it allows workers to communicate over long distances, saving significant amounts of travel time and cost. More workers have adequate bandwidth at home to use these tools to link their home to their corporate intranet and internal communication networks.

Collaborative publishing

Wikis have also been used in the academic community for sharing and dissemination of information across institutional and international boundaries.[133] In those settings, they have been found useful for collaboration on grant writing, strategic planning, departmental documentation, and committee work.[134] The United States Patent and Trademark Office uses a wiki to allow the public to collaborate on finding prior art relevant to examination of pending patent applications. Queens, New York has used a wiki to allow citizens to collaborate on the design and planning of a local park.[135] The English Wikipedia has the largest user base among wikis on the World Wide Web[136] and ranks in the top 10 among all Web sites in terms of traffic.[137]

Politics and political revolutions

Banner in Bangkok during the 2014 Thai coup d’état, informing the Thai public that ‘like’ or ‘share’ activities on social media could result in imprisonment (observed 30 June 2014)

The Internet has achieved new relevance as a political tool. The presidential campaign of Howard Dean in 2004 in the United States was notable for its success in soliciting donation via the Internet. Many political groups use the Internet to achieve a new method of organizing for carrying out their mission, having given rise to Internet activism, most notably practiced by rebels in the Arab Spring.[138][139] The New York Times suggested that social media websites, such as Facebook and Twitter, helped people organize the political revolutions in Egypt, by helping activists organize protests, communicate grievances, and disseminate information.[140]

Many have understood the Internet as an extension of the Habermasian notion of the public sphere, observing how network communication technologies provide something like a global civic forum. However, incidents of politically motivated Internet censorship have now been recorded in many countries, including western democracies.[141][142]

Philanthropy

The spread of low-cost Internet access in developing countries has opened up new possibilities for peer-to-peer charities, which allow individuals to contribute small amounts to charitable projects for other individuals. Websites, such as DonorsChoose and GlobalGiving, allow small-scale donors to direct funds to individual projects of their choice. A popular twist on Internet-based philanthropy is the use of peer-to-peer lending for charitable purposes. Kiva pioneered this concept in 2005, offering the first web-based service to publish individual loan profiles for funding. Kiva raises funds for local intermediary microfinance organizations that post stories and updates on behalf of the borrowers. Lenders can contribute as little as $25 to loans of their choice, and receive their money back as borrowers repay. Kiva falls short of being a pure peer-to-peer charity, in that loans are disbursed before being funded by lenders and borrowers do not communicate with lenders themselves.[143][144]

Security

Internet resources, hardware, and software components are the target of criminal or malicious attempts to gain unauthorized control to cause interruptions, commit fraud, engage in blackmail or access private information.

Malware

Malware is malicious software used and distributed via the Internet. It includes computer viruses which are copied with the help of humans, computer worms which copy themselves automatically, software for denial of service attacks, ransomware, botnets, and spyware that reports on the activity and typing of users. Usually, these activities constitute cybercrime. Defense theorists have also speculated about the possibilities of hackers using cyber warfare using similar methods on a large scale.[145]

Surveillance

The vast majority of computer surveillance involves the monitoring of data and traffic on the Internet.[146] In the United States for example, under the Communications Assistance For Law Enforcement Act, all phone calls and broadband Internet traffic (emails, web traffic, instant messaging, etc.) are required to be available for unimpeded real-time monitoring by Federal law enforcement agencies.[147][148][149] Packet capture is the monitoring of data traffic on a computer network. Computers communicate over the Internet by breaking up messages (emails, images, videos, web pages, files, etc.) into small chunks called «packets», which are routed through a network of computers, until they reach their destination, where they are assembled back into a complete «message» again. Packet Capture Appliance intercepts these packets as they are traveling through the network, in order to examine their contents using other programs. A packet capture is an information gathering tool, but not an analysis tool. That is it gathers «messages» but it does not analyze them and figure out what they mean. Other programs are needed to perform traffic analysis and sift through intercepted data looking for important/useful information. Under the Communications Assistance For Law Enforcement Act all U.S. telecommunications providers are required to install packet sniffing technology to allow Federal law enforcement and intelligence agencies to intercept all of their customers’ broadband Internet and VoIP traffic.[150]

The large amount of data gathered from packet capturing requires surveillance software that filters and reports relevant information, such as the use of certain words or phrases, the access of certain types of web sites, or communicating via email or chat with certain parties.[151] Agencies, such as the Information Awareness Office, NSA, GCHQ and the FBI, spend billions of dollars per year to develop, purchase, implement, and operate systems for interception and analysis of data.[152] Similar systems are operated by Iranian secret police to identify and suppress dissidents. The required hardware and software was allegedly installed by German Siemens AG and Finnish Nokia.[153]

Censorship

  Pervasive

  Substantial

  Selective

  Little or none

Some governments, such as those of Burma, Iran, North Korea, Mainland China, Saudi Arabia and the United Arab Emirates, restrict access to content on the Internet within their territories, especially to political and religious content, with domain name and keyword filters.[159]

In Norway, Denmark, Finland, and Sweden, major Internet service providers have voluntarily agreed to restrict access to sites listed by authorities. While this list of forbidden resources is supposed to contain only known child pornography sites, the content of the list is secret.[160] Many countries, including the United States, have enacted laws against the possession or distribution of certain material, such as child pornography, via the Internet, but do not mandate filter software. Many free or commercially available software programs, called content-control software are available to users to block offensive websites on individual computers or networks, in order to limit access by children to pornographic material or depiction of violence.

Performance

As the Internet is a heterogeneous network, the physical characteristics, including for example the data transfer rates of connections, vary widely. It exhibits emergent phenomena that depend on its large-scale organization.[161]

Traffic volume

Global Internet Traffic as of 2018

The volume of Internet traffic is difficult to measure, because no single point of measurement exists in the multi-tiered, non-hierarchical topology. Traffic data may be estimated from the aggregate volume through the peering points of the Tier 1 network providers, but traffic that stays local in large provider networks may not be accounted for.

Outages

An Internet blackout or outage can be caused by local signalling interruptions. Disruptions of submarine communications cables may cause blackouts or slowdowns to large areas, such as in the 2008 submarine cable disruption. Less-developed countries are more vulnerable due to a small number of high-capacity links. Land cables are also vulnerable, as in 2011 when a woman digging for scrap metal severed most connectivity for the nation of Armenia.[162] Internet blackouts affecting almost entire countries can be achieved by governments as a form of Internet censorship, as in the blockage of the Internet in Egypt, whereby approximately 93%[163] of networks were without access in 2011 in an attempt to stop mobilization for anti-government protests.[164]

Energy use

Estimates of the Internet’s electricity usage have been the subject of controversy, according to a 2014 peer-reviewed research paper that found claims differing by a factor of 20,000 published in the literature during the preceding decade, ranging from 0.0064 kilowatt hours per gigabyte transferred (kWh/GB) to 136 kWh/GB.[165] The researchers attributed these discrepancies mainly to the year of reference (i.e. whether efficiency gains over time had been taken into account) and to whether «end devices such as personal computers and servers are included» in the analysis.[165]

In 2011, academic researchers estimated the overall energy used by the Internet to be between 170 and 307 GW, less than two percent of the energy used by humanity. This estimate included the energy needed to build, operate, and periodically replace the estimated 750 million laptops, a billion smart phones and 100 million servers worldwide as well as the energy that routers, cell towers, optical switches, Wi-Fi transmitters and cloud storage devices use when transmitting Internet traffic.[166][167] According to a non-peer reviewed study published in 2018 by The Shift Project (a French think tank funded by corporate sponsors), nearly 4% of global CO2 emissions could be attributed to global data transfer and the necessary infrastructure.[168] The study also said that online video streaming alone accounted for 60% of this data transfer and therefore contributed to over 300 million tons of CO2 emission per year, and argued for new «digital sobriety» regulations restricting the use and size of video files.[169]

See also

  • Crowdfunding
  • Crowdsourcing
  • Darknet
  • Deep web
  • Freenet
  • Internet industry jargon
  • Index of Internet-related articles
  • Internet metaphors
  • Internet video
  • «Internets»
  • Open Systems Interconnection
  • Outline of the Internet

Notes

  1. ^ See Capitalization of Internet.
  2. ^ Despite the name, TCP/IP also includes UDP traffic, which is significant.[1]

References

  1. ^ Amogh Dhamdhere. «Internet Traffic Characterization». Retrieved 6 May 2022.
  2. ^ a b «A Flaw in the Design». The Washington Post. 30 May 2015. Archived from the original on 8 November 2020. Retrieved 20 February 2020. The Internet was born of a big idea: Messages could be chopped into chunks, sent through a network in a series of transmissions, then reassembled by destination computers quickly and efficiently. Historians credit seminal insights to Welsh scientist Donald W. Davies and American engineer Paul Baran. … The most important institutional force … was the Pentagon’s Advanced Research Projects Agency (ARPA) … as ARPA began work on a groundbreaking computer network, the agency recruited scientists affiliated with the nation’s top universities.
  3. ^ Stewart, Bill (January 2000). «Internet History – One Page Summary». The Living Internet. Archived from the original on 2 July 2014.
  4. ^ «#3 1982: the ARPANET community grows» in 40 maps that explain the internet Archived 6 March 2017 at the Wayback Machine, Timothy B. Lee, Vox Conversations, 2 June 2014. Retrieved 27 June 2014.
  5. ^ Strickland, Jonathan (3 March 2008). «How Stuff Works: Who owns the Internet?». Archived from the original on 19 June 2014. Retrieved 27 June 2014.
  6. ^ Hoffman, P.; Harris, S. (September 2006). The Tao of IETF: A Novice’s Guide to Internet Engineering Task Force. IETF. doi:10.17487/RFC4677. RFC 4677.
  7. ^ «New Seven Wonders panel». USA Today. 27 October 2006. Archived from the original on 15 July 2010. Retrieved 31 July 2010.
  8. ^ «Internetted». Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.) nineteenth-century use as an adjective.
  9. ^ «United States Army Field Manual FM 24-6 Radio Operator’s Manual Army Ground Forces June 1945». United States War Department.{{cite web}}: CS1 maint: url-status (link)
  10. ^ a b Cerf, Vint; Dalal, Yogen; Sunshine, Carl (December 1974). Specification of Internet Transmission Control Protocol. IETF. doi:10.17487/RFC0675. RFC 675.
  11. ^ a b c d Corbett, Philip B. (1 June 2016). «It’s Official: The ‘Internet’ Is Over». The New York Times. ISSN 0362-4331. Archived from the original on 14 October 2020. Retrieved 29 August 2020.
  12. ^ a b Herring, Susan C. (19 October 2015). «Should You Be Capitalizing the Word ‘Internet’?». Wired. ISSN 1059-1028. Archived from the original on 31 October 2020. Retrieved 29 August 2020.
  13. ^ Coren, Michael J. (2 June 2016). «One of the internet’s inventors thinks it should still be capitalized». Quartz. Archived from the original on 27 September 2020. Retrieved 8 September 2020.
  14. ^ «World Wide Web Timeline». Pews Research Center. 11 March 2014. Archived from the original on 29 July 2015. Retrieved 1 August 2015.
  15. ^ «HTML 4.01 Specification». World Wide Web Consortium. Archived from the original on 6 October 2008. Retrieved 13 August 2008. [T]he link (or hyperlink, or Web link) [is] the basic hypertext construct. A link is a connection from one Web resource to another. Although a simple concept, the link has been one of the primary forces driving the success of the Web.
  16. ^ Hauben, Michael; Hauben, Ronda (1997). «5 The Vision of Interactive Computing And the Future». Netizens: On the History and Impact of Usenet and the Internet (PDF). Wiley. ISBN 978-0-8186-7706-9. Archived (PDF) from the original on 3 January 2021. Retrieved 2 March 2020.
  17. ^ Zelnick, Bob; Zelnick, Eva (1 September 2013). The Illusion of Net Neutrality: Political Alarmism, Regulatory Creep and the Real Threat to Internet Freedom. Hoover Press. ISBN 978-0-8179-1596-4. Archived from the original on 10 January 2021. Retrieved 7 May 2020.
  18. ^ Peter, Ian (2004). «So, who really did invent the Internet?». The Internet History Project. Archived from the original on 3 September 2011. Retrieved 27 June 2014.
  19. ^ «Inductee Details — Paul Baran». National Inventors Hall of Fame. Archived from the original on 6 September 2017. Retrieved 6 September 2017; «Inductee Details — Donald Watts Davies». National Inventors Hall of Fame. Archived from the original on 6 September 2017. Retrieved 6 September 2017.
  20. ^ Kim, Byung-Keun (2005). Internationalising the Internet the Co-evolution of Influence and Technology. Edward Elgar. pp. 51–55. ISBN 978-1-84542-675-0.
  21. ^ Gromov, Gregory (1995). «Roads and Crossroads of Internet History». Archived from the original on 27 January 2016.
  22. ^ Hafner, Katie (1998). Where Wizards Stay Up Late: The Origins of the Internet. Simon & Schuster. ISBN 978-0-684-83267-8.
  23. ^ Hauben, Ronda (2001). «From the ARPANET to the Internet». Archived from the original on 21 July 2009. Retrieved 28 May 2009.
  24. ^ «Internet Pioneers Discuss the Future of Money, Books, and Paper in 1972». Paleofuture. 23 July 2013. Archived from the original on 17 October 2020. Retrieved 31 August 2020.
  25. ^ Townsend, Anthony (2001). «The Internet and the Rise of the New Network Cities, 1969–1999». Environment and Planning B: Planning and Design. 28 (1): 39–58. doi:10.1068/b2688. ISSN 0265-8135. S2CID 11574572.
  26. ^ «NORSAR and the Internet». NORSAR. Archived from the original on 21 January 2013.
  27. ^ Kirstein, P.T. (1999). «Early experiences with the Arpanet and Internet in the United Kingdom» (PDF). IEEE Annals of the History of Computing. 21 (1): 38–44. doi:10.1109/85.759368. ISSN 1934-1547. S2CID 1558618. Archived from the original (PDF) on 7 February 2020.
  28. ^ Leiner, Barry M. «Brief History of the Internet: The Initial Internetting Concepts». Internet Society. Archived from the original on 9 April 2016. Retrieved 27 June 2014.
  29. ^ Cerf, V.; Kahn, R. (1974). «A Protocol for Packet Network Intercommunication» (PDF). IEEE Transactions on Communications. 22 (5): 637–648. doi:10.1109/TCOM.1974.1092259. ISSN 1558-0857. Archived (PDF) from the original on 13 September 2006. The authors wish to thank a number of colleagues for helpful comments during early discussions of international network protocols, especially R. Metcalfe, R. Scantlebury, D. Walden, and H. Zimmerman; D. Davies and L. Pouzin who constructively commented on the fragmentation and accounting issues; and S. Crocker who commented on the creation and destruction of associations.
  30. ^ Leiner, Barry M.; Cerf, Vinton G.; Clark, David D.; Kahn, Robert E.; Kleinrock, Leonard; Lynch, Daniel C.; Postel, Jon; Roberts, Larry G.; Wolff, Stephen (2003). «A Brief History of Internet». Internet Society. p. 1011. arXiv:cs/9901011. Bibcode:1999cs……..1011L. Archived from the original on 4 June 2007. Retrieved 28 May 2009.
  31. ^ «The internet’s fifth man». The Economist. 30 November 2013. ISSN 0013-0613. Archived from the original on 19 April 2020. Retrieved 22 April 2020. In the early 1970s Mr Pouzin created an innovative data network that linked locations in France, Italy and Britain. Its simplicity and efficiency pointed the way to a network that could connect not just dozens of machines, but millions of them. It captured the imagination of Dr Cerf and Dr Kahn, who included aspects of its design in the protocols that now power the internet.
  32. ^ Schatt, Stan (1991). Linking LANs: A Micro Manager’s Guide. McGraw-Hill. p. 200. ISBN 0-8306-3755-9.
  33. ^ Frazer, Karen D. (1995). «NSFNET: A Partnership for High-Speed Networking, Final Report 1987–1995» (PDF). Merit Network, Inc. Archived from the original (PDF) on 10 February 2015.
  34. ^ Ben Segal (1995). «A Short History of Internet Protocols at CERN». Archived from the original on 19 June 2020. Retrieved 14 October 2011.
  35. ^ Réseaux IP Européens (RIPE)
  36. ^ «Internet History in Asia». 16th APAN Meetings/Advanced Network Conference in Busan. Archived from the original on 1 February 2006. Retrieved 25 December 2005.
  37. ^ «The History of NORDUnet» (PDF). Archived from the original (PDF) on 4 March 2016.
  38. ^ Clarke, Roger. «Origins and Nature of the Internet in Australia». Archived from the original on 9 February 2021. Retrieved 21 January 2014.
  39. ^ Zakon, Robert (November 1997). RFC 2235. IETF. p. 8. doi:10.17487/RFC2235. Retrieved 2 December 2020.
  40. ^ Inc, InfoWorld Media Group (25 September 1989). «InfoWorld». Archived from the original on 29 January 2017 – via Google Books.
  41. ^ «INTERNET MONTHLY REPORTS». February 1990. Archived from the original on 25 May 2017. Retrieved 28 November 2020.
  42. ^ Berners-Lee, Tim. «The Original HTTP as defined in 1991». W3C.org. Archived from the original on 5 June 1997.
  43. ^ «The website of the world’s first-ever web server». info.cern.ch. Archived from the original on 5 January 2010.
  44. ^ «Stanford Federal Credit Union Pioneers Online Financial Services» (Press release). 21 June 1995. Archived from the original on 21 December 2018. Retrieved 21 December 2018.
  45. ^ «History — About us — OP Group». Archived from the original on 21 December 2018. Retrieved 21 December 2018.
  46. ^ Harris, Susan R.; Gerich, Elise (April 1996). «Retiring the NSFNET Backbone Service: Chronicling the End of an Era». ConneXions. 10 (4). Archived from the original on 17 August 2013.
  47. ^ «Measuring digital development: Facts and figures 2021». Telecommunication Development Bureau, International Telecommunication Union (ITU). Retrieved 16 November 2022.
  48. ^ «Total Midyear Population for the World: 1950-2050»«. International Programs Center for Demographic and Economic Studies, U.S. Census Bureau. Archived from the original on 17 April 2017. Retrieved 28 February 2020.
  49. ^ Jindal, R. P. (2009). «From millibits to terabits per second and beyond — Over 60 years of innovation». 2009 2nd International Workshop on Electron Devices and Semiconductor Technology: 1–6. doi:10.1109/EDST.2009.5166093. ISBN 978-1-4244-3831-0. S2CID 25112828. Archived from the original on 23 August 2019. Retrieved 24 August 2019.
  50. ^ Ward, Mark (3 August 2006). «How the web went world wide». Technology Correspondent. BBC News. Archived from the original on 21 November 2011. Retrieved 24 January 2011.
  51. ^ «Brazil, Russia, India and China to Lead Internet Growth Through 2011». Clickz.com. Archived from the original on 4 October 2008. Retrieved 28 May 2009.
  52. ^ Coffman, K.G; Odlyzko, A.M. (2 October 1998). «The size and growth rate of the Internet» (PDF). AT&T Labs. Archived from the original (PDF) on 14 June 2007. Retrieved 21 May 2007.
  53. ^ Comer, Douglas (2006). The Internet book. Prentice Hall. p. 64. ISBN 978-0-13-233553-9.
  54. ^ «World Internet Users and Population Stats». Internet World Stats. Miniwatts Marketing Group. 22 June 2011. Archived from the original on 23 June 2011. Retrieved 23 June 2011.
  55. ^ Hilbert, Martin; López, Priscila (April 2011). «The World’s Technological Capacity to Store, Communicate, and Compute Information». Science. 332 (6025): 60–65. Bibcode:2011Sci…332…60H. doi:10.1126/science.1200970. PMID 21310967. S2CID 206531385. Archived (PDF) from the original on 31 May 2011.
  56. ^ Klein, Hans (2004). «ICANN and Non-Territorial Sovereignty: Government Without the Nation State». Internet and Public Policy Project. Georgia Institute of Technology. Archived from the original on 24 May 2013.
  57. ^ Packard, Ashley (2010). Digital Media Law. Wiley-Blackwell. p. 65. ISBN 978-1-4051-8169-3.
  58. ^ McCarthy, Kieren (1 July 2005). «Bush administration annexes internet». The Register. Archived from the original on 19 September 2011.
  59. ^ Mueller, Milton L. (2010). Networks and States: The Global Politics of Internet Governance. MIT Press. p. 61. ISBN 978-0-262-01459-5.
  60. ^ «ICG Applauds Transfer of IANA Stewardship». IANA Stewardship Transition Coordination Group (ICG). Archived from the original on 12 July 2017. Retrieved 8 June 2017.
  61. ^ «Internet Society (ISOC) All About The Internet: History of the Internet». ISOC. Archived from the original on 27 November 2011. Retrieved 19 December 2013.
  62. ^ Pasternak, Sean B. (7 March 2006). «Toronto Hydro to Install Wireless Network in Downtown Toronto». Bloomberg. Archived from the original on 10 April 2006. Retrieved 8 August 2011.
  63. ^ «Mobile and Tablet Internet Usage Exceeds Desktop for First Time Worldwide». StatCounter: Global Stats, Press Release. 1 November 2016. Archived from the original on 1 November 2016. StatCounter Global Stats finds that mobile and tablet devices accounted for 51.3% of Internet usage worldwide in October compared to 48.7% by desktop.
  64. ^ «World Telecommunication/ICT Indicators Database 2020 (24th Edition/July 2020)». International Telecommunication Union (ITU). 2017a. Archived from the original on 21 April 2019. Key ICT indicators for developed and developing countries and the world (totals and penetration rates). World Telecommunication/ICT Indicators database
  65. ^ a b World Trends in Freedom of Expression and Media Development Global Report 2017/2018 (PDF). UNESCO. 2018. Archived (PDF) from the original on 20 September 2018. Retrieved 29 May 2018.
  66. ^ a b «GSMA The Mobile Economy 2019 — The Mobile Economy». 11 March 2019. Archived from the original on 11 March 2019. Retrieved 28 November 2020.
  67. ^ Galpaya, Helani (12 April 2019). «Zero-rating in Emerging Economies» (PDF). Global Commission on Internet Governance. Archived (PDF) from the original on 12 April 2019. Retrieved 28 November 2020.
  68. ^ «Alliance for Affordable Internet (A4AI). 2015. Models of Mobile Data Services in Developing Countries. Research brief. The Impacts of Emerging Mobile Data Services in Developing Countries».[dead link]
  69. ^ Alison GillwAld, ChenAi ChAir, Ariel Futter, KweKu KorAntenG, FolA oduFuwA, John wAlubenGo (12 September 2016). «Much Ado About Nothing? Zero Rating in the African Context» (PDF). Researchictafrica. Archived (PDF) from the original on 16 December 2020. Retrieved 28 November 2020.{{cite web}}: CS1 maint: multiple names: authors list (link)
  70. ^ a b J. Postel, ed. (September 1981). Internet Protocol, DARPA Internet Program Protocol Specification. IETF. doi:10.17487/RFC0791. RFC 791. Updated by RFC 1349, 2474, 6864
  71. ^ Huston, Geoff. «IPv4 Address Report, daily generated». Archived from the original on 1 April 2009. Retrieved 20 May 2009.
  72. ^ S. Deering; R. Hinden (December 1995). Internet Protocol, Version 6 (IPv6) Specification. Network Working Group. doi:10.17487/RFC1883. RFC 1883.
  73. ^ S. Deering; R. Hinden (December 1998). Internet Protocol, Version 6 (IPv6) Specification. Network Working Group. doi:10.17487/RFC2460. RFC 2460.
  74. ^ S. Deering; R. Hinden (July 2017). Internet Protocol, Version 6 (IPv6) Specification. IETF. doi:10.17487/RFC8200. RFC 8200.
  75. ^ «Notice of Internet Protocol version 4 (IPv4) Address Depletion» (PDF). Archived from the original (PDF) on 7 January 2010. Retrieved 7 August 2009.
  76. ^ Jeffrey Mogul; Jon Postel (August 1985). Internet Standard Subnetting Procedure. IETF. doi:10.17487/RFC0950. RFC 950. Updated by RFC 6918.
  77. ^ Fisher, Tim. «How to Find Your Default Gateway IP Address». Lifewire. Archived from the original on 25 February 2019. Retrieved 25 February 2019.
  78. ^ «Default Gateway». techopedia.com. Archived from the original on 26 October 2020.
  79. ^ «IETF Home Page». Ietf.org. Archived from the original on 18 June 2009. Retrieved 20 June 2009.
  80. ^ «The Difference Between the Internet and the World Wide Web». Webopedia.com. QuinStreet Inc. 24 June 2010. Archived from the original on 2 May 2014. Retrieved 1 May 2014.
  81. ^ «IAB Internet advertising revenue report: 2012 full year results» (PDF). PricewaterhouseCoopers, Internet Advertising Bureau. April 2013. Archived from the original (PDF) on 4 October 2014. Retrieved 12 June 2013.
  82. ^ Brown, Ron (26 October 1972). «Fax invades the mail market». New Scientist. 56 (817): 218–221.
  83. ^ Luckett, Herbert P. (March 1973). «What’s News: Electronic-mail delivery gets started». Popular Science. 202 (3): 85.
  84. ^ Booth, C (2010). «Chapter 2: IP Phones, Software VoIP, and Integrated and Mobile VoIP». Library Technology Reports. 46 (5): 11–19.
  85. ^ Morrison, Geoff (18 November 2010). «What to know before buying a ‘connected’ TV – Technology & science – Tech and gadgets – Tech Holiday Guide». NBC News. Archived from the original on 12 February 2020. Retrieved 8 August 2011.
  86. ^ «Press — YouTube». www.youtube.com. Archived from the original on 11 November 2017. Retrieved 19 August 2020.
  87. ^ «YouTube now defaults to HTML5 <video>». YouTube Engineering and Developers Blog. Archived from the original on 10 September 2018. Retrieved 10 September 2018.
  88. ^ Ritchie, Hannah; Roser, Max (2 October 2017). «Technology Adoption». Our World in Data. Archived from the original on 12 October 2019. Retrieved 12 October 2019.
  89. ^ «Individuals using the Internet 2005 to 2014» Archived 28 May 2015 at the Wayback Machine, Key ICT indicators for developed and developing countries and the world (totals and penetration rates), International Telecommunication Union (ITU). Retrieved 25 May 2015.
  90. ^ «Internet users per 100 inhabitants 1997 to 2007» Archived 17 May 2015 at the Wayback Machine, ICT Data and Statistics (IDS), International Telecommunication Union (ITU). Retrieved 25 May 2015.
  91. ^ Internet users graphs Archived 9 May 2020 at the Wayback Machine, Market Information and Statistics, International Telecommunication Union
  92. ^ «Google Earth demonstrates how technology benefits RI’s civil society, govt». Antara News. 26 May 2011. Archived from the original on 29 October 2012. Retrieved 19 November 2012.
  93. ^ Steve Dent. «There are now 3 billion Internet users, mostly in rich countries». Archived from the original on 28 November 2014. Retrieved 25 November 2014.
  94. ^ «Statistical Report on Internet Development in China» (PDF). Cnnic.com. January 2018. Archived (PDF) from the original on 12 April 2019.
  95. ^ «World Internet Users Statistics and 2019 World Population Stats». internetworldstats.com. Archived from the original on 24 November 2017. Retrieved 17 March 2019.
  96. ^ «Digital 2020: 3.8 billion people use social media». 30 January 2020. Archived from the original on 17 April 2020. Retrieved 25 April 2020.
  97. ^ «Internet». Encyclopædia Britannica. Archived from the original on 21 March 2021. Retrieved 19 March 2021.
  98. ^ a b «Number of Internet Users by Language». Internet World Stats, Miniwatts Marketing Group. 31 May 2011. Archived from the original on 26 April 2012. Retrieved 22 April 2012.
  99. ^ «World Internet Usage Statistics News and Population Stats». 30 June 2010. Archived from the original on 19 March 2017. Retrieved 20 February 2011.
  100. ^ How men and women use the Internet Pew Research Center 28 December 2005
  101. ^ «Rapleaf Study on Social Network Users». Archived from the original on 20 March 2009.
  102. ^ «Women Ahead of Men in Online Tv, Dvr, Games, And Social Media». Entrepreneur.com. 1 May 2008. Archived from the original on 16 September 2008. Retrieved 8 August 2011.
  103. ^ «Technorati’s State of the Blogosphere». Technorati. Archived from the original on 2 October 2009. Retrieved 8 August 2011.
  104. ^ a b «Percentage of Individuals using the Internet 2000–2012» Archived 9 February 2014 at the Wayback Machine, International Telecommunication Union (Geneva), June 2013. Retrieved 22 June 2013.
  105. ^ Seese, Michael (2009). Scrappy Information Security. p. 130. ISBN 978-1-60005-132-6. Archived from the original on 5 September 2017. Retrieved 5 June 2015.
  106. ^ netizen Archived 21 April 2012 at the Wayback Machine, Dictionary.com
  107. ^ Hauben, Michael. «The Net and Netizens». Columbia University. Archived from the original on 4 June 2011.
  108. ^ «A Brief History of the Internet». the Internet Society. Archived from the original on 4 June 2007.
  109. ^ «Oxford Dictionaries – internaut». oxforddictionaries.com. Archived from the original on 13 June 2015. Retrieved 6 June 2015.
  110. ^ Mossberger, Karen; Tolbert, Caroline J.; McNeal, Ramona S. (23 November 2011). Digital Citizenship – The Internet, Society and Participation. ISBN 978-0-8194-5606-9.
  111. ^ «Usage of content languages for websites». W3Techs.com. Archived from the original on 31 March 2012. Retrieved 26 April 2013.
  112. ^ «Fixed (wired)-broadband subscriptions per 100 inhabitants 2012» Archived 26 July 2019 at the Wayback Machine, Dynamic Report, ITU ITC EYE, International Telecommunication Union. Retrieved 29 June 2013.
  113. ^ «Active mobile-broadband subscriptions per 100 inhabitants 2012» Archived 26 July 2019 at the Wayback Machine, Dynamic Report, ITU ITC EYE, International Telecommunication Union. Retrieved 29 June 2013.
  114. ^ Reips, U.-D. (2008). «How Internet-mediated research changes science». Psychological aspects of cyberspace: Theory, research, applications. Cambridge: Cambridge University Press. pp. 268–294. ISBN 9780521694643. Archived from the original on 9 August 2014.
  115. ^ «The Virtual Private Nightmare: VPN». Librenix. 4 August 2004. Archived from the original on 15 May 2011. Retrieved 21 July 2010.
  116. ^ Dariusz Jemielniak; Aleksandra Przegalinska (18 February 2020). Collaborative Society. MIT Press. ISBN 978-0-262-35645-9. Archived from the original on 23 November 2020. Retrieved 26 November 2020.
  117. ^ Moore, Keith (27 July 2013). «Twitter ‘report abuse’ button calls after rape threats». BBC News. Archived from the original on 4 September 2014. Retrieved 7 December 2014.
  118. ^ Kessler, Sarah (11 October 2010). «5 Fun and Safe Social Networks for Children». Mashable. Archived from the original on 20 December 2014. Retrieved 7 December 2014.
  119. ^ Goldman, Russell (22 January 2008). «Do It Yourself! Amateur Porn Stars Make Bank». ABC News. Archived from the original on 30 December 2011.
  120. ^ Spohn, Dave (15 December 2009). «Top Online Game Trends of the Decade». About.com. Archived from the original on 29 September 2011.
  121. ^ Spohn, Dave (2 June 2011). «Internet Game Timeline: 1963 – 2004». About.com. Archived from the original on 25 April 2006.
  122. ^ Carole Hughes; Boston College. «The Relationship Between Internet Use and Loneliness Among College Students». Boston College. Archived from the original on 7 November 2015. Retrieved 11 August 2011.
  123. ^ Barker, Eric (2017). Barking Up the Wrong Tree. HarperCollins. pp. 235–6. ISBN 9780062416049.
  124. ^ Thornton, Patricia M. (2003). «The New Cybersects: Resistance and Repression in the Reform era». In Perry, Elizabeth; Selden, Mark (eds.). Chinese Society: Change, Conflict and Resistance (2 ed.). London and New York: Routledge. pp. 149–150. ISBN 9780415560740.
  125. ^ «Net abuse hits small city firms». The Scotsman. Edinburgh. 11 September 2003. Archived from the original on 20 October 2012. Retrieved 7 August 2009.
  126. ^ Carr, Nicholas G. (7 June 2010). The Shallows: What the Internet Is Doing to Our Brains. W.W. Norton. p. 276. ISBN 978-0393072228.
  127. ^ «The New Digital Economy: How it will transform business» (PDF). Oxford Economics. 2 July 2011. Archived from the original (PDF) on 6 July 2014.
  128. ^ Badger, Emily (6 February 2013). «How the Internet Reinforces Inequality in the Real World». The Atlantic. Archived from the original on 11 February 2013. Retrieved 13 February 2013.
  129. ^ «E-commerce will make the shopping mall a retail wasteland». ZDNet. 17 January 2013. Archived from the original on 19 February 2013.
  130. ^ «‘Free Shipping Day’ Promotion Spurs Late-Season Online Spending Surge, Improving Season-to-Date Growth Rate to 16 Percent vs. Year Ago». Comscore. 23 December 2012. Archived from the original on 28 January 2013.
  131. ^ «The Death of the American Shopping Mall». The Atlantic – Cities. 26 December 2012. Archived from the original on 15 February 2013.
  132. ^ Harris, Michael (2 January 2015). «Book review: ‘The Internet Is Not the Answer’ by Andrew Keen». The Washington Post. Archived from the original on 20 January 2015. Retrieved 25 January 2015.
  133. ^ MM Wanderley; D Birnbaum; J Malloch (2006). New Interfaces For Musical Expression. IRCAM – Centre Pompidou. p. 180. ISBN 978-2-84426-314-8.
  134. ^ Nancy T. Lombardo (June 2008). «Putting Wikis to Work in Libraries». Medical Reference Services Quarterly. 27 (2): 129–145. doi:10.1080/02763860802114223. PMID 18844087. S2CID 11552140.
  135. ^ Noveck, Beth Simone (March 2007). «Wikipedia and the Future of Legal Education». Journal of Legal Education. 57 (1). Archived from the original on 3 July 2014.(subscription required)
  136. ^ «WikiStats by S23». S23Wiki. 3 April 2008. Archived from the original on 25 August 2014. Retrieved 7 April 2007.
  137. ^ «Alexa Web Search – Top 500». Alexa Internet. Archived from the original on 2 March 2015. Retrieved 2 March 2015.
  138. ^ «The Arab Uprising’s Cascading Effects». Miller-mccune.com. 23 February 2011. Archived from the original on 27 February 2011. Retrieved 27 February 2011.
  139. ^ «The Role of the Internet in Democratic Transition: Case Study of the Arab Spring» (PDF). 5 July 2012. Archived from the original (PDF) on 5 July 2012., Davit Chokoshvili, Master’s Thesis, June 2011
  140. ^ Kirkpatrick, David D. (9 February 2011). «Wired and Shrewd, Young Egyptians Guide Revolt». The New York Times. Archived from the original on 29 January 2017.
  141. ^ Ronald Deibert; John Palfrey; Rafal Rohozinski; Jonathan Zittrain (25 January 2008). Access Denied: The Practice and Policy of Global Internet Filtering. MIT Press. ISBN 978-0-262-29072-2.
  142. ^ Larry Diamond; Marc F. Plattner (30 July 2012). Liberation Technology: Social Media and the Struggle for Democracy. JHU Press. ISBN 978-1-4214-0568-1.
  143. ^ Roodman, David (2 October 2009). «Kiva Is Not Quite What It Seems». Center for Global Development. Archived from the original on 10 February 2010. Retrieved 16 January 2010.
  144. ^ Strom, Stephanie (9 November 2009). «Confusion on Where Money Lent via Kiva Goes». The New York Times. p. 6. Archived from the original on 29 January 2017.
  145. ^ Andriole, Steve. «Cyberwarfare Will Explode In 2020 (Because It’s Cheap, Easy And Effective)». Forbes. Retrieved 18 May 2021.
  146. ^ Diffie, Whitfield; Susan Landau (August 2008). «Internet Eavesdropping: A Brave New World of Wiretapping». Scientific American. Archived from the original on 13 November 2008. Retrieved 13 March 2009.
  147. ^ «CALEA Archive». Electronic Frontier Foundation (website). Archived from the original on 25 October 2008. Retrieved 14 March 2009.
  148. ^ «CALEA: The Perils of Wiretapping the Internet». Electronic Frontier Foundation (website). Archived from the original on 16 March 2009. Retrieved 14 March 2009.
  149. ^ «CALEA: Frequently Asked Questions». Electronic Frontier Foundation (website). 20 September 2007. Archived from the original on 1 May 2009. Retrieved 14 March 2009.
  150. ^ «American Council on Education vs. FCC, Decision, United States Court of Appeals for the District of Columbia Circuit» (PDF). 9 June 2006. Archived from the original (PDF) on 7 September 2012. Retrieved 8 September 2013.
  151. ^ Hill, Michael (11 October 2004). «Government funds chat room surveillance research». USA Today. Associated Press. Archived from the original on 11 May 2010. Retrieved 19 March 2009.
  152. ^ McCullagh, Declan (30 January 2007). «FBI turns to broad new wiretap method». ZDNet News. Archived from the original on 7 April 2010. Retrieved 13 March 2009.
  153. ^ «First round in Internet war goes to Iranian intelligence». Debkafile. 28 June 2009. Archived from the original on 21 December 2013.
  154. ^ «Freedom on the Net 2018» (PDF). Freedom House. November 2018. Archived from the original (PDF) on 1 November 2018. Retrieved 1 November 2018.
  155. ^ OpenNet Initiative «Summarized global Internet filtering data spreadsheet» Archived 10 January 2012 at the Wayback Machine, 8 November 2011 and «Country Profiles» Archived 26 August 2011 at the Wayback Machine, the OpenNet Initiative is a collaborative partnership of the Citizen Lab at the Munk School of Global Affairs, University of Toronto; the Berkman Center for Internet & Society at Harvard University; and the SecDev Group, Ottawa
  156. ^ Due to legal concerns the OpenNet Initiative does not check for filtering of child pornography and because their classifications focus on technical filtering, they do not include other types of censorship.
  157. ^ «Enemies of the Internet 2014: Entities at the heart of censorship and surveillance». Reporters Without Borders. Paris. 11 March 2014. Archived from the original on 12 March 2014.
  158. ^ «Internet Enemies» (PDF). Reporters Without Borders. Paris. 12 March 2012. Archived from the original (PDF) on 3 July 2017.
  159. ^ Deibert, Ronald J.; Palfrey, John G.; Rohozinski, Rafal; Zittrain, Jonathan (April 2010). Access Controlled: The Shaping of Power, Rights, and Rule in Cyberspace. MIT Press. ISBN 9780262514354. Archived from the original on 4 June 2011.
  160. ^ «Finland censors anti-censorship site». The Register. 18 February 2008. Archived from the original on 20 February 2008. Retrieved 19 February 2008.
  161. ^ Albert, Réka; Jeong, Hawoong; Barabási, Albert-László (9 September 1999). «Diameter of the World-Wide Web». Nature. 401 (6749): 130–131. arXiv:cond-mat/9907038. Bibcode:1999Natur.401..130A. doi:10.1038/43601. S2CID 4419938.
  162. ^ «Georgian woman cuts off web access to whole of Armenia». The Guardian. 6 April 2011. Archived from the original on 25 August 2013. Retrieved 11 April 2012.
  163. ^ Cowie, James. «Egypt Leaves the Internet». Renesys. Archived from the original on 28 January 2011. Retrieved 28 January 2011.
  164. ^ «Egypt severs internet connection amid growing unrest». BBC News. 28 January 2011. Archived from the original on 23 January 2012.
  165. ^ a b Coroama, Vlad C.; Hilty, Lorenz M. (February 2014). «Assessing Internet energy intensity: A review of methods and results» (PDF). Environmental Impact Assessment Review. 45: 63–68. doi:10.1016/j.eiar.2013.12.004. Archived (PDF) from the original on 23 September 2020. Retrieved 9 March 2020.
  166. ^ Giles, Jim (26 October 2011). «Internet responsible for 2 per cent of global energy usage». New Scientist. Archived from the original on 1 October 2014.,
  167. ^ Raghavan, Barath; Ma, Justin (14 November 2011). «The Energy and Emergy of the Internet» (PDF). Proceedings of the 10th ACM Workshop on Hot Topics in Networks. Cambridge, MA.: ACM SIGCOMM: 1–6. doi:10.1145/2070562.2070571. ISBN 9781450310598. S2CID 6125953. Archived from the original (PDF) on 10 August 2014.
  168. ^ Cwienk, Jeannette (11 July 2019). «Is Netflix bad for the environment? How streaming video contributes to climate change | DW | 11.07.2019». Deutsche Welle. Archived from the original on 12 July 2019. Retrieved 19 July 2019.
  169. ^ ««Climate crisis: The Unsustainable Use of Online Video» : Our new report». The Shift Project. 10 July 2019. Archived from the original on 21 July 2019. Retrieved 19 July 2019.

Sources

  • Definition of Free Cultural Works logo notext.svg This article incorporates text from a free content work. . Text taken from World Trends in Freedom of Expression and Media Development Global Report 2017/2018​, 202, UNESCO. To learn how to add open license text to Wikipedia articles, please see this how-to page. For information on reusing text from Wikipedia, please see the terms of use.

Further reading

  • First Monday, a peer-reviewed journal on the Internet by the University Library of the University of Illinois at Chicago, ISSN 1396-0466
  • The Internet Explained, Vincent Zegna & Mike Pepper, Sonet Digital, November 2005, pp. 1–7.
  • Abram, Cleo (8 January 2020). «How Does the Internet Work?». YouTube. Vox Media. Archived from the original on 27 October 2021. Retrieved 30 August 2020.
  • Castells, Manuel (2010). The Rise of the Network Society. Wiley. ISBN 9781405196864.

External links

  • The Internet Society
  • Living Internet, Internet history and related information, including information from many creators of the Internet

Here’s what the Internet full form stands for:

Internet doesn’t stand for International Network or Interconnected Network—neither is correct.

The word Internet is a combination of the prefix inter-, from the Latin word inter meaning between or among, and net which is short for network.

So Internet simply stands for among or between networks.

So if you want to learn all about what the Internet stands for exactly, then this article is for you.

Without further ado, let’s do this!

INTERNET Full Form: Stands For What? (+ Interesting Facts)

What Does Internet Stand For?

The Internet is one of the most important technological advances in the history of man.

As a result, people often wonder where the word came from and what it means.

In fact, there are a number of myths about the word’s origins.

Some people think that it is an abbreviation for “International Network,” and others claim that it is short for “Interconnected network.” The reality is that it is neither.

The word “Internet” is a combination of the prefix “inter-,“ from the Latin word “inter” meaning “between” or “among,” and “net” which is short for “network.”

So Internet simply means, “among or between networks.”

How Did the Concept of the Internet Start & Evolve?

The concept that later became the Internet was born in August of 1962, in memos by J.C.R Licklider of MIT.

He discussed his vision of the concept whereby a set of computers could be interconnected on a global level, thereby providing access to programs and data to people in different locations.

In October of the same year, he became the head of the computer research program at the Defense Advanced Research Projects Agency (DARPA), and he convinced his successors, including Lawrence G. Roberts, that the Internet was an important concept.

In 1967, Roberts published a plan for the “ARPANET,” the predecessor to the Internet, and in 1968, Roberts and his team began to develop one of the most important components: the packet switches that would be used in place of circuits to allow communication between remote computers.

In 1969, the first computer-to-computer message was successfully sent, and the following years saw more and more computers added to the ARPANET.

By 1972, network users were able to develop applications to use on ARPANET, and in this same year, “electronic mail” was introduced. It took off, and people began to see the possibilities ahead.

The Beginning of the Internet

The original ARPANET system was a closed architecture network, so one method joined networks together, and there was a computer-to-computer connection where bits of information could be shared.

Bob Kahn played a huge role in designing this system, and he introduced the concept of “internetting,” which is an open network architecture that allows networks that are designed and developed separately.

The concept of “internetting” was that different networks with unique designs and functions could communicate and share applications.

The design of ARPANET was not sufficient for this open-architecture network, so Kahn decided to create a new protocol that could meet its needs.

This protocol is the Transmission Control Protocol/Internet Protocol (TCP/IP).

It would function more similarly to a communications protocol than a device driver.

In 1973, he invited Stanford researcher Vincent Cerf to help him design the protocol.

They published a paper for the International Network Working Group (INWG) in 1973, and the term “Internet” was born.

Growth of the Internet

As researchers explored ways to improve and further develop the Internet, other technologies including LANs, PCs, and workstations were developed.

TCPs were improved to accommodate different application suites and performance objectives of different devices, which showed that workstations and personal computers could be a part of the Internet.

As the Internet grew, the number of hosts grew along with it, and there was a need to allow networks to be independently managed.

The Domain Name System (DNS) was created by Paul Mockapetris. With this change, the routers had trouble keeping up, so the system of routing was replaced by the Exterior Gateway Protocol (EGP), which tied different regions together.

By 1985, the Internet was a well-established technology that connected a number of developers and researchers, and it was being used in various communities for email and other communications.

During this time, other computer researchers were working on other networking, but they were mostly closed within their respective communities.

In fact, universities that received funding were required to make the Internet available to all qualified users on their campuses.

Since then, the amount of Internet users has grown at a steady rate in all regions of the world.

In 2009, Internet penetration in Africa was the worldwide lowest at 7.6% but it eventually grew to 28.2% in 2019.

Internet Penetration Rate Worldwide From 2009 to 2019, By Region

[ITU]

As of 2019, Europe had the highest Internet penetration worldwide with 82.5% of its population having access to the Internet.

The Internet Is Defined

The Internet began to grow and experience technological advances for the next 10 years, and more and more communities became connected.

On October 24, 1995, the FNC (Federal networking Council) passed a resolution that defined the term Internet:

  • RESOLUTION: The Federal Networking Council (FNC) agrees that the following language reflects our definition of the term “Internet.”
    • “Internet” refers to the global information system that:
      • (i) is logically linked together by a globally unique address space based on the Internet Protocol (IP) or its subsequent extensions/follow-ons;
      • (ii) is able to support communications using the Transmission Control Protocol/Internet Protocol (TCP/IP) suite or its subsequent extensions/follow-ons, and/or other IP-compatible protocols, and;
      • (iii) provides, uses, or makes accessible, either publicly or privately, high-level services layered on the communications and related infrastructure described herein.

The Internet Today

The Internet today has grown beyond email, web pages, and discussion boards to incorporate places where people collaborate, engage in commerce, and share.

Social media has transformed all aspects of society in terms of marketing, political campaigns, the news, and more.

If you want to see just how widespread use of the Internet is, check out Internet Live Stats, a website that shows live counters of Internet users in the world and on websites, email, and more.

At this moment, there are 4,467,484,737 Internet users according to the site.

What Is the Internet Today?

blue devices top view blog 3d rendering. Some elements furnished.

The Internet has evolved from a concept of connecting remote computers to a huge global network system that links millions of computers.

These networks serve government, business, academic, private, and public purposes, and data is exchanged worldwide through these connections.

The Internet is no longer limited to computer connections; many devices—including smartphones, tablets, video consoles, TVs, and more—can use an Internet connection to access and share information.

People can send emails, access websites, make purchases, collaborate, watch movies, play games, and so much more.

In fact, businesses have even utilized the Internet for their marketing strategies through social media marketing.

There are various social networking sites available but Facebook remains at the top as the most commonly used social media platform worldwide, with 94% of social media marketers using the said network to promote their business.

Common Social Media Platforms Used by Marketers Worldwide as of January 2020

[Social Media Examiner]

The Internet has transformed the way people live.

Politicians offer live streams via the Internet, and people Tweet their opinions.

So much information is readily available within seconds, and people can communicate with friends and family anywhere in the world at no cost.

People can collaborate from remote locations, making the world even more accessible.

What Are the Important Features of the Internet? (3 Applications)

The Internet is a carrier for many of the applications that people use in everyday life including e-commerce, email, online chat, file sharing, file transfer, text and multimedia data, online gaming, and more.

The Internet is the means by which the following applications are shared.

Take a look:

#1 Email

The email was created around the same time as the Internet.

Today, almost everyone on the planet has an email address, and there are many choices for getting one.

Email addresses can be free from providers such as Google or Yahoo, or they can be self-hosted with someone’s specific web address.

#2 E-Commerce

E-commerce has been revolutionary for businesses and consumers alike.

E-commerce sites allow consumers to shop from home which can drastically reduce businesses’ operating costs or supplement their brick-and-mortar presence.

Small businesses worldwide have become more successful because of the Internet since they can reach a wide audience.

#3 File Transfer and File Sharing

The Internet was created for the purpose of file transfer and file sharing, and today it is easier than ever before.

Large files can be uploaded for recipients, and email attachments can be sent with ease.

It is easier and more reliable to keep records and collaborate.

Is the Internet the Same as the WWW?

The WWW is an acronym for the World Wide Web. The WWW is not the same thing as the Internet.

The Internet is the protocol that allows for the interconnectivity of networks, and the WWW is an application that uses the Internet.

The WWW is basically an information system that identifies links with URLs (Uniform Resource Locators), and they are accessible over the Internet.

Each website has a distinct URL.

Why Do People Think That Internet Means “Interconnected Network”?

Some people claim that the Internet’s full form is “Interconnected Network.”

This is a logical explanation for the term, as the Internet is made up of many different networks that can access and share information.

However, it is a common misconception because the term was first coined from “Internetting,” which referred to connecting different networks.

Why Do People Think That Internet Means “International Network”?

In 1973, Bob Kahn and Vincent Cerf published a paper on the concept of internetting on an open architecture network by way of a TCP/IP.

They presented this paper to the International Network Working Group (INWG), and this was truly the beginning of the Internet that we know today.

As a result, some people mistakenly think that the term Internet came from the first two words in the group’s name, International network.

However, this is not the case. Kahn and Cerf had already referred to their new open-architecture process as “internetting,” and Internet was simply the noun form of that term.

Internet is a combination of the Latin prefix, “inter-“ and the shortened form of the word network, “net.”

Together, it means among or between networks, and the idea was that different network systems could communicate and share information.

What Are Other Vital Tech Words and Their Meanings?

Here’s a list of particularly interesting tech acronyms—or maybe they’re not even acronyms?

Learn what these stand for:

  • GOOGLE full form: what does it stand for?
  • COMPUTER full form: what does it stand for?
  • WI-FI full form: what does it stand for?

Internet is the foremost important tool and the prominent resource that is being used by almost every person across the globe. It connects millions of computers, webpages, websites, and servers. Using the internet we can send emails, photos, videos, messages to our loved ones. Or in other words, the internet is a widespread interconnected network of computers and electronics devices(that support internet). It creates a communication medium to share and get information online. If your device is connected to the Internet then only you will be able to access all the applications, websites, social media apps, and many more services. Internet nowadays is considered as the fastest medium for sending and receiving information.

Origin Of Internet: The internet came in the year 1960 with the creation of the first working model called ARPANET (Advanced Research Projects Agency). It allowed multiple computers to work on a single network that was their biggest achievement at that time. ARPANET use packet switching to communicate multiple computer systems under a single network. In October 1969, using ARPANET first message was transferred from one computer to another. After that technology continues to grow. 

How is the Internet set up?

The internet is set up with the help of physical optical fiber data transmission cables or copper wires and various other networking mediums like LAN, WAN, MAN, etc. For accessing the Internet even the 2g, 3g, and 4g services and the wifi require these physical cable setup to access the Internet. There is an authority named ICANN (Internet Corporation for Assigned Names and Numbers) located in the USA which manages the Internet and protocols related to it like IP addresses.

How does the internet works?

The actual working of the internet takes place with the help of clients and servers. Here the client is a laptop that is directly connected to the internet and servers are the computers connected indirectly to the Internet and they are having all the websites stored in those large computers. These servers are connected to the internet with the help of ISP (Internet Service Providers) and will be identified with the IP address. Each website has its Domain name as it is difficult for any person to always remember the long numbers or strings. So, whenever you search any domain name in the search bar of the browser the request will be sent to the server and that server will try to find the IP address from the Domain name because it cannot understand the domain name. After getting the IP address the server will try to search the IP address of the Domain name in a Huge phone directory that in networking is known as a DNS server (Domain Name Server). For example, if we have the name of a person and you can easily find the Aadhaar number of him/her from the long directory as simple as that.

So after getting the IP address the browser will pass on the further request to the respective server and now the server will process the request to display the content of the website which the client wants. If you are using a wireless medium of Internet like 3g and 4g or other mobile data then the data will start flowing from the optical cables and will first reach to towers from there the signals will reach your cell phones and Pc’s through electromagnetic waves. And if you are using routers then optical fiber connecting to your router will help in connecting those light-induced signals into electrical signals and with the help of ethernet cables internet reaches your computers and hence the required information. 

What is an IP address?

IP address stands for internet protocol address. Every PC/Local machine is having an IP address and that IP address is provided by the Internet Service Providers (ISP’s). These are some sets of rules which govern the flow of data whenever a device is connected to the Internet. It differentiates computers, websites, and routers. Just like human identification cards like Aadhaar cards, Pan cards, or any other unique identification documents. Every laptop and desktop has its own unique IP address for identification. It’s an important part of internet technology. An IP address is displayed as a set of four-digit like 192.154.3.29. Here each number on the set ranges from 0 to 255. Hence, the total IP address range from 0.0.0.0 to 255.255.255.255. 

You can check the IP address of your Laptop or desktop by clicking on the windows start menu ->then right click and go to network ->in that go to status and then Properties their you can see the IP address. There are four different types of IP addresses are available:

  1. Static IP address
  2. Dynamic IP address
  3. Private IP address
  4. Public IP address

World Wide Web(WWW)

The worldwide web is a collection of all the web pages, web documents that you can see on the Internet by searching their URLs (Uniform Resource Locator) on the Internet. For example, www.geeksforgeeks.org is a URL of the GFG website and all the content of this site like webpages and all the web documents are stored on the worldwide web. Or in other words, the world wide web is an information retrieval service of the web. It provides users a huge array of documents that are connected to each other by means of hypertext or hypermedia links. Here, hyperlinks are known as electronic connections that link the related data so that users can easily access the related information and hypertext allows the user to pick a word or phrase from text, and using this keyword or word or phrase can access other documents that contain additional information related to that word or keyword or phrase. World wide web is a project which is created by Timothy Berner’s Lee in 1989, for researchers to work together effectively at CERN. It is an organization, named World Wide Web Consortium (W3C), which was developed for further development in the web.

Difference between Worldwide Web and Internet

The difference between the world wide web and the internet are:

  • All the web pages and web documents are stored there on the World wide web and to find all that stuff you will have a specific URL for each website. Whereas the internet is a global network of computers that is accessed by the World wide web.
  • World wide web is a service whereas the internet is an infrastructure.
  • World wide web is a subset of the internet whereas the internet is the superset of the world wide web.
  • World wide web is software-oriented whereas the internet is hardware-oriented.
  • World wide web uses HTTP whereas the internet uses IP addresses.
  • The Internet can be considered as a Library whereas all the kinds of stuff like books from different topics present over there can be considered as World wide web.

Uses of the Internet

Some of the important usages of the internet are:

  1. Online Businesses (E-commerce): Online shopping websites have made our life easier, e-commerce sites like Amazon, Flipkart, Myntra are providing very spectacular services with just one click and this is a great use of the Internet.
  2. Cashless transactions: All the merchandising companies are offering services to their customers to pay the bills of the products online via various digital payment apps like Paytm, Google pay, etc. UPI payment gateway is also increasing day by day. Digital payment industries are growing at a rate of 50% every year too because of the INTERNET.
  3. Education: It is the internet facility that provides a whole bunch of educational material to everyone through any server across the web. Those who are unable to attend physical classes can choose any course from the internet and can have the point-to-point knowledge of it just by sitting at home. High-class faculties are teaching online on digital platforms and providing quality education to students with the help of the Internet.
  4. Social Networking: The purpose of social networking sites and apps is to connect people all over the world. With the help of social networking sites, we can talk, share videos, images with our loved ones when they are far away from us. Also, we can create groups for discussion or for meetings.
  5. Entertainment: The Internet is also used for entertainment. There are numerous entertainment options available on the internet like watching movies, playing games, listening to music, etc. You can also download movies, games, songs, TV Serial, etc., easily from the internet.

 Advantages of the Internet

  1. Online Banking and Transaction: The Internet allows us to transfer money online by the net banking system. Money can be credited or Debited from one account to the other.
  2. Education, online jobs, freelancing: Through the Internet, we are able to get more jobs via online platforms like Linkedin and to reach more job providers. Freelancing on the other hand has helped the youth to earn a side income and the best part is all this can be done via INTERNET.
  3. Entertainment: There are numerous options of entertainment online we can listen to music, play games can watch movies, web series, listening to podcasts, youtube itself is a hub of knowledge as well as entertainment.
  4. New Job roles: The Internet has given us access to social media, and digital products so we are having numerous new job opportunities like digital marketing and social media marketing online businesses are earning huge amounts of money just because the internet being the medium to help us to do so.
  5. Best Communication Medium: The communication barrier has been removed from the Internet. You can send messages via email, Whatsapp, and Facebook. Voice chatting and video conferencing are also available to help you to do important meetings online.
  6. Comfort to humans: Without putting any physical effort you can do so many things like shopping online it can be anything from stationeries to clothes, books to personal items, etc. You can books train and plane tickets online.
  7. GPS Tracking and google maps: Yet another advantage of the internet is that you are able to find any road in any direction, areas with less traffic with the help of GPS in your mobile.

Disadvantages of the Internet

  1. Time wastage: Wasting too much time on the internet surfing on social media apps and doing nothing decreases your productivity rather than wasting time on scrolling social media apps one should utilize that time in doing something skillful and even more productive.
  2. Bad impacts on health: Spending too much time on the internet causes bad impacts on your health physical body needs some outdoor games exercise and many more things. Looking at the screen for a longer duration causes serious impacts on the eyes.
  3. Cyber Crimes: Cyberbullying, spam, viruses, hacking, and stealing data are some of the crimes which are on the verge these days. Your system which contains all the confidential data can be easily hacked by cybercriminals.
  4. Effects on children: Small children are heavily addicted to the Internet watching movies, games all the time is not good for their overall personality as well as social development.
  5. Bullying and spreading negativity: The Internet has given a free tool in the form of social media apps to all those people who always try to spread negativity with very revolting and shameful messages and try to bully each other which is wrong.

The correct rule, obviously, is to judge internet obscenity by the standards of the *appropriate community on the internet*. ❋ Unknown (2009)

Also, since the internet is broadband and always on, @computer and @internet are always the same. ❋ Unknown (2008)

* internet*, and even a visit to the EG Expo would show that gamers in real life aren’t the same as they are on the internet. ❋ Unknown (2009)

The term internet marketing is still somewhat slippery, and may mean different things to different people. ❋ Unknown (2009)

Elsewhere, the internet is abuzz with discussion about the book: ❋ Unknown (2009)

So while the internet is able to recover in a reasonable period of time after damage to the routers, it is more susceptible to the cutting of the links between the routers. ❋ Unknown (2009)

Now I know the internet is always there, but many people (especially older ones) prefer having a menu to look at in their hands when they want to order in. ❋ Unknown (2009)

Entry tags: strange coincidences, the internet is a series of tubes if you like double helixes … ❋ Intertribal (2010)

Some of the stuff I came across (the internet is a particularly fertile source) suggests that the only safe conclusion to be ventured of aphrodisiacs is that people will risk, and believe, anything. ❋ Unknown (2010)

I think the internet is a much better subject for Haneke to tackle. ❋ Unknown (2010)

What you read over the next few hours here are posts written in advance, because the internet is a lie. ❋ Unknown (2009)

Entry tags: crazy tourists, good little girls, macho macho macho man, the internet is a series of tubes, tv rots your brain, words like violence ❋ Intertribal (2010)

True that the internet is a big place and lots is and can be done on it, which points out your last point which is to find/create the best support system you can. ❋ Unknown (2009)

I know everyone says the internet is our new permanent record and we should watch out what we say, but I blog to not just get my opinion out there, but to also share my hard learned lessons. ❋ Unknown (2009)

All evidence suggests that keeping computers off the internet is a losing battle. ❋ Unknown (2009)

I know the internet is a world wide thing, and maybe I’m showing my age or lack of sophistication, but it’s still exciting to me to read thoughts and impressions from someone in another country. ❋ Nalini Singh (2009)

«Professionalizing» the internet is a BS way of saying «give total content control to mega-corporations so they and their government cronies can control the public». ❋ Unknown (2010)

One of the first microlenders to have an impact over the internet is the US-based Kiva, which began a few years after a couple traveled to East Africa in 2004. ❋ Unknown (2009)

This reminds me of lecture a few years back in which the head of the University of Washington Information Sciences department estimated that approximately 15% of the info on the internet is accurate. ❋ Unknown (2010)

what im doing right now……[il] never get these 3 minutes back [because of this] fucking [internet thing] ❋ BWaaaaaaaaaaaaaaaaaaaargh (2009)

That may [be the best] [explanation] of [the internet] yet. ❋ Charles Cornwallis (2008)

❋ VMC (2003)

Oh great, I am [a dirty] [freak]. [Thanks internet]. ❋ Anonymouse🐀 (2018)

I did a [search for] ‘World History’ on the internet and I received [500] results: all [pornography]. ❋ Bastardized Bottomburp (2003)

The Internet is to [plagiarism] what crack is to [violent], glassy-eyed [babbling]. —Suck.com ❋ Witness10mm (2005)

❋ Anonymous (2003)

Mother says [to son] «Timmy, what are you doing on our [personal computer]?»
Timmy responds with «Well golly, I was just researching for my history paper, of course on the good ol’ [world wide web], or as some like to call it, the internet ❋ The My Thpathe Kid (2006)

person 1 — [What is] [the internet] for?
person 2 — FOR [PORN]!!! ❋ Gizmo.urmom (2006)

[Look at] all of this [porn] I have found on [the internet]. ❋ Jimbo (2003)

Meaning Internet

What does Internet mean? Here you find 198 meanings of the word Internet. You can also add a definition of Internet yourself

1

0

 
0

Relationships Related Term:  extranet intranet World Wide Web (often net), n. ~ 1. An international telecommunications network that uses the TCP/IP protocol to connect smaller computer networks. — in [..]

2

0

 
0

Internet

An enormous network consisting of literally millions of hosts from many organizations and countries around the world. It is physically put together from many smaller networks and data travels by a com [..]

3

0

 
0

Internet

Millions of computers (and the data stored on them) around the world connected together by telephone lines, cables or satellites over which they can exchange information.

4

0

 
0

Internet

1. Two or more networks connected by a router. 2. The world’s largest network using Transmission Control Protocol/Internet Protocol (TCP/IP) to link government, university and commercial institution [..]

5

0

 
0

Internet

A group of computers and servers that are connected to each other.

6

0

 
0

Internet

A term to describe connecting multiple separate networks together.

7

0

 
0

Internet

Definition The Internet is a worldwide interconnected computer network. It provides access to a number of communication services including the World Wide Web and carries e-mail, news, entertainment an [..]

8

0

 
0

Internet

1984, «the linked computer networks of the U.S. Defense Department,» shortened from internetwork, inter-network, which was used from 1972 in reference to (then-hypothetical) networks involvi [..]

9

0

 
0

Internet

An international conglomeration of interconnected computer networks. Begun in the late 1960s, it was developed in the 1970s to allow government and university researchers to share information. The Internet is not controlled by any single group or organization. Its original focus was research and communications, but it continues to expand, offering [..]

10

0

 
0

Internet

General term used to describe a global network of computers used to transmit information. The most familiar aspect of the Internet is the World Wide Web, which consists of various interlinked Web sites. The Internet was originally developed by the U.S. military as a backup communications system in case of nuclear war. In the early 1990s, the Intern [..]

11

0

 
0

Internet

A worldwide network based on the TCP/IP protocol that can connect almost any make or model of popular computers from micros to supercomputers. Special programs called «clients» enable users [..]

12

0

 
0

Internet

A computer term which refers to an interconnected group of computer networks from all parts of the world, i.e., a network of networks. Accessed via a modem and an online service provider, it contains [..]

13

0

 
0

Internet

A loose confederation of independent yet interconnected networks that use the Transmission Control Protocol/Internet Protocol (TCP/IP) protocols for communications. The Internet evolved from research [..]

14

0

 
0

Internet

Master computer network connecting networks world-wide, enabling computer users to exchange e-mail, hold electronic conversations, obtain information and entertainment, and operate sites on the World [..]

15

0

 
0

Internet

vast, worldwide system of linked computers and computer networks.

16

0

 
0

Internet

The vast collection of interconnected networks that all use the TCP/IP protocols and that evolved from the ARPANET of the late 1960s and early 1970s. [D04846]

17

0

 
0

Internet

An enormous network consisting of literally millions of hosts from many organizations and countries around the world. It is physically put together from many smaller networks and data travels by a com [..]

18

0

 
0

Internet

  The vast collection of inter-connected networks connected by TCP/IP protocols, connecting millions of independent networks into a vast global internet.

19

0

 
0

Internet

  The interconnection of computers across the world that evolved from the ARPAnet (Advanced Research Projects Agency). The Internet is made up of many networks each run by a different company and int [..]

20

0

 
0

Internet

Copyright by Matisse «internet (Lower case i)» Enzer —>Any time you connect 2 or more networks together, you have an internet — as in inter-national or inter-state. See also: Internet (U [..]

21

0

 
0

Internet

Copyright by Matisse «Internet (Upper case I)» Enzer —>The vast collection of inter-connected networks that are connected using the TCP/IP protocols and that evolved from the ARPANET of [..]

22

0

 
0

Internet

the name given to the collective electronic network of computers and computer networks which are inter-connected throughout the world — started with the ARPAnet at the US Dept. of Defense.

23

0

 
0

Internet

A network of millions of computers from all over the world. The internet allows computers to trade information using telephone lines, fiber-optic cables, and satellite links. It is also referred to as the &quot;Net.&quot;

24

0

 
0

Internet

The Internet is a world wide network of computers that are connected (networked) and are using the communication method called TCP/IP. The Internet was named ARPANET in 1969 by the Advanced Resear [..]

25

0

 
0

Internet

1. The worldwide system of linked networks that is capable of exchanging mail and data through a common addressing and naming system based on TCP/IP protocols. 2. Any group of linked networks capable of exchanging electronic mail and data using a common protocol.

26

0

 
0

Internet

 A dynamic global network of computer

27

0

 
0

Internet

1. A network of many networks that interconnect worldwide and use the Internet Protocol (IP). See the Internet FAQ. 2. An internet (lower case i) describes more than one local network interconnected b [..]

28

0

 
0

Internet

Worldwide network of interconnected computer networks that is open to everyone. The networks transmit data by packet-switching using the standard Internet Protocol (IP).The Internet can be used to access the World Wide Web, along with file-sharing and e-mails.

29

0

 
0

Internet

The Internet essentially links computers to one another, allowing them to speak the same language. Originally created by the U.S. Department of Defense, the Internet has become a fast fixture [..]

30

0

 
0

Internet

A concatenation of many individual TCP/IP campus, state, regional, and national networks (such as CSUNET, SUPERNET, WESTNET, NSFNET, ARPANET) into one single logical network all sharing a common addre [..]

31

0

 
0

Internet

Also known as Net Definition The Internet, or Net, refers to the vast ammount of inter-connected networks or computers and servers that use the TCP/IP Protocol to communicate with each other. This net [..]

32

0

 
0

Internet

Any interconnection among or between private, industrial or governmental computer (digital communication) networks. Note: The term internet (spelled with a lower case «i») is distinguished from the Internet (spelled with the «I» capitalized). «The Internet» refers to a specific, historic, ubiquitous worldwide digital c [..]

33

0

 
0

Internet

The Internet is a global wide area network that connects computer systems across the world. It includes several high-bandwidth data lines that comprise the Internet «backbone.» These lines a [..]

34

0

 
0

Internet

An open network layer that allows for the interconnection of various data networks through the use of the TCP/IP protocol. When most individuals think of the Internet, they are thinking of application [..]

35

0

 
0

Internet

The worldwide network of networks based on the TCP/IP protocol. A noncommercial, self-governing network devoted mostly to communication and research with roughly 66 million users worldwide.

36

0

 
0

Internet

The world wide &quot;network of networks&quot; connected to each other. (Unit 7> Tips for Using the Internet)

37

0

 
0

Internet

The Internet (or ‘net) was the term for the early global computer and communications network on Earth in the 20th and 21st centuries. Its development, along with other advanced technology such as [..]

38

0

 
0

Internet

WebGuest Dictionary When two or more networks  are connected, you have an internet (lower case i).&quot;The&quot; Internet (upper case i) is the largest of the internets (the mother-of-all-internets…)The Internet evolved from the ArpaNET (a U.S. military network) to an academic research network, to the current (global) commercial net [..]

39

0

 
0

Internet

Internetworking Dictionary (note the capital «I») The Internet is the largest internet in the world. Is a three level hierarchy composed of backbone networks (e.g., NSFNET, MILNET), mid-level networks, and stub networks. The Internet is a multiprotocol internet. See also: backbone, mid-level network, stub network, transit network, Interne [..]

40

0

 
0

Internet

Jensens Internet Dictionary the Internet 2 Consortium of more than 100 universities and other organizations collaborating to develop the next-generation Internet technology. In addition to bandwidth issues, the Consortium is dealing with such issues as audio and video integration, interactive distance learning, telemedicine, online research collabo [..]

41

0

 
0

Internet

Internet is a network that accommodates several computers to facilitate exchange and transfer of data.

42

0

 
0

Internet

is a network of millions of computers, connected by telephone lines. It contains both the web and email.

43

0

 
0

Internet

A vast network of networks, subnets, and computers using the TCP/IP suite of protocols. Internet is not a generic name for all internets (interconnected networks), as others may be based on other prot [..]

44

0

 
0

Internet

(upper-case I) The global network that connects millions of computers in over 100 countries together. Various computer networks communicate with each other all over the globe in a matter of seconds us [..]

45

0

 
0

Internet

The Internet is a worldwide network of networks that uses the Internet protocol suite (also named TCP/IP from its two most important protocols). Learn more Learn about it

46

0

 
0

Internet

Lower case.

47

0

 
0

Internet

A set of interconnected networks that allow computers in different locations to exchange information. The Internet includes services such as the world wide web, electronic mail, file transfer protocol (FTP), chat and remote access to networks and computers.

48

0

 
0

Internet

The Internet is a global network connecting millions of computers. More than 190 countries are linked into exchanges of data, news and opinions. The Internet is Decentralized Unlike online services, w [..]

49

0

 
0

Internet

Short for Internet work. A network of networks, a group of networks interconnected via routers. Contrast with The Internet (with a capital I), the world’s largest Internet.

50

0

 
0

Internet

A series of connected computer networks.

51

0

 
0

Internet

The worldwide publicly accessible collection of interconnected computer networks. It consists of millions of smaller domestic academic business and government networks which carry information and services and the interlinked webpages and other documents of the World Wide Web.

52

0

 
0

Internet

The high-speed fiber-optic network of networks that uses TCP/IP protocols to interconnect computer networks around the world, enabling users to communicate via e-mail, transfer data and program files [..]

53

0

 
0

Internet

internets

54

0

 
0

Internet

An international network of networks, originally started for military purposes, that connects millions of users instantaneously through commonly-used protocols such as TCP/IP

55

0

 
0

Internet

A computer network that links computers around the world.

56

0

 
0

Internet

The name of the global network of computers accessed worldwide by individuals, businesses, education institutions, and government agencies.

57

0

 
0

Internet

The word «internet» literally means «network of networks». In itself, the Internet is comprised of thousands of smaller regional networks scattered throughout the globe.

58

0

 
0

Internet

First developed by the United States Department of Defense in the 1970’s, this is the worldwide collection of networked computers. In the simplest terms, think of the Internet as one humongous ne [..]

59

0

 
0

Internet

The Internet (note the capital I) is the largest internet in the world. It is a three level hierarchy composed of backbone networks (e.g., NSFNET, MILNET), mid-level networks, and stub networks. The Internet is a multiprotocol internet.

60

0

 
0

Internet

The internet layer is used to transport data from node to node in a network. This layer is aware of the endpoints of the connections, but does not worry about the actual connection needed to get from [..]

61

0

 
0

Internet

Many computers that are connected like a web so you can see what other computer operators show you and you can show them things as well.

62

0

 
0

Internet

The vast collection of inter-connected networks that evolved from the ARPANET of the late 60’s and early 70’s. See also: ARPANET, internet, Network

63

0

 
0

Internet

(Lower case I) An internet is created any time 2 or more networks are connected together. See Also: Internet, Network

64

0

 
0

Internet

Network of computers facilitating electronic communication across globe. Rooted in 1960s U.S. defense research, came into widespread use in 1990s via implementation of World Wide Web.

65

0

 
0

Internet

The Internet, or simply &quot;the Net&quot;, is a computer network connecting millions of computers all over the world. It provides communications to governments, businesses, universities, sch [..]

66

0

 
0

Internet

The largest worldwide computer network.

67

0

 
0

Internet

The Internet is a worldwide system of computer networks — a network of networks in which users at any one computer can, if they have permission, get information from any other computer (and sometimes [..]

68

0

 
0

Internet

A global network connecting millions computers. As of 1998, the Internet has more than 100 million users worldwide, and that number is growing rapidly. More than 100 countries are linked into ex [..]

69

0

 
0

Internet

the network of networks. It grew from ARPANet, the US Defense Department’s computer network started in the mid-1960’s.

70

0

 
0

Internet

A world wide grid of inter-linked (networked) computers.

71

0

 
0

Internet

The internet is a global system of interconnected computers. Your computer connects to an ISP, who then connects to the internet. Millions of other computers are also connected to the internet, making [..]

72

0

 
0

Internet

The international network of computers around the world which provides access to e-mail, web, online access to research materials, remote logon, and FTP.

73

0

 
0

Internet

World-wide computer network make up of many interconnected networks.

74

0

 
0

Internet

The internet is a global network of computers providing an exchange of data, news and opinions. This is not the World Wide Web, which is just one small part of the internet. The internet allow [..]

75

0

 
0

Internet

The terms Internet and World Wide Web are often used interchangeably, but they’re actually not the same. The Internet is a global network connecting millions of computers worldwide. More than 100 countries use this system to communicate data and information. Communication can several forms, such as e-mail, discussion groups, and information re [..]

76

0

 
0

Internet

A global network of thousands of computer networks linked by data lines and wireless systems. 

77

0

 
0

Internet

A global computer network. The system allows you to send and receive communications; conduct research; access public or private databases and advertise products and services.

78

0

 
0

Internet

 The global network of interconnected computers. The World Wide Web and email are two parts of the Internet.

79

0

 
0

Internet

Vast worldwide network of computers connected via TCP/IP.

80

0

 
0

Internet

The global collection of interconnected computer networks utilising TCP/IP protocols and/or related protocols including the worldwide web and any subset thereof accessible by a user’s personal devic [..]

81

0

 
0

Internet

An international network first used to connect education and research networks, begun by the U.S. government. The Internet now provides communication and application services to an international base [..]

82

0

 
0

Internet

An international network of networks, originally started for military purposes, that connects millions of users instantaneously through commonly-used protocols such as TCP/IP, HTTP, FTP, etc. The wide [..]

83

0

 
0

Internet

Worldwide computer network, used for inter-company e-mail, web browsing and FTP

84

0

 
0

Internet

A global inter-network of computer networks, connected via Internet Protocol (IP) and the world’s telecommunications infrastructure. IP enables applications such as email, the web, file transfer [..]

85

0

 
0

Internet

A worldwide network of computers that provides easy access to a vast body of information, allowing people to find and use information and communicate with others. The Internet or «information superhighway» includes the World Wide Web, Usenet user groups and newsgroups.

86

0

 
0

Internet

A global network of networks through which computers communicate by sending information in packets. Each network consists of computers connected by cables or wireless links.

87

0

 
0

Internet

a global system of interconnected computer networks which host a variety of applications that allow users to communicate and interact with each other.

88

0

 
0

Internet

A global connection of computer networks, also referred to as the “Net,” which share a common addressing scheme. (See also “World Wide Web”)

89

0

 
0

Internet

The collection of networks throughout the world that agree to communicate using specific telecommunication protocols, the most basic being Internet Protocol (IP) and Transmission Control Protocol (TCP [..]

90

0

 
0

Internet

Business Internet

91

0

 
0

Internet

The Internet has evolved into a worldwide network of computers communicating in a common language — TCP/IP — over telephone lines or microwave links. The Internet is home to the World Wide Web, where individuals, companies, and non-profit organizations may have a forum for their message.

92

0

 
0

Internet

The Internet is a global network of interconnected computers, enabling users to share information along multiple channels.

93

0

 
0

Internet

Originaly created by the US Department of Defence, the Internet has evolved from what was once called ARPNet (Advanced Research Projects Network) into a vast network of computers that spans all across [..]

94

0

 
0

Internet

Technically, a network of computer networks. Today, associated with a specific global computer network which is publicly accessible, and upon which the World Wide Web is based. See also: ARPAnet, Worl [..]

95

0

 
0

Internet

(Lower case i)

96

0

 
0

Internet

The internet is the term for the Global networked collection of computers that communicate with each other via a standard set of network protocols — Internet Protocol. Some of the communication protoc [..]

97

0

 
0

Internet

A worldwide network of interconnected computer networks. No government agency or other central authority controls its use.

98

0

 
0

Internet

The global «network of networks» that connects millions of computers (called hosts). The Internet is the virtual «space» in which users send and receive email, browse databases of information (gopher, World Wide Web), and send and receive programs (FTP) contained on these computers. Also referred to as the Net, cyberspace, the m [..]

99

0

 
0

Internet

Not a single network, but a globe-encircling network of networks. The US Department of Defense first developed the Internet. It has no owner or central headquarters. Indeed, it is in constant flux as the small networks, which it comprises, come and go, and grow.

100

0

 
0

Internet

According to 21 USCS § 802 (50), the term Internet means “collectively the myriad of computer and telecommunications facilities, including equipment and operating software, which comprise the inter [..]

101

0

 
0

Internet

Often abbreviated as the Net. The global collection of networks that transfer information between each other using Internet Protocol. Interestingly, the Internet was named after the protocol rather th [..]

102

0

 
0

Internet

The collection of computers, satellite links, fibre optic links etc. that connect together a substantial proportion of the world’s computers in one giant network where any computer can talk to any o [..]

103

0

 
0

Internet

A worldwide, interconnected collection of thousands of computer networks using the TCP/IP protocol. First created in the 1960s as a communication network serving military and science needs. Since the [..]

104

0

 
0

Internet

Originally a military experiment, and now a network linking millions of people across the globe, the internet is one of the most powerful communications tools ever invented.

105

0

 
0

Internet

(Upper case I) The vast collection of inter-connected networks that all use the TCP/IP protocols and that evolved from the ARPANET of the late 60¹s and early 70¹s. The Internet now (July 1995) conne [..]

106

0

 
0

Internet

(Lower case i) Any time you connect 2 or more networks together, you have an internet — as in inter-national or inter-state. See Also: Internet

107

0

 
0

Internet

The Internet is the world-wide network of computers. There is only one Internet, and thus it is typically capitalized (although it is sometimes referred to as &quot;the ‘net&quot;). It is [..]

108

0

 
0

Internet

The Internet, sometimes called simply “the Net,” is a worldwide system of computer networks… A network of networks in which users at any one computer can, if they have permission, get informatio [..]

109

0

 
0

Internet

A worldwide series of connected computer networks that allows for the sending and receiving of information between computers or networks.

110

0

 
0

Internet

Lots of computers connected together by wires, satellites and radio links etc. Whenever you are surfing the web the computer you are using is connected to the Internet. Technically speaking you can vi [..]

111

0

 
0

Internet

Any time you connect two or more networks together, you have an internet, as in inter-national or inter-state.

112

0

 
0

Internet

The vast collection of Inter-connected networks that are connected using the TCP/IP protocols and that eviolved from the Arpanet of the late 60’s and early 70’s.

113

0

 
0

Internet

Also known as the Net or the Web, the Internet is the huge network connecting computers all over the world. Internet fraud (or online fraud).

114

0

 
0

Internet

The Internet is the world’s largest association of networks, allowing users to use a virtually unlimited infrastructure for communication. By the use of TCP/IP, network users can avail of Internet s [..]

115

0

 
0

Internet

You’re using it!

116

0

 
0

Internet

The Internet is a worldwide system of computer networks — a network of networks in which users at any one computer can, if they have permission, get information from any other computer (and sometimes talk directly to users). The Internet is a public, cooperative, and self-sustaining facility accessible to hundreds of millions of people worldwide. P [..]

117

0

 
0

Internet

The worldwide network of interconnected computers that allow you to gather information and communicate with others, even when they are using different kinds of computers and software.

118

0

 
0

Internet

The internet is the name given to the network of millions and millions of computers and servers around the world connected by telephone lines, cables, satellites. This network, the internet, allows al [..]

119

0

 
0

Internet

An international network of communication-links provided by the physical hardware of various communities and institutions on an informal basis. Looked at another way, it is a cooperative community of [..]

120

0

 
0

Internet

The word Internet refers to all the computer networks worldwide that are connected together. TCP/IP is the de facto standard protocol set for the Internet.

121

0

 
0

Internet

  Is a collection of interconnected computers that deliver information through TCP/IP protocols that evolved back in the late 1960s and 1970s. The Internet was originally developed for the United Sta [..]

122

0

 
0

Internet

The Internet is the sum total of inter-connected computer networks that allows a user, connected at any computer on any network, to access any other computer on any other network. This «network of networks» uses the TCP/IP protocols and evolved from the ARPAnet of the late 1960’s.

123

0

 
0

Internet

A public, cooperative, and self-sustaining worldwide system of computer networks accessible to hundreds of millions of people.

124

0

 
0

Internet

the vast collection of interconnected networks that all use the TCP/IP protocols and that evolved from the ARPANET of the late ’60s and early ’70s. The Internet now connects several hundred thousand independent networks into a vast global internet. See also: internet, TCP/IP, ARPANET

125

0

 
0

Internet

Any time you connect two or more networks together, you have an internet (with a lowercase i)-as in inter-national or inter-state. See also: Internet, network

126

0

 
0

Internet

A worldwide collection of networks that began with technology and equipment funded by the US Department of Defense in the 1970s (called ARPAnet) that today links users in nearly every known country, s [..]

127

0

 
0

Internet

a global system of interconnected computer networks that use the standard Internet Protocol Suite (TCP/IP) to serve billions of users worldwide. http://en.wikipedia.org/wiki/Internet

128

0

 
0

Internet

Referred to as «Net» for short, a collection of thousands of connected computers and computer networks.

129

0

 
0

Internet

The Internet is a vast collection of computers all over the planet, connected to each other through an intricate network. The Internet includes such features as e-mail, newsgroups, mailing lists, and [..]

130

0

 
0

Internet

Now known simply as &quot;the Net&quot;, the Internet is the conglomerate of physical resources that allow for the transfer of data from one remote location to another. The Internet comprises [..]

131

0

 
0

Internet

An international information network linking computers.

132

0

 
0

Internet

The Internet is a collection of networked computers all over the world. A capital letter "I" at the beginning of the word is used to distinguish THE Internet from A internet. The World [..]

133

0

 
0

Internet

A network or collection of networks interconnected with routers. It also refers to the largest network of computers in the world &quot;The Internet&quot;.

134

0

 
0

Internet

The global collection of interconnected regional and wide-area networks which use IP as the network layer protocol.

135

0

 
0

Internet

A worldwide network of computers communicating with each other via phone lines, satellite links, wireless networks, and cable systems.

136

0

 
0

Internet

(n) a computer network consisting of a worldwide network of computer networks that use the TCP/IP network protocols to facilitate data transmission and exchange

137

0

 
0

Internet

A worldwide network of networks that all use the TCP/IP communications protocol and share a common address space. First incarnated as the ARPANET in 1969, the Internet has metamorphosed from a military internetwork to an academic research internetwork to the current commercial internetwork. It commonly supports services such as email, the World Wid [..]

138

0

 
0

Internet

A global computer network through which the almost-instant delivery of data or files occurs between connected computers.

139

0

 
0

Internet

A place that borrows waste management strategies from New York City, where everyone throws their garbage on the street.

140

0

 
0

Internet

A public network of computer networks, spanning the world, linking your computer to others. It involves formatted pages of text and images, electronic mail and newsgroups.

141

0

 
0

Internet

The global network of networks that connects more than three million computers (called hosts). The Internet is the virtual space in which users send and receive email, login to remote computers (telnet), browse databases of information (gopher, World Wide Web, WAIS), and send and receive programs (ftp) contained on these computers.

142

0

 
0

Internet

a worldwide network of computer networks based on the TCP/IP standard. Originally created by the U.S. Department of Defense to link networks at government installations and universities, the Internet [..]

143

0

 
0

Internet

144

0

 
0

Internet

Definition: (IN-ter-net) Slang: net. An interconnected system of computer networks, not unlike the international telephone system. The World Wide Web (»Web») is part of the Inter [..]

145

0

 
0

Internet

Worldwide, interconnected networks. Through the use of gateways that convert formats and protocols between networks, the internet appears as a single network, with hosts and [..]

146

0

 
0

Internet

(note the capital «I») the largest internet in the world including large national backbone nets and many regional and local networks worldwide. The Internet uses [..]

147

0

 
0

Internet

google_ad_client=»pub-8027288574377500″;google_ad_slot=»1043341745″;google_ad_width=120;google_ad_height=600; Definition: The term, Internet, has come to mean the ability to send e [..]

148

0

 
0

Internet

The global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link billions of devices worldwide.

149

0

 
0

Internet

A network that links computers all over the world by satellite and telephone, connecting users with service networks such as e-mail and the World Wide Web.

150

0

 
0

Internet

 A worldwide system of computer networkd providing reliable and redundant connectivity between disparate computers and systems by using common transport and data protocols.  

151

0

 
0

Internet

n. Internet

152

0

 
0

Internet

The world-wide network of interconnections which allows computer users to exchange electronic mail and access host computers at a distance, including host computers providing sites on the Web (WWW or World Wide Web).

153

0

 
0

Internet

sometimes called simply &quot;the Net,&quot; is a worldwide system of computer networks — a network of networks in which users at any one computer can, if they have permission, get information from any other computer (and sometimes talk directly to users at other computers). It was conceived by the Advanced Research Projects Agency (ARPA) o [..]

154

0

 
0

Internet

The Internet is the publicly available worldwide system of interconnected computer networks that transmit data. Made up of thousands of smaller commercial, academic, domestic, and government networks, [..]

155

0

 
0

Internet

The world wide web a global system of computers that are connected in networks so you can access to all kinds of information from all over the world using a modem connection.

156

0

 
0

Internet

A loose gathering of thousands of computer networks forming an enormous worldwide area network.

157

0

 
0

Internet

A loose confederation of Computer Communication Networks around the world. The networks that make up the Internet are connected through several backbone networks. The Internet grew out of the US Gover [..]

158

0

 
0

Internet

A global system of computer networks that are all interconnected enabling access to an ever­growing mass of knowledge and information.

159

0

 
0

Internet

A loose confederation of computer communication networks around the world. The networks that make up the Internet are connected through several backbone networks. The Internet grew out of the US Gover [..]

160

0

 
0

Internet

An international network of many other networks that are linked using the TCP/IP network protocol.

161

0

 
0

Internet

The internet is a globally connected network system that uses TCP/IP to transmit data via various types of media. The internet is a network of global exchanges – including private, public, busine [..]

162

0

 
0

Internet

We discuss salient economic aspects of the Internet, including the possible abolition of net neutrality by local broadband access networks as well as …

163

0

 
0

Internet

Worldwide network of interconnected computer networks that is open to everyone. The networks transmit data by packet-switching using the standard Internet Protocol (IP).The Internet can be used to access the World Wide Web, along with file-sharing and e-mails.

164

0

 
0

Internet

A global interconnection of networks, used amongst other things by the World Wide Web.

165

0

 
0

Internet

Internet is a decentralized global network connecting millions of computers. Intranet

166

0

 
0

Internet

An abbreviation for internetwork. The internet is a global network connecting together many other networks and thus making communications between the various devices and computers on these networks po [..]

167

0

 
0

Internet

The global collection of computer networks and their connections, all using shared protocols (TCP/IP) to communicate.

168

0

 
0

Internet

An international network, consisting of independently managed networks using the TCP/IP protocols and a shared naming system. A successor to the ARPAnet.

169

0

 
0

Internet

A global network of many interconnected networks.

170

0

 
0

Internet

The internet is a worldwide network of computers. It’s basically like a huge library of information.

171

0

 
0

Internet

Conflicts over domain names have received the most attention in the trademark legal press. However, such disputes have only affected a small number of trademark owners. Where the Internet has its grea [..]

172

0

 
0

Internet

The series of interconnected networks that includes local area, regional, and national backbone networks. Networks in the Internet use the same telecommunications protocol (TCP/IP) and provide electronic mail, remote login, and file transfer services. The global Internet, the world’s largest internet, includes nearly every university, governme [..]

173

0

 
0

Internet

A worldwide system of interconnected networks allowing for data transmission between millions of computers. The Internet is usually accessed using Internet Service Providers.

174

0

 
0

Internet

A worldwide network of computers that allows public access to send, store, and receive electronic information over public networks. It is a network of networks.

175

0

 
0

Internet

, A global network of networks having in common the TCP/IP protocols and an agreed e-mail addressing structure that provides communications and other distributed services.

176

0

 
0

Internet

The Internet is the world’s largest computer network; it is essentially a network of networks. Any device attached to the Internet can communicate with any other device on the network. Some uses [..]

177

0

 
0

Internet

A global electronic superhighway of computer networks that use a common protocol and are linked by telecommunications lines and satellite.

178

0

 
0

Internet

The interconnecting global public network made by connecting smaller shared public networks. The most well-known public network is the Internet, the worldwide network of networks which use the TCP/IP protocol to facilitate information exchange.

179

0

 
0

Internet

The interconnecting global public network made by connecting smaller shared public networks. The most well-known Internet is the Internet, the worldwide network of networks which use the TCP/IP protocol to facilitate information exchange.

180

0

 
0

Internet

The vast network of computer systems that enables worldwide connectivity among users and computers.

181

0

 
0

Internet

The collection of interconnected networks that connect computers around the world (USAID Automated Directives System — ADS — Chapter 545).

182

0

 
0

Internet

The term «Internet,» capitalized, refers to the global internetwork of TCP/IP networks.

183

0

 
0

Internet

The term «internet,» noncapitalized, refers to a TCP/IP internetwork without reference to the scope of the connection. This term is often used to describe two or more networks connected by Internet technology and protocols, without being connected to the global Internet.

184

0

 
0

Internet

 A global computer network. The system allows you to send and receive communications; conduct research; access public or private databases and advertise products and services.Internet coupons:

185

0

 
0

Internet

  A worldwide network of computers.

186

0

 
0

Internet

In the general sense, an internet (with a lowercase &quot;i&quot;), a shortened form of the original inter-network, is a computer network that connects several other networks. The art of connecting networks in this way is called internetworking. As a proper noun, the Internet is the publicly available world-wide, interconnected system of co [..]

187

0

 
0

Internet

You may find information on Grisebach and all aspects of its auctions on our homepage. Catalogues are placed online approximately four weeks prior to auction. You may also order a newsletter to keep p [..]

188

0

 
0

Internet

Many hotels provide internet access for an extra cost, calculated on the length of use or up to maximum cost per day. Where internet access is available it will usually be a high speed connection, f [..]

189

0

 
0

Internet

  A global system of interconnected networks providing links to millions of computers that allow access to billions of web pages on a huge number of topics.  It relies on a system of computer protoc [..]

190

0

 
0

Internet

|Internet

191

0

 
0

Internet

[[Open8@Finger-TipUp-Open8@CenterChesthigh-TipUp Twist-Twist]]

192

0

 
0

Internet

A worldwide network of computer networks that allows for the transmission and exchange of files. The World Wide Web is part of the Internet.&quot;

193

0

 
0

Internet

The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a network of networks that consists of private, pub [..]

194

0

 
0

Internet

The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a network of networks that consists of private, pub [..]

195

0

 
0

Internet

The Internet is a global system of interconnected computer networks.
Internet may also refer to:
Internet Co., Ltd., a software company based in Japan
The Internet (band), a soul music band
«Inte [..]

196

0

 
0

Internet

The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a network of networks that consists of private, pub [..]

197

0

 
0

Internet

The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a network of networks that consists of private, pub [..]

198

0

 
0

Internet

The Internet is the global system of interconnected computer networks that use the Internet protocol suite (TCP/IP) to link devices worldwide. It is a network of networks that consists of private, pub [..]

Like this post? Please share to your friends:
  • What does the word intelligence
  • What does the word information means
  • What does the word information mean
  • What does the word independent
  • What does the word incorporated