Уравнение решенное в excel

Решение системы уравнений в Microsoft Excel

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Варианты решений

Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

    Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.

Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.

Аргумент «Массив» — это, собственно, адрес исходной таблицы.

Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.

Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».

Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.

Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:

Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».

В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».

Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.

  • После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
  • Способ 2: подбор параметров

    Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение

      Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:

    Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.

    Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».

    Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».

    После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».

  • Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.
  • Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.

    Способ 3: метод Крамера

    Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:

      Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».

    Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.

    Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:

    Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».

    Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».

    Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.

    Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.

    Аналогичным образом производим подсчет определителей для остальных трех таблиц.

    На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.

  • Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.
  • Способ 4: метод Гаусса

    Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

      Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.

    Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

    После этого копируем полученную строку и вставляем её в строчку ниже.

    Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать», которая расположена на ленте во вкладке «Главная».

    Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».

    В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.

    Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.

    Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

    Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.

  • Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.
  • Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

    Помимо этой статьи, на сайте еще 12689 инструкций.
    Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Решение уравнений в excel — примеры решений

    Microsoft Office Excel может здорово помогать студентам и магистрантам в решении различных задач из высшей математики. Не многие пользователи знают, что базовые математические методы поиска неизвестных значений в системе уравнений реализованы в редакторе. Сегодня рассмотрим, как происходит решение уравнений в excel.

    Первый метод

    Суть этого способа заключается в использовании специального инструмента программы – подбор параметра. Найти его можно во вкладке Данные на Панели управления в выпадающем списке кнопки Анализ «что-если».

    1. Зададимся простым квадратичным уравнением и найдем решение при х=0.

    2. Переходите к инструменту и заполняете все необходимые поля

    3. После проведения вычислений программа выдаст результат в ячейке с иксом.

    4. Подставив полученное значение в исходное уравнение можно проверить правильность решения.

    Второй метод

    Используем графическое решение этого же уравнения. Суть заключается в том, что создается массив переменных и массив значений, полученных при решении выражения. Основываясь на этих данных, строится график. Место пересечения кривой с горизонтальной осью и будет неизвестной переменной.

    1. Создаете два диапазона.

    На заметку! Смена знака результата говорит о том, что решение находится в промежутке между этими двумя переменными.

    2. Переходите во вкладку Вставка и выбираете обычный график.

    3. Выбираете данные из столбца f (x), а в качестве подписи горизонтальной оси – значения иксов.

    Важно! В настройках оси поставьте положение по делениям.

    4. Теперь на графике четко видно, что решение находится между семеркой и восьмеркой ближе к семи. Чтобы узнать более точное значение, необходимо изменять масштаб оси и уточнять цифры в исходных массивах.

    Такая исследовательская методика в первом приближении является достаточно грубой, однако позволяет увидеть поведение кривой при изменении неизвестных.

    Третий метод

    Решение систем уравнений можно проводить матричным методом. Для этого в редакторе есть отдельная функция МОБР. Суть заключается в том, что создаются два диапазона: в один выписываются аргументы при неизвестных, а во второй – значения в правой стороне выражения. Массив аргументов трансформируется в обратную матрицу, которая потом умножается на цифры после знака равно. Рассмотрим подробнее.

    1. Записываете произвольную систему уравнений.

    2. Отдельно выписываете аргументы при неизвестных в каждую ячейку. Если нет какого-то из иксов – ставите ноль. Аналогично поступаете с цифрами после знака равно.

    3. Выделяете в свободной зоне диапазон ячеек равный размеру матрицы. В строке формул пишете МОБР и выбираете массив аргументов. Чтобы функция сработала корректно нажимаете одновременно Ctrl+Shift+Enter.

    4. Теперь находите решение при помощи функции МУМНОЖ. Также предварительно выделяете диапазон размером с матрицу результатов и нажимаете уже известное сочетание клавиш.

    Четвертый метод

    Методом Гаусса можно решить практически любую систему уравнений. Суть в том, чтобы пошагово отнять одно уравнение из другого умножив их на отношение первых коэффициентов. Это прямая последовательность. Для полного решения необходимо еще провести обратное вычисление до тех пор, пока диагональ матрицы не станет единичной, а остальные элементы – нулевыми. Полученные значения в последнем столбце и являются искомыми неизвестными. Рассмотрим на примере.

    Важно! Если первый аргумент является нулевым, то необходимо поменять строки местами.

    1. Зададимся произвольной системой уравнений и выпишем все коэффициенты в отдельный массив.

    2. Копируете первую строку в другое место, а ниже записываете формулу следующего вида: =C67:F67-$C$66:$F$66*(C67/$C$66).

    Поскольку работа идет с массивами, нажимайте Ctrl+Shift+Enter, вместо Enter.

    3. Маркером автозаполнения копируете формулу в нижнюю строку.

    4. Выделяете две первые строчки нового массива и копируете их в другое место, вставив только значения.

    5. Повторяете операцию для третьей строки, используя формулу

    =C73:F73-$C$72:$F$72*(D73/$D$72). На этом прямая последовательность решения закончена.

    6. Теперь необходимо пройти систему в обратном порядке. Используйте формулу для третьей строчки следующего вида =(C78:F78)/E78

    7. Для следующей строки используйте формулу =(C77:F77-C84:F84*E77)/D77

    8. В конце записываете вот такое выражение =(C76:F76-C83:F83*D76-C84:F84*E76)/C76

    9. При получении матрицы с единичной диагональю, правая часть дает искомые неизвестные. После подстановки полученных цифр в любое из уравнений значения по обе стороны от знака равно являются идентичными, что говорит о правильном решении.

    Метод Гаусса является одним из самых трудоемких среди прочих вариантов, однако позволяет пошагово просмотреть процесс поиска неизвестных.

    Как видите, существует несколько методов решения уравнений в редакторе. Однако каждый из них требует определенных знаний в математике и четкого понимания последовательности действий. Однако для упрощения можно воспользоваться онлайн калькулятором, в который заложен определенный метод решения системы уравнений. Более продвинутые сайты предоставляют несколько способов поиска неизвестных.

    Жми «Нравится» и получай только лучшие посты в Facebook ↓

    1. Решение нелинейных уравнений в MS Excel

    1.1 Отделение корней

    В общем виде любое уравнение одной переменной принято записывать так , при этом корнем (решением) называется такое значение x *, что оказывается верным тождеством. Уравнение может иметь один, несколько (включая бесконечное число) или ни одного корня. Как легко видеть, для действительных корней задача отыскания решения уравнения легко интерпретируется графически: корень есть такое значение независимой переменной, при котором происходит пересечение графика функции, стоящей в левой части уравнения f ( x ) , с осью абсцисс.

    Например , для уравнения выполним преобразование и приведем его к виду f ( x )= 0 т.е. . График этой функции представлен на рисунке 1. Очевидно, что данное уравнение имеет два действительных корня – один на отрезке [-1, 0] , а второй – [1, 2].

    Рисунок 1. График функции

    1.2 Решение уравнений, используя инструмент “Подбор параметра”

    Используя возможности Excel , можно находить корни нелинейного уравнения вида f ( x )=0 в допустимой области определения переменной. Последовательность операций нахождения корней следующая:

    1. Производится вычисление значений функции в диапазоне вероятного существования корней от значений аргумента, изменяющегося с определенным шагом;

    2. В таблице выделяются ближайшие приближения к значениям корней (пары соседних значений функции с разными знаками);

    3. Используя средство Excel Подбор параметра, вычисляются корни уравнения.

    2. Работа с матрицами в MS Excel . Решение систем уравнений.

    Нахождение определителя матрицы

    Перед нахождением определителя необходимо ввести матрицу в диапазон ячеек Excel в виде таблицы.

    Для нахождения определителя матрицы в Excel необходимо:

    · сделать активной ячейку, в которой в последующем будет записан результат;

    · в меню Вставка – Функция в категории Математические выбрать функцию МОПРЕД и нажать OK ;

    · на втором шаге задать диапазон ячеек, в котором содержатся элементы матрицы, и нажать OK .

    Нахождение обратной матрицы

    Для нахождения обратной матрицы необходимо

    · выделить диапазон ячеек, в которых в последующем будут записаны элементы матрицы ( количество строк и количество столбцов должны равняться соответствующим параметрам исходной матрицы).

    · в меню Вставка – Функция в категории Математические выбрать функцию МОБР и нажать OK ;

    · на втором шаге задать диапазон ячеек, в котором содержатся элементы исходной матрицы, и нажать OK .

    · после появления значения в левом верхнем углу выделенного диапазона последовательно нажать клавишу F 2 и комбинацию клавиш Ctrl + Shift + Enter .

    Для перемножения матриц необходимо

    · выделить диапазон ячеек, в которых в последующем будут записаны элементы результирующей матрицы.

    · в меню Вставка – Функция в категории Математические выбрать функцию МУМНОЖ и нажать OK ;

    · на втором шаге задать два диапазона ячеек с элементами перемножаемых матриц, и нажать OK .

    · после появления значения в левом верхнем углу выделенного диапазона последовательно нажать клавишу F 2 и комбинацию клавиш Ctrl + Shift + Enter .

    Решение системы уравнений в Excel .

    Решение системы уравнений при помощи нахождения обратной матрицы.

    Пусть дана линейная система уравнений.

    Данную систему уравнений можно представить в матричной форме:

    Матрица неизвестных вычисляется по формуле

    где A -1 – обратная матрица по отношению к A .

    Для вычисления уравнения в Excel необходимо:

    · ввести матрицу A;

    · ввести матрицу B;

    · вычислить обратную матрицу по отношению к А ;

    · перемножить полученную обратную матрицу с матрицей B .

    Порядок выполнения работы

    Задание 1

    Найти все корни уравнения 2x 3 -15sin( x )+0,5x-5=0 на отрезке [-3 ; 3].

    1. Построить таблицу значений функции f ( x ) для значений x от –3 до 3, шаг 0,2.

    Для этого ввести первые два значения переменной x , выделить эти две ячейки, с помощью маркера автозаполнения размножить значения до 3.

    Затем ввести формулу для вычисления f ( x ). Скопировать формулу с использованием маркера автозаполнения на весь столбец.

    Из полученной таблицы находим, что значение функции трижды меняет знак, следовательно, исходное уравнение имеет на заданном отрезке три корня.

    2. Выделить цветом пары значений x и f ( x ), где f ( x ) меняет знак (см .р исунок 2).

    3. Построить график функции f ( x ).

    Рисунок 2. Поиск приближенных значений корней уравнения

    4. Скопировать рядом с таблицей произвольную пару выделенных значений x и f ( x ) (см .р исунок 3).

    5. Выполнить команду меню Сервис/Подбор параметра. В диалоговом окне (рисунок 3) заполнить следующие поля:

    þ Установить в ячейке : в поле указывается адрес ячейки, в которой записана формула правой части функции;

    þ Значение : в поле указывается значение, которое должен получить полином в результате вычислений, т.е. правая часть уравнения (в нашем случае 0);

    þ Изменяя значение : в поле указывается адрес ячейки (где записано начальное приближение), в которой будет вычисляться корень уравнения и на которую ссылается формула.

    Рисунок 3. Диалоговое окно Подбор параметра для поиска первого корня

    6. После щелчка на ОК должно получиться значение первого корня -1,65793685 .

    7. Выполнить последовательно операции, аналогичные предыдущим, для вычисления значений остальных корней: -0,35913476 и 2,05170101 .

    Задание 2

    Решить систему уравнений:

    1. Ввести значения элементов матриц A и B уравнения в ячейки Excel .

    2. Вычислить обратную матрицу с помощью матричной функции МОБР.

    3. Перемножить обратную матрицу A -1 на матрицу B с помощью матричной функции МУМНОЖ (Порядок умножения важен ­– первой должна идти матрица A -1 а второй B .)

    4. Проверить правильность полученной матрицы корней X .

    Контрольные вопросы

    1. Порядок действий для решения нелинейного уравнения с помощью инструмента Подбор параметра MS Excel .

    2. Порядок действий для решения системы уравнений матричным методом в MS Excel .

    источники:

    http://mir-tehnologiy.ru/reshenie-uravnenij-v-excel-primery-reshenij/

    http://zf.bsut.by/it/fbo/zb1/lab2.htm

    В программе Excel имеется обширный инструментарий для решения различных видов уравнений разными методами.

    Рассмотрим на примерах некоторые варианты решений.

    Решение уравнений методом подбора параметров Excel

    Инструмент «Подбор параметра» применяется в ситуации, когда известен результат, но неизвестны аргументы. Excel подбирает значения до тех пор, пока вычисление не даст нужный итог.

    Путь к команде: «Данные» — «Работа с данными» — «Анализ «что-если»» — «Подбор параметра».

    Подбор параметра.

    Рассмотрим на примере решение квадратного уравнения х2 + 3х + 2 = 0. Порядок нахождения корня средствами Excel:

    1. Введем в ячейку В2 формулу для нахождения значения функции. В качестве аргумента применим ссылку на ячейку В1.
    2. Формула.

    3. Открываем меню инструмента «Подбор параметра». В графе «Установить в ячейку» — ссылка на ячейку В2, где находится формула. В поле «Значение» вводим 0. Это то значение, которое нужно получить. В графе «Изменяя значение ячейки» — В1. Здесь должен отобразиться отобранный параметр.
    4. Параметры.

    5. После нажатия ОК отобразится результат подбора. Если нужно его сохранить, вновь нажимаем ОК. В противном случае – «Отмена».

    Пример.
    Параметры вычислений.

    Для подбора параметра программа использует циклический процесс. Чтобы изменить число итераций и погрешность, нужно зайти в параметры Excel. На вкладке «Формулы» установить предельное количество итераций, относительную погрешность. Поставить галочку «включить итеративные вычисления».

    

    Как решить систему уравнений матричным методом в Excel

    Дана система уравнений:

    Система уравнений.

    1. Значения элементов введем в ячейки Excel в виде таблицы.
    2. Таблица.

    3. Найдем обратную матрицу. Выделим диапазон, куда впоследствии будут помещены элементы матрицы (ориентируемся на количество строк и столбцов в исходной матрице). Открываем список функций (fx). В категории «Математические» находим МОБР. Аргумент – массив ячеек с элементами исходной матрицы.
    4. Аргументы функции.

    5. Нажимаем ОК – в левом верхнем углу диапазона появляется значение. Последовательно жмем кнопку F2 и сочетание клавиш Ctrl + Shift + Enter.
    6. Диапазон.

    7. Умножим обратную матрицу Ах-1х на матрицу В (именно в таком порядке следования множителей!). Выделяем диапазон, где впоследствии появятся элементы результирующей матрицы (ориентируемся на число строк и столбцов матрицы В). Открываем диалоговое окно математической функции МУМНОЖ. Первый диапазон – обратная матрица. Второй – матрица В.
    8. Аргументы1.

    9. Закрываем окно с аргументами функции нажатием кнопки ОК. Последовательно нажимаем кнопку F2 и комбинацию Ctrl + Shift + Enter.

    Корни уравнений.

    Получены корни уравнений.

    Решение системы уравнений методом Крамера в Excel

    Возьмем систему уравнений из предыдущего примера:

    Система уравнений.

    Для их решения методом Крамера вычислим определители матриц, полученных заменой одного столбца в матрице А на столбец-матрицу В.

    Матрицы.

    Для расчета определителей используем функцию МОПРЕД. Аргумент – диапазон с соответствующей матрицей.

    МОПРЕД.

    Рассчитаем также определитель матрицы А (массив – диапазон матрицы А).

    МОПРЕД1.

    Определитель системы больше 0 – решение можно найти по формуле Крамера (Dx / |A|).

    Для расчета Х1: =U2/$U$1, где U2 – D1. Для расчета Х2: =U3/$U$1. И т.д. Получим корни уравнений:

    Корни уравнений1.

    Решение систем уравнений методом Гаусса в Excel

    Для примера возьмем простейшую систему уравнений:

    3а + 2в – 5с = -1
    2а – в – 3с = 13
    а + 2в – с = 9

    Коэффициенты запишем в матрицу А. Свободные члены – в матрицу В.

    Матрица А.

    Для наглядности свободные члены выделим заливкой. Если в первой ячейке матрицы А оказался 0, нужно поменять местами строки, чтобы здесь оказалось отличное от 0 значение.

    1. Приведем все коэффициенты при а к 0. Кроме первого уравнения. Скопируем значения в первой строке двух матриц в ячейки В6:Е6. В ячейку В7 введем формулу: =B3:Е3-$B$2:$Е$2*(B3/$B$2). Выделим диапазон В7:Е7. Нажмем F2 и сочетание клавиш Ctrl + Shift + Enter. Мы отняли от второй строки первую, умноженную на отношение первых элементов второго и первого уравнения.
    2. Матрица А.

    3. Копируем введенную формулу на 8 и 9 строки. Так мы избавились от коэффициентов перед а. Сохранили только первое уравнение.
    4. Копирование формулы.

    5. Приведем к 0 коэффициенты перед в в третьем и четвертом уравнении. Копируем строки 6 и 7 (только значения). Переносим их ниже, в строки 10 и 11. Эти данные должны остаться неизменными. В ячейку В12 вводим формулу массива.
    6. Формула в массиве.

    7. Прямую прогонку по методу Гаусса сделали. В обратном порядке начнем прогонять с последней строки полученной матрицы. Все элементы данной строки нужно разделить на коэффициент при с. Введем в строку формулу массива: {=B12:E12/D12}.
    8. Деление на коэффициент.

    9. В строке 15: отнимем от второй строки третью, умноженную на коэффициент при с второй строки ({=(B11:E11-B16:E16*D11)/C11}). В строке 14: от первой строки отнимаем вторую и третью, умноженные на соответствующие коэффициенты ({=(B10:E10-B15:E15*C10-B16:E16*D10)/B10}). В последнем столбце новой матрицы получаем корни уравнения.

    Пример1.

    Примеры решения уравнений методом итераций в Excel

    Вычисления в книге должны быть настроены следующим образом:

    Параметры вычислений.

    Делается это на вкладке «Формулы» в «Параметрах Excel». Найдем корень уравнения х – х3 + 1 = 0 (а = 1, b = 2) методом итерации с применением циклических ссылок. Формула:

    Хn+1 = Xn– F (Xn) / M, n = 0, 1, 2, … .

    M – максимальное значение производной по модулю. Чтобы найти М, произведем вычисления:

    f’ (1) = -2 * f’ (2) = -11.

    Полученное значение меньше 0. Поэтому функция будет с противоположным знаком: f (х) = -х + х3 – 1. М = 11.

    В ячейку А3 введем значение: а = 1. Точность – три знака после запятой. Для расчета текущего значения х в соседнюю ячейку (В3) введем формулу: =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).

    ЕСЛИ.

    В ячейке С3 проконтролируем значение f (x): с помощью формулы =B3-СТЕПЕНЬ(B3;3)+1.

    Корень уравнения – 1,179. Введем в ячейку А3 значение 2. Получим тот же результат:

    Скачать решения уравнений в Excel

    Пример2.

    Корень на заданном промежутке один.

    Решение уравнений в excel — примеры решений

    Microsoft Office Excel может здорово помогать студентам и магистрантам в решении различных задач из высшей математики. Не многие пользователи знают, что базовые математические методы поиска неизвестных значений в системе уравнений реализованы в редакторе. Сегодня рассмотрим, как происходит решение уравнений в excel.

    Первый метод

    Суть этого способа заключается в использовании специального инструмента программы – подбор параметра. Найти его можно во вкладке Данные на Панели управления в выпадающем списке кнопки Анализ «что-если».

    1. Зададимся простым квадратичным уравнением и найдем решение при х=0.

    2. Переходите к инструменту и заполняете все необходимые поля

    3. После проведения вычислений программа выдаст результат в ячейке с иксом.

    4. Подставив полученное значение в исходное уравнение можно проверить правильность решения.

    Второй метод

    Используем графическое решение этого же уравнения. Суть заключается в том, что создается массив переменных и массив значений, полученных при решении выражения. Основываясь на этих данных, строится график. Место пересечения кривой с горизонтальной осью и будет неизвестной переменной.

    1. Создаете два диапазона.

    На заметку! Смена знака результата говорит о том, что решение находится в промежутке между этими двумя переменными.

    2. Переходите во вкладку Вставка и выбираете обычный график.

    3. Выбираете данные из столбца f (x), а в качестве подписи горизонтальной оси – значения иксов.

    Важно! В настройках оси поставьте положение по делениям.

    4. Теперь на графике четко видно, что решение находится между семеркой и восьмеркой ближе к семи. Чтобы узнать более точное значение, необходимо изменять масштаб оси и уточнять цифры в исходных массивах.

    Такая исследовательская методика в первом приближении является достаточно грубой, однако позволяет увидеть поведение кривой при изменении неизвестных.

    Третий метод

    Решение систем уравнений можно проводить матричным методом. Для этого в редакторе есть отдельная функция МОБР. Суть заключается в том, что создаются два диапазона: в один выписываются аргументы при неизвестных, а во второй – значения в правой стороне выражения. Массив аргументов трансформируется в обратную матрицу, которая потом умножается на цифры после знака равно. Рассмотрим подробнее.

    1. Записываете произвольную систему уравнений.

    2. Отдельно выписываете аргументы при неизвестных в каждую ячейку. Если нет какого-то из иксов – ставите ноль. Аналогично поступаете с цифрами после знака равно.

    3. Выделяете в свободной зоне диапазон ячеек равный размеру матрицы. В строке формул пишете МОБР и выбираете массив аргументов. Чтобы функция сработала корректно нажимаете одновременно Ctrl+Shift+Enter.

    4. Теперь находите решение при помощи функции МУМНОЖ. Также предварительно выделяете диапазон размером с матрицу результатов и нажимаете уже известное сочетание клавиш.

    Четвертый метод

    Методом Гаусса можно решить практически любую систему уравнений. Суть в том, чтобы пошагово отнять одно уравнение из другого умножив их на отношение первых коэффициентов. Это прямая последовательность. Для полного решения необходимо еще провести обратное вычисление до тех пор, пока диагональ матрицы не станет единичной, а остальные элементы – нулевыми. Полученные значения в последнем столбце и являются искомыми неизвестными. Рассмотрим на примере.

    Важно! Если первый аргумент является нулевым, то необходимо поменять строки местами.

    1. Зададимся произвольной системой уравнений и выпишем все коэффициенты в отдельный массив.

    2. Копируете первую строку в другое место, а ниже записываете формулу следующего вида: =C67:F67-$C$66:$F$66*(C67/$C$66).

    Поскольку работа идет с массивами, нажимайте Ctrl+Shift+Enter, вместо Enter.

    3. Маркером автозаполнения копируете формулу в нижнюю строку.

    4. Выделяете две первые строчки нового массива и копируете их в другое место, вставив только значения.

    5. Повторяете операцию для третьей строки, используя формулу

    =C73:F73-$C$72:$F$72*(D73/$D$72). На этом прямая последовательность решения закончена.

    6. Теперь необходимо пройти систему в обратном порядке. Используйте формулу для третьей строчки следующего вида =(C78:F78)/E78

    7. Для следующей строки используйте формулу =(C77:F77-C84:F84*E77)/D77

    8. В конце записываете вот такое выражение =(C76:F76-C83:F83*D76-C84:F84*E76)/C76

    9. При получении матрицы с единичной диагональю, правая часть дает искомые неизвестные. После подстановки полученных цифр в любое из уравнений значения по обе стороны от знака равно являются идентичными, что говорит о правильном решении.

    Метод Гаусса является одним из самых трудоемких среди прочих вариантов, однако позволяет пошагово просмотреть процесс поиска неизвестных.

    Как видите, существует несколько методов решения уравнений в редакторе. Однако каждый из них требует определенных знаний в математике и четкого понимания последовательности действий. Однако для упрощения можно воспользоваться онлайн калькулятором, в который заложен определенный метод решения системы уравнений. Более продвинутые сайты предоставляют несколько способов поиска неизвестных.

    Жми «Нравится» и получай только лучшие посты в Facebook ↓

    Решение системы уравнений в Microsoft Excel

    Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

    Варианты решений

    Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.

    Способ 1: матричный метод

    Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

      Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.

    Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.

    Аргумент «Массив» — это, собственно, адрес исходной таблицы.

    Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.

    Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».

    Итак, после этого программа производит вычисления и на выходе в предварительно выделенной области мы имеем матрицу, обратную данной.

    Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:

    Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».

    В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».

    Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.

  • После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
  • Способ 2: подбор параметров

    Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение

      Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:

    Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.

    Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».

    Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».

    После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».

  • Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.
  • Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.

    Способ 3: метод Крамера

    Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:

      Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».

    Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.

    Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:

    Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».

    Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».

    Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.

    Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.

    Аналогичным образом производим подсчет определителей для остальных трех таблиц.

    На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.

  • Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.
  • Способ 4: метод Гаусса

    Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

      Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.

    Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

    После этого копируем полученную строку и вставляем её в строчку ниже.

    Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать», которая расположена на ленте во вкладке «Главная».

    Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».

    В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.

    Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.

    Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

    Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.

  • Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.
  • Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

    Помимо этой статьи, на сайте еще 12694 инструкций.
    Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Решение уравнений в Excel методом итераций Крамера и Гаусса

    В программе Excel имеется обширный инструментарий для решения различных видов уравнений разными методами.

    Рассмотрим на примерах некоторые варианты решений.

    Решение уравнений методом подбора параметров Excel

    Инструмент «Подбор параметра» применяется в ситуации, когда известен результат, но неизвестны аргументы. Excel подбирает значения до тех пор, пока вычисление не даст нужный итог.

    Путь к команде: «Данные» — «Работа с данными» — «Анализ «что-если»» — «Подбор параметра».

    Рассмотрим на примере решение квадратного уравнения х 2 + 3х + 2 = 0. Порядок нахождения корня средствами Excel:

    1. Введем в ячейку В2 формулу для нахождения значения функции. В качестве аргумента применим ссылку на ячейку В1.
    2. Открываем меню инструмента «Подбор параметра». В графе «Установить в ячейку» — ссылка на ячейку В2, где находится формула. В поле «Значение» вводим 0. Это то значение, которое нужно получить. В графе «Изменяя значение ячейки» — В1. Здесь должен отобразиться отобранный параметр.
    3. После нажатия ОК отобразится результат подбора. Если нужно его сохранить, вновь нажимаем ОК. В противном случае – «Отмена».

    Для подбора параметра программа использует циклический процесс. Чтобы изменить число итераций и погрешность, нужно зайти в параметры Excel. На вкладке «Формулы» установить предельное количество итераций, относительную погрешность. Поставить галочку «включить итеративные вычисления».

    Как решить систему уравнений матричным методом в Excel

    Дана система уравнений:

    1. Значения элементов введем в ячейки Excel в виде таблицы.
    2. Найдем обратную матрицу. Выделим диапазон, куда впоследствии будут помещены элементы матрицы (ориентируемся на количество строк и столбцов в исходной матрице). Открываем список функций (fx). В категории «Математические» находим МОБР. Аргумент – массив ячеек с элементами исходной матрицы.
    3. Нажимаем ОК – в левом верхнем углу диапазона появляется значение. Последовательно жмем кнопку F2 и сочетание клавиш Ctrl + Shift + Enter.
    4. Умножим обратную матрицу Ах -1х на матрицу В (именно в таком порядке следования множителей!). Выделяем диапазон, где впоследствии появятся элементы результирующей матрицы (ориентируемся на число строк и столбцов матрицы В). Открываем диалоговое окно математической функции МУМНОЖ. Первый диапазон – обратная матрица. Второй – матрица В.
    5. Закрываем окно с аргументами функции нажатием кнопки ОК. Последовательно нажимаем кнопку F2 и комбинацию Ctrl + Shift + Enter.

    Получены корни уравнений.

    Решение системы уравнений методом Крамера в Excel

    Возьмем систему уравнений из предыдущего примера:

    Для их решения методом Крамера вычислим определители матриц, полученных заменой одного столбца в матрице А на столбец-матрицу В.

    Для расчета определителей используем функцию МОПРЕД. Аргумент – диапазон с соответствующей матрицей.

    Рассчитаем также определитель матрицы А (массив – диапазон матрицы А).

    Определитель системы больше 0 – решение можно найти по формуле Крамера (Dx / |A|).

    Для расчета Х1: =U2/$U$1, где U2 – D1. Для расчета Х2: =U3/$U$1. И т.д. Получим корни уравнений:

    Решение систем уравнений методом Гаусса в Excel

    Для примера возьмем простейшую систему уравнений:

    3а + 2в – 5с = -1
    2а – в – 3с = 13
    а + 2в – с = 9

    Коэффициенты запишем в матрицу А. Свободные члены – в матрицу В.

    Для наглядности свободные члены выделим заливкой. Если в первой ячейке матрицы А оказался 0, нужно поменять местами строки, чтобы здесь оказалось отличное от 0 значение.

    1. Приведем все коэффициенты при а к 0. Кроме первого уравнения. Скопируем значения в первой строке двух матриц в ячейки В6:Е6. В ячейку В7 введем формулу: =B3:Е3-$B$2:$Е$2*(B3/$B$2). Выделим диапазон В7:Е7. Нажмем F2 и сочетание клавиш Ctrl + Shift + Enter. Мы отняли от второй строки первую, умноженную на отношение первых элементов второго и первого уравнения.
    2. Копируем введенную формулу на 8 и 9 строки. Так мы избавились от коэффициентов перед а. Сохранили только первое уравнение.
    3. Приведем к 0 коэффициенты перед в в третьем и четвертом уравнении. Копируем строки 6 и 7 (только значения). Переносим их ниже, в строки 10 и 11. Эти данные должны остаться неизменными. В ячейку В12 вводим формулу массива.
    4. Прямую прогонку по методу Гаусса сделали. В обратном порядке начнем прогонять с последней строки полученной матрицы. Все элементы данной строки нужно разделить на коэффициент при с. Введем в строку формулу массива: <=B12:E12/D12>.
    5. В строке 15: отнимем от второй строки третью, умноженную на коэффициент при с второй строки (<=(B11:E11-B16:E16*D11)/C11>). В строке 14: от первой строки отнимаем вторую и третью, умноженные на соответствующие коэффициенты (<=(B10:E10-B15:E15*C10-B16:E16*D10)/B10>). В последнем столбце новой матрицы получаем корни уравнения.

    Примеры решения уравнений методом итераций в Excel

    Вычисления в книге должны быть настроены следующим образом:

    Делается это на вкладке «Формулы» в «Параметрах Excel». Найдем корень уравнения х – х 3 + 1 = 0 (а = 1, b = 2) методом итерации с применением циклических ссылок. Формула:

    M – максимальное значение производной по модулю. Чтобы найти М, произведем вычисления:

    f’ (1) = -2 * f’ (2) = -11.

    Полученное значение меньше 0. Поэтому функция будет с противоположным знаком: f (х) = -х + х 3 – 1. М = 11.

    В ячейку А3 введем значение: а = 1. Точность – три знака после запятой. Для расчета текущего значения х в соседнюю ячейку (В3) введем формулу: =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).

    В ячейке С3 проконтролируем значение f (x): с помощью формулы =B3-СТЕПЕНЬ(B3;3)+1.

    Корень уравнения – 1,179. Введем в ячейку А3 значение 2. Получим тот же результат:

    источники:

    http://lumpics.ru/how-solve-system-equations-excel/

    http://exceltable.com/otchety/reshenie-uravneniy

    11

    Р
    ешение
    уравнений в Excel

    Функция Подбор
    параметра
    может быть использована в
    следующих случаях:

    А) нахождение
    значения аргумента (параметра) функции,
    соответствующего определённому значению
    функции (в том числе 0);

    Б) нахождение
    значений аргумента (параметра) функции
    при изменении вида её графика.

    А.
    Использование функции Подбор параметра
    для нахождения значения аргумента
    функции, соответствующего заданному
    значению функции

    Первый случай
    использования иначе может быть представлен
    таким образом: поиск определенного
    результата для ячейки с помощью подбора
    значения другой ячейки.

    Например, одна
    ячейка содержит формулу, в которой есть
    ссылки на другую ячейку.

    Значение в ячейке
    С1 представляет собой среднее арифметическое
    значение в ячейках А1 и В1:

    Допустим, что для
    целей исследования необходимо найти
    значение, которое должна принять ячейка
    А1, для того чтобы ячейка С1 приняла
    значение 855.

    Безусловно, можно
    самостоятельно путём перебора значений
    в ячейке А1 достичь необходимый результат.
    Однако, в целях минимизации затрат
    времени следует воспользоваться функцией
    Подбор параметра.

    Для этого необходимо:

    1. выполнить команду
      Подбор параметра из меню Сервис.

    В результате
    появится запрос Подбор параметра :

    1. в поле Установить
      в ячейке
      ввести ссылку или имя ячейки,
      содержащую формулу, для которой следует
      подобрать параметр. Автоматически в
      поле Установить в ячейке отображается
      имя ячейки, которая была активной на
      момент выполнения команды Подбор
      параметра
      из меню Сервис. Кнопка
      свёртывания окна диалога
      ,
      расположенная справа от поля, позволяет
      временно убрать диалоговое окно с
      экрана, чтобы было удобнее выделить
      диапазон на листе. Выделив диапазон,
      следует нажать кнопку

      для вывода на экран диалогового окна.

    2. в поле Значение
      ввести число, которое должно возвращать
      формула с искомым значением параметра.
      Например, 855.

    3. в поле Изменяя
      значение ячейки
      указать ссылку на
      ячейку, содержащую параметр, значение
      которого требуется подобрать для
      получения требуемого результата. На
      эту ячейку прямо или косвенно должна
      ссылаться формула, содержащаяся в
      ячейке, адрес которой указан в поле
      Установить в ячейке. В нашем случае
      это А1.

    В итоге диалоговое
    окно примет следующий вид:

    1. нажать кнопку ОК
      для закрытия диалогового окна. После
      выполнения этого действия появляется
      запрос Результат подбора параметра,
      а искомое значение параметра
      отображается в ячейке А1:

    Б.
    Использование функции Подбор параметра
    для нахождения значения аргумента
    функции при изменении вида ее графика.

    Допустим, что для
    решения поставленной задачи нам предстоит
    проанализировать построенный в Ms
    Excel график функции y
    = 2*x-2 в диапазоне аргумента
    от –3 до 6.

    Для этого следует:

    1) в ячейки А1-А10
    ввести значения от –3 до 6 с шагом 1; в
    ячейку В1 – ввести формулу 2*А1-2 и путём
    перетаскивания маркера заполнения
    скопировать
    эту формулу на ячейки В2-В10. В результате
    соответствующий участок листа примет
    следующий вид:

    1. выделив диапазон
      В1-В10, нажать кнопку Мастер диаграмм
      на Стандартной панели инструментов.

    2. на первом шаге
      работы Мастера диаграмм выбрать
      тип диаграммы График;

    3. на втором шаге
      работы Мастера диаграмм на вкладке
      Ряд в поле Подписи по оси Х задать
      диапазон А1-А10;

    4. последовательными
      нажатиями кнопки Далее и Готово
      закончите работу Мастера.

    В результате должен
    быть построен график функции:

    Далее предположим,
    что необходимо узнать значение аргумента
    данной функции, при котором значение
    самой функции будет равно 0.

    Чтобы решить эту
    задачу с помощью построенного графика
    и функции Подбор параметра необходимо:

    1. щелчком левой
      кнопки мыши на графике выделить ряд
      данных, содержащий маркер данных,
      который нужно изменить,

    а затем выделить
    щелчком сам маркер

    1. перетащить маркер
      до уровня, соответствующего требуемому
      значению функции:

    1. если значение
      маркера данных получено из формулы,
      появится диалоговое окно Подбор
      параметра
      :

    в поле Установить
    в ячейке
    отображается ссылка на
    ячейку, содержащую формулу, в поле
    Значение — требуемая величина

    1. в поле Изменяя
      значение ячейки
      выбрать ячейку,
      значение которой нужно изменить (А6) и
      нажать кнопку ОК.

    При подборе можно
    изменять только одну ячейку.

    При этом исходное
    значение аргумента в ряде данных сменится
    на значение, полученное в результате
    подбора параметра

    Решение уравнений

    Функция Подбор параметра позволяет
    находить одно значение аргумента,
    соответствующее заданному значению
    функции (например, 0). Однако часто функция
    может принимать одно значение при
    нескольких значениях аргументов. То
    есть уравнение может иметь несколько
    корней.

    Например, функция у=3*х2 -15 может
    принимать значение 0 при двух значениях
    аргументов.

    Однако, функция Подбор параметра
    найдет только один корень уравнения
    – самый близкий к значению в ячейке,
    указанной в поле Изменяя значение
    ячейки.

    Так, если попытаться решить указанное
    выше уравнение с помощью Ms
    Excel и встроенной в него
    функции Подбор параметра, то исходные
    данные можно представить в следующем
    виде:

    Выполнив команду
    Подбор параметра из меню Сервис,
    необходимо заполнить поля диалогового
    окна следующим образом:

    В результате
    найденным корнем уравнения будет
    значение 2,2360797 в ячейке А4

    Однако, это не
    единственный корень. В этом можно
    убедиться, решив уравнение или построив
    график функции у=3*х2-15

    Для построения
    графика следует:

    1) в ячейки С4-С24
    ввести значения от –10 до 10 с шагом 1; в
    ячейку D1 – ввести формулу
    3*C4*C4-15 и
    путём перетаскивания маркера заполнения
    заполнить этой формулой ячейки D5-D24;

    1. выделив диапазон
      D4-D24, нажать
      кнопку Мастер диаграмм на Стандартной
      панели инструментов;

    2. на первом шаге
      работы Мастера диаграмм выбрать
      тип диаграммы График;

    3. на втором шаге
      работы Мастера диаграмм в закладке
      Ряд в поле Подписи по оси Х указать
      диапазон С4-С24;

    4. последовательными
      нажатиями кнопки Далее и Готово
      закончить работу Мастера.

    В результате должен
    быть построен график функции:

    Из графика видно,
    что уравнение 3*x2-15=0
    имеет 2 корня, к тому же эти корни примерно
    равны –2 и 2. Одни корень 2,2360797 нам уже
    известен.

    Для поиска второго
    корня можно поступить двояко, используя
    пункт А или Б:

    А. Изменим значение,
    например, в ячейке С4 на –2 (более близкое
    к ожидаемому корню). Выделим ячейку D4
    и выполним команду Подбор параметра
    из меню Сервис. Заполним поля
    запроса:

    и после щелчка по
    кнопке ОК в ячейке С4 получим значение
    второго корня -2,23606503:

    Б. Построим график
    функции в интервале от -10 до 10:

    Щелчком левой
    кнопки мыши на графике выделим ряд
    данных, содержащий маркер данных, близкий
    ко второму корню:

    Выделим щелчком
    этот маркер:

    Перетащим маркер
    до уровня, соответствующего требуемому
    значению функции (а именно вниз до 0):

    Заполним поле
    Изменяя значение ячейки запроса:

    И щелкнув по кнопке
    ОК, в ячейке С8 получим значение второго
    корня:

    Вы могли обратить
    внимание, что значения корня, полученные
    в п.А и п.Б имеют несущественное отличие.
    Это вызвано следующим обстоятельством.
    По умолчанию команда Подбор параметра
    прекращает итерационные вычисления,
    когда выполняется 100 итераций, либо при
    получении результата, который находится
    в пределах 0,001 от заданного целевого
    значения. Если нужна большая точность,
    можно изменить используемые по умолчанию
    параметры командой Параметры меню
    Сервис. Затем на вкладке Вычисления
    в поле Предельное число итераций
    введите значение больше 100, а в поле
    Относительная погрешность – значение
    меньше 0,001.

    Если Ms
    Excel выполняет сложную
    задачу подбора параметра, можно нажать
    кнопку Пауза в окне запроса Результат
    подбора параметра
    и прервать вычисления,
    а затем нажать кнопку Шаг, чтобы
    просмотреть результаты каждой
    последовательной итерации. Когда Вы
    решаете задачу в пошаговом режиме, в
    этом окне запроса появляется кнопка
    Продолжить. Нажмите ее, когда решите
    вернуться в обычный режим подбора
    параметра.

    Создание уравнений и формул

    В этом курсе:

    Office содержит формулы, которые вы можете легко вставлять в документы. Если встроенные формулы Office вас не устраивают, можно править и изменять существующие уравнения или написать собственную формулу с нуля.

    Новые возможности для работы с формулами в Word

    Учащиеся и преподаватели, участвующие в программе предварительной оценки Ваши пожелания услышаны! Вот верхний требуемый синтаксис математического уравнения LaTeX.

    Доступно для подписчиков версии 1707 (сборка 8326,2058) и более новой.

    На вкладке Вставка нажмите кнопку Уравнение и выберите нужную формулу в коллекции.

    После вставки формулы откроется вкладка Работа с формулами > Конструктор, содержащая символы и структуры, которые можно добавить к вашей формуле.

    Для набора новой формулы с нуля нажмите Alt += на клавиатуре.

    Выберите Вставка > Формула и выберите Вставить новую формулу в нижней части встроенной коллекции формул. Вставится заполнитель, в котором можно ввести формулу.

    Добавление формулы в коллекцию

    Выделите формулу, которую нужно добавить.

    Щелкните стрелку вниз и выберите Сохранить как новую формулу. .

    В диалоговом окне Создание нового стандартного блока введите имя формулы.

    В списке коллекции выберите пункт Формулы.

    Нажмите кнопку ОК.

    Для изменения или правки созданных ранее формул:

    Выберите формулу для открытия вкладки Работа с формулами в ленте.

    Примечание: Если вы не видите вкладку Работа с формулами, то, вероятно, формула была создана в более поздней версии Word. Если это так, то см. раздел Изменение формулы, созданной в предыдущей версии Word.

    Выберите Конструктор, чтобы увидеть инструменты для добавления в формулу различных элементов. Можно добавить или изменить следующие элементы формулы.

    В группе Символы находятся математические символы. Чтобы увидеть все символы, нажмите кнопку Еще. Чтобы просмотреть другие наборы символов, щелкните стрелку в правом верхнем углу коллекции.

    В группе Структуры представлены структуры, которые можно вставить. Просто выберите элемент, а затем замените заполнители в структуре (штрихпунктирные прямоугольники) нужными значениями.

    Параметр Профессиональный отображает формулу в профессиональном формате, оптимизированном для отображения. Параметр Линейный отображает формулу как исходный текст, который при необходимости можно использовать для внесения изменений в формулу. Параметр «Линейный» отображает формулу в формате UnicodeMath или в формате LaTeX, который можно выбрать в блоке «Преобразования».

    Преобразовать в формат «Профессиональный» или «Линейный» можно все формулы в документе или только одну, если выбрать математическую зону или навести курсор на формулу.

    На устройствах с поддержкой сенсорного ввода и пера можно писать формулы пером или пальцем. Для рукописного ввода формулы

    Выберите Рисование > Преобразовать рукописный фрагмент в математические символы, а затем выберите Рукописное уравнение в нижней части встроенной галереи.

    С помощью пера или пальца введите математическую формулу от руки. Если у устройства нет сенсорного экрана, напишите уравнение с помощью мыши. Вы можете выделять части формулы и редактировать их по мере ввода, а затем с помощью окна предварительного просмотра проверять, правильно ли Word распознает то, что вы написали.

    Завершив ввод, щелкните Вставить, чтобы преобразовать текст, который вы только что написали, в формулу.

    См. также

    Примечание: Эта страница переведена автоматически, поэтому ее текст может содержать неточности и грамматические ошибки. Для нас важно, чтобы эта статья была вам полезна. Была ли информация полезной? Для удобства также приводим ссылку на оригинал (на английском языке).

    Решение уравнений в excel — примеры решений

    Microsoft Office Excel может здорово помогать студентам и магистрантам в решении различных задач из высшей математики. Не многие пользователи знают, что базовые математические методы поиска неизвестных значений в системе уравнений реализованы в редакторе. Сегодня рассмотрим, как происходит решение уравнений в excel.

    Первый метод

    Суть этого способа заключается в использовании специального инструмента программы – подбор параметра. Найти его можно во вкладке Данные на Панели управления в выпадающем списке кнопки Анализ «что-если».

    1. Зададимся простым квадратичным уравнением и найдем решение при х=0.

    2. Переходите к инструменту и заполняете все необходимые поля

    3. После проведения вычислений программа выдаст результат в ячейке с иксом.

    4. Подставив полученное значение в исходное уравнение можно проверить правильность решения.

    Второй метод

    Используем графическое решение этого же уравнения. Суть заключается в том, что создается массив переменных и массив значений, полученных при решении выражения. Основываясь на этих данных, строится график. Место пересечения кривой с горизонтальной осью и будет неизвестной переменной.

    1. Создаете два диапазона.

    На заметку! Смена знака результата говорит о том, что решение находится в промежутке между этими двумя переменными.

    2. Переходите во вкладку Вставка и выбираете обычный график.

    3. Выбираете данные из столбца f (x), а в качестве подписи горизонтальной оси – значения иксов.

    Важно! В настройках оси поставьте положение по делениям.

    4. Теперь на графике четко видно, что решение находится между семеркой и восьмеркой ближе к семи. Чтобы узнать более точное значение, необходимо изменять масштаб оси и уточнять цифры в исходных массивах.

    Такая исследовательская методика в первом приближении является достаточно грубой, однако позволяет увидеть поведение кривой при изменении неизвестных.

    Третий метод

    Решение систем уравнений можно проводить матричным методом. Для этого в редакторе есть отдельная функция МОБР. Суть заключается в том, что создаются два диапазона: в один выписываются аргументы при неизвестных, а во второй – значения в правой стороне выражения. Массив аргументов трансформируется в обратную матрицу, которая потом умножается на цифры после знака равно. Рассмотрим подробнее.

    1. Записываете произвольную систему уравнений.

    2. Отдельно выписываете аргументы при неизвестных в каждую ячейку. Если нет какого-то из иксов – ставите ноль. Аналогично поступаете с цифрами после знака равно.

    3. Выделяете в свободной зоне диапазон ячеек равный размеру матрицы. В строке формул пишете МОБР и выбираете массив аргументов. Чтобы функция сработала корректно нажимаете одновременно Ctrl+Shift+Enter.

    4. Теперь находите решение при помощи функции МУМНОЖ. Также предварительно выделяете диапазон размером с матрицу результатов и нажимаете уже известное сочетание клавиш.

    Четвертый метод

    Методом Гаусса можно решить практически любую систему уравнений. Суть в том, чтобы пошагово отнять одно уравнение из другого умножив их на отношение первых коэффициентов. Это прямая последовательность. Для полного решения необходимо еще провести обратное вычисление до тех пор, пока диагональ матрицы не станет единичной, а остальные элементы – нулевыми. Полученные значения в последнем столбце и являются искомыми неизвестными. Рассмотрим на примере.

    Важно! Если первый аргумент является нулевым, то необходимо поменять строки местами.

    1. Зададимся произвольной системой уравнений и выпишем все коэффициенты в отдельный массив.

    2. Копируете первую строку в другое место, а ниже записываете формулу следующего вида: =C67:F67-$C$66:$F$66*(C67/$C$66).

    Поскольку работа идет с массивами, нажимайте Ctrl+Shift+Enter, вместо Enter.

    3. Маркером автозаполнения копируете формулу в нижнюю строку.

    4. Выделяете две первые строчки нового массива и копируете их в другое место, вставив только значения.

    5. Повторяете операцию для третьей строки, используя формулу

    =C73:F73-$C$72:$F$72*(D73/$D$72). На этом прямая последовательность решения закончена.

    6. Теперь необходимо пройти систему в обратном порядке. Используйте формулу для третьей строчки следующего вида =(C78:F78)/E78

    7. Для следующей строки используйте формулу =(C77:F77-C84:F84*E77)/D77

    8. В конце записываете вот такое выражение =(C76:F76-C83:F83*D76-C84:F84*E76)/C76

    9. При получении матрицы с единичной диагональю, правая часть дает искомые неизвестные. После подстановки полученных цифр в любое из уравнений значения по обе стороны от знака равно являются идентичными, что говорит о правильном решении.

    Метод Гаусса является одним из самых трудоемких среди прочих вариантов, однако позволяет пошагово просмотреть процесс поиска неизвестных.

    Как видите, существует несколько методов решения уравнений в редакторе. Однако каждый из них требует определенных знаний в математике и четкого понимания последовательности действий. Однако для упрощения можно воспользоваться онлайн калькулятором, в который заложен определенный метод решения системы уравнений. Более продвинутые сайты предоставляют несколько способов поиска неизвестных.

    Жми «Нравится» и получай только лучшие посты в Facebook ↓

    Решение уравнений в Excel методом итераций Крамера и Гаусса

    В программе Excel имеется обширный инструментарий для решения различных видов уравнений разными методами.

    Рассмотрим на примерах некоторые варианты решений.

    Решение уравнений методом подбора параметров Excel

    Инструмент «Подбор параметра» применяется в ситуации, когда известен результат, но неизвестны аргументы. Excel подбирает значения до тех пор, пока вычисление не даст нужный итог.

    Путь к команде: «Данные» — «Работа с данными» — «Анализ «что-если»» — «Подбор параметра».

    Рассмотрим на примере решение квадратного уравнения х 2 + 3х + 2 = 0. Порядок нахождения корня средствами Excel:

    1. Введем в ячейку В2 формулу для нахождения значения функции. В качестве аргумента применим ссылку на ячейку В1.
    2. Открываем меню инструмента «Подбор параметра». В графе «Установить в ячейку» — ссылка на ячейку В2, где находится формула. В поле «Значение» вводим 0. Это то значение, которое нужно получить. В графе «Изменяя значение ячейки» — В1. Здесь должен отобразиться отобранный параметр.
    3. После нажатия ОК отобразится результат подбора. Если нужно его сохранить, вновь нажимаем ОК. В противном случае – «Отмена».

    Для подбора параметра программа использует циклический процесс. Чтобы изменить число итераций и погрешность, нужно зайти в параметры Excel. На вкладке «Формулы» установить предельное количество итераций, относительную погрешность. Поставить галочку «включить итеративные вычисления».

    Как решить систему уравнений матричным методом в Excel

    Дана система уравнений:

    1. Значения элементов введем в ячейки Excel в виде таблицы.
    2. Найдем обратную матрицу. Выделим диапазон, куда впоследствии будут помещены элементы матрицы (ориентируемся на количество строк и столбцов в исходной матрице). Открываем список функций (fx). В категории «Математические» находим МОБР. Аргумент – массив ячеек с элементами исходной матрицы.
    3. Нажимаем ОК – в левом верхнем углу диапазона появляется значение. Последовательно жмем кнопку F2 и сочетание клавиш Ctrl + Shift + Enter.
    4. Умножим обратную матрицу Ах -1х на матрицу В (именно в таком порядке следования множителей!). Выделяем диапазон, где впоследствии появятся элементы результирующей матрицы (ориентируемся на число строк и столбцов матрицы В). Открываем диалоговое окно математической функции МУМНОЖ. Первый диапазон – обратная матрица. Второй – матрица В.
    5. Закрываем окно с аргументами функции нажатием кнопки ОК. Последовательно нажимаем кнопку F2 и комбинацию Ctrl + Shift + Enter.

    Получены корни уравнений.

    Решение системы уравнений методом Крамера в Excel

    Возьмем систему уравнений из предыдущего примера:

    Для их решения методом Крамера вычислим определители матриц, полученных заменой одного столбца в матрице А на столбец-матрицу В.

    Для расчета определителей используем функцию МОПРЕД. Аргумент – диапазон с соответствующей матрицей.

    Рассчитаем также определитель матрицы А (массив – диапазон матрицы А).

    Определитель системы больше 0 – решение можно найти по формуле Крамера (Dx / |A|).

    Для расчета Х1: =U2/$U$1, где U2 – D1. Для расчета Х2: =U3/$U$1. И т.д. Получим корни уравнений:

    Решение систем уравнений методом Гаусса в Excel

    Для примера возьмем простейшую систему уравнений:

    3а + 2в – 5с = -1
    2а – в – 3с = 13
    а + 2в – с = 9

    Коэффициенты запишем в матрицу А. Свободные члены – в матрицу В.

    Для наглядности свободные члены выделим заливкой. Если в первой ячейке матрицы А оказался 0, нужно поменять местами строки, чтобы здесь оказалось отличное от 0 значение.

    1. Приведем все коэффициенты при а к 0. Кроме первого уравнения. Скопируем значения в первой строке двух матриц в ячейки В6:Е6. В ячейку В7 введем формулу: =B3:Е3-$B$2:$Е$2*(B3/$B$2). Выделим диапазон В7:Е7. Нажмем F2 и сочетание клавиш Ctrl + Shift + Enter. Мы отняли от второй строки первую, умноженную на отношение первых элементов второго и первого уравнения.
    2. Копируем введенную формулу на 8 и 9 строки. Так мы избавились от коэффициентов перед а. Сохранили только первое уравнение.
    3. Приведем к 0 коэффициенты перед в в третьем и четвертом уравнении. Копируем строки 6 и 7 (только значения). Переносим их ниже, в строки 10 и 11. Эти данные должны остаться неизменными. В ячейку В12 вводим формулу массива.
    4. Прямую прогонку по методу Гаусса сделали. В обратном порядке начнем прогонять с последней строки полученной матрицы. Все элементы данной строки нужно разделить на коэффициент при с. Введем в строку формулу массива: <=B12:E12/D12>.
    5. В строке 15: отнимем от второй строки третью, умноженную на коэффициент при с второй строки (<=(B11:E11-B16:E16*D11)/C11>). В строке 14: от первой строки отнимаем вторую и третью, умноженные на соответствующие коэффициенты (<=(B10:E10-B15:E15*C10-B16:E16*D10)/B10>). В последнем столбце новой матрицы получаем корни уравнения.

    Примеры решения уравнений методом итераций в Excel

    Вычисления в книге должны быть настроены следующим образом:

    Делается это на вкладке «Формулы» в «Параметрах Excel». Найдем корень уравнения х – х 3 + 1 = 0 (а = 1, b = 2) методом итерации с применением циклических ссылок. Формула:

    M – максимальное значение производной по модулю. Чтобы найти М, произведем вычисления:

    f’ (1) = -2 * f’ (2) = -11.

    Полученное значение меньше 0. Поэтому функция будет с противоположным знаком: f (х) = -х + х 3 – 1. М = 11.

    В ячейку А3 введем значение: а = 1. Точность – три знака после запятой. Для расчета текущего значения х в соседнюю ячейку (В3) введем формулу: =ЕСЛИ(B3=0;A3;B3-(-B3+СТЕПЕНЬ(B3;3)-1/11)).

    В ячейке С3 проконтролируем значение f (x): с помощью формулы =B3-СТЕПЕНЬ(B3;3)+1.

    Корень уравнения – 1,179. Введем в ячейку А3 значение 2. Получим тот же результат:

    Решение систем линейных уравнений в Excel

    В дополнение темы по построению балансовых моделей в Microsoft Excel я решил выпустить отдельную статью на тему решения систем линейных алгебраических уравнений (СЛАУ) в Excel, которая имеет более широкое применение.

    В математике есть несколько методов решения СЛАУ. Применительно к Excel самым эффективным и простым является так называемый матричный метод. Приведенная методика решения уравнений проста в освоении и очень производительна. Данная информация будет полезна для учащихся, тем, кто связан в работе с математическими расчетами, а также всем, кто интересуется продвинутыми возможностями Excel.

    Рассмотрим систему из трех линейных уравнений:

    Данную систему уравнений можно записать в так называемом матричном виде, то есть обобщить все элементы системы:

    Преобразования над уравнением в матричной записи аналогичны обычному уравнению, таким образом, получим:

    Таким образом, для решения системы уравнений необходимо решить полученное уравнение в матричном виде относительно X. Произведем несложные расчеты в Excel с применением функций по работе с матрицами.

    Сформируем на листе Excel матрицы коэффициентов и свободных членов, как показано на рисунке.

    Рис. 1 — Исходные данные

    Вычислим обратную матрицу коэффициентов, т.е. A^-1, воспользовавшись специальной функцией МОБР() (вводится через формулы массива, т.е. при помощи нажатия Ctrl+Shift+Enter):

    Рис.2 — Вычисление обратной матрицы коэффициентов

    Результат работы команды:

    Рис.3 — Обратная матрица коэффициентов

    Далее перемножим полученную матрицу с матрицей линейных коэффициентов, т.е. вычислим Y*A^-1 через функцию по перемножению матриц МУМНОЖ() (также формулы массивов!), что и будет решением уравнения:

    Рис.4 — Вычисление корней уравнения

    Рис.5 — Корни уравнения

    Данные вычисления можно сделать вручную, как показано в приведенном примере, но можно и автоматизировать! В нашей надстройке SubEx для Excel есть мастер решения систем уравнений. Задайте матрицы коэффициентов и свободных членов — все вычисления программа сделает автоматически:

    Как было сказано выше, приведенный метод очень производительный и может с легкостью решать системы из сотен и более уравнений.

    Пример использования данного метода на практике приведен в статье на сайте по составлению балансовой модели по расчету себестоимости продукции предприятия.

    Понравилась статья? Поделить с друзьями:
  • Уравнение регрессионной модели в excel
  • Уравнение регрессии формула excel
  • Уравнение регрессии на диаграмме в excel
  • Уравнение прямой по двум точкам excel
  • Уравнение регрессии в excel это