Use python for excel

Время на прочтение
6 мин

Количество просмотров 349K

Добрый день, уважаемые читатели.

В сегодняшней статье я хотел бы, как можно подробнее, рассмотреть интеграцию приложений Python и MS Excel. Данные вопрос может возникнуть, например, при создании какой-либо системы онлайн отчетности, которая должна выгружать результаты в общепринятый формат ну или какие-либо другие задачи. Также в статье я покажу и обратную интеграцию, т.е. как использовать функцию написанную на python в Excel, что также может быть полезно для автоматизации отчетов.

Работаем с файлами MS Excel на Python

Для работы с Excel файлами из Python мне известны 2 варианта:

  1. Использование библиотек, таких как xlrd, xlwt, xlutils или openpyxl
  2. Работа с com-объектом

Рассмотрим работу с этими способами подробнее. В качестве примера будем использовать готовый файл excel из которого мы сначала считаем данные из первой ячейки, а затем запишем их во вторую. Таких простых примеров будет достаточно для первого ознакомления.

Использование библиотек

Итак, первый метод довольно простой и хорошо описан. Например, есть отличная статья для описания работы c xlrd, xlwt, xlutils. Поэтому в данном материале я приведу небольшой кусок кода с их использованием.

Для начала загрузим нужные библиотеки и откроем файл xls на чтение и выберем
нужный лист с данными:

import xlrd, xlwt
#открываем файл
rb = xlrd.open_workbook('../ArticleScripts/ExcelPython/xl.xls',formatting_info=True)

#выбираем активный лист
sheet = rb.sheet_by_index(0)

Теперь давайте посмотрим, как считать значения из нужных ячеек:

#получаем значение первой ячейки A1
val = sheet.row_values(0)[0]

#получаем список значений из всех записей
vals = [sheet.row_values(rownum) for rownum in range(sheet.nrows)]

Как видно чтение данных не составляет труда. Теперь запишем их в другой файл. Для этого создам новый excel файл с новой рабочей книгой:

wb = xlwt.Workbook()
ws = wb.add_sheet('Test')

Запишем в новый файл полученные ранее данные и сохраним изменения:

#в A1 записываем значение из ячейки A1 прошлого файла
ws.write(0, 0, val[0])

#в столбец B запишем нашу последовательность из столбца A исходного файла
i = 0
for rec in vals:
    ws.write(i,1,rec[0])
    i =+ i

#сохраняем рабочую книгу
wb.save('../ArticleScripts/ExcelPython/xl_rec.xls')

Из примера выше видно, что библиотека xlrd отвечает за чтение данных, а xlwt — за запись, поэтому нет возможности внести изменения в уже созданную книгу без ее копирования в новую. Кроме этого указанные библиотеки работают только с файлами формата xls (Excel 2003) и у них нет поддержки нового формата xlsx (Excel 2007 и выше).

Чтобы успешно работать с форматом xlsx, понадобится библиотека openpyxl. Для демонстрации ее работы проделаем действия, которые были показаны для предыдущих библиотек.

Для начала загрузим библиотеку и выберем нужную книгу и рабочий лист:

import openpyxl
wb = openpyxl.load_workbook(filename = '../ArticleScripts/ExcelPython/openpyxl.xlsx')
sheet = wb['test']

Как видно из вышеприведенного листинга сделать это не сложно. Теперь посмотрим как можно считать данные:

#считываем значение определенной ячейки
val = sheet['A1'].value

#считываем заданный диапазон
vals = [v[0].value for v in sheet.range('A1:A2')]

Отличие от прошлых библиотек в том, что openpyxl дает возможность отображаться к ячейкам и последовательностям через их имена, что довольно удобно и понятно при чтении программы.

Теперь посмотрим как нам произвести запись и сохранить данные:

#записываем значение в определенную ячейку
sheet['B1'] = val

#записываем последовательность
i = 0
for rec in vals:
    sheet.cell(row=i, column=2).value = rec
    i =+ 1

# сохраняем данные
wb.save('../ArticleScripts/ExcelPython/openpyxl.xlsx')

Из примера видно, что запись, тоже производится довольно легко. Кроме того, в коде выше, можно заметить, что openpyxl кроме имен ячеек может работать и с их индексами.

К недостаткам данной библиотеки можно отнести, то что, как и в предыдущем примере, нет возможности сохранить изменения без создания новой книги.

Как было показано выше, для более менее полноценной работы с excel файлами, в данном случае, нужно 4 библиотеки, и это не всегда удобно. Кроме этого, возможно нужен будет доступ к VBA (допустим для какой-либо последующей обработки) и с помощью этих библиотек его не получить.

Однако, работа с этими библиотеками достаточно проста и удобна для быстрого создания Excel файлов их форматирования, но если Вам надо больше возможностей, то следующий подпункт для Вас.

Работа с com-объектом

В своих отчетах я предпочитаю использовать второй способ, а именно использование файла Excel через com-объект с использованием библиотеки win32com. Его преимуществом, является то, что вы можете выполнять с файлом все операции, которые позволяет делать обычный Excel с использованием VBA.

Проиллюстрируем это на той же задаче, что и предыдущие примеры.

Для начала загрузим нужную библиотеку и создадим COM объект.

import win32com.client
Excel = win32com.client.Dispatch("Excel.Application")

Теперь мы можем работать с помощью объекта Excel мы можем получить доступ ко всем возможностям VBA. Давайте, для начала, откроем любую книгу и выберем активный лист. Это можно сделать так:

wb = Excel.Workbooks.Open(u'D:\Scripts\DataScience\ArticleScripts\ExcelPython\xl.xls')
sheet = wb.ActiveSheet

Давайте получим значение первой ячейки и последовательности:

#получаем значение первой ячейки
val = sheet.Cells(1,1).value

#получаем значения цепочки A1:A2
vals = [r[0].value for r in sheet.Range("A1:A2")]

Как можно заметить, мы оперируем здесь функциями чистого VBA. Это очень удобно если у вас есть написанные макросы и вы хотите использовать их при работе с Python при минимальных затратах на переделку кода.

Посмотрим, как можно произвести запись полученных значений:

#записываем значение в определенную ячейку
sheet.Cells(1,2).value = val

#записываем последовательность
i = 1
for rec in vals:
    sheet.Cells(i,3).value = rec
    i = i + 1

#сохраняем рабочую книгу
wb.Save()

#закрываем ее
wb.Close()

#закрываем COM объект
Excel.Quit()

Из примера видно, что данные операции тоже довольно просто реализовываются. Кроме этого, можно заметить, что изменения мы сохранили в той же книге, которую открыли для чтения, что достаточно удобно.

Однако, внимательный читатель, обратит внимание на переменную i, которая инициализируется не 0, как принято python, а 1. Это связано с тем, что мы работаем с индексами ячеек как из VBA, а там нумерация начинается не с 0, а с 1.

На этом закончим разбор способов работы с excel файлами в python и перейдем к обратной задаче.

Вызываем функции Python из MS Excel

Может возникнуть такая ситуация, что у вас уже есть какой-либо функция, которая обрабатывает данные на python, и нужно перенести ее функциональность в Excel. Конечно же можно переписать ее на VBA, но зачем?

Для использования функций python в Excel есть прекрасная надстройка ExcelPython. С ее помощью вы сможете вызывать функции написанные на python прямо из Excel, правда придется еще написать небольшую обертку на VBA, и все это будет показано ниже.

Итак, предположим у нас есть функция, написанная на python, которой мы хотим воспользоваться:

def get_unique(lists):
    sm = 0
    for i in lists:
        sm = sm + int(i.pop()) 
    return sm

На вход ей подается список, состоящий из списков, это одно из условий, которое должно выполняться для работы данной функции в Excel.

Сохраним функцию в файле plugin.py и положим его в ту же директорию, где будет лежать наш excel файл, с которым мы будем работать.

Теперь установим ExcelPython. Установка происходит через запуск exe-файла и не вызывает затруднений.

Когда все приготовления выполнены, открываем тестовый файл excel и вызовем редактор VBA (Alt+F11). Для работы с вышеуказанной надстройкой необходимо ее подключить, через Tools->References, как показано на рисунке:

Ну что же, теперь можно приступить к написанию функции-обертки для нашего Python-модуля plugin.py. Выглядеть она будет следующим образом:

Function sr(lists As Range)
    On Error GoTo do_error
        Set plugin = PyModule("plugin", AddPath:=ThisWorkbook.Path)
        Set result = PyCall(plugin, "get_unique", PyTuple(lists.Value2))
        sr = WorksheetFunction.Transpose(PyVar(result))
        Exit Function
do_error:
        sr = Err.Description
End Function

Итак, что же происходит в данной функции?

Для начала, с помощью PyModule, мы подключаем нужный модуль. Для этого в качестве параметров ей передается имя модуля без расширения, и путь до папки в которой он находится. На выходе работы PyModule мы получаем объект для работы с модулем.

Затем, с помощью PyCall, вызываем нужную нам функцию из указанного модуля. В качестве параметров PyCall получает следующее:

  1. Объект модуля, полученный на предыдущем шаге
  2. Имя вызываемой функции
  3. Параметры, передаваемые функции (передаются в виде списка)

Функция PyTuple, получает на вход какие-либо значения и преобразует их в объект tuple языка Python.
Ну и, соответственно, PyVar выполняет операцию преобразования результата функции python, к типу понятному Excel.

Теперь, чтобы убедиться в работоспособности нашей связки, вызовем нашу свежеиспеченую функцию на листе в Excel:

Как видно из рисунка все отработало правильно.

Надо отметить, что в данном материале используется старая версия ExcelPython, и на GitHub’e автора доступна новая версия.

Заключение

В качестве заключения, надо отметить, примеры в данной статье самые простые и для более глубоко изучения данных методов, я рекомендую обратиться к
документации по нужным пакетам.

Также хочу заметить, что указанные пакеты не являются единственными и в статье опущено рассмотрение, таких пакетов как xlsxwriter для генерации excel файлов или xlwings, который может работать с Excel файлами «на лету», а также же PyXLL, который выполняет аналогичные функции ExcelPython.

Кроме этого в статье я попытался несколько обобщить разборасанный по сети материал, т.к. такие вопросы часто фигурируют на форумах и думаю некоторым будет полезно иметь, такую «шпаргалку» под рукой.

You all must have worked with Excel at some time in your life and must have felt the need for automating some repetitive or tedious task. Don’t worry in this tutorial we are going to learn about how to work with Excel using Python, or automating Excel using Python. We will be covering this with the help of the Openpyxl module.

Getting Started

Openpyxl is a Python library that provides various methods to interact with Excel Files using Python. It allows operations like reading, writing, arithmetic operations, plotting graphs, etc.

This module does not come in-built with Python. To install this type the below command in the terminal.

pip install openpyxl

Python Excel tutorial openpyxl install

Reading from Spreadsheets

To read an Excel file you have to open the spreadsheet using the load_workbook() method. After that, you can use the active to select the first sheet available and the cell attribute to select the cell by passing the row and column parameter. The value attribute prints the value of the particular cell. See the below example to get a better understanding. 

Note: The first row or column integer is 1, not 0.

Dataset Used: It can be downloaded from here.

python excel readin excel openpyxl

Example:

Python3

import openpyxl 

path = "gfg.xlsx"

wb_obj = openpyxl.load_workbook(path) 

sheet_obj = wb_obj.active 

cell_obj = sheet_obj.cell(row = 1, column = 1

print(cell_obj.value) 

Output:

Name

Reading from Multiple Cells

There can be two ways of reading from multiple cells. 

Method 1: We can get the count of the total rows and columns using the max_row and max_column respectively. We can use these values inside the for loop to get the value of the desired row or column or any cell depending upon the situation. Let’s see how to get the value of the first column and first row.

Example:

Python3

import openpyxl 

path = "gfg.xlsx"

wb_obj = openpyxl.load_workbook(path) 

sheet_obj = wb_obj.active 

row = sheet_obj.max_row

column = sheet_obj.max_column

print("Total Rows:", row)

print("Total Columns:", column)

print("nValue of first column")

for i in range(1, row + 1): 

    cell_obj = sheet_obj.cell(row = i, column = 1

    print(cell_obj.value) 

print("nValue of first row")

for i in range(1, column + 1): 

    cell_obj = sheet_obj.cell(row = 2, column = i) 

    print(cell_obj.value, end = " ")

Output:

Total Rows: 6
Total Columns: 4

Value of first column
Name
Ankit
Rahul
Priya
Nikhil
Nisha

Value of first row
Ankit  B.Tech CSE 4 

Method 2: We can also read from multiple cells using the cell name. This can be seen as the list slicing of Python.

Python3

import openpyxl 

path = "gfg.xlsx"

wb_obj = openpyxl.load_workbook(path) 

sheet_obj = wb_obj.active 

cell_obj = sheet_obj['A1': 'B6']

for cell1, cell2 in cell_obj:

    print(cell1.value, cell2.value)

Output:

Name Course
Ankit  B.Tech
Rahul M.Tech
Priya MBA
Nikhil B.Tech
Nisha B.Tech

Refer to the below article to get detailed information about reading excel files using openpyxl.

  • Reading an excel file using Python openpyxl module

Writing to Spreadsheets

First, let’s create a new spreadsheet, and then we will write some data to the newly created file. An empty spreadsheet can be created using the Workbook() method. Let’s see the below example.

Example:

Python3

from openpyxl import Workbook

workbook = Workbook()

workbook.save(filename="sample.xlsx")

Output:

empty spreadsheet using Python

After creating an empty file, let’s see how to add some data to it using Python. To add data first we need to select the active sheet and then using the cell() method we can select any particular cell by passing the row and column number as its parameter. We can also write using cell names. See the below example for a better understanding.

Example:

Python3

import openpyxl 

wb = openpyxl.Workbook() 

sheet = wb.active 

c1 = sheet.cell(row = 1, column = 1

c1.value = "Hello"

c2 = sheet.cell(row= 1 , column = 2

c2.value = "World"

c3 = sheet['A2'

c3.value = "Welcome"

c4 = sheet['B2'

c4.value = "Everyone"

wb.save("sample.xlsx"

Output:

python excel writing to file

Refer to the below article to get detailed information about writing to excel.

  • Writing to an excel file using openpyxl module

Appending to the Spreadsheet

In the above example, you will see that every time you try to write to a spreadsheet the existing data gets overwritten, and the file is saved as a new file. This happens because the Workbook() method always creates a new workbook file object. To write to an existing workbook you must open the file with the load_workbook() method. We will use the above-created workbook.

Example:

Python3

import openpyxl 

wb = openpyxl.load_workbook("sample.xlsx"

sheet = wb.active 

c = sheet['A3'

c.value = "New Data"

wb.save("sample.xlsx")

Output:

append data excel python

We can also use the append() method to append multiple data at the end of the sheet.

Example:

Python3

import openpyxl 

wb = openpyxl.load_workbook("sample.xlsx"

sheet = wb.active 

data = (

    (1, 2, 3),

    (4, 5, 6)

)

for row in data:

    sheet.append(row)

wb.save('sample.xlsx')

Output:

append data excel python

Arithmetic Operation on Spreadsheet

Arithmetic operations can be performed by typing the formula in a particular cell of the spreadsheet. For example, if we want to find the sum then =Sum() formula of the excel file is used.

Example:

Python3

import openpyxl 

wb = openpyxl.Workbook() 

sheet = wb.active 

sheet['A1'] = 200

sheet['A2'] = 300

sheet['A3'] = 400

sheet['A4'] = 500

sheet['A5'] = 600

sheet['A7'] = '= SUM(A1:A5)'

wb.save("sum.xlsx"

Output:

finding sum excel python

Refer to the below article to get detailed information about the Arithmetic operations on Spreadsheet.

  • Arithmetic operations in excel file using openpyxl

Adjusting Rows and Column

Worksheet objects have row_dimensions and column_dimensions attributes that control row heights and column widths. A sheet’s row_dimensions and column_dimensions are dictionary-like values; row_dimensions contains RowDimension objects and column_dimensions contains ColumnDimension objects. In row_dimensions, one can access one of the objects using the number of the row (in this case, 1 or 2). In column_dimensions, one can access one of the objects using the letter of the column (in this case, A or B).

Example:

Python3

import openpyxl 

wb = openpyxl.Workbook() 

sheet = wb.active 

sheet.cell(row = 1, column = 1).value = ' hello '

sheet.cell(row = 2, column = 2).value = ' everyone '

sheet.row_dimensions[1].height = 70

sheet.column_dimensions['B'].width = 20

wb.save('sample.xlsx'

Output:

adjusting rows and columns excel python

Merging Cells

A rectangular area of cells can be merged into a single cell with the merge_cells() sheet method. The argument to merge_cells() is a single string of the top-left and bottom-right cells of the rectangular area to be merged.

Example:

Python3

import openpyxl 

wb = openpyxl.Workbook() 

sheet = wb.active 

sheet.merge_cells('A2:D4'

sheet.cell(row = 2, column = 1).value = 'Twelve cells join together.'

sheet.merge_cells('C6:D6'

sheet.cell(row = 6, column = 6).value = 'Two merge cells.'

wb.save('sample.xlsx')

Output:

merge cells excel python

Unmerging Cells

To unmerge cells, call the unmerge_cells() sheet method.

Example:

Python3

import openpyxl 

wb = openpyxl.load_workbook('sample.xlsx'

sheet = wb.active 

sheet.unmerge_cells('A2:D4'

sheet.unmerge_cells('C6:D6'

wb.save('sample.xlsx')

Output:

unmerge cells excel python

Setting Font Style

To customize font styles in cells, important, import the Font() function from the openpyxl.styles module.

Example:

Python3

import openpyxl 

from openpyxl.styles import Font 

wb = openpyxl.Workbook() 

sheet = wb.active 

sheet.cell(row = 1, column = 1).value = "GeeksforGeeks"

sheet.cell(row = 1, column = 1).font = Font(size = 24

sheet.cell(row = 2, column = 2).value = "GeeksforGeeks"

sheet.cell(row = 2, column = 2).font = Font(size = 24, italic = True

sheet.cell(row = 3, column = 3).value = "GeeksforGeeks"

sheet.cell(row = 3, column = 3).font = Font(size = 24, bold = True

sheet.cell(row = 4, column = 4).value = "GeeksforGeeks"

sheet.cell(row = 4, column = 4).font = Font(size = 24, name = 'Times New Roman'

wb.save('sample.xlsx'

Output:

setting style excel python

Refer to the below article to get detailed information about adjusting rows and columns.

  • Adjusting rows and columns of an excel file using openpyxl module

Plotting Charts

Charts are composed of at least one series of one or more data points. Series themselves are comprised of references to cell ranges. For plotting the charts on an excel sheet, firstly, create chart objects of specific chart class( i.e BarChart, LineChart, etc.). After creating chart objects, insert data in it, and lastly, add that chart object in the sheet object.

Example 1:

Python3

import openpyxl

from openpyxl.chart import BarChart, Reference

wb = openpyxl.Workbook()

sheet = wb.active

for i in range(10):

    sheet.append([i])

values = Reference(sheet, min_col=1, min_row=1,

                   max_col=1, max_row=10)

chart = BarChart()

chart.add_data(values)

chart.title = " BAR-CHART "

chart.x_axis.title = " X_AXIS "

chart.y_axis.title = " Y_AXIS "

sheet.add_chart(chart, "E2")

wb.save("sample.xlsx")

Output:

create chart excel python

Example 2:

Python3

import openpyxl

from openpyxl.chart import LineChart, Reference

wb = openpyxl.Workbook()

sheet = wb.active

for i in range(10):

    sheet.append([i])

values = Reference(sheet, min_col=1, min_row=1,

                   max_col=1, max_row=10)

chart = LineChart()

chart.add_data(values)

chart.title = " LINE-CHART "

chart.x_axis.title = " X-AXIS "

chart.y_axis.title = " Y-AXIS "

sheet.add_chart(chart, "E2")

wb.save("sample.xlsx")

Output:

create chart excel python 2

Refer to the below articles to get detailed information about plotting in excel using Python.

  • Plotting charts in excel sheet using openpyxl module | Set  1
  • Plotting charts in excel sheet using openpyxl module | Set  2
  • Plotting charts in excel sheet using openpyxl module | Set 3

Adding Images

For the purpose of importing images inside our worksheet, we would be using openpyxl.drawing.image.Image. The method is a wrapper over PIL.Image method found in PIL (pillow) library. Due to which it is necessary for the PIL (pillow) library to be installed in order to use this method.

Image Used:

Example:

Python3

import openpyxl 

from openpyxl.drawing.image import Image

wb = openpyxl.Workbook() 

sheet = wb.active

sheet.append([10, 2010, "Geeks", 4, "life"]) 

img = Image("geek.jpg")

sheet.add_image(img, 'A2'

wb.save('sample.xlsx')

Output:

add image excel python

Refer to the below article to get detailed information about adding images.

  • Openpyxl – Adding Image

Some More Functionality of Excel using Python

  • How to delete one or more rows in excel using Openpyxl?
  • Trigonometric operations in excel file using openpyxl
  • How to copy data from one excel sheet to another
  • How to Automate an Excel Sheet in Python?

Узнайте, как читать и импортировать файлы Excel в Python, как записывать данные в эти таблицы и какие библиотеки лучше всего подходят для этого.

Известный вам инструмент для организации, анализа и хранения ваших данных в таблицах — Excel — применяется и в data science. В какой-то момент вам придется иметь дело с этими таблицами, но работать именно с ними вы будете не всегда. Вот почему разработчики Python реализовали способы чтения, записи и управления не только этими файлами, но и многими другими типами файлов.

Из этого учебника узнаете, как можете работать с Excel и Python. Внутри найдете обзор библиотек, которые вы можете использовать для загрузки и записи этих таблиц в файлы с помощью Python. Вы узнаете, как работать с такими библиотеками, как pandas, openpyxl, xlrd, xlutils и pyexcel.

Данные как ваша отправная точка

Когда вы начинаете проект по data science, вам придется работать с данными, которые вы собрали по всему интернету, и с наборами данных, которые вы загрузили из других мест — Kaggle, Quandl и тд

Но чаще всего вы также найдете данные в Google или в репозиториях, которые используются другими пользователями. Эти данные могут быть в файле Excel или сохранены в файл с расширением .csv … Возможности могут иногда казаться бесконечными, но когда у вас есть данные, в первую очередь вы должны убедиться, что они качественные.

В случае с электронной таблицей вы можете не только проверить, могут ли эти данные ответить на вопрос исследования, который вы имеете в виду, но также и можете ли вы доверять данным, которые хранятся в электронной таблице.

Проверяем качество таблицы

  • Представляет ли электронная таблица статические данные?
  • Смешивает ли она данные, расчеты и отчетность?
  • Являются ли данные в вашей электронной таблице полными и последовательными?
  • Имеет ли ваша таблица систематизированную структуру рабочего листа?
  • Проверяли ли вы действительные формулы в электронной таблице?

Этот список вопросов поможет убедиться, что ваша таблица не грешит против лучших практик, принятых в отрасли. Конечно, этот список не исчерпывающий, но позволит провести базовую проверку таблицы.

Лучшие практики для данных электронных таблиц

Прежде чем приступить к чтению вашей электронной таблицы на Python, вы также должны подумать о том, чтобы настроить свой файл в соответствии с некоторыми основными принципами, такими как:

  • Первая строка таблицы обычно зарезервирована для заголовка, а первый столбец используется для идентификации единицы выборки;
  • Избегайте имен, значений или полей с пробелами. В противном случае каждое слово будет интерпретироваться как отдельная переменная, что приведет к ошибкам, связанным с количеством элементов на строку в вашем наборе данных. По возможности, используйте:
  • подчеркивания,
  • тире,
  • горбатый регистр, где первая буква каждого слова пишется с большой буквы
  • объединяющие слова
  • Короткие имена предпочтительнее длинных имен;
  • старайтесь не использовать имена, которые содержат символы ?, $,%, ^, &, *, (,), -, #,? ,,, <,>, /, |, , [,], {, и };
  • Удалите все комментарии, которые вы сделали в вашем файле, чтобы избежать добавления в ваш файл лишних столбцов или NA;
  • Убедитесь, что все пропущенные значения в вашем наборе данных обозначены как NA.

Затем, после того, как вы внесли необходимые изменения или тщательно изучили свои данные, убедитесь, что вы сохранили внесенные изменения. Сделав это, вы можете вернуться к данным позже, чтобы отредактировать их, добавить дополнительные данные или изменить их, сохранив формулы, которые вы, возможно, использовали для расчета данных и т.д.

Если вы работаете с Microsoft Excel, вы можете сохранить файл в разных форматах: помимо расширения по умолчанию .xls или .xlsx, вы можете перейти на вкладку «Файл», нажать «Сохранить как» и выбрать одно из расширений, которые указаны в качестве параметров «Сохранить как тип». Наиболее часто используемые расширения для сохранения наборов данных в data science — это .csv и .txt (в виде текстового файла с разделителями табуляции). В зависимости от выбранного варианта сохранения поля вашего набора данных разделяются вкладками или запятыми, которые образуют символы-разделители полей вашего набора данных.

Теперь, когда вы проверили и сохранили ваши данные, вы можете начать с подготовки вашего рабочего окружения.

Готовим рабочее окружение

Как убедиться, что вы все делаете хорошо? Проверить рабочее окружение!

Когда вы работаете в терминале, вы можете сначала перейти в каталог, в котором находится ваш файл, а затем запустить Python. Убедитесь, что файл лежит именно в том каталоге, к которому вы обратились.

Возможно, вы уже начали сеанс Python и у вас нет подсказок о каталоге, в котором вы работаете. Тогда можно выполнить следующие команды:

# Import `os` 
import os

# Retrieve current working directory (`cwd`)
cwd = os.getcwd()
cwd

# Change directory 
os.chdir("/path/to/your/folder")

# List all files and directories in current directory
os.listdir('.')

Круто, да?

Вы увидите, что эти команды очень важны не только для загрузки ваших данных, но и для дальнейшего анализа. А пока давайте продолжим: вы прошли все проверки, вы сохранили свои данные и подготовили рабочее окружение.

Можете ли вы начать с чтения данных в Python?

Установите библиотеки для чтения и записи файлов Excel

Даже если вы еще не знаете, какие библиотеки вам понадобятся для импорта ваших данных, вы должны убедиться, что у вас есть все, что нужно для установки этих библиотек, когда придет время.

Подготовка к дополнительной рабочей области: pip

Вот почему вам нужно установить pip и setuptools. Если у вас установлен Python2 ⩾ 2.7.9 или Python3  ⩾ 3.4, то можно не беспокоиться — просто убедитесь, что вы обновились до последней версии.

Для этого выполните следующую команду в своем терминале:

# Для Linux/OS X
pip install -U pip setuptools

# Для Windows
python -m pip install -U pip setuptools

Если вы еще не установили pip, запустите скрипт python get-pip.py, который вы можете найти здесь. Следуйте инструкциям по установке.

Установка Anaconda

Другой вариант для работы в data science — установить дистрибутив Anaconda Python. Сделав это, вы получите простой и быстрый способ начать заниматься data science, потому что вам не нужно беспокоиться об установке отдельных библиотек, необходимых для работы.

Это особенно удобно, если вы новичок, но даже для более опытных разработчиков это способ быстро протестировать некоторые вещи без необходимости устанавливать каждую библиотеку отдельно.

Anaconda включает в себя 100 самых популярных библиотек Python, R и Scala для науки о данных и несколько сред разработки с открытым исходным кодом, таких как Jupyter и Spyder.

Установить Anaconda можно здесь. Следуйте инструкциям по установке, и вы готовы начать!

Загрузить файлы Excel в виде фреймов Pandas

Все, среда настроена, вы готовы начать импорт ваших файлов.

Один из способов, который вы часто используете для импорта ваших файлов для обработки данных, — с помощью библиотеки Pandas. Она основана на NumPy и предоставляет простые в использовании структуры данных и инструменты анализа данных Python.

Эта мощная и гибкая библиотека очень часто используется дата-инженерами для передачи своих данных в структуры данных, очень выразительных для их анализа.

Если у вас уже есть Pandas, доступные через Anaconda, вы можете просто загрузить свои файлы в Pandas DataFrames с помощью pd.Excelfile():

# импорт библиотеки pandas
import pandas as pd

# Загружаем ваш файл в переменную `file` / вместо 'example' укажите название свого файла из текущей директории
file = 'example.xlsx'

# Загружаем spreadsheet в объект pandas
xl = pd.ExcelFile(file)

# Печатаем название листов в данном файле
print(xl.sheet_names)

# Загрузить лист в DataFrame по его имени: df1
df1 = xl.parse('Sheet1')

Если вы не установили Anaconda, просто выполните pip install pandas, чтобы установить библиотеку Pandas в вашей среде, а затем выполните команды, которые включены в фрагмент кода выше.

Проще простого, да?

Для чтения в файлах .csv у вас есть аналогичная функция для загрузки данных в DataFrame: read_csv(). Вот пример того, как вы можете использовать эту функцию:

# Импорт библиотеки pandas
import pandas as pd

# Загрузить csv файл
df = pd.read_csv("example.csv") 

Разделитель, который будет учитывать эта функция, по умолчанию является запятой, но вы можете указать альтернативный разделитель, если хотите. Перейдите к документации, чтобы узнать, какие другие аргументы вы можете указать для успешного импорта!

Обратите внимание, что есть также функции read_table() и read_fwf() для чтения файлов и таблиц с фиксированной шириной в формате DataFrames с общим разделителем. Для первой функции разделителем по умолчанию является вкладка, но вы можете снова переопределить это, а также указать альтернативный символ-разделитель. Более того, есть и другие функции, которые вы можете использовать для получения данных в DataFrames: вы можете найти их здесь.

Как записать Pandas DataFrames в файлы Excel

Допустим, что после анализа данных вы хотите записать данные обратно в новый файл. Есть также способ записать ваши Pandas DataFrames обратно в файлы с помощью функции to_excel().

Но, прежде чем использовать эту функцию, убедитесь, что у вас установлен XlsxWriter, если вы хотите записать свои данные в несколько листов в файле .xlsx:

# Установим `XlsxWriter` 
pip install XlsxWriter

# Указать writer библиотеки
writer = pd.ExcelWriter('example.xlsx', engine='xlsxwriter')

# Записать ваш DataFrame в файл     
yourData.to_excel(writer, 'Sheet1')

# Сохраним результат 
writer.save()

Обратите внимание, что в приведенном выше фрагменте кода вы используете объект ExcelWriter для вывода DataFrame.

Иными словами, вы передаете переменную Writer в функцию to_excel() и также указываете имя листа. Таким образом, вы добавляете лист с данными в существующую рабочую книгу: вы можете использовать ExcelWriter для сохранения нескольких (немного) разных DataFrames в одной рабочей книге.

Все это означает, что если вы просто хотите сохранить один DataFrame в файл, вы также можете обойтись без установки пакета XlsxWriter. Затем вы просто не указываете аргумент движка, который вы передаете в функцию pd.ExcelWriter(). Остальные шаги остаются прежними.

Аналогично функциям, которые вы использовали для чтения в файлах .csv, у вас также есть функция to_csv() для записи результатов обратно в файл, разделенный запятыми. Он снова работает так же, как когда вы использовали его для чтения в файле:

# Запишите DataFrame в csv
df.to_csv("example.csv")

Если вы хотите иметь файл, разделенный табуляцией, вы также можете передать t аргументу sep. Обратите внимание, что есть другие функции, которые вы можете использовать для вывода ваших файлов. Вы можете найти их все здесь.

Пакеты для разбора файлов Excel и обратной записи с помощью Python

Помимо библиотеки Pandas, который вы будете использовать очень часто для загрузки своих данных, вы также можете использовать другие библиотеки для получения ваших данных в Python. Наш обзор основан на этой странице со списком доступных библиотек, которые вы можете использовать для работы с файлами Excel в Python.

Далее вы увидите, как использовать эти библиотеки с помощью некоторых реальных, но упрощенных примеров.

Использование виртуальных сред

Общий совет для установки — делать это в Python virtualenv без системных пакетов. Вы можете использовать virtualenv для создания изолированных сред Python: он создает папку, содержащую все необходимые исполняемые файлы для использования пакетов, которые потребуются проекту Python.

Чтобы начать работать с virtualenv, вам сначала нужно установить его. Затем перейдите в каталог, в который вы хотите поместить свой проект. Создайте virtualenv в этой папке и загрузите в определенную версию Python, если вам это нужно. Затем вы активируете виртуальную среду. После этого вы можете начать загрузку в другие библиотеки, начать работать с ними и т. д.

Совет: не забудьте деактивировать среду, когда закончите!

# Install virtualenv
$ pip install virtualenv

# Go to the folder of your project
$ cd my_folder

# Create a virtual environment `venv`
$ virtualenv venv

# Indicate the Python interpreter to use for `venv`
$ virtualenv -p /usr/bin/python2.7 venv

# Activate `venv`
$ source venv/bin/activate

# Deactivate `venv`
$ deactivate

Обратите внимание, что виртуальная среда может показаться немного проблемной на первый взгляд, когда вы только начинаете работать с данными с Python. И, особенно если у вас есть только один проект, вы можете не понять, зачем вам вообще нужна виртуальная среда.

С ней будет гораздо легче, когда у вас одновременно запущено несколько проектов, и вы не хотите, чтобы они использовали одну и ту же установку Python. Или когда ваши проекты имеют противоречащие друг другу требования, виртуальная среда пригодится!

Теперь вы можете, наконец, начать установку и импорт библиотек, о которых вы читали, и загрузить их в таблицу.

Как читать и записывать файлы Excel с openpyxl

Этот пакет обычно рекомендуется, если вы хотите читать и записывать файлы .xlsx, xlsm, xltx и xltm.

Установите openpyxl с помощью pip: вы видели, как это сделать в предыдущем разделе.

Общий совет для установки этой библиотеки — делать это в виртуальной среде Python без системных библиотек. Вы можете использовать виртуальную среду для создания изолированных сред Python: она создает папку, которая содержит все необходимые исполняемые файлы для использования библиотек, которые потребуются проекту Python.

Перейдите в каталог, в котором находится ваш проект, и повторно активируйте виртуальную среду venv. Затем продолжите установку openpyxl с pip, чтобы убедиться, что вы можете читать и записывать файлы с ним:

# Активируйте virtualenv
$ source activate venv

# Установим `openpyxl` в `venv`
$ pip install openpyxl

Теперь, когда вы установили openpyxl, вы можете загружать данные. Но что это за данные?

Доспутим Excel с данными, которые вы пытаетесь загрузить в Python, содержит следующие листы:

Функция load_workbook() принимает имя файла в качестве аргумента и возвращает объект рабочей книги, который представляет файл. Вы можете проверить это, запустив type (wb). Убедитесь, что вы находитесь в том каталоге, где находится ваша таблица, иначе вы получите error при импорте.

# Import `load_workbook` module from `openpyxl`
from openpyxl import load_workbook

# Load in the workbook
wb = load_workbook('./test.xlsx')

# Get sheet names
print(wb.get_sheet_names())

Помните, что вы можете изменить рабочий каталог с помощью os.chdir().

Вы видите, что фрагмент кода выше возвращает имена листов книги, загруженной в Python.Можете использовать эту информацию, чтобы также получить отдельные листы рабочей книги.

Вы также можете проверить, какой лист в настоящее время активен с wb.active. Как видно из кода ниже, вы можете использовать его для загрузки другого листа из вашей книги:

# Get a sheet by name 
sheet = wb.get_sheet_by_name('Sheet3')

# Print the sheet title 
sheet.title

# Get currently active sheet
anotherSheet = wb.active

# Check `anotherSheet` 
anotherSheet

На первый взгляд, с этими объектами рабочего листа вы не сможете многое сделать.. Однако вы можете извлечь значения из определенных ячеек на листе вашей книги, используя квадратные скобки [], в которые вы передаете точную ячейку, из которой вы хотите получить значение.

Обратите внимание, что это похоже на выбор, получение и индексирование массивов NumPy и Pandas DataFrames, но это не все, что вам нужно сделать, чтобы получить значение. Вам нужно добавить атрибут value:

# Retrieve the value of a certain cell
sheet['A1'].value

# Select element 'B2' of your sheet 
c = sheet['B2']

# Retrieve the row number of your element
c.row

# Retrieve the column letter of your element
c.column

# Retrieve the coordinates of the cell 
c.coordinate

Как вы можете видеть, помимо значения, есть и другие атрибуты, которые вы можете использовать для проверки вашей ячейки, а именно: row, column и coordinate.

Атрибут row вернет 2;

Добавление атрибута column к c даст вам ‘B’

coordinate вернет ‘B2’.

Вы также можете получить значения ячеек с помощью функции cell(). Передайте row и column, добавьте к этим аргументам значения, соответствующие значениям ячейки, которую вы хотите получить, и, конечно же, не забудьте добавить атрибут value:

# Retrieve cell value 
sheet.cell(row=1, column=2).value

# Print out values in column 2 
for i in range(1, 4):
     print(i, sheet.cell(row=i, column=2).value)

Обратите внимание, что если вы не укажете атрибут value, вы получите <Cell Sheet3.B1>, который ничего не говорит о значении, которое содержится в этой конкретной ячейке.

Вы видите, что вы используете цикл for с помощью функции range(), чтобы помочь вам распечатать значения строк, имеющих значения в столбце 2. Если эти конкретные ячейки пусты, вы просто вернете None. Если вы хотите узнать больше о циклах for, пройдите наш курс Intermediate Python для Data Science.

Есть специальные функции, которые вы можете вызывать для получения некоторых других значений, например, get_column_letter() и column_index_from_string.

Две функции указывают примерно то, что вы можете получить, используя их, но лучше сделать их четче: хотя вы можете извлечь букву столбца с предшествующего, вы можете сделать обратное или получить адрес столбца, когда вы задаёте букву последнему. Вы можете увидеть, как это работает ниже:

# Импорт необходимых модулей из  `openpyxl.utils`
from openpyxl.utils import get_column_letter, column_index_from_string

# Вывод 'A'
get_column_letter(1)

# Return '1'
column_index_from_string('A')

Вы уже получили значения для строк, которые имеют значения в определенном столбце, но что вам нужно сделать, если вы хотите распечатать строки вашего файла, не сосредотачиваясь только на одном столбце? Использовать другой цикл, конечно!

Например, вы говорите, что хотите сфокусироваться на области между «А1» и «С3», где первая указывает на левый верхний угол, а вторая — на правый нижний угол области, на которой вы хотите сфокусироваться. ,

Эта область будет так называемым cellObj, который вы видите в первой строке кода ниже. Затем вы говорите, что для каждой ячейки, которая находится в этой области, вы печатаете координату и значение, которое содержится в этой ячейке. После конца каждой строки вы печатаете сообщение, которое указывает, что строка этой области cellObj напечатана.

# Напечатать строчку за строчкой
for cellObj in sheet['A1':'C3']:
      for cell in cellObj:
              print(cells.coordinate, cells.value)
      print('--- END ---')

Еще раз обратите внимание, что выбор области очень похож на выбор, получение и индексирование списка и элементов массива NumPy, где вы также используете [] и : для указания области, значения которой вы хотите получить. Кроме того, вышеприведенный цикл также хорошо использует атрибуты ячейки!

Чтобы сделать вышеприведенное объяснение и код наглядным, вы можете проверить результат, который вы получите после завершения цикла:

('A1', u'M')
('B1', u'N')
('C1', u'O')
--- END ---
('A2', 10L)
('B2', 11L)
('C2', 12L)
--- END ---
('A3', 14L)
('B3', 15L)
('C3', 16L)
--- END ---

Наконец, есть некоторые атрибуты, которые вы можете использовать для проверки результата вашего импорта, а именно max_row и max_column. Эти атрибуты, конечно, и так  — общие способы проверки правильности загрузки данных, но они все равно полезны.

# Вывести максимальное количество строк 
sheet.max_row

# Вывести максимальное количество колонок 
sheet.max_column

Наверное, вы думаете, что такой способ работы с этими файлами сложноват, особенно если вы еще хотите манипулировать данными.

Должно быть что-то попроще, верно? Так и есть!

openpyxl поддерживает Pandas DataFrames! Вы можете использовать функцию DataFrame() из библиотеки Pandas, чтобы поместить значения листа в DataFrame:

# Import `pandas` 
import pandas as pd

# конвертировать Лист в DataFrame
df = pd.DataFrame(sheet.values)

Если вы хотите указать заголовки и индексы, вам нужно добавить немного больше кода:

# Put the sheet values in `data`
data = sheet.values

# Indicate the columns in the sheet values
cols = next(data)[1:]

# Convert your data to a list
data = list(data)

# Read in the data at index 0 for the indices
idx = [r[0] for r in data]

# Slice the data at index 1 
data = (islice(r, 1, None) for r in data)

# Make your DataFrame
df = pd.DataFrame(data, index=idx, columns=cols)

Затем вы можете начать манипулировать данными со всеми функциями, которые предлагает библиотека Pandas. Но помните, что вы находитесь в виртуальной среде, поэтому, если библиотека еще не представлена, вам нужно будет установить ее снова через pip.

Чтобы записать ваши Pandas DataFrames обратно в файл Excel, вы можете легко использовать функцию dataframe_to_rows() из модуля utils:

# Import `dataframe_to_rows`
from openpyxl.utils.dataframe import dataframe_to_rows

# Initialize a workbook 
wb = Workbook()

# Get the worksheet in the active workbook
ws = wb.active

# Append the rows of the DataFrame to your worksheet
for r in dataframe_to_rows(df, index=True, header=True):
    ws.append(r)

Но это точно не все! Библиотека openpyxl предлагает вам высокую гибкость при записи ваших данных обратно в файлы Excel, изменении стилей ячеек или использовании режима write-only. Эту библиотеку обязательно нужно знать, когда вы часто работаете с электронными таблицами ,

Совет: читайте больше о том, как вы можете изменить стили ячеек, перейти в режим write-only или как библиотека работает с NumPy здесь.

Теперь давайте также рассмотрим некоторые другие библиотеки, которые вы можете использовать для получения данных вашей электронной таблицы в Python.

Прежде чем закрыть этот раздел, не забудьте отключить виртуальную среду, когда закончите!

Чтение и форматирование Excel-файлов: xlrd

Эта библиотека идеально подходит для чтения и форматирования данных из Excel с расширением xls или xlsx.

# Import `xlrd`
import xlrd

# Open a workbook 
workbook = xlrd.open_workbook('example.xls')

# Loads only current sheets to memory
workbook = xlrd.open_workbook('example.xls', on_demand = True)

Когда вам не нужны данные из всей Excel-книги, вы можете использовать функции sheet_by_name() или sheet_by_index() для получения листов, которые вы хотите получить в своём анализе

# Load a specific sheet by name
worksheet = workbook.sheet_by_name('Sheet1')

# Load a specific sheet by index 
worksheet = workbook.sheet_by_index(0)

# Retrieve the value from cell at indices (0,0) 
sheet.cell(0, 0).value

Также можно получить значение в определённых ячейках с вашего листа.

Перейдите к xlwt и xlutils, чтобы узнать больше о том, как они относятся к библиотеке xlrd.

Запись данных в Excel-файлы с xlwt

Если вы хотите создать таблицу со своими данными, вы можете использовать не только библиотеку XlsWriter, но и xlwt. xlwt идеально подходит для записи данных и форматирования информации в файлах с расширением .xls

Когда вы вручную создаёте файл:

# Import `xlwt` 
import xlwt

# Initialize a workbook 
book = xlwt.Workbook(encoding="utf-8")

# Add a sheet to the workbook 
sheet1 = book.add_sheet("Python Sheet 1") 

# Write to the sheet of the workbook 
sheet1.write(0, 0, "This is the First Cell of the First Sheet") 

# Save the workbook 
book.save("spreadsheet.xls")

Если вы хотите записать данные в файл, но не хотите делать все самостоятельно, вы всегда можете прибегнуть к циклу for, чтобы автоматизировать весь процесс. Составьте сценарий, в котором вы создаёте книгу и в которую добавляете лист. Укажите список со столбцами и один со значениями, которые будут заполнены на листе.

Далее у вас есть цикл for, который гарантирует, что все значения попадают в файл: вы говорите, что для каждого элемента в диапазоне от 0 до 4 (5 не включительно) вы собираетесь что-то делать. Вы будете заполнять значения построчно. Для этого вы указываете элемент строки, который появляется в каждом цикле. Далее у вас есть еще один цикл for, который будет проходить по столбцам вашего листа. Вы говорите, что для каждой строки на листе, вы будете смотреть на столбцы, которые идут с ним, и вы будете заполнять значение для каждого столбца в строке. Заполнив все столбцы строки значениями, вы перейдете к следующей строке, пока не останется строк.

# Initialize a workbook
book = xlwt.Workbook()

# Add a sheet to the workbook
sheet1 = book.add_sheet("Sheet1")

# The data
cols = ["A", "B", "C", "D", "E"]
txt = [0,1,2,3,4]

# Loop over the rows and columns and fill in the values
for num in range(5):
      row = sheet1.row(num)
      for index, col in enumerate(cols):
          value = txt[index] + num
          row.write(index, value)

# Save the result
book.save("test.xls")

На скриншоте ниже представлен результат выполнения этого кода:

Теперь, когда вы увидели, как xlrd и xlwt работают друг с другом, пришло время взглянуть на библиотеку, которая тесно связана с этими двумя: xlutils.

Сборник утилит: xlutils

Эта библиотека — сборник утилит, для которого требуются и xlrd и xlwt, и которая может копировать, изменять и фильтровать существующие данные. О том, как пользоваться этими командами рассказано в разделе по openpyxl.

Вернитесь в раздел openpyxl, чтобы получить больше информации о том, как использовать этот пакет для получения данных в Python.

Использование pyexcel для чтения .xls или .xlsx файлов

Еще одна библиотека, которую можно использовать для чтения данных электронных таблиц в Python — это pyexcel; Python Wrapper, который предоставляет один API для чтения, записи и работы с данными в файлах .csv, .ods, .xls, .xlsx и .xlsm. Конечно, для этого урока вы просто сосредоточитесь на файлах .xls и .xls.

Чтобы получить ваши данные в массиве, вы можете использовать функцию get_array(), которая содержится в пакете pyexcel:

# Import `pyexcel`
import pyexcel

# Get an array from the data
my_array = pyexcel.get_array(file_name="test.xls")

Вы также можете получить свои данные в упорядоченном словаре списков. Вы можете использовать функцию get_dict():

# Import `OrderedDict` module 
from pyexcel._compact import OrderedDict

# Get your data in an ordered dictionary of lists
my_dict = pyexcel.get_dict(file_name="test.xls", name_columns_by_row=0)

# Get your data in a dictionary of 2D arrays
book_dict = pyexcel.get_book_dict(file_name="test.xls")

Здесь видно, что если вы хотите получить словарь двумерных массивов или получить все листы рабочей книги в одном словаре, вы можете прибегнуть к get_book_dict().

Помните, что эти две структуры данных, которые были упомянуты выше, массивы и словари вашей таблицы, позволяют вам создавать DataFrames ваших данных с помощью pd.DataFrame(). Это облегчит обработку данных.

Кроме того, вы можете просто получить записи из таблицы с помощью pyexcel благодаря функции get_records(). Просто передайте аргумент file_name в функцию, и вы получите список словарей:

# Retrieve the records of the file
records = pyexcel.get_records(file_name="test.xls")

Чтобы узнать, как управлять списками Python, ознакомьтесь с примерами из документации о списках Python.

Запись в файл с pyexcel

С помощью этой библиотеки можно не только загружать данные в массивы, вы также можете экспортировать свои массивы обратно в таблицу. Используйте функцию save_as() и передайте массив и имя файла назначения в аргумент dest_file_name:

# Get the data
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

# Save the array to a file
pyexcel.save_as(array=data, dest_file_name="array_data.xls")

Обратите внимание, что если вы хотите указать разделитель, вы можете добавить аргумент dest_delimiter и передать символ, который вы хотите использовать в качестве разделителя между «».

Однако если у вас есть словарь, вам нужно использовать функцию save_book_as(). Передайте двумерный словарь в bookdict и укажите имя файла:

# The data
2d_array_dictionary = {'Sheet 1': [
                                   ['ID', 'AGE', 'SCORE']
                                   [1, 22, 5],
                                   [2, 15, 6],
                                   [3, 28, 9]
                                  ],
                       'Sheet 2': [
                                    ['X', 'Y', 'Z'],
                                    [1, 2, 3],
                                    [4, 5, 6]
                                    [7, 8, 9]
                                  ],
                       'Sheet 3': [
                                    ['M', 'N', 'O', 'P'],
                                    [10, 11, 12, 13],
                                    [14, 15, 16, 17]
                                    [18, 19, 20, 21]
                                   ]}

# Save the data to a file                        
pyexcel.save_book_as(bookdict=2d_array_dictionary, dest_file_name="2d_array_data.xls")

При использовании кода, напечатанного в приведенном выше примере, важно помнить, что порядок ваших данных в словаре не будет сохранен. Если вы не хотите этого, вам нужно сделать небольшой обход. Вы можете прочитать все об этом здесь.

Чтение и запись .csv файлов

Если вы все еще ищете библиотеки, которые позволяют загружать и записывать данные в файлы .csv, кроме Pandas, лучше всего использовать пакет csv:

# import `csv`
import csv

# Read in csv file 
for row in csv.reader(open('data.csv'), delimiter=','):
      print(row)
      
# Write csv file
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
outfile = open('data.csv', 'w')
writer = csv.writer(outfile, delimiter=';', quotechar='"')
writer.writerows(data)
outfile.close()

Обратите внимание, что в пакете NumPy есть функция genfromtxt(), которая позволяет загружать данные, содержащиеся в файлах .csv, в массивы, которые затем можно поместить в DataFrames.

Финальная проверка данных

Когда у вас есть данные, не забудьте последний шаг: проверить, правильно ли загружены данные. Если вы поместили свои данные в DataFrame, вы можете легко и быстро проверить, был ли импорт успешным, выполнив следующие команды:

# Check the first entries of the DataFrame
df1.head()

# Check the last entries of the DataFrame
df1.tail()

Если у вас есть данные в массиве, вы можете проверить их, используя следующие атрибуты массива: shape, ndim, dtype и т.д .:

# Inspect the shape 
data.shape

# Inspect the number of dimensions
data.ndim

# Inspect the data type
data.dtype

Что дальше?

Поздравляем! Вы успешно прошли наш урок и научились читать файлы Excel на Python.

Если вы хотите продолжить работу над этой темой, попробуйте воспользоваться PyXll, который позволяет писать функции в Python и вызывать их в Excel.

Why learn to work with Excel with Python? Excel is one of the most popular and widely-used data tools; it’s hard to find an organization that doesn’t work with it in some way. From analysts, to sales VPs, to CEOs, various professionals use Excel for both quick stats and serious data crunching.

With Excel being so pervasive, data professionals must be familiar with it. Working with data in Python or R offers serious advantages over Excel’s UI, so finding a way to work with Excel using code is critical. Thankfully, there’s a great tool already out there for using Excel with Python called pandas.

Pandas has excellent methods for reading all kinds of data from Excel files. You can also export your results from pandas back to Excel, if that’s preferred by your intended audience. Pandas is great for other routine data analysis tasks, such as:

  • quick Exploratory Data Analysis (EDA)
  • drawing attractive plots
  • feeding data into machine learning tools like scikit-learn
  • building machine learning models on your data
  • taking cleaned and processed data to any number of data tools

Pandas is better at automating data processing tasks than Excel, including processing Excel files.

In this tutorial, we are going to show you how to work with Excel files in pandas. We will cover the following concepts.

  • setting up your computer with the necessary software
  • reading in data from Excel files into pandas
  • data exploration in pandas
  • visualizing data in pandas using the matplotlib visualization library
  • manipulating and reshaping data in pandas
  • moving data from pandas into Excel

Note that this tutorial does not provide a deep dive into pandas. To explore pandas more, check out our course.

System Prerequisites

We will use Python 3 and Jupyter Notebook to demonstrate the code in this tutorial.In addition to Python and Jupyter Notebook, you will need the following Python modules:

  • matplotlib — data visualization
  • NumPy — numerical data functionality
  • OpenPyXL — read/write Excel 2010 xlsx/xlsm files
  • pandas — data import, clean-up, exploration, and analysis
  • xlrd — read Excel data
  • xlwt — write to Excel
  • XlsxWriter — write to Excel (xlsx) files

There are multiple ways to get set up with all the modules. We cover three of the most common scenarios below.

  • If you have Python installed via Anaconda package manager, you can install the required modules using the command conda install. For example, to install pandas, you would execute the command — conda install pandas.
  • If you already have a regular, non-Anaconda Python installed on the computer, you can install the required modules using pip. Open your command line program and execute command pip install <module name> to install a module. You should replace <module name> with the actual name of the module you are trying to install. For example, to install pandas, you would execute command — pip install pandas.
  • If you don’t have Python already installed, you should get it through the Anaconda package manager. Anaconda provides installers for Windows, Mac, and Linux Computers. If you choose the full installer, you will get all the modules you need, along with Python and pandas within a single package. This is the easiest and fastest way to get started.

The Data Set

In this tutorial, we will use a multi-sheet Excel file we created from Kaggle’s IMDB Scores data. You can download the file here.

img-excel-1

Our Excel file has three sheets: ‘1900s,’ ‘2000s,’ and ‘2010s.’ Each sheet has data for movies from those years.

We will use this data set to find the ratings distribution for the movies, visualize movies with highest ratings and net earnings and calculate statistical information about the movies. We will be analyzing and exploring this data using Python and pandas, thus demonstrating pandas capabilities for working with Excel data in Python.

Read data from the Excel file

We need to first import the data from the Excel file into pandas. To do that, we start by importing the pandas module.

import pandas as pd

We then use the pandas’ read_excel method to read in data from the Excel file. The easiest way to call this method is to pass the file name. If no sheet name is specified then it will read the first sheet in the index (as shown below).

excel_file = 'movies.xls'
movies = pd.read_excel(excel_file)

Here, the read_excel method read the data from the Excel file into a pandas DataFrame object. Pandas defaults to storing data in DataFrames. We then stored this DataFrame into a variable called movies.

Pandas has a built-in DataFrame.head() method that we can use to easily display the first few rows of our DataFrame. If no argument is passed, it will display first five rows. If a number is passed, it will display the equal number of rows from the top.

movies.head()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
0 Intolerance: Love’s Struggle Throughout the Ages 1916 Drama|History|War NaN USA Not Rated 123 1.33 385907.0 NaN 436 22 9.0 481 691 1 10718 88 69.0 8.0
1 Over the Hill to the Poorhouse 1920 Crime|Drama NaN USA NaN 110 1.33 100000.0 3000000.0 2 2 0.0 4 0 1 5 1 1.0 4.8
2 The Big Parade 1925 Drama|Romance|War NaN USA Not Rated 151 1.33 245000.0 NaN 81 12 6.0 108 226 0 4849 45 48.0 8.3
3 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 136 23 18.0 203 12000 1 111841 413 260.0 8.3
4 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 426 20 3.0 455 926 1 7431 84 71.0 8.0

5 rows × 25 columns

Excel files quite often have multiple sheets and the ability to read a specific sheet or all of them is very important. To make this easy, the pandas read_excel method takes an argument called sheetname that tells pandas which sheet to read in the data from. For this, you can either use the sheet name or the sheet number. Sheet numbers start with zero. If the sheetname argument is not given, it defaults to zero and pandas will import the first sheet.

By default, pandas will automatically assign a numeric index or row label starting with zero. You may want to leave the default index as such if your data doesn’t have a column with unique values that can serve as a better index. In case there is a column that you feel would serve as a better index, you can override the default behavior by setting index_col property to a column. It takes a numeric value for setting a single column as index or a list of numeric values for creating a multi-index.

In the below code, we are choosing the first column, ‘Title’, as index (index=0) by passing zero to the index_col argument.

movies_sheet1 = pd.read_excel(excel_file, sheetname=0, index_col=0)
movies_sheet1.head()
Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
Title
Intolerance: Love’s Struggle Throughout the Ages 1916 Drama|History|War NaN USA Not Rated 123 1.33 385907.0 NaN D.W. Griffith 436 22 9.0 481 691 1 10718 88 69.0 8.0
Over the Hill to the Poorhouse 1920 Crime|Drama NaN USA NaN 110 1.33 100000.0 3000000.0 Harry F. Millarde 2 2 0.0 4 0 1 5 1 1.0 4.8
The Big Parade 1925 Drama|Romance|War NaN USA Not Rated 151 1.33 245000.0 NaN King Vidor 81 12 6.0 108 226 0 4849 45 48.0 8.3
Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 Fritz Lang 136 23 18.0 203 12000 1 111841 413 260.0 8.3
Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 Georg Wilhelm Pabst 426 20 3.0 455 926 1 7431 84 71.0 8.0

5 rows × 24 columns

As you noticed above, our Excel data file has three sheets. We already read the first sheet in a DataFrame above. Now, using the same syntax, we will read in rest of the two sheets too.

movies_sheet2 = pd.read_excel(excel_file, sheetname=1, index_col=0)
movies_sheet2.head()
Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
Title
102 Dalmatians 2000 Adventure|Comedy|Family English USA G 100.0 1.85 85000000.0 66941559.0 Kevin Lima 2000.0 795.0 439.0 4182 372 1 26413 77.0 84.0 4.8
28 Days 2000 Comedy|Drama English USA PG-13 103.0 1.37 43000000.0 37035515.0 Betty Thomas 12000.0 10000.0 664.0 23864 0 1 34597 194.0 116.0 6.0
3 Strikes 2000 Comedy English USA R 82.0 1.85 6000000.0 9821335.0 DJ Pooh 939.0 706.0 585.0 3354 118 1 1415 10.0 22.0 4.0
Aberdeen 2000 Drama English UK NaN 106.0 1.85 6500000.0 64148.0 Hans Petter Moland 844.0 2.0 0.0 846 260 0 2601 35.0 28.0 7.3
All the Pretty Horses 2000 Drama|Romance|Western English USA PG-13 220.0 2.35 57000000.0 15527125.0 Billy Bob Thornton 13000.0 861.0 820.0 15006 652 2 11388 183.0 85.0 5.8

5 rows × 24 columns

movies_sheet3 = pd.read_excel(excel_file, sheetname=2, index_col=0)
movies_sheet3.head()
Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
Title
127 Hours 2010.0 Adventure|Biography|Drama|Thriller English USA R 94.0 1.85 18000000.0 18329466.0 Danny Boyle 11000.0 642.0 223.0 11984 63000 0.0 279179 440.0 450.0 7.6
3 Backyards 2010.0 Drama English USA R 88.0 NaN 300000.0 NaN Eric Mendelsohn 795.0 659.0 301.0 1884 92 0.0 554 23.0 20.0 5.2
3 2010.0 Comedy|Drama|Romance German Germany Unrated 119.0 2.35 NaN 59774.0 Tom Tykwer 24.0 20.0 9.0 69 2000 0.0 4212 18.0 76.0 6.8
8: The Mormon Proposition 2010.0 Documentary English USA R 80.0 1.78 2500000.0 99851.0 Reed Cowan 191.0 12.0 5.0 210 0 0.0 1138 30.0 28.0 7.1
A Turtle’s Tale: Sammy’s Adventures 2010.0 Adventure|Animation|Family English France PG 88.0 2.35 NaN NaN Ben Stassen 783.0 749.0 602.0 3874 0 2.0 5385 22.0 56.0 6.1

5 rows × 24 columns

Since all the three sheets have similar data but for different recordsmovies, we will create a single DataFrame from all the three DataFrames we created above. We will use the pandas concat method for this and pass in the names of the three DataFrames we just created and assign the results to a new DataFrame object, movies. By keeping the DataFrame name same as before, we are over-writing the previously created DataFrame.

movies = pd.concat([movies_sheet1, movies_sheet2, movies_sheet3])

We can check if this concatenation by checking the number of rows in the combined DataFrame by calling the method shape on it that will give us the number of rows and columns.

movies.shape
(5042, 24)

Using the ExcelFile class to read multiple sheets

We can also use the ExcelFile class to work with multiple sheets from the same Excel file. We first wrap the Excel file using ExcelFile and then pass it to read_excel method.

xlsx = pd.ExcelFile(excel_file)
movies_sheets = []
for sheet in xlsx.sheet_names:
   movies_sheets.append(xlsx.parse(sheet))
movies = pd.concat(movies_sheets)

If you are reading an Excel file with a lot of sheets and are creating a lot of DataFrames, ExcelFile is more convenient and efficient in comparison to read_excel. With ExcelFile, you only need to pass the Excel file once, and then you can use it to get the DataFrames. When using read_excel, you pass the Excel file every time and hence the file is loaded again for every sheet. This can be a huge performance drag if the Excel file has many sheets with a large number of rows.

Exploring the data

Now that we have read in the movies data set from our Excel file, we can start exploring it using pandas. A pandas DataFrame stores the data in a tabular format, just like the way Excel displays the data in a sheet. Pandas has a lot of built-in methods to explore the DataFrame we created from the Excel file we just read in.

We already introduced the method head in the previous section that displays few rows from the top from the DataFrame. Let’s look at few more methods that come in handy while exploring the data set.

We can use the shape method to find out the number of rows and columns for the DataFrame.

movies.shape
(5042, 25)

This tells us our Excel file has 5042 records and 25 columns or observations. This can be useful in reporting the number of records and columns and comparing that with the source data set.

We can use the tail method to view the bottom rows. If no parameter is passed, only the bottom five rows are returned.

movies.tail()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
1599 War & Peace NaN Drama|History|Romance|War English UK TV-14 NaN 16.00 NaN NaN 1000.0 888.0 502.0 4528 11000 1.0 9277 44.0 10.0 8.2
1600 Wings NaN Comedy|Drama English USA NaN 30.0 1.33 NaN NaN 685.0 511.0 424.0 1884 1000 5.0 7646 56.0 19.0 7.3
1601 Wolf Creek NaN Drama|Horror|Thriller English Australia NaN NaN 2.00 NaN NaN 511.0 457.0 206.0 1617 954 0.0 726 6.0 2.0 7.1
1602 Wuthering Heights NaN Drama|Romance English UK NaN 142.0 NaN NaN NaN 27000.0 698.0 427.0 29196 0 2.0 6053 33.0 9.0 7.7
1603 Yu-Gi-Oh! Duel Monsters NaN Action|Adventure|Animation|Family|Fantasy Japanese Japan NaN 24.0 NaN NaN NaN 0.0 NaN NaN 0 124 0.0 12417 51.0 6.0 7.0

5 rows × 25 columns

In Excel, you’re able to sort a sheet based on the values in one or more columns. In pandas, you can do the same thing with the sort_values method. For example, let’s sort our movies DataFrame based on the Gross Earnings column.

sorted_by_gross = movies.sort_values(['Gross Earnings'], ascending=False)

Since we have the data sorted by values in a column, we can do few interesting things with it. For example, we can display the top 10 movies by Gross Earnings.

sorted_by_gross["Gross Earnings"].head(10)
1867 760505847.0
1027 658672302.0
1263 652177271.0
610 623279547.0
611 623279547.0
1774 533316061.0
1281 474544677.0
226 460935665.0
1183 458991599.0
618 448130642.0
Name: Gross Earnings, dtype: float64

We can also create a plot for the top 10 movies by Gross Earnings. Pandas makes it easy to visualize your data with plots and charts through matplotlib, a popular data visualization library. With a couple lines of code, you can start plotting. Moreover, matplotlib plots work well inside Jupyter Notebooks since you can displace the plots right under the code.

First, we import the matplotlib module and set matplotlib to display the plots right in the Jupyter Notebook.

import matplotlib.pyplot as plt%matplotlib inline

We will draw a bar plot where each bar will represent one of the top 10 movies. We can do this by calling the plot method and setting the argument kind to barh. This tells matplotlib to draw a horizontal bar plot.

sorted_by_gross['Gross Earnings'].head(10).plot(kind="barh")
plt.show()

python-pandas-and-excel_28_0

Let’s create a histogram of IMDB Scores to check the distribution of IMDB Scores across all movies. Histograms are a good way to visualize the distribution of a data set. We use the plot method on the IMDB Scores series from our movies DataFrame and pass it the argument.

movies['IMDB Score'].plot(kind="hist")
plt.show()

python-pandas-and-excel_30_0

This data visualization suggests that most of the IMDB Scores fall between six and eight.

Getting statistical information about the data

Pandas has some very handy methods to look at the statistical data about our data set. For example, we can use the describe method to get a statistical summary of the data set.

movies.describe()
Year Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
count 4935.000000 5028.000000 4714.000000 4.551000e+03 4.159000e+03 4938.000000 5035.000000 5029.000000 5020.000000 5042.000000 5042.000000 5029.000000 5.042000e+03 5022.000000 4993.000000 5042.000000
mean 2002.470517 107.201074 2.220403 3.975262e+07 4.846841e+07 686.621709 6561.323932 1652.080533 645.009761 9700.959143 7527.457160 1.371446 8.368475e+04 272.770808 140.194272 6.442007
std 12.474599 25.197441 1.385113 2.061149e+08 6.845299e+07 2813.602405 15021.977635 4042.774685 1665.041728 18165.101925 19322.070537 2.013683 1.384940e+05 377.982886 121.601675 1.125189
min 1916.000000 7.000000 1.180000 2.180000e+02 1.620000e+02 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.000000e+00 1.000000 1.000000 1.600000
25% 1999.000000 93.000000 1.850000 6.000000e+06 5.340988e+06 7.000000 614.500000 281.000000 133.000000 1411.250000 0.000000 0.000000 8.599250e+03 65.000000 50.000000 5.800000
50% 2005.000000 103.000000 2.350000 2.000000e+07 2.551750e+07 49.000000 988.000000 595.000000 371.500000 3091.000000 166.000000 1.000000 3.437100e+04 156.000000 110.000000 6.600000
75% 2011.000000 118.000000 2.350000 4.500000e+07 6.230944e+07 194.750000 11000.000000 918.000000 636.000000 13758.750000 3000.000000 2.000000 9.634700e+04 326.000000 195.000000 7.200000
max 2016.000000 511.000000 16.000000 1.221550e+10 7.605058e+08 23000.000000 640000.000000 137000.000000 23000.000000 656730.000000 349000.000000 43.000000 1.689764e+06 5060.000000 813.000000 9.500000

The describe method displays below information for each of the columns.

  • the count or number of values
  • mean
  • standard deviation
  • minimum, maximum
  • 25%, 50%, and 75% quantile

Please note that this information will be calculated only for the numeric values.

We can also use the corresponding method to access this information one at a time. For example, to get the mean of a particular column, you can use the mean method on that column.

movies["Gross Earnings"].mean()
48468407.526809327

Just like mean, there are methods available for each of the statistical information we want to access. You can read about these methods in our free pandas cheat sheet.

Reading files with no header and skipping records

Earlier in this tutorial, we saw some ways to read a particular kind of Excel file that had headers and no rows that needed skipping. Sometimes, the Excel sheet doesn’t have any header row. For such instances, you can tell pandas not to consider the first row as header or columns names. And If the Excel sheet’s first few rows contain data that should not be read in, you can ask the read_excel method to skip a certain number of rows, starting from the top.

For example, look at the top few rows of this Excel file.img-excel-no-header-1

This file obviously has no header and first four rows are not actual records and hence should not be read in. We can tell read_excel there is no header by setting argument header to None and we can skip first four rows by setting argument skiprows to four.

movies_skip_rows = pd.read_excel("movies-no-header-skip-rows.xls", header=None, skiprows=4)
movies_skip_rows.head(5)
0 1 2 3 4 5 6 7 8 9 15 16 17 18 19 20 21 22 23 24
0 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 136 23 18.0 203 12000 1 111841 413 260.0 8.3
1 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 426 20 3.0 455 926 1 7431 84 71.0 8.0
2 The Broadway Melody 1929 Musical|Romance English USA Passed 100 1.37 379000.0 2808000.0 77 28 4.0 109 167 8 4546 71 36.0 6.3
3 Hell’s Angels 1930 Drama|War English USA Passed 96 1.20 3950000.0 NaN 431 12 4.0 457 279 1 3753 53 35.0 7.8
4 A Farewell to Arms 1932 Drama|Romance|War English USA Unrated 79 1.37 800000.0 NaN 998 164 99.0 1284 213 1 3519 46 42.0 6.6

5 rows × 25 columns

We skipped four rows from the sheet and used none of the rows as the header. Also, notice that one can combine different options in a single read statement. To skip rows at the bottom of the sheet, you can use option skip_footer, which works just like skiprows, the only difference being the rows are counted from the bottom upwards.

The column names in the previous DataFrame are numeric and were allotted as default by the pandas. We can rename the column names to descriptive ones by calling the method columns on the DataFrame and passing the column names as a list.

movies_skip_rows.columns = ['Title', 'Year', 'Genres', 'Language', 'Country', 'Content Rating', 'Duration', 'Aspect Ratio', 'Budget', 'Gross Earnings', 'Director', 'Actor 1', 'Actor 2', 'Actor 3', 'Facebook Likes - Director', 'Facebook Likes - Actor 1', 'Facebook Likes - Actor 2', 'Facebook Likes - Actor 3', 'Facebook Likes - cast Total', 'Facebook likes - Movie', 'Facenumber in posters', 'User Votes', 'Reviews by Users', 'Reviews by Crtiics', 'IMDB Score']
movies_skip_rows.head()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
0 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 136 23 18.0 203 12000 1 111841 413 260.0 8.3
1 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 426 20 3.0 455 926 1 7431 84 71.0 8.0
2 The Broadway Melody 1929 Musical|Romance English USA Passed 100 1.37 379000.0 2808000.0 77 28 4.0 109 167 8 4546 71 36.0 6.3
3 Hell’s Angels 1930 Drama|War English USA Passed 96 1.20 3950000.0 NaN 431 12 4.0 457 279 1 3753 53 35.0 7.8
4 A Farewell to Arms 1932 Drama|Romance|War English USA Unrated 79 1.37 800000.0 NaN 998 164 99.0 1284 213 1 3519 46 42.0 6.6

5 rows × 25 columns

Now that we have seen how to read a subset of rows from the Excel file, we can learn how to read a subset of columns.

Reading a subset of columns

Although read_excel defaults to reading and importing all columns, you can choose to import only certain columns. By passing parse_cols=6, we are telling the read_excel method to read only the first columns till index six or first seven columns (the first column being indexed zero).

movies_subset_columns = pd.read_excel(excel_file, parse_cols=6)
movies_subset_columns.head()
Title Year Genres Language Country Content Rating Duration
0 Intolerance: Love’s Struggle Throughout the Ages 1916 Drama|History|War NaN USA Not Rated 123
1 Over the Hill to the Poorhouse 1920 Crime|Drama NaN USA NaN 110
2 The Big Parade 1925 Drama|Romance|War NaN USA Not Rated 151
3 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145
4 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110

Alternatively, you can pass in a list of numbers, which will let you import columns at particular indexes.

Applying formulas on the columns

One of the much-used features of Excel is to apply formulas to create new columns from existing column values. In our Excel file, we have Gross Earnings and Budget columns. We can get Net earnings by subtracting Budget from Gross earnings. We could then apply this formula in the Excel file to all the rows. We can do this in pandas also as shown below.

movies["Net Earnings"] = movies["Gross Earnings"] - movies["Budget"]

Above, we used pandas to create a new column called Net Earnings, and populated it with the difference of Gross Earnings and Budget. It’s worth noting the difference here in how formulas are treated in Excel versus pandas. In Excel, a formula lives in the cell and updates when the data changes — with Python, the calculations happen and the values are stored — if Gross Earnings for one movie was manually changed, Net Earnings won’t be updated.

Let’s use the sort_values method to sort the data by the new column we created and visualize the top 10 movies by Net Earnings.

sorted_movies = movies[['Net Earnings']].sort_values(['Net Earnings'], ascending=[False])sorted_movies.head(10)['Net Earnings'].plot.barh()
plt.show()

python-pandas-and-excel_44_0

Pivot Table in pandas

Advanced Excel users also often use pivot tables. A pivot table summarizes the data of another table by grouping the data on an index and applying operations such as sorting, summing, or averaging. You can use this feature in pandas too.

We need to first identify the column or columns that will serve as the index, and the column(s) on which the summarizing formula will be applied. Let’s start small, by choosing Year as the index column and Gross Earnings as the summarization column and creating a separate DataFrame from this data.

movies_subset = movies[['Year', 'Gross Earnings']]
movies_subset.head()
Year Gross Earnings
0 1916.0 NaN
1 1920.0 3000000.0
2 1925.0 NaN
3 1927.0 26435.0
4 1929.0 9950.0

We now call pivot_table on this subset of data. The method pivot_table takes a parameter index. As mentioned, we want to use Year as the index.

earnings_by_year = movies_subset.pivot_table(index=['Year'])
earnings_by_year.head()
Gross Earnings
Year
1916.0 NaN
1920.0 3000000.0
1925.0 NaN
1927.0 26435.0
1929.0 1408975.0

This gave us a pivot table with grouping on Year and summarization on the sum of Gross Earnings. Notice, we didn’t need to specify Gross Earnings column explicitly as pandas automatically identified it the values on which summarization should be applied.

We can use this pivot table to create some data visualizations. We can call the plot method on the DataFrame to create a line plot and call the show method to display the plot in the notebook.

earnings_by_year.plot()
plt.show()

python-pandas-and-excel_50_0

We saw how to pivot with a single column as the index. Things will get more interesting if we can use multiple columns. Let’s create another DataFrame subset but this time we will choose the columns, Country, Language and Gross Earnings.

movies_subset = movies[['Country', 'Language', 'Gross Earnings']]
movies_subset.head()
Country Language Gross Earnings
0 USA NaN NaN
1 USA NaN 3000000.0
2 USA NaN NaN
3 Germany German 26435.0
4 Germany German 9950.0

We will use columns Country and Language as the index for the pivot table. We will use Gross Earnings as summarization table, however, we do not need to specify this explicitly as we saw earlier.

earnings_by_co_lang = movies_subset.pivot_table(index=['Country', 'Language'])
earnings_by_co_lang.head()
Gross Earnings
Country Language
Afghanistan Dari 1.127331e+06
Argentina Spanish 7.230936e+06
Aruba English 1.007614e+07
Australia Aboriginal 6.165429e+06
Dzongkha 5.052950e+05

Let’s visualize this pivot table with a bar plot. Since there are still few hundred records in this pivot table, we will plot just a few of them.

earnings_by_co_lang.head(20).plot(kind='bar', figsize=(20,8))
plt.show()

python-pandas-and-excel_56_0

Exporting the results to Excel

If you’re going to be working with colleagues who use Excel, saving Excel files out of pandas is important. You can export or write a pandas DataFrame to an Excel file using pandas to_excel method. Pandas uses the xlwt Python module internally for writing to Excel files. The to_excel method is called on the DataFrame we want to export.We also need to pass a filename to which this DataFrame will be written.

movies.to_excel('output.xlsx')

By default, the index is also saved to the output file. However, sometimes the index doesn’t provide any useful information. For example, the movies DataFrame has a numeric auto-increment index, that was not part of the original Excel data.

movies.head()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score Net Earnings
0 Intolerance: Love’s Struggle Throughout the Ages 1916.0 Drama|History|War NaN USA Not Rated 123.0 1.33 385907.0 NaN 22.0 9.0 481 691 1.0 10718 88.0 69.0 8.0 NaN
1 Over the Hill to the Poorhouse 1920.0 Crime|Drama NaN USA NaN 110.0 1.33 100000.0 3000000.0 2.0 0.0 4 0 1.0 5 1.0 1.0 4.8 2900000.0
2 The Big Parade 1925.0 Drama|Romance|War NaN USA Not Rated 151.0 1.33 245000.0 NaN 12.0 6.0 108 226 0.0 4849 45.0 48.0 8.3 NaN
3 Metropolis 1927.0 Drama|Sci-Fi German Germany Not Rated 145.0 1.33 6000000.0 26435.0 23.0 18.0 203 12000 1.0 111841 413.0 260.0 8.3 -5973565.0
4 Pandora’s Box 1929.0 Crime|Drama|Romance German Germany Not Rated 110.0 1.33 NaN 9950.0 20.0 3.0 455 926 1.0 7431 84.0 71.0 8.0 NaN

5 rows × 26 columns

You can choose to skip the index by passing along index-False.

movies.to_excel('output.xlsx', index=False)

We need to be able to make our output files look nice before we can send it out to our co-workers. We can use pandas ExcelWriter class along with the XlsxWriter Python module to apply the formatting.

We can do use these advanced output options by creating a ExcelWriter object and use this object to write to the EXcel file.

writer = pd.ExcelWriter('output.xlsx', engine='xlsxwriter')
movies.to_excel(writer, index=False, sheet_name='report')
workbook = writer.bookworksheet = writer.sheets['report']

We can apply customizations by calling add_format on the workbook we are writing to. Here we are setting header format as bold.

header_fmt = workbook.add_format({'bold': True})
worksheet.set_row(0, None, header_fmt)

Finally, we save the output file by calling the method save on the writer object.

writer.save()

As an example, we saved the data with column headers set as bold. And the saved file looks like the image below.

img-excel-output-bold-1

Like this, one can use XlsxWriter to apply various formatting to the output Excel file.

Conclusion

Pandas is not a replacement for Excel. Both tools have their place in the data analysis workflow and can be very great companion tools. As we demonstrated, pandas can do a lot of complex data analysis and manipulations, which depending on your need and expertise, can go beyond what you can achieve if you are just using Excel. One of the major benefits of using Python and pandas over Excel is that it helps you automate Excel file processing by writing scripts and integrating with your automated data workflow. Pandas also has excellent methods for reading all kinds of data from Excel files. You can export your results from pandas back to Excel too if that’s preferred by your intended audience.

On the other hand, Excel is a such a widely used data tool, it’s not a wise to ignore it. Acquiring expertise in both pandas and Excel and making them work together gives you skills that can help you stand out in your organization.

If you’d like to learn more about this topic, check out Dataquest’s interactive Pandas and NumPy Fundamentals course, and our Data Analyst in Python, and Data Scientist in Python paths that will help you become job-ready in around 6 months.

Excel is considered one of the most popular and widely used spreadsheet applications developed by Microsoft. You can organize, analyze and store your data into tabular sheets with the help of Excel. From analysts and sales managers to CEOs, professionals from every field use Excel for creating quick statistics and for data crunching. These features make excel one of Python programs’ most popular data sources.

Check out the use of Self in Python with examples here.

Spreadsheets are commonly used in the present world because of their intuitive nature and ability to handle large datasets. Most importantly, they can work without any prior technical background.

Finding different ways to work with Excel using code is essential since working with data and in Python has some serious advantages in comparison with Excel’s UI. Developers of Python have implemented ways to read, write and manipulate Excel documents. An instructor-led Python Programming course is a good way to get hands-on experience in using excel within Python.

You can check the quality of your spreadsheet application by going over the checklist below:

  • Is the spreadsheet able to represent static data?
  • Is the spreadsheet able to mix data, calculations, and reports?
  • Is the data in your spreadsheet complete and consistent in nature?
  • Does the spreadsheet have an organized worksheet structure?

This checklist will help you in verifying the qualitative nature of the spreadsheet application you’re going to work on.

Practical Applications  

In this article, we will be using openpyxl to work on data. With the help of this module, you can extract data from a database into an Excel spreadsheet, or you can also convert an Excel spreadsheet into a programmatic format. There can be a lot of possible situations where you might feel the need to use a package like openpyxl. Let us discuss a few of them to get a comprehensive overview of them.

Importing New Products Into a Database 

Consider yourself working in an online store company. When they want to add new products to the online store, they make an Excel spreadsheet with a few hundred rows along with the product’s name, description, price, and a few more basic information, then give it to you. 

Now, if you want to import this particular data, you need to iterate over each row of the spreadsheet and then add each of the products to the database of the online store.

Exporting Database Data Into a Spreadsheet

Consider you have a Database table. In this particular table, you have collected information about all your users which includes their names, contact number, email address, and so forth. Now, the Marketing Team is willing to collectively contact all the users and promote a new product of the company. However, neither do they have access to the Database nor do they have any idea about using SQL to extract the information. 

In this situation, openpyxl comes to play. You can use it effectively to iterate over each User record and transform the required information into an Excel spreadsheet.    

Appending Information to an Existing Spreadsheet

Consider the same online store example we discussed above. You have an Excel spreadsheet with a list of users, and your job is to append to each row the total amount they have spent in your store.

In order to perform this, you have to read the spreadsheet first and then iterate through each row and fetch the total amount spent from the Database. Finally, you need to write it back to the spreadsheet.

Starting openpyxl

You can install the openpyxl package using pip. Open your terminal and write the following command: 

$ pip install openpyxl

After you have installed the spreadsheet, you can make up your own simple spreadsheet: 

from openpyxl import Workbook

workbook = Workbook()
spreadsheet = workbook.active

spreadsheet["A1"] = "Hello"
spreadsheet["B1"] = "World!"

workbook.save(filename="HelloWorld.xlsx")

How to Read Excel Spreadsheets with openpyxl 

Let us start with the most important thing that you can do with a spreadsheet,i.e. read it. We will be using a watch sample dataset which contains a list of 100 watches with information like product name, product ID, review, and so forth.  

A Simple Way to Read an Excel Spreadsheet 

Let us start by opening our sample spreadsheet:

>>> from openpyxl import load_workbook
>>> workbook = load_workbook(filename="sample.xlsx")
>>> workbook.sheetnames
['Sheet 1']

>>> spreadsheet = workbook.active
>>> spreadsheet
<Worksheet "Sheet 1">

>>> spreadsheet.title

In the example code above, we open the spreadsheet using load_workbook, and then we check all the sheets that are available to work with using workbook.sheetnames. Then Sheet 1 is automatically selected using workbook.active since it is the first sheet available. This is the most common way of opening a spreadsheet.  

Now, let us see the code to retrieve data from the spreadsheet: 

>>> spreadsheet["A1"]
<Cell 'Sheet 1'.A1>

>>> spreadsheet["A1"].value
'marketplace'

>>> spreadsheet["F10"].value
"G-Shock Men's Grey Sport Watch"

You can retrieve the actual value and the cell value both. To get the actual value, use .valueand to get the cell, you can use .cell():

>>> spreadsheet.cell(row=10, column=6)
<Cell 'Sheet 1'.F10>

>>> spreadsheet.cell(row=10, column=6).value
"G-Shock Men's Grey Sport Watch"

Importing Data from a Spreadsheet 

In this section, we will discuss how to iterate through the data and conversion into a more useful format using Python.

Let us first start with iterating through the data. There are a number of iterating methods that depend solely on the user.

You can slice the data with a combination of rows and columns:

>>> spreadsheet["A1:C2"]
((<Cell 'Sheet 1'.A1>, <Cell 'Sheet 1'.B1>, <Cell 'Sheet 1'.C1>), 
 (<Cell 'Sheet 1'.A2>, <Cell 'Sheet 1'.B2>, <Cell 'Sheet 1'.C2>)) 

You can also iterate through the dataset by ranging between rows and columns: 

>>> # Get all cells from column A 
>>> spreadsheet["A"]
(<Cell 'Sheet 1'.A1>, 
 <Cell 'Sheet 1'.A2>, 
 ... 
 <Cell 'Sheet 1'.A99>, 
 <Cell 'Sheet 1'.A100>) 

>>> # Get all cells for a range of columns 
>>> spreadsheet["A:B"] 
((<Cell 'Sheet 1'.A1>, 
  <Cell 'Sheet 1'.A2>, 
  ... 
  <Cell 'Sheet 1'.A99>, 
  <Cell 'Sheet 1'.A100>), 
 (<Cell 'Sheet 1'.B1>, 
  <Cell 'Sheet 1'.B2>, 
  ... 
  <Cell 'Sheet 1'.B99>, 
  <Cell 'Sheet 1'.B100>)) 

>>> # Get all cells from row 5 
>>> spreadsheet[5]
(<Cell 'Sheet 1'.A5>,
 <Cell 'Sheet 1'.B5>,
 ... 
 <Cell 'Sheet 1'.N5>,
 <Cell 'Sheet 1'.O5>)

>>> # Get all cells for a range of rows
>>> spreadsheet[5:6]
((<Cell 'Sheet 1'.A5>, 
  <Cell 'Sheet 1'.B5>, 
  ... 
  <Cell 'Sheet 1'.N5>, 
  <Cell 'Sheet 1'.O5>), 
 (<Cell 'Sheet 1'.A6>, 
  <Cell 'Sheet 1'.B6>, 
  ... 
  <Cell 'Sheet 1'.N6>, 
  <Cell 'Sheet 1'.O6>)) 

Python offers arguments by which you can set limits to the iteration with the help of Python generators like .iter_rows() and .iter_cols()

>>> for row in spreadsheet.iter_rows(min_row=1,
...                           max_row=2,
...                           min_col=1,
...                           max_col=3):
...    print(row)
(<Cell 'Sheet 1'.A1>, <Cell 'Sheet 1'.B1>, <Cell 'Sheet 1'.C1>) 
(<Cell 'Sheet 1'.A2>, <Cell 'Sheet 1'.B2>, <Cell 'Sheet 1'.C2>)

>>> for column in spreadsheet.iter_cols(min_row=1...                              max_row=2,
...                              min_col=1,
...                              max_col=3):
... print(column)
(<Cell 'Sheet 1'.A1>, <Cell 'Sheet 1'.A2>) 
(<Cell 'Sheet 1'.B1>, <Cell 'Sheet 1'.B2>) 
(<Cell 'Sheet 1'.C1>, <Cell 'Sheet 1'.C2>) 

You can also add Boolean values_only in the above example and set it to True to get the values of cell: 

>>> for value in spreadsheet.iter_rows(min_row=1...                          max_row=2...                          min_col=1...                          max_col=3...                          values_only=True):
...    print(value)
('marketplace', 'customer_id', 'review_id') 
('US', 3653882, 'R3O9SGZBVQBV76')

Since we are now done with iterating the data, let us now manipulate data using Python’s primitive data structures. 

Consider a situation where you want to extract information about a product from the sample spreadsheet and then store it in the dictionary. The key to the dictionary would be the product ID.   

Convert Data into Python classes

To convert data into Python data classes, let us first decide what we want to store and how to store it.  

The two essential elements that can be extracted from the data are as follows:

Convert Data into Python classes

                                                     1. Products                                             2. Review

                                                          • ID                                                         • ID
                                                          • Title                                                     • Customers ID
                                                          • Parent                                                 • Headline
                                                          • Category                                            • Body
                                                                                                                         • Date

Let us implement the two elements: 

import datetime
from dataclasses import dataclass

@dataclass
class Product:
    id: str
    parent: str
    title: str
    category: str
@dataclass
class Review:
    id: str
    customer_id: str
    stars: int
    headline: str
    body: str 
    date: datetime.datetime 

The next step is to create a mapping between columns and the required fields: 

>>> for value in spreadsheet.iter_rows(min_row=1,
...                             max_row=1,
...                             values_only=True):
...    print(value)
('marketplace', 'customer_id', 'review_id', 'product_id', ...)

>>> # Or an alternative
>>> for cell in sheet[1]:
...  print(cell.value)
marketplace
Customer_ID
Review_ID
Product_ID
Product_Parent
...

Finally, let us convert the data into new structures which will parse the data in the spreadsheet into a list of products and review objects: 

from datetime import datetime 
from openpyxl import load_workbook 
from classes import Product,Review 
from mapping import PRODUCT_ID,PRODUCT_PARENT,PRODUCT_TITLE, 
    PRODUCT_CATEGORY,REVIEW_DATE,REVIEW_ID,REVIEW_CUSTOMER, 
    REVIEW_STARS,REVIEW_HEADLINE,REVIEW_BODY

# Using the read_only method since you're not gonna be editing the spreadsheet 
workbook = load_workbook(filename="watch_sample.xlsx",read_only=True) 
spreadsheet = workbook.active

products = []
reviews = []

# Using the values_only because you just want to return the cell value
for row in spreadsheet .iter_rows(min_row=2, values_only=True): 
    product = Product(id=row[PRODUCT_ID], 
                      parent=row[PRODUCT_PARENT], 
                      title=row[PRODUCT_TITLE], 
                      category=row[PRODUCT_CATEGORY]) 
    products.append(product)
# You need to parse the date from the spreadsheet into a datetime format
spread_date = row[REVIEW_DATE] 
parsed_date = datetime.strptime(spread_date,"%Y-%m-%d")

review = Review(id=row[REVIEW_ID],
              Customer_ID=row[REVIEW_CUSTOMER],
              stars=row[REVIEW_STARS],
              headline=row[REVIEW_HEADLINE],
              body=row[REVIEW_BODY],
              date=parsed_date)
reviews.append(review)

print(products[0])
print(reviews[0])

After you execute the code, you will get an output that looks like this:

Product(id='A90FALZ1ZC',parent=937111370,...)
Review(id='D3O9OGZVVQBV76',customer_id=3903882,...)

Appending Data 

To understand how to append data, let us hover back to the first sample spreadsheet. We will open the document and append some data to it: 

from openpyxl import load_workbook

# Start by opening the spreadsheet and selecting the main sheet 
workbook = load_workbook(filename="hello_world.xlsx")
spreadsheet = workbook.active

# Write what you want into a specific cell
spreadsheet["C1"]="Manipulating_Data ;)"

# Save the spreadsheet
workbook.save(filename="hello_world_append.xlsx"

If you open your Excel file, you will notice the additional Manipulating_Data being added to an adjacent cell. 

Writing Excel Spreadsheets With openpyxl 

A spreadsheet is a file that helps to store data in specific rows and columns. We can calculate and store numerical data and also perform computation using formulas. 

So, let’s begin with some simple Spreadsheets and understand what each line means. 

1. Creating our first simple Spreadsheet

 1 from openpyxl import Workbook
 2  
 3 filename = "first_program.xlsx"
 4  
 5 workbook = Workbook()
 6 spreadsheet = workbook.active
 7  
 8 sheet["A1"] = "first"
 9 sheet["B1"] = "program!"
10  
11 workbook.save(filename=filename)

Line 5: In order to make a Spreadsheet, at first,  we have to create an Empty workbook to perform further operations. 

Lines 8 and 9: We can add data to a specific cell as per our requirement. In this example, we can see that two values “first” and “program” have been added to specific cells in the sheet. 

Line 11: The line shows how to save data after all the operations we have done. 

2. Basic Spreadsheet Operations 

Before going to the difficult coding part, where a Python advanced certification might be required to land a job, you need to strengthen the building blocks like adding and updating values, managing rows and columns, adding filters, styles, or formulas in a Spreadsheet. 

We have already explained the following code by which we can add values to a Spreadsheet: 

>>> spreadsheet["A1"] = "the_value_we_want_to_add"

There is another way that we can add values to the Spreadsheet: 

>>> cell = sheet["A1"]
>>> cell
<Cell 'Sheet'.A1>

>>> cell.value
'hello'

>>> cell.value = "hey"

Conclusion

You’ve finished that lengthy read, and now you know how to use spreadsheets in Python. Your dependable friend, openpyxl, will do the following for you: 

  • Spreadsheets may be used to extract useful data in a Pythonic way. 

  • Make your own spreadsheets, regardless of their complexity. 

  • Enhance your spreadsheets with fun features like conditional formatting or charts. 

Even though this tutorial might not have covered all openpyxl can accomplish, you can always visit the package’s official documentation page to find out more. You may even review the package’s source code and make more improvements. 

If you have any questions or would need additional information on any topic, please leave a comment below. 

Like this post? Please share to your friends:
  • Use publisher or word
  • Use of the word suggestion
  • Use progress in a sentence for each word
  • Use of the word so called
  • Use of the word slight