The word science comes from the greek for

Science is a systematic endeavor that builds and organizes knowledge in the form of testable explanations and predictions about the universe.[1][2]

Timeline of the Universe from Big Bang to present

The earliest written records of identifiable predecessors to modern science come from Ancient Egypt and Mesopotamia from around 3000 to 1200 BCE. Their contributions to mathematics, astronomy, and medicine entered and shaped the Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes.[3]: 12 [4] After the fall of the Western Roman Empire, knowledge of Greek conceptions of the world deteriorated in Western Europe during the early centuries (400 to 1000 CE) of the Middle Ages, but was preserved in the Muslim world during the Islamic Golden Age[5] and later by the efforts of Byzantine Greek scholars who brought Greek manuscripts from the dying Byzantine Empire to Western Europe in the Renaissance.

The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived «natural philosophy»,[6][7] which was later transformed by the Scientific Revolution that began in the 16th century[8] as new ideas and discoveries departed from previous Greek conceptions and traditions.[9][10] The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape,[11][12] along with the changing of «natural philosophy» to «natural science».[13]

Modern science is typically divided into three major branches:[14] natural sciences (e.g., biology, chemistry, and physics), which study the physical world; the social sciences (e.g., economics, psychology, and sociology), which study individuals and societies;[15][16] and the formal sciences (e.g., logic, mathematics, and theoretical computer science), which study formal systems, governed by axioms and rules.[17][18] There is disagreement whether the formal sciences are science disciplines,[19][20][21] because they do not rely on empirical evidence.[22][20] Applied sciences are disciplines that use scientific knowledge for practical purposes, such as in engineering and medicine.[23][24][25]

New knowledge in science is advanced by research from scientists who are motivated by curiosity about the world and a desire to solve problems.[26][27] Contemporary scientific research is highly collaborative and is usually done by teams in academic and research institutions,[28] government agencies, and companies.[29][30] The practical impact of their work has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the ethical and moral development of commercial products, armaments, health care, public infrastructure, and environmental protection.

Etymology

Look up science in Wiktionary, the free dictionary.

The word science has been used in Middle English since the 14th century in the sense of «the state of knowing». The word was borrowed from the Anglo-Norman language as the suffix -cience, which was borrowed from the Latin word scientia, meaning «knowledge, awareness, understanding». It is a noun derivative of the Latin sciens meaning «knowing», and undisputedly derived from the Latin sciō, the present participle scīre, meaning «to know».[31]

There are many hypotheses for science‘s ultimate word origin. According to Michiel de Vaan, Dutch linguist and Indo-Europeanist, sciō may have its origin in the Proto-Italic language as *skije- or *skijo- meaning «to know», which may originate from Proto-Indo-European language as *skh1-ie, *skh1-io, meaning «to incise». The Lexikon der indogermanischen Verben proposed sciō is a back-formation of nescīre, meaning «to not know, be unfamiliar with», which may derive from Proto-Indo-European *sekH- in Latin secāre, or *skh2, from *sḱʰeh2(i)- meaning «to cut».[32]

In the past, science was a synonym for «knowledge» or «study», in keeping with its Latin origin. A person who conducted scientific research was called a «natural philosopher» or «man of science».[33] In 1834, William Whewell introduced the term scientist in a review of Mary Somerville’s book On the Connexion of the Physical Sciences,[34] crediting it to «some ingenious gentleman» (possibly himself).[35]

History

Early history

Science has no single origin. Rather, systematic methods emerged gradually over the course of tens of thousands of years,[36][37] taking different forms around the world, and few details are known about the very earliest developments. Women likely played a central role in prehistoric science,[38] as did religious rituals.[39] Some scholars use the term «protoscience» to label activities in the past that resemble modern science in some but not all features;[40][41][42] however, this label has also been criticized as denigrating[43] or too suggestive of presentism, thinking about those activities only in relation to modern categories.[44]

Direct evidence for scientific processes becomes clearer with the advent of writing systems in early civilizations like Ancient Egypt and Mesopotamia, creating the earliest written records in the history of science in around 3000 to 1200 BCE.[3]: 12–15 [4] Although the words and concepts of «science» and «nature» were not part of the conceptual landscape at the time, the ancient Egyptians and Mesopotamians made contributions that would later find a place in Greek and medieval science: mathematics, astronomy, and medicine.[45][3]: 12  From the 3rd millennium BCE, the ancient Egyptians developed a decimal numbering system,[46] solved practical problems using geometry,[47] and developed a calendar.[48] Their healing therapies involved drug treatments and the supernatural, such as prayers, incantations, and rituals.[3]: 9 

The ancient Mesopotamians used knowledge about the properties of various natural chemicals for manufacturing pottery, faience, glass, soap, metals, lime plaster, and waterproofing.[49] They studied animal physiology, anatomy, behavior, and astrology for divinatory purposes.[50] The Mesopotamians had an intense interest in medicine[49] and the earliest medical prescriptions appeared in Sumerian during the Third Dynasty of Ur.[51] They seem to study scientific subjects which have practical or religious applications and have little interest of satisfying curiosity.[49]

Classical antiquity

In classical antiquity, there is no real ancient analog of a modern scientist. Instead, well-educated, usually upper-class, and almost universally male individuals performed various investigations into nature whenever they could afford the time.[52] Before the invention or discovery of the concept of phusis or nature by the pre-Socratic philosophers, the same words tend to be used to describe the natural «way» in which a plant grows,[53] and the «way» in which, for example, one tribe worships a particular god. For this reason, it is claimed that these men were the first philosophers in the strict sense and the first to clearly distinguish «nature» and «convention».[54]

The early Greek philosophers of the Milesian school, which was founded by Thales of Miletus and later continued by his successors Anaximander and Anaximenes, were the first to attempt to explain natural phenomena without relying on the supernatural.[55] The Pythagoreans developed a complex number philosophy[56]: 467–68  and contributed significantly to the development of mathematical science.[56]: 465  The theory of atoms was developed by the Greek philosopher Leucippus and his student Democritus.[57][58] Later, Epicurus would develop a full natural cosmology based on atomism, and would adopt a «canon» (ruler, standard) which established physical criteria or standards of scientific truth.[59] The Greek doctor Hippocrates established the tradition of systematic medical science[60][61] and is known as «The Father of Medicine».[62]

A turning point in the history of early philosophical science was Socrates’ example of applying philosophy to the study of human matters, including human nature, the nature of political communities, and human knowledge itself. The Socratic method as documented by Plato’s dialogues is a dialectic method of hypothesis elimination: better hypotheses are found by steadily identifying and eliminating those that lead to contradictions. The Socratic method searches for general commonly-held truths that shape beliefs and scrutinizes them for consistency.[63] Socrates criticized the older type of study of physics as too purely speculative and lacking in self-criticism.[64]

Aristotle in the 4th century BCE created a systematic program of teleological philosophy.[65] In the 3rd century BCE, Greek astronomer Aristarchus of Samos was the first to propose a heliocentric model of the universe, with the Sun at the center and all the planets orbiting it.[66] Aristarchus’s model was widely rejected because it was believed to violate the laws of physics,[66] while Ptolemy’s Almagest, which contains a geocentric description of the Solar System, was accepted through the early Renaissance instead.[67][68] The inventor and mathematician Archimedes of Syracuse made major contributions to the beginnings of calculus.[69] Pliny the Elder was a Roman writer and polymath, who wrote the seminal encyclopedia Natural History.[70][71][72]

Positional notation for representing numbers likely emerged between the 3rd and 5th centuries CE along Indian trade routes. This numeral system made efficient arithmetic operations more accessible and would eventually become standard for mathematics worldwide.[73]

Middle Ages

Due to the collapse of the Western Roman Empire, the 5th century saw an intellectual decline and knowledge of Greek conceptions of the world deteriorated in Western Europe.[3]: 194  During the period, Latin encyclopedists such as Isidore of Seville preserved the majority of general ancient knowledge.[74] In contrast, because the Byzantine Empire resisted attacks from invaders, they were able to preserve and improve prior learning.[3]: 159  John Philoponus, a Byzantine scholar in the 500s, started to question Aristotle’s teaching of physics, introducing the theory of impetus.[3]: 307, 311, 363, 402  His criticism served as an inspiration to medieval scholars and Galileo Galilei, who extensively cited his works ten centuries later.[3]: 307–308 [75]

During late antiquity and the early Middle Ages, natural phenomena were mainly examined via the Aristotelian approach. The approach includes Aristotle’s four causes: material, formal, moving, and final cause.[76] Many Greek classical texts were preserved by the Byzantine empire and Arabic translations were done by groups such as the Nestorians and the Monophysites. Under the Caliphate, these Arabic translations were later improved and developed by Arabic scientists.[77] By the 6th and 7th centuries, the neighboring Sassanid Empire established the medical Academy of Gondeshapur, which is considered by Greek, Syriac, and Persian physicians as the most important medical center of the ancient world.[78]

The House of Wisdom was established in Abbasid-era Baghdad, Iraq,[79] where the Islamic study of Aristotelianism flourished[80] until the Mongol invasions in the 13th century. Ibn al-Haytham, better known as Alhazen, began experimenting as a means to gain knowledge[81][82] and disproved Ptolemy’s theory of vision[83]: Book I, [6.54]. p. 372  Avicenna’s compilation of the Canon of Medicine, a medical encyclopedia, is considered to be one of the most important publications in medicine and was used until the 18th century.[84]

By the eleventh century, most of Europe had become Christian,[3]: 204  and in 1088, the University of Bologna emerged as the first university in Europe.[85] As such, demand for Latin translation of ancient and scientific texts grew,[3]: 204  a major contributor to the Renaissance of the 12th century. Renaissance scholasticism in western Europe flourished, with experiments done by observing, describing, and classifying subjects in nature.[86] In the 13rd century, medical teachers and students at Bologna began opening human bodies, leading to the first anatomy textbook based on human dissection by Mondino de Luzzi.[87]

Renaissance

New developments in optics played a role in the inception of the Renaissance, both by challenging long-held metaphysical ideas on perception, as well as by contributing to the improvement and development of technology such as the camera obscura and the telescope. At the start of the Renaissance, Roger Bacon, Vitello, and John Peckham each built up a scholastic ontology upon a causal chain beginning with sensation, perception, and finally apperception of the individual and universal forms of Aristotle.[83]: Book I  A model of vision later known as perspectivism was exploited and studied by the artists of the Renaissance. This theory uses only three of Aristotle’s four causes: formal, material, and final.[88]

In the sixteenth century, Nicolaus Copernicus formulated a heliocentric model of the Solar System, stating that the planets revolve around the Sun, instead of the geocentric model where the planets and the Sun revolve around the Earth. This was based on a theorem that the orbital periods of the planets are longer as their orbs are farther from the center of motion, which he found not to agree with Ptolemy’s model.[89]

Johannes Kepler and others challenged the notion that the only function of the eye is perception, and shifted the main focus in optics from the eye to the propagation of light.[88][90] Kepler is best known, however, for improving Copernicus’ heliocentric model through the discovery of Kepler’s laws of planetary motion. Kepler did not reject Aristotelian metaphysics and described his work as a search for the Harmony of the Spheres.[91] Galileo had made significant contributions to astronomy, physics and engineering. However, he became persecuted after Pope Urban VIII sentenced him for writing about the heliocentric model.[92]

The printing press was widely used to publish scholarly arguments, including some that disagreed widely with contemporary ideas of nature.[93] Francis Bacon and René Descartes published philosophical arguments in favor of a new type of non-Aristotelian science. Bacon emphasized the importance of experiment over contemplation, questioned the Aristotelian concepts of formal and final cause, promoted the idea that science should study the laws of nature and the improvement of all human life.[94] Descartes emphasized individual thought and argued that mathematics rather than geometry should be used to study nature.[95]

Age of Enlightenment

At the start of the Age of Enlightenment, Isaac Newton formed the foundation of classical mechanics by his Philosophiæ Naturalis Principia Mathematica, greatly influencing future physicists.[96] Gottfried Wilhelm Leibniz incorporated terms from Aristotelian physics, now used in a new non-teleological way. This implied a shift in the view of objects: objects were now considered as having no innate goals. Leibniz assumed that different types of things all work according to the same general laws of nature, with no special formal or final causes.[97]

During this time, the declared purpose and value of science became producing wealth and inventions that would improve human lives, in the materialistic sense of having more food, clothing, and other things. In Bacon’s words, «the real and legitimate goal of sciences is the endowment of human life with new inventions and riches«, and he discouraged scientists from pursuing intangible philosophical or spiritual ideas, which he believed contributed little to human happiness beyond «the fume of subtle, sublime or pleasing [speculation]».[98]

Science during the Enlightenment was dominated by scientific societies[99] and academies, which had largely replaced universities as centers of scientific research and development. Societies and academies were the backbones of the maturation of the scientific profession. Another important development was the popularization of science among an increasingly literate population.[100] Enlightenment philosophers chose a short history of scientific predecessors – Galileo, Boyle, and Newton principally – as the guides to every physical and social field of the day.[101]

The 18th century saw significant advancements in the practice of medicine[102] and physics;[103] the development of biological taxonomy by Carl Linnaeus;[104] a new understanding of magnetism and electricity;[105] and the maturation of chemistry as a discipline.[106] Ideas on human nature, society, and economics evolved during the Enlightenment. Hume and other Scottish Enlightenment thinkers developed A Treatise of Human Nature, which was expressed historically in works by authors including James Burnett, Adam Ferguson, John Millar and William Robertson, all of whom merged a scientific study of how humans behaved in ancient and primitive cultures with a strong awareness of the determining forces of modernity.[107] Modern sociology largely originated from this movement.[108] In 1776, Adam Smith published The Wealth of Nations, which is often considered the first work on modern economics.[109]

19th century

During the nineteenth century, many distinguishing characteristics of contemporary modern science began to take shape. These included the transformation of the life and physical sciences, frequent use of precision instruments, emergence of terms such as «biologist», «physicist», «scientist», increased professionalization of those studying nature, scientists gained cultural authority over many dimensions of society, industrialization of numerous countries, thriving of popular science writings and emergence of science journals.[110] During the late 19th century, psychology emerged as a separate discipline from philosophy when Wilhelm Wundt founded the first laboratory for psychological research in 1879.[111]

During the mid-19th century, Charles Darwin and Alfred Russel Wallace independently proposed the theory of evolution by natural selection in 1858, which explained how different plants and animals originated and evolved. Their theory was set out in detail in Darwin’s book On the Origin of Species, published in 1859.[112] Separately, Gregor Mendel presented his paper, «Experiments on Plant Hybridization» in 1865,[113] which outlined the principles of biological inheritance, serving as the basis for modern genetics.[114]

Early in the 19th century, John Dalton suggested the modern atomic theory, based on Democritus’s original idea of indivisible particles called atoms.[115] The laws of conservation of energy, conservation of momentum and conservation of mass suggested a highly stable universe where there could be little loss of resources. However, with the advent of the steam engine and the industrial revolution there was an increased understanding that not all forms of energy have the same energy qualities, the ease of conversion to useful work or to another form of energy.[116] This realization led to the development of the laws of thermodynamics, in which the free energy of the universe is seen as constantly declining: the entropy of a closed universe increases over time.[a]

The electromagnetic theory was established in the 19th century by the works of Hans Christian Ørsted, André-Marie Ampère, Michael Faraday, James Clerk Maxwell, Oliver Heaviside, and Heinrich Hertz. The new theory raised questions that could not easily be answered using Newton’s framework. The discovery of X-rays inspired the discovery of radioactivity by Henri Becquerel and Marie Curie in 1896,[119] Marie Curie then became the first person to win two Nobel prizes.[120] In the next year came the discovery of the first subatomic particle, the electron.[121]

20th century

First global view of the ozone hole in 1983, using a space telescope

In the first half of the century, the development of antibiotics and artificial fertilizers improved human living standards globally.[122][123] Harmful environmental issues such as ozone depletion, ocean acidification, eutrophication and climate change came to the public’s attention and caused the onset of environmental studies.[124]

During this period, scientific experimentation became increasingly larger in scale and funding.[125] The extensive technological innovation stimulated by World War I, World War II, and the Cold War led to competitions between global powers, such as the Space Race[126] and nuclear arms race.[127] Substantial international collaborations were also made, despite armed conflicts.[128]

In the late 20th century, active recruitment of women and elimination of sex discrimination greatly increased the number of women scientists, but large gender disparities remained in some fields.[129] The discovery of the cosmic microwave background in 1964[130] led to a rejection of the steady-state model of the universe in favor of the Big Bang theory of Georges Lemaître.[131]

The century saw fundamental changes within science disciplines. Evolution became a unified theory in the early 20th-century when the modern synthesis reconciled Darwinian evolution with classical genetics.[132] Albert Einstein’s theory of relativity and the development of quantum mechanics complement classical mechanics to describe physics in extreme length, time and gravity.[133][134] Widespread use of integrated circuits in the last quarter of the 20th century combined with communications satellites led to a revolution in information technology and the rise of the global internet and mobile computing, including smartphones. The need for mass systematization of long, intertwined causal chains and large amounts of data led to the rise of the fields of systems theory and computer-assisted scientific modeling.[135]

21st century

The Human Genome Project was completed in 2003 by identifying and mapping all of the genes of the human genome.[136] The first induced pluripotent human stem cells were made in 2006, allowing adult cells to be transformed into stem cells and turn to any cell type found in the body.[137] With the affirmation of the Higgs boson discovery in 2013, the last particle predicted by the Standard Model of particle physics was found.[138] In 2015, gravitational waves, predicted by general relativity a century before, were first observed.[139][140] In 2019, the international collaboration Event Horizon Telescope presented the first direct image of a black hole’s accretion disk.[141]

Branches

Modern science is commonly divided into three major branches: natural science, social science, and formal science.[14] Each of these branches comprises various specialized yet overlapping scientific disciplines that often possess their own nomenclature and expertise.[142] Both natural and social sciences are empirical sciences,[143] as their knowledge is based on empirical observations and is capable of being tested for its validity by other researchers working under the same conditions.[144]

Natural science

Natural science is the study of the physical world. It can be divided into two main branches: life science and physical science. These two branches may be further divided into more specialized disciplines. For example, physical science can be subdivided into physics, chemistry, astronomy, and earth science. Modern natural science is the successor to the natural philosophy that began in Ancient Greece. Galileo, Descartes, Bacon, and Newton debated the benefits of using approaches which were more mathematical and more experimental in a methodical way. Still, philosophical perspectives, conjectures, and presuppositions, often overlooked, remain necessary in natural science.[145] Systematic data collection, including discovery science, succeeded natural history, which emerged in the 16th century by describing and classifying plants, animals, minerals, and so on.[146] Today, «natural history» suggests observational descriptions aimed at popular audiences.[147]

Social science is the study of human behavior and functioning of societies.[15][16] It has many disciplines that include, but are not limited to anthropology, economics, history, human geography, political science, psychology, and sociology.[15] In the social sciences, there are many competing theoretical perspectives, many of which are extended through competing research programs such as the functionalists, conflict theorists, and interactionists in sociology.[15] Due to the limitations of conducting controlled experiments involving large groups of individuals or complex situations, social scientists may adopt other research methods such as the historical method, case studies, and cross-cultural studies. Moreover, if quantitative information is available, social scientists may rely on statistical approaches to better understand social relationships and processes.[15]

Formal science

Formal science is an area of study that generates knowledge using formal systems.[148][17][18] A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules.[149] It includes mathematics,[150][151] systems theory, and theoretical computer science. The formal sciences share similarities with the other two branches by relying on objective, careful, and systematic study of an area of knowledge. They are, however, different from the empirical sciences as they rely exclusively on deductive reasoning, without the need for empirical evidence, to verify their abstract concepts.[22][152][144] The formal sciences are therefore a priori disciplines and because of this, there is disagreement on whether they constitute a science.[19][153] Nevertheless, the formal sciences play an important role in the empirical sciences. Calculus, for example, was initially invented to understand motion in physics.[154] Natural and social sciences that rely heavily on mathematical applications include mathematical physics,[155] chemistry,[156] biology,[157] finance,[158] and economics.[159]

Applied science

Applied science is the use of the scientific method and knowledge to attain practical goals and includes a broad range of disciplines such as engineering and medicine.[160][25] Engineering is the use of scientific principles to invent, design and build machines, structures and technologies.[161] Science may contribute to the development of new technologies.[162] Medicine is the practice of caring for patients by maintaining and restoring health through the prevention, diagnosis, and treatment of injury or disease.[163][164] The applied sciences are often contrasted with the basic sciences, which are focused on advancing scientific theories and laws that explain and predict events in the natural world.[165][166]

Computational science applies computing power to simulate real-world situations, enabling a better understanding of scientific problems than formal mathematics alone can achieve. The use of machine learning and artificial intelligence is becoming a central feature of computational contributions to science for example in agent-based computational economics, random forests, topic modeling and various forms of prediction. However, machines alone rarely advance knowledge as they require human guidance and capacity to reason; and they can introduce bias against certain social groups or sometimes underperform against humans.[167][168]

Interdisciplinary science

Interdisciplinary science involves the combination of two or more disciplines into one,[169] such as bioinformatics, a combination of biology and computer science[170] or cognitive sciences. The concept has existed since the ancient Greek and it became popular again in the 20th century.[171]

Scientific research

Scientific research can be labeled as either basic or applied research. Basic research is the search for knowledge and applied research is the search for solutions to practical problems using this knowledge. Most understanding comes from basic research, though sometimes applied research targets specific practical problems. This leads to technological advances that were not previously imaginable.[172]

Scientific method

Scientific research involves using the scientific method, which seeks to objectively explain the events of nature in a reproducible way.[173] Scientists usually take for granted a set of basic assumptions that are needed to justify the scientific method: there is an objective reality shared by all rational observers; this objective reality is governed by natural laws; these laws were discovered by means of systematic observation and experimentation.[2] Mathematics is essential in the formation of hypotheses, theories, and laws, because it is used extensively in quantitative modeling, observing, and collecting measurements.[174] Statistics is used to summarize and analyze data, which allows scientists to assess the reliability of experimental results.[175]

In the scientific method, an explanatory thought experiment or hypothesis is put forward as an explanation using parsimony principles and is expected to seek consilience – fitting with other accepted facts related to an observation or scientific question.[176] This tentative explanation is used to make falsifiable predictions, which are typically posted before being tested by experimentation. Disproof of a prediction is evidence of progress.[173]: 4–5 [177] Experimentation is especially important in science to help establish causal relationships to avoid the correlation fallacy, though in some sciences such as astronomy or geology, a predicted observation might be more appropriate.[178]

When a hypothesis proves unsatisfactory, it is modified or discarded.[179] If the hypothesis survived testing, it may become adopted into the framework of a scientific theory, a logically reasoned, self-consistent model or framework for describing the behavior of certain natural events. A theory typically describes the behavior of much broader sets of observations than a hypothesis; commonly, a large number of hypotheses can be logically bound together by a single theory. Thus a theory is a hypothesis explaining various other hypotheses. In that vein, theories are formulated according to most of the same scientific principles as hypotheses. Scientists may generate a model, an attempt to describe or depict an observation in terms of a logical, physical or mathematical representation and to generate new hypotheses that can be tested by experimentation.[180]

While performing experiments to test hypotheses, scientists may have a preference for one outcome over another.[181][182] Eliminating the bias can be achieved by transparency, careful experimental design, and a thorough peer review process of the experimental results and conclusions.[183][184] After the results of an experiment are announced or published, it is normal practice for independent researchers to double-check how the research was performed, and to follow up by performing similar experiments to determine how dependable the results might be.[185] Taken in its entirety, the scientific method allows for highly creative problem solving while minimizing the effects of subjective and confirmation bias.[186] Intersubjective verifiability, the ability to reach a consensus and reproduce results, is fundamental to the creation of all scientific knowledge.[187]

Scientific literature

Cover of the first issue of Nature, November 4, 1869

Scientific research is published in a range of literature.[188] Scientific journals communicate and document the results of research carried out in universities and various other research institutions, serving as an archival record of science. The first scientific journals, Journal des sçavans followed by Philosophical Transactions, began publication in 1665. Since that time the total number of active periodicals has steadily increased. In 1981, one estimate for the number of scientific and technical journals in publication was 11,500.[189]

Most scientific journals cover a single scientific field and publish the research within that field; the research is normally expressed in the form of a scientific paper. Science has become so pervasive in modern societies that it is considered necessary to communicate the achievements, news, and ambitions of scientists to a wider population.[190]

Challenges

The replication crisis is an ongoing methodological crisis that affects parts of the social and life sciences. In subsequent investigations, the results of many scientific studies are proven to be unrepeatable.[191] The crisis has long-standing roots; the phrase was coined in the early 2010s[192] as part of a growing awareness of the problem. The replication crisis represents an important body of research in metascience, which aims to improve the quality of all scientific research while reducing waste.[193]

An area of study or speculation that masquerades as science in an attempt to claim a legitimacy that it would not otherwise be able to achieve is sometimes referred to as pseudoscience, fringe science, or junk science.[194][195] Physicist Richard Feynman coined the term «cargo cult science» for cases in which researchers believe and at a glance looks like they are doing science, but lack the honesty allowing their results to be rigorously evaluated.[196] Various types of commercial advertising, ranging from hype to fraud, may fall into these categories. Science has been described as «the most important tool» for separating valid claims from invalid ones.[197]

There can also be an element of political or ideological bias on all sides of scientific debates. Sometimes, research may be characterized as «bad science,» research that may be well-intended but is incorrect, obsolete, incomplete, or over-simplified expositions of scientific ideas. The term «scientific misconduct» refers to situations such as where researchers have intentionally misrepresented their published data or have purposely given credit for a discovery to the wrong person.[198]

Philosophy of science

There are different schools of thought in the philosophy of science. The most popular position is empiricism, which holds that knowledge is created by a process involving observation; scientific theories generalize observations.[199] Empiricism generally encompasses inductivism, a position that explains how general theories can be made from the finite amount of empirical evidence available. Many versions of empiricism exist, with the predominant ones being Bayesianism[200] and the hypothetico-deductive method.[199]

Empiricism has stood in contrast to rationalism, the position originally associated with Descartes, which holds that knowledge is created by the human intellect, not by observation.[201] Critical rationalism is a contrasting 20th-century approach to science, first defined by Austrian-British philosopher Karl Popper. Popper rejected the way that empiricism describes the connection between theory and observation. He claimed that theories are not generated by observation, but that observation is made in the light of theories: that the only way theory A can be affected by observation is after theory A were to conflict with observation, but theory B were to survive the observation.[202]
Popper proposed replacing verifiability with falsifiability as the landmark of scientific theories, replacing induction with falsification as the empirical method.[202] Popper further claimed that there is actually only one universal method, not specific to science: the negative method of criticism, trial and error,[203] covering all products of the human mind, including science, mathematics, philosophy, and art.[204]

Another approach, instrumentalism, emphasizes the utility of theories as instruments for explaining and predicting phenomena. It views scientific theories as black boxes with only their input (initial conditions) and output (predictions) being relevant. Consequences, theoretical entities, and logical structure are claimed to be something that should be ignored.[205] Close to instrumentalism is constructive empiricism, according to which the main criterion for the success of a scientific theory is whether what it says about observable entities is true.[206]

Thomas Kuhn argued that the process of observation and evaluation takes place within a paradigm, a logically consistent «portrait» of the world that is consistent with observations made from its framing. He characterized normal science as the process of observation and «puzzle solving» which takes place within a paradigm, whereas revolutionary science occurs when one paradigm overtakes another in a paradigm shift.[207] Each paradigm has its own distinct questions, aims, and interpretations. The choice between paradigms involves setting two or more «portraits» against the world and deciding which likeness is most promising. A paradigm shift occurs when a significant number of observational anomalies arise in the old paradigm and a new paradigm makes sense of them. That is, the choice of a new paradigm is based on observations, even though those observations are made against the background of the old paradigm. For Kuhn, acceptance or rejection of a paradigm is a social process as much as a logical process. Kuhn’s position, however, is not one of relativism.[208]

Finally, another approach often cited in debates of scientific skepticism against controversial movements like «creation science» is methodological naturalism. Naturalists maintain that a difference should be made between natural and supernatural, and science should be restricted to natural explanations.[209] Methodological naturalism maintains that science requires strict adherence to empirical study and independent verification.[210]

The scientific community is a network of interacting scientists who conducts scientific research. The community consists of smaller groups working in scientific fields. By having peer review, through discussion and debate within journals and conferences, scientists maintain the quality of research methodology and objectivity when interpreting results.[211]

Scientists

Scientists are individuals who conduct scientific research to advance knowledge in an area of interest.[212][213] In modern times, many professional scientists are trained in an academic setting and upon completion, attain an academic degree, with the highest degree being a doctorate such as a Doctor of Philosophy or PhD.[214] Many scientists pursue careers in various sectors of the economy such as academia, industry, government, and nonprofit organizations.[215][216][217]

Scientists exhibit a strong curiosity about reality and a desire to apply scientific knowledge for the benefit of health, nations, the environment, or industries. Other motivations include recognition by their peers and prestige. In modern times, many scientists have advanced degrees[218] in an area of science and pursue careers in various sectors of the economy such as academia, industry, government, and nonprofit environments.[219][220]

Science has historically been a male-dominated field, with notable exceptions. Women in science faced considerable discrimination in science, much as they did in other areas of male-dominated societies. For example, women were frequently being passed over for job opportunities and denied credit for their work.[221] The achievements of women in science have been attributed to the defiance of their traditional role as laborers within the domestic sphere.[222] Lifestyle choice plays a major role in female engagement in science; female graduate students’ interest in careers in research declines dramatically throughout graduate school, whereas that of their male colleagues remains unchanged.[223]

Learned societies

Learned societies for the communication and promotion of scientific thought and experimentation have existed since the Renaissance.[224] Many scientists belong to a learned society that promotes their respective scientific discipline, profession, or group of related disciplines.[225] Membership may either be open to all, require possession of scientific credentials, or conferred by election.[226] Most scientific societies are non-profit organizations,[227] and many are professional associations. Their activities typically include holding regular conferences for the presentation and discussion of new research results and publishing or sponsoring academic journals in their discipline. Some societies act as professional bodies, regulating the activities of their members in the public interest or the collective interest of the membership.[citation needed]

The professionalization of science, begun in the 19th century, was partly enabled by the creation of national distinguished academies of sciences such as the Italian Accademia dei Lincei in 1603,[228] the British Royal Society in 1660,[229] the French Academy of Sciences in 1666,[230] the American National Academy of Sciences in 1863,[231] the German Kaiser Wilhelm Society in 1911,[232] and the Chinese Academy of Sciences in 1949.[233] International scientific organizations, such as the International Science Council, are devoted to international cooperation for science advancement.[234]

Awards

Science awards are usually given to individuals or organizations that have made significant contributions to a discipline. They are often given by prestigious institutions, thus it is considered a great honor for a scientist receiving them. Since the early Renaissance, scientists are often awarded medals, money, and titles. The Nobel Prize, a widely regarded prestigious award, is awarded annually to those who have achieved scientific advances in the fields of medicine, physics, and chemistry.[235]

Society

Funding and policies

Scientific research is often funded through a competitive process in which potential research projects are evaluated and only the most promising receive funding. Such processes, which are run by government, corporations, or foundations, allocate scarce funds. Total research funding in most developed countries is between 1.5% and 3% of GDP.[236] In the OECD, around two-thirds of research and development in scientific and technical fields is carried out by industry, and 20% and 10% respectively by universities and government. The government funding proportion in certain fields is higher, and it dominates research in social science and humanities. In the lesser-developed nations, government provides the bulk of the funds for their basic scientific research.[237]

Many governments have dedicated agencies to support scientific research, such as the National Science Foundation in the United States,[238] the National Scientific and Technical Research Council in Argentina,[239] Commonwealth Scientific and Industrial Research Organization in Australia,[240] National Centre for Scientific Research in France,[241] the Max Planck Society in Germany,[242] and National Research Council in Spain.[243] In commercial research and development, all but the most research-oriented corporations focus more heavily on near-term commercialization possibilities rather than research driven by curiosity.[244]

Science policy is concerned with policies that affect the conduct of the scientific enterprise, including research funding, often in pursuance of other national policy goals such as technological innovation to promote commercial product development, weapons development, health care, and environmental monitoring. Science policy sometimes refers to the act of applying scientific knowledge and consensus to the development of public policies. In accordance with public policy being concerned about the well-being of its citizens, science policy’s goal is to consider how science and technology can best serve the public.[245] Public policy can directly affect the funding of capital equipment and intellectual infrastructure for industrial research by providing tax incentives to those organizations that fund research.[190]

Education and awareness

Science education for the general public is embedded in the school curriculum, and is supplemented by online pedagogical content (for example, YouTube and Khan Academy), museums, and science magazines and blogs. Scientific literacy is chiefly concerned with an understanding of the scientific method, units and methods of measurement, empiricism, a basic understanding of statistics (correlations, qualitative versus quantitative observations, aggregate statistics), as well as a basic understanding of core scientific fields, such as physics, chemistry, biology, ecology, geology and computation. As a student advances into higher stages of formal education, the curriculum becomes more in depth. Traditional subjects usually included in the curriculum are natural and formal sciences, although recent movements include social and applied science as well.[246]

The mass media face pressures that can prevent them from accurately depicting competing scientific claims in terms of their credibility within the scientific community as a whole. Determining how much weight to give different sides in a scientific debate may require considerable expertise regarding the matter.[247] Few journalists have real scientific knowledge, and even beat reporters who are knowledgeable about certain scientific issues may be ignorant about other scientific issues that they are suddenly asked to cover.[248][249]

Science magazines such as New Scientist, Science & Vie, and Scientific American cater to the needs of a much wider readership and provide a non-technical summary of popular areas of research, including notable discoveries and advances in certain fields of research.[250] Science fiction genre, primarily speculative fiction, can transmit the ideas and methods of science to the general public.[251] Recent efforts to intensify or develop links between science and non-scientific disciplines, such as literature or poetry, include the Creative Writing Science resource developed through the Royal Literary Fund.[252]

Anti-science attitudes

While the scientific method is broadly accepted in the scientific community, some fractions of society reject certain scientific positions or are skeptical about science. Examples are the common notion that COVID-19 is not a major health threat to the US (held by 39% of Americans in August 2021)[253] or the belief that climate change is not a major threat to the US (also held by 40% of Americans, in late 2019 and early 2020).[254] Psychologists have pointed to four factors driving rejection of scientific results:[255]

  • Scientific authorities are sometimes seen as inexpert, untrustworthy, or biased.
  • Some marginalized social groups hold anti-science attitudes, in part because these groups have often been exploited in unethical experiments.[256]
  • Messages from scientists may contradict deeply-held existing beliefs or morals.
  • The delivery of a scientific message may not be appropriately targeted to a recipient’s learning style.

Anti-science attitudes seem to be often caused by fear of rejection in social groups. For instance, climate change is perceived as a threat by only 22% of Americans on the right side of the political spectrum, but by 85% on the left.[257] That is, if someone on the left would not consider climate change as a threat, this person may face contempt and be rejected in that social group. In fact, people may rather deny a scientifically accepted fact than lose or jeopardize their social status.[258]

Politics

Attitudes towards science are often determined by political opinions and goals. Government, business and advocacy groups have been known to use legal and economic pressure to influence scientific researchers. Many factors can act as facets of the politicization of science such as anti-intellectualism, perceived threats to religious beliefs, and fear for business interests.[260] Politicization of science is usually accomplished when scientific information is presented in a way that emphasizes the uncertainty associated with the scientific evidence.[261] Tactics such as shifting conversation, failing to acknowledge facts, and capitalizing on doubt of scientific consensus have been used to gain more attention for views that have been undermined by scientific evidence.[262] Examples of issues that have involved the politicization of science include the global warming controversy, health effects of pesticides, and health effects of tobacco.[262][263]

See also

  • List of scientific occupations
  • List of years in science

Notes

  1. ^ Whether the universe is closed or open, or the shape of the universe, is an open question. The 2nd law of thermodynamics,[116]: 9 [117] and the 3rd law of thermodynamics[118] imply the heat death of the universe if the universe is a closed system, but not necessarily for an expanding universe.

References

  1. ^ Wilson, E.O. (1999). «The natural sciences». Consilience: The Unity of Knowledge (Reprint ed.). New York: Vintage. pp. 49–71. ISBN 978-0-679-76867-8.
  2. ^ a b Heilbron, J.L.; et al. (2003). «Preface». The Oxford Companion to the History of Modern Science. New York: Oxford University Press. pp. vii–x. ISBN 978-0-19-511229-0. …modern science is a discovery as well as an invention. It was a discovery that nature generally acts regularly enough to be described by laws and even by mathematics; and required invention to devise the techniques, abstractions, apparatus, and organization for exhibiting the regularities and securing their law-like descriptions.
  3. ^ a b c d e f g h i j Lindberg, David C. (2007). The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (2nd ed.). University of Chicago Press. ISBN 9780226482057.
  4. ^ a b Grant, Edward (2007). «Ancient Egypt to Plato». A History of Natural Philosophy: From the Ancient World to the Nineteenth Century (First ed.). New York: Cambridge University Press. pp. 1–26. ISBN 978-0-521-68957-1.
  5. ^ Lindberg, David C. (2007). «Islamic science». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago: University of Chicago Press. pp. 163–92. ISBN 978-0-226-48205-7.
  6. ^ Lindberg, David C. (2007). «The revival of learning in the West». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago: University of Chicago Press. pp. 193–224. ISBN 978-0-226-48205-7.
  7. ^ Lindberg, David C. (2007). «The recovery and assimilation of Greek and Islamic science». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (2nd ed.). Chicago: University of Chicago Press. pp. 225–53. ISBN 978-0-226-48205-7.
  8. ^ Principe, Lawrence M. (2011). «Introduction». Scientific Revolution: A Very Short Introduction (First ed.). New York: Oxford University Press. pp. 1–3. ISBN 978-0-19-956741-6.
  9. ^ Lindberg, David C. (2007). «The legacy of ancient and medieval science». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (2nd ed.). Chicago: University of Chicago Press. pp. 357–368. ISBN 978-0-226-48205-7.
  10. ^ Grant, Edward (2007). «Transformation of medieval natural philosophy from the early period modern period to the end of the nineteenth century». A History of Natural Philosophy: From the Ancient World to the Nineteenth Century (First ed.). New York: Cambridge University Press. pp. 274–322. ISBN 978-0-521-68957-1.
  11. ^ Cahan, David, ed. (2003). From Natural Philosophy to the Sciences: Writing the History of Nineteenth-Century Science. Chicago: University of Chicago Press. ISBN 978-0-226-08928-7.
  12. ^ Lightman, Bernard (2011). «13. Science and the Public». In Shank, Michael; Numbers, Ronald; Harrison, Peter (eds.). Wrestling with Nature: From Omens to Science. Chicago: University of Chicago Press. p. 367. ISBN 978-0-226-31783-0.
  13. ^ Harrison, Peter (2015). The Territories of Science and Religion. Chicago: University of Chicago Press. pp. 164–165. ISBN 978-0-226-18451-7. The changing character of those engaged in scientific endeavors was matched by a new nomenclature for their endeavors. The most conspicuous marker of this change was the replacement of «natural philosophy» by «natural science». In 1800 few had spoken of the «natural sciences» but by 1880, this expression had overtaken the traditional label «natural philosophy». The persistence of «natural philosophy» in the twentieth century is owing largely to historical references to a past practice (see figure 11). As should now be apparent, this was not simply the substitution of one term by another, but involved the jettisoning of a range of personal qualities relating to the conduct of philosophy and the living of the philosophical life.
  14. ^ a b Cohen, Eliel (2021). «The boundary lens: theorising academic actitity». The University and its Boundaries: Thriving or Surviving in the 21st Century 1st Edition. New York: Routledge. pp. 14–41. ISBN 978-0-367-56298-4. Archived from the original on May 5, 2021. Retrieved May 4, 2021.
  15. ^ a b c d e Colander, David C.; Hunt, Elgin F. (2019). «Social science and its methods». Social Science: An Introduction to the Study of Society (17th ed.). New York, NY: Routledge. pp. 1–22.
  16. ^ a b Nisbet, Robert A.; Greenfeld, Liah (October 16, 2020). «Social Science». Encyclopedia Britannica. Encyclopædia Britannica, Inc. Archived from the original on February 2, 2022. Retrieved May 9, 2021.
  17. ^ a b Löwe, Benedikt (2002). «The formal sciences: their scope, their foundations, and their unity». Synthese. 133 (1/2): 5–11. doi:10.1023/A:1020887832028. S2CID 9272212.
  18. ^ a b Rucker, Rudy (2019). «Robots and souls». Infinity and the Mind: The Science and Philosophy of the Infinite (Reprint ed.). Princeton, New Jersey: Princeton University Press. pp. 157–188. ISBN 978-0-691-19138-6. Archived from the original on February 26, 2021. Retrieved May 11, 2021.
  19. ^ a b Bishop, Alan (1991). «Environmental activities and mathematical culture». Mathematical Enculturation: A Cultural Perspective on Mathematics Education. Norwell, Massachusetts: Kluwer Academic Publishers. pp. 20–59. ISBN 978-0-7923-1270-3. Archived from the original on December 25, 2020. Retrieved March 24, 2018.
  20. ^ a b Nickles, Thomas (2013). «The Problem of Demarcation». Philosophy of Pseudoscience: Reconsidering the Demarcation Problem. Chicago: The University of Chicago Press. p. 104.
  21. ^ Bunge, Mario (1998). «The Scientific Approach». Philosophy of Science. Vol. 1, From Problem to Theory (revised ed.). New York: Routledge. pp. 3–50. ISBN 978-0-7658-0413-6.
  22. ^ a b Fetzer, James H. (2013). «Computer reliability and public policy: Limits of knowledge of computer-based systems». Computers and Cognition: Why Minds are not Machines. Newcastle, United Kingdom: Kluwer Academic Publishers. pp. 271–308. ISBN 978-1-4438-1946-6.
  23. ^ Fischer, M.R.; Fabry, G (2014). «Thinking and acting scientifically: Indispensable basis of medical education». GMS Zeitschrift für Medizinische Ausbildung. 31 (2): Doc24. doi:10.3205/zma000916. PMC 4027809. PMID 24872859.
  24. ^ Sinclair, Marius (1993). «On the Differences between the Engineering and Scientific Methods». The International Journal of Engineering Education. Archived from the original on November 15, 2017. Retrieved September 7, 2018.
  25. ^ a b Bunge, M (1966). «Technology as applied science». In Rapp, F. (ed.). Contributions to a Philosophy of Technology. Theory and Decision Library (An International Series in the Philosophy and Methodology of the Social and Behavioral Sciences). Dordrecht, Netherlands: Springer. pp. 19–39. doi:10.1007/978-94-010-2182-1_2. ISBN 978-94-010-2184-5.
  26. ^ MacRitchie, Finlay (2011). «Introduction». Scientific Research as a Career. New York: Routledge. pp. 1–6. ISBN 978-1-4398-6965-9. Archived from the original on May 5, 2021. Retrieved May 5, 2021.
  27. ^ Marder, Michael P. (2011). «Curiosity and research». Research Methods for Science. New York: Cambridge University Press. pp. 1–17. ISBN 978-0-521-14584-8. Archived from the original on May 5, 2021. Retrieved May 5, 2021.
  28. ^ de Ridder, Jeroen (2020). «How many scientists does it take to have knowledge?». In McCain, Kevin; Kampourakis, Kostas (eds.). What is Scientific Knowledge? An Introduction to Contemporary Epistemology of Science. New York: Routledge. pp. 3–17. ISBN 978-1-138-57016-0. Archived from the original on May 5, 2021. Retrieved May 5, 2021.
  29. ^ Lindberg, David C. (2007). «Islamic science». The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago: University of Chicago Press. pp. 163–192. ISBN 978-0-226-48205-7.
  30. ^ Szycher, Michael (2016). «Establishing your dream team». Commercialization Secrets for Scientists and Engineers. New York: Routledge. pp. 159–176. ISBN 978-1-138-40741-1. Archived from the original on August 18, 2021. Retrieved May 5, 2021.
  31. ^ «science». Merriam-Webster Online Dictionary. Merriam-Webster, Inc. Archived from the original on September 1, 2019. Retrieved October 16, 2011.
  32. ^ Vaan, Michiel de (2008). «sciō». Etymological Dictionary of Latin and the other Italic Languages. Indo-European Etymological Dictionary. p. 545. ISBN 978-90-04-16797-1.
  33. ^ Cahan, David (2003). From natural philosophy to the sciences : writing the history of nineteenth-century science. Chicago: University of Chicago Press. pp. 3–15. ISBN 0-226-08927-4. OCLC 51330464. Archived from the original on May 31, 2022. Retrieved May 31, 2022.
  34. ^ Ross, Sydney (1962). «Scientist: The story of a word». Annals of Science. 18 (2): 65–85. doi:10.1080/00033796200202722.
  35. ^ «scientist». Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  36. ^ Carruthers, Peter (May 2, 2002), Carruthers, Peter; Stich, Stephen; Siegal, Michael (eds.), «The roots of scientific reasoning: infancy, modularity and the art of tracking», The Cognitive Basis of Science, Cambridge University Press, pp. 73–96, doi:10.1017/cbo9780511613517.005, ISBN 978-0-521-81229-0
  37. ^ Lombard, Marlize; Gärdenfors, Peter (2017). «Tracking the Evolution of Causal Cognition in Humans». Journal of Anthropological Sciences. 95 (95): 219–234. doi:10.4436/JASS.95006. ISSN 1827-4765. PMID 28489015.
  38. ^ Graeber, David; Wengrow, David (2021). The Dawn of Everything. p. 248.
  39. ^ Budd, Paul; Taylor, Timothy (1995). «The Faerie Smith Meets the Bronze Industry: Magic Versus Science in the Interpretation of Prehistoric Metal-Making». World Archaeology. 27 (1): 133–143. doi:10.1080/00438243.1995.9980297. JSTOR 124782.
  40. ^ Tuomela, Raimo (1987). «Science, Protoscience, and Pseudoscience». In Pitt, J.C.; Pera, M. (eds.). Rational Changes in Science. Boston Studies in the Philosophy of Science. Vol. 98. Dordrecht: Springer. pp. 83–101. doi:10.1007/978-94-009-3779-6_4. ISBN 978-94-010-8181-8.
  41. ^ Smith, Pamela H. (2009). «Science on the Move: Recent Trends in the History of Early Modern Science». Renaissance Quarterly. 62 (2): 345–375. doi:10.1086/599864. PMID 19750597. S2CID 43643053.
  42. ^ Fleck, Robert (March 2021). «Fundamental Themes in Physics from the History of Art». Physics in Perspective. 23 (1): 25–48. Bibcode:2021PhP….23…25F. doi:10.1007/s00016-020-00269-7. ISSN 1422-6944. S2CID 253597172.
  43. ^ Scott, Colin (2011). «Science for the West, Myth for the Rest?». In Harding, Sandra (ed.). The Postcolonial Science and Technology Studies Reader. Durham: Duke University Press. p. 175. doi:10.2307/j.ctv11g96cc.16. ISBN 978-0-8223-4936-5. OCLC 700406626.
  44. ^ Dear, Peter (2012). «Historiography of Not-So-Recent Science». History of Science. 50 (2): 197–211. doi:10.1177/007327531205000203. S2CID 141599452.
  45. ^ Rochberg, Francesca (2011). «Ch.1 Natural Knowledge in Ancient Mesopotamia». In Shank, Michael; Numbers, Ronald; Harrison, Peter (eds.). Wrestling with Nature: From Omens to Science. Chicago: University of Chicago Press. p. 9. ISBN 978-0-226-31783-0.
  46. ^ Krebs, Robert E. (2004). Groundbreaking Scientific Experiments, Inventions, and Discoveries of the Middle Ages and the Renaissance. Greenwood Publishing Group. p. 127. ISBN 978-0313324338.
  47. ^ Erlich, Ḥaggai; Gershoni, Israel (2000). The Nile: Histories, Cultures, Myths. Lynne Rienner Publishers. pp. 80–81. ISBN 978-1-55587-672-2. Archived from the original on May 31, 2022. Retrieved January 9, 2020. The Nile occupied an important position in Egyptian culture; it influenced the development of mathematics, geography, and the calendar; Egyptian geometry advanced due to the practice of land measurement «because the overflow of the Nile caused the boundary of each person’s land to disappear.»
  48. ^ «Telling Time in Ancient Egypt». The Met’s Heilbrunn Timeline of Art History. Archived from the original on March 3, 2022. Retrieved May 27, 2022.
  49. ^ a b c McIntosh, Jane R. (2005). Ancient Mesopotamia: New Perspectives. Santa Barbara, California, Denver, Colorado, and Oxford, England: ABC-CLIO. pp. 273–76. ISBN 978-1-57607-966-9. Archived from the original on February 5, 2021. Retrieved October 20, 2020.
  50. ^ Aaboe, Asger (May 2, 1974). «Scientific Astronomy in Antiquity». Philosophical Transactions of the Royal Society. 276 (1257): 21–42. Bibcode:1974RSPTA.276…21A. doi:10.1098/rsta.1974.0007. JSTOR 74272. S2CID 122508567.
  51. ^ Biggs, R D. (2005). «Medicine, Surgery, and Public Health in Ancient Mesopotamia». Journal of Assyrian Academic Studies. 19 (1): 7–18.
  52. ^ Lehoux, Daryn (2011). «2. Natural Knowledge in the Classical World». In Shank, Michael; Numbers, Ronald; Harrison, Peter (eds.). Wrestling with Nature: From Omens to Science. Chicago: University of Chicago Press. p. 39. ISBN 978-0-226-31783-0.
  53. ^ An account of the pre-Socratic use of the concept of φύσις may be found in Naddaf, Gerard (2006). The Greek Concept of Nature. SUNY Press, and in Ducarme, Frédéric; Couvet, Denis (2020). «What does ‘nature’ mean?». Palgrave Communications. Springer Nature. 6 (14). doi:10.1057/s41599-020-0390-y. The word φύσις, while first used in connection with a plant in Homer, occurs early in Greek philosophy, and in several senses. Generally, these senses match rather well the current senses in which the English word nature is used, as confirmed by Guthrie, W.K.C. Presocratic Tradition from Parmenides to Democritus (volume 2 of his History of Greek Philosophy), Cambridge UP, 1965.
  54. ^ Strauss, Leo; Gildin, Hilail (1989). «Progress or Return? The Contemporary Crisis in Western Education». An Introduction to Political Philosophy: Ten Essays by Leo Strauss. Wayne State University Press (published August 1, 1989). p. 209. ISBN 978-0814319024. Archived from the original on May 31, 2022. Retrieved May 30, 2022.
  55. ^ O’Grady, Patricia F. (2016). Thales of Miletus: The Beginnings of Western Science and Philosophy. New York City, New York and London, England: Routledge. p. 245. ISBN 978-0-7546-0533-1. Archived from the original on March 31, 2021. Retrieved October 20, 2020.
  56. ^ a b Burkert, Walter (June 1, 1972). Lore and Science in Ancient Pythagoreanism. Cambridge, Massachusetts: Harvard University Press. ISBN 978-0-674-53918-1. Archived from the original on January 29, 2018.
  57. ^ Pullman, Bernard (1998). The Atom in the History of Human Thought. pp. 31–33. Bibcode:1998ahht.book…..P. ISBN 978-0-19-515040-7. Archived from the original on February 5, 2021. Retrieved October 20, 2020.
  58. ^ Cohen, Henri; Lefebvre, Claire, eds. (2017). Handbook of Categorization in Cognitive Science (Second ed.). Amsterdam, The Netherlands: Elsevier. p. 427. ISBN 978-0-08-101107-2. Archived from the original on February 5, 2021. Retrieved October 20, 2020.
  59. ^ Lucretius (fl. 1st c. BCE) De rerum natura
  60. ^ Margotta, Roberto (1968). The Story of Medicine. New York City, New York: Golden Press. Archived from the original on February 5, 2021. Retrieved November 18, 2020.
  61. ^ Touwaide, Alain (2005). Glick, Thomas F.; Livesey, Steven; Wallis, Faith (eds.). Medieval Science, Technology, and Medicine: An Encyclopedia. New York City, New York and London, England: Routledge. p. 224. ISBN 978-0-415-96930-7. Archived from the original on February 6, 2021. Retrieved October 20, 2020.
  62. ^ Leff, Samuel; Leff, Vera (1956). From Witchcraft to World Health. London, England: Macmillan. Archived from the original on February 5, 2021. Retrieved August 23, 2020.
  63. ^ «Plato, Apology». p. 17. Archived from the original on January 29, 2018. Retrieved November 1, 2017.
  64. ^ «Plato, Apology». p. 27. Archived from the original on January 29, 2018. Retrieved November 1, 2017.
  65. ^ Aristotle. Nicomachean Ethics (H. Rackham ed.). 1139b. Archived from the original on March 17, 2012. Retrieved September 22, 2010.
  66. ^ a b McClellan III, James E.; Dorn, Harold (2015). Science and Technology in World History: An Introduction. Baltimore, Maryland: Johns Hopkins University Press. pp. 99–100. ISBN 978-1-4214-1776-9. Archived from the original on February 6, 2021. Retrieved October 20, 2020.
  67. ^ Graßhoff, Gerd (1990). The History of Ptolemy’s Star Catalogue. Studies in the History of Mathematics and Physical Sciences. Vol. 14. New York, NY: Springer New York. doi:10.1007/978-1-4612-4468-4. ISBN 978-1-4612-8788-9. Archived from the original on May 30, 2022. Retrieved May 27, 2022.
  68. ^ Hoffmann, Susanne M. (2017). Hipparchs Himmelsglobus (in German). Wiesbaden: Springer Fachmedien Wiesbaden. Bibcode:2017hihi.book…..H. doi:10.1007/978-3-658-18683-8. ISBN 978-3-658-18682-1. Archived from the original on May 30, 2022. Retrieved May 27, 2022.
  69. ^ Edwards, C.H. Jr. (1979). The Historical Development of the Calculus (First ed.). New York City, New York: Springer-Verlag. p. 75. ISBN 978-0-387-94313-8. Archived from the original on February 5, 2021. Retrieved October 20, 2020.
  70. ^ Lawson, Russell M. (2004). Science in the Ancient World: An Encyclopedia. Santa Barbara, California: ABC-CLIO. pp. 190–91. ISBN 978-1-85109-539-1. Archived from the original on February 5, 2021. Retrieved October 20, 2020.
  71. ^ Murphy, Trevor Morgan (2004). Pliny the Elder’s Natural History: The Empire in the Encyclopedia. Oxford, England: Oxford University Press. p. 1. ISBN 978-0-19-926288-5. Archived from the original on February 6, 2021. Retrieved October 20, 2020.
  72. ^ Doody, Aude (2010). Pliny’s Encyclopedia: The Reception of the Natural History. Cambridge, England: Cambridge University Press. p. 1. ISBN 978-1-139-48453-4. Archived from the original on March 31, 2021. Retrieved October 20, 2020.
  73. ^ Conner, Clifford D. (2005). A People’s History of Science: Miners, Midwives, and «Low Mechanicks». New York: Nation Books. pp. 72–74. ISBN 1-56025-748-2. OCLC 62164511.
  74. ^ Grant, Edward (1996). The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional and Intellectual Contexts. Cambridge Studies in the History of Science. Cambridge University Press. pp. 7–17. ISBN 978-0-521-56762-6. Archived from the original on August 21, 2019. Retrieved November 9, 2018.
  75. ^ Wildberg, Christian (May 1, 2018). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. Archived from the original on August 22, 2019. Retrieved May 1, 2018 – via Stanford Encyclopedia of Philosophy.
  76. ^ Falcon, Andrea (2019). «Aristotle on Causality». In Zalta, Edward (ed.). Stanford Encyclopedia of Philosophy (Spring 2019 ed.). Metaphysics Research Lab, Stanford University. Archived from the original on October 9, 2020. Retrieved October 3, 2020.
  77. ^ Grant, Edward (2007). «Islam and the eastward shift of Aristotelian natural philosophy». A History of Natural Philosophy: From the Ancient World to the Nineteenth Century. Cambridge University Press. pp. 62–67. ISBN 978-0-521-68957-1.
  78. ^ Fisher, W.B. (William Bayne) (1968–1991). The Cambridge history of Iran. Cambridge: University Press. ISBN 978-0-521-20093-6. OCLC 745412.
  79. ^ «Bayt al-Hikmah». Encyclopædia Britannica. Archived from the original on November 4, 2016. Retrieved November 3, 2016.
  80. ^ Hossein Nasr, Seyyed; Leaman, Oliver, eds. (2001). History of Islamic Philosophy. Routledge. pp. 165–167. ISBN 9780415259347.
  81. ^ Toomer, G.J. (1964). «Reviewed work: Ibn al-Haythams Weg zur Physik, Matthias Schramm». Isis. 55 (4): 463–65. doi:10.1086/349914. JSTOR 228328. See p. 464: «Schramm sums up [Ibn Al-Haytham’s] achievement in the development of scientific method.», p. 465: «Schramm has demonstrated .. beyond any dispute that Ibn al-Haytham is a major figure in the Islamic scientific tradition, particularly in the creation of experimental techniques.» p. 465: «only when the influence of ibn al-Haytam and others on the mainstream of later medieval physical writings has been seriously investigated can Schramm’s claim that ibn al-Haytam was the true founder of modern physics be evaluated.»
  82. ^ Cohen, H. Floris (2010). «Greek nature knowledge transplanted: The Islamic world». How modern science came into the world. Four civilizations, one 17th-century breakthrough (Second ed.). Amsterdam: Amsterdam University Press. pp. 99–156. ISBN 978-90-8964-239-4.
  83. ^ a b Smith, A. Mark (2001). Alhacen’s Theory of Visual Perception: A Critical Edition, with English Translation and Commentary, of the First Three Books of Alhacen’s De Aspectibus, the Medieval Latin Version of Ibn al-Haytham’s Kitāb al-Manāẓir, 2 vols. Transactions of the American Philosophical Society. Vol. 91. Philadelphia: American Philosophical Society. ISBN 978-0-87169-914-5. OCLC 47168716.
  84. ^ Selin, Helaine, ed. (2006). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. pp. 155–156. Bibcode:2008ehst.book…..S. ISBN 978-1-4020-4559-2.
  85. ^ Russell, Josiah C. (1959). «Gratian, Irnerius, and the Early Schools of Bologna». The Mississippi Quarterly. 12 (4): 168–188. JSTOR 26473232. Archived from the original on May 27, 2022. Retrieved May 27, 2022 – via JSTOR. Perhaps even as early as 1088 (the date officially set for the founding of the University)
  86. ^ «St. Albertus Magnus | German theologian, scientist, and philosopher». Archived from the original on October 28, 2017. Retrieved October 27, 2017.
  87. ^ Numbers, Ronald (2009). Galileo Goes to Jail and Other Myths about Science and Religion. Harvard University Press. p. 45. ISBN 978-0-674-03327-6. Archived from the original on January 20, 2021. Retrieved March 27, 2018.
  88. ^ a b Smith, A. Mark (1981). «Getting the Big Picture in Perspectivist Optics». Isis. 72 (4): 568–89. doi:10.1086/352843. JSTOR 231249. PMID 7040292. S2CID 27806323.
  89. ^ Goldstein, Bernard R (2016). «Copernicus and the Origin of his Heliocentric System» (PDF). Journal for the History of Astronomy. 33 (3): 219–35. doi:10.1177/002182860203300301. S2CID 118351058. Archived (PDF) from the original on April 12, 2020. Retrieved April 12, 2020.
  90. ^ Cohen, H. Floris (2010). «Greek nature knowledge transplanted and more: Renaissance Europe». How modern science came into the world. Four civilizations, one 17th-century breakthrough (Second ed.). Amsterdam: Amsterdam University Press. pp. 99–156. ISBN 978-90-8964-239-4.
  91. ^ Koestler, Arthur (1990) [1959]. The Sleepwalkers: A History of Man’s Changing Vision of the Universe. London: Penguin Books. p. 1. ISBN 0-14-019246-8.
  92. ^ van Helden, Al (1995). «Pope Urban VIII». The Galileo Project. Archived from the original on November 11, 2016. Retrieved November 3, 2016.
  93. ^ Gingerich, Owen (1975). «Copernicus and the Impact of Printing». Vistas in Astronomy. 17 (1): 201–218. Bibcode:1975VA…..17..201G. doi:10.1016/0083-6656(75)90061-6.
  94. ^ Zagorin, Perez (1998). Francis Bacon. Princeton: Princeton University Press. p. 84. ISBN 978-0-691-00966-7.
  95. ^ Davis, Philip J.; Hersh, Reuben (1986). Descartes’ Dream: The World According to Mathematics. Cambridge, MA: Harcourt Brace Jovanovich.
  96. ^ Gribbin, John (2002). Science: A History 1543–2001. p. 241. ISBN 978-0-7139-9503-9. Although it was just one of the many factors in the Enlightenment, the success of Newtonian physics in providing a mathematical description of an ordered world clearly played a big part in the flowering of this movement in the eighteenth century
  97. ^ «Gottfried Leibniz – Biography». Maths History. Archived from the original on July 11, 2017. Retrieved March 2, 2021.
  98. ^ Freudenthal, Gideon; McLaughlin, Peter (May 20, 2009). The Social and Economic Roots of the Scientific Revolution: Texts by Boris Hessen and Henryk Grossmann. Springer Science & Business Media. ISBN 978-1-4020-9604-4. Archived from the original on January 19, 2020. Retrieved July 25, 2018.
  99. ^ Goddard Bergin, Thomas; Speake, Jennifer, eds. (1987). Encyclopedia of the Renaissance. Facts on File (published December 1, 1987). ISBN 978-0816013159.
  100. ^ van Horn Melton, James (2001). The Rise of the Public in Enlightenment Europe. Cambridge University Press. pp. 82–83. doi:10.1017/CBO9780511819421. ISBN 9780511819421. Archived from the original on January 20, 2022. Retrieved May 27, 2022.
  101. ^ Cassels, Alan (1996). Ideology and International Relations in the Modern World. Routledge. p. 2. ISBN 9781134813308. Archived from the original on May 31, 2022. Retrieved May 30, 2022.
  102. ^ Madigan M, Martinko J, eds. (2006). Brock Biology of Microorganisms (11th ed.). Prentice Hall. ISBN 978-0131443297.
  103. ^ Guicciardini, N. (1999). Reading the Principia: The Debate on Newton’s Methods for Natural Philosophy from 1687 to 1736. New York: Cambridge University Press. ISBN 9780521640664.
  104. ^ Calisher, CH (2007). «Taxonomy: what’s in a name? Doesn’t a rose by any other name smell as sweet?». Croatian Medical Journal. 48 (2): 268–270. PMC 2080517. PMID 17436393.
  105. ^ Darrigol, Olivier (2000). Electrodynamics from Ampère to Einstein. New York: Oxford University Press. ISBN 0198505949.
  106. ^ Olby, R.C.; Cantor, G.N.; Christie, J.R.R.; Hodge, M.J.S. (1990). Companion to the History of Modern Science. London: Routledge. p. 265.
  107. ^ Magnusson, Magnus (November 10, 2003). «Review of James Buchan, Capital of the Mind: how Edinburgh Changed the World«. New Statesman. Archived from the original on June 6, 2011. Retrieved April 27, 2014.
  108. ^ Swingewood, Alan (1970). «Origins of Sociology: The Case of the Scottish Enlightenment». The British Journal of Sociology. 21 (2): 164–180. doi:10.2307/588406. JSTOR 588406.
  109. ^ Fry, Michael (1992). Adam Smith’s Legacy: His Place in the Development of Modern Economics. Paul Samuelson, Lawrence Klein, Franco Modigliani, James M. Buchanan, Maurice Allais, Theodore Schultz, Richard Stone, James Tobin, Wassily Leontief, Jan Tinbergen. Routledge. ISBN 978-0-415-06164-3.
  110. ^ Lightman, Bernard (2011). «13. Science and the Public». In Shank, Michael; Numbers, Ronald; Harrison, Peter (eds.). Wrestling with Nature: From Omens to Science. Chicago: University of Chicago Press. p. 367. ISBN 978-0-226-31783-0.
  111. ^ Leahey, Thomas Hardy (2018). «The psychology of consciousness». A History of Psychology: From Antiquity to Modernity (8th ed.). New York, NY: Routledge. pp. 219–253. ISBN 978-1-138-65242-2.
  112. ^ Padian, Kevin (2008). «Darwin’s enduring legacy». Nature. 451 (7179): 632–634. Bibcode:2008Natur.451..632P. doi:10.1038/451632a. PMID 18256649.
  113. ^ Henig, Robin Marantz (2000). The monk in the garden: the lost and found genius of Gregor Mendel, the father of genetics. pp. 134–138.
  114. ^ Miko, Ilona (2008). «Gregor Mendel’s principles of inheritance form the cornerstone of modern genetics. So just what are they?». Nature Education. 1 (1): 134. Archived from the original on July 19, 2019. Retrieved May 9, 2021.
  115. ^ Rocke, Alan J. (2005). «In Search of El Dorado: John Dalton and the Origins of the Atomic Theory». Social Research. 72 (1): 125–158. doi:10.1353/sor.2005.0003. JSTOR 40972005.
  116. ^ a b Reichl, Linda (1980). A Modern Course in Statistical Physics. Edward Arnold. ISBN 0-7131-2789-9.
  117. ^ Rao, Y. V. C. (1997). Chemical Engineering Thermodynamics. Universities Press. p. 158. ISBN 978-81-7371-048-3.
  118. ^ Heidrich, M. (2016). «Bounded energy exchange as an alternative to the third law of thermodynamics». Annals of Physics. 373: 665–681. Bibcode:2016AnPhy.373..665H. doi:10.1016/j.aop.2016.07.031. Archived from the original on January 15, 2019. Retrieved May 29, 2022.
  119. ^ Mould, Richard F. (1995). A century of X-rays and radioactivity in medicine: with emphasis on photographic records of the early years (Reprint. with minor corr ed.). Bristol: Inst. of Physics Publ. p. 12. ISBN 978-0-7503-0224-1.
  120. ^ a b Estreicher, Tadeusz (1938). «Curie, Maria ze Skłodowskich». Polski słownik biograficzny, vol. 4 (in Polish). p. 113.
  121. ^ Thomson, J.J. (1897). «Cathode Rays». Philosophical Magazine. 44 (269): 293–316. doi:10.1080/14786449708621070. Archived from the original on January 25, 2022. Retrieved February 24, 2022.
  122. ^ Goyotte, Dolores (2017). «The Surgical Legacy of World War II. Part II: The age of antibiotics» (PDF). The Surgical Technologist. 109: 257–264. Archived (PDF) from the original on May 5, 2021. Retrieved January 8, 2021.
  123. ^ Erisman, Jan Willem; MA Sutton; J Galloway; Z Klimont; W Winiwarter (October 2008). «How a century of ammonia synthesis changed the world». Nature Geoscience. 1 (10): 636–639. Bibcode:2008NatGe…1..636E. doi:10.1038/ngeo325. S2CID 94880859. Archived from the original on July 23, 2010. Retrieved October 22, 2010.
  124. ^ Emmett, Robert; Zelko, Frank (2014). Emmett, Rob; Zelko, Frank (eds.). «Minding the Gap: Working Across Disciplines in Environmental Studies». Environment & Society Portal. RCC Perspectives no. 2. doi:10.5282/rcc/6313. Archived from the original on January 21, 2022.
  125. ^ Furner, Jonathan (June 1, 2003). «Little Book, Big Book: Before and After Little Science, Big Science: A Review Article, Part I». Journal of Librarianship and Information Science. 35 (2): 115–125. doi:10.1177/0961000603352006. S2CID 34844169.
  126. ^ Kraft, Chris; James Schefter (2001). Flight: My Life in Mission Control. New York: Dutton. pp. 3–5. ISBN 0-525-94571-7.
  127. ^ Kahn, Herman (1962). Thinking about the Unthinkable. Horizon Press.
  128. ^ Shrum, Wesley (2007). Structures of scientific collaboration. Joel Genuth, Ivan Chompalov. Cambridge, Mass.: MIT Press. ISBN 978-0-262-28358-8. OCLC 166143348. Archived from the original on July 30, 2022. Retrieved May 31, 2022.
  129. ^ Rosser, Sue V. (March 12, 2012). Breaking into the Lab: Engineering Progress for Women in Science. New York: New York University Press. p. 7. ISBN 978-0-8147-7645-2.
  130. ^ Penzias, A. A. (2006). «The origin of elements» (PDF). Science. Nobel Foundation. 205 (4406): 549–54. doi:10.1126/science.205.4406.549. PMID 17729659. Archived (PDF) from the original on January 17, 2011. Retrieved October 4, 2006.
  131. ^ Weinberg, S. (1972). Gravitation and Cosmology. John Whitney & Sons. pp. 495–464. ISBN 978-0-471-92567-5.
  132. ^ Futuyma, Douglas J.; Kirkpatrick, Mark (April 2017). «Chapter 1: Evolutionary Biology». Evolution (4th ed.). pp. 3–26. ISBN 9781605356051. Archived from the original on May 31, 2022. Retrieved May 30, 2022.
  133. ^ Miller, Arthur I. (1981). Albert Einstein’s special theory of relativity. Emergence (1905) and early interpretation (1905–1911). Reading: Addison–Wesley. ISBN 978-0-201-04679-3.
  134. ^ ter Haar, D. (1967). The Old Quantum Theory. Pergamon Press. pp. 206. ISBN 978-0-08-012101-7.
  135. ^ von Bertalanffy, Ludwig (1972). «The History and Status of General Systems Theory». The Academy of Management Journal. 15 (4): 407–26. doi:10.2307/255139. JSTOR 255139.
  136. ^ Naidoo, Nasheen; Pawitan, Yudi; Soong, Richie; Cooper, David N.; Ku, Chee-Seng (October 2011). «Human genetics and genomics a decade after the release of the draft sequence of the human genome». Human Genomics. 5 (6): 577–622. doi:10.1186/1479-7364-5-6-577. PMC 3525251. PMID 22155605.
  137. ^ Rashid, S. Tamir; Alexander, Graeme J.M. (March 2013). «Induced pluripotent stem cells: from Nobel Prizes to clinical applications». Journal of Hepatology. 58 (3): 625–629. doi:10.1016/j.jhep.2012.10.026. ISSN 1600-0641. PMID 23131523.
  138. ^ O’Luanaigh, C. (March 14, 2013). «New results indicate that new particle is a Higgs boson» (Press release). CERN. Archived from the original on October 20, 2015. Retrieved October 9, 2013.
  139. ^ Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P.A.; Amato, A.; Ananyeva, A.; Anderson, S.B.; Anderson, W.G.; Angelova, S.V.; et al. (2017). «Multi-messenger Observations of a Binary Neutron Star Merger». The Astrophysical Journal. 848 (2): L12. arXiv:1710.05833. Bibcode:2017ApJ…848L..12A. doi:10.3847/2041-8213/aa91c9. S2CID 217162243.
  140. ^ Cho, Adrian (2017). «Merging neutron stars generate gravitational waves and a celestial light show». Science. doi:10.1126/science.aar2149.
  141. ^ «Media Advisory: First Results from the Event Horizon Telescope to be Presented on April 10th | Event Horizon Telescope». April 20, 2019. Archived from the original on April 20, 2019. Retrieved September 21, 2021.
  142. ^ «Scientific Method: Relationships Among Scientific Paradigms». Seed Magazine. March 7, 2007. Archived from the original on November 1, 2016. Retrieved November 4, 2016.
  143. ^ Bunge, Mario Augusto (1998). Philosophy of Science: From Problem to Theory. Transaction Publishers. p. 24. ISBN 978-0-7658-0413-6.
  144. ^ a b Popper, Karl R. (2002a) [1959]. «A survey of some fundamental problems». The Logic of Scientific Discovery. New York: Routledge Classics. pp. 3–26. ISBN 978-0-415-27844-7. OCLC 59377149.
  145. ^ Gauch, Hugh G. Jr. (2003). «Science in perspective». Scientific Method in Practice. Cambridge, United Kingdom: Cambridge University Press. pp. 21–73. ISBN 978-0-521-01708-4. Archived from the original on December 25, 2020. Retrieved September 3, 2018.
  146. ^ Oglivie, Brian W. (2008). «Introduction». The Science of Describing: Natural History in Renaissance Europe (Paperback ed.). Chicago: University of Chicago Press. pp. 1–24. ISBN 978-0-226-62088-6.
  147. ^ «Natural History». Princeton University WordNet. Archived from the original on March 3, 2012. Retrieved October 21, 2012.
  148. ^ «Formal Sciences: Washington and Lee University». Washington and Lee University. Archived from the original on May 14, 2021. Retrieved May 14, 2021. A «formal science» is an area of study that uses formal systems to generate knowledge such as in Mathematics and Computer Science. Formal sciences are important subjects because all of quantitative science depends on them.
  149. ^ «formal system». Encyclopædia Britannica. Archived from the original on April 29, 2008. Retrieved May 30, 2022.
  150. ^ Tomalin, Marcus (2006). Linguistics and the Formal Sciences.
  151. ^ Löwe, Benedikt (2002). «The Formal Sciences: Their Scope, Their Foundations, and Their Unity». Synthese. 133: 5–11. doi:10.1023/a:1020887832028. S2CID 9272212.
  152. ^ Bill, Thompson (2007). «2.4 Formal Science and Applied Mathematics». The Nature of Statistical Evidence. Lecture Notes in Statistics. Vol. 189. Springer. p. 15.
  153. ^ Bunge, Mario (1998). «The Scientific Approach». Philosophy of Science: Volume 1, From Problem to Theory. Vol. 1 (revised ed.). New York: Routledge. pp. 3–50. ISBN 978-0-7658-0413-6.
  154. ^ Mujumdar, Anshu Gupta; Singh, Tejinder (2016). «Cognitive science and the connection between physics and mathematics». In Aguirre, Anthony; Foster, Brendan (eds.). Trick or Truth?: The Mysterious Connection Between Physics and Mathematics. The Frontiers Collection (1st ed.). Switzerland: SpringerNature. pp. 201–218. ISBN 978-3-319-27494-2.
  155. ^ «About the Journal». Journal of Mathematical Physics. Archived from the original on October 3, 2006. Retrieved October 3, 2006.
  156. ^ Restrepo, G. (2016). «Mathematical chemistry, a new discipline». In Scerri, E.; Fisher, G. (eds.). Essays in the philosophy of chemistry. New York, UK: Oxford University Press. pp. 332–351. ISBN 978-0-19-049459-9. Archived from the original on June 10, 2021.
  157. ^ «What is mathematical biology». Centre for Mathematical Biology, University of Bath. Archived from the original on September 23, 2018. Retrieved June 7, 2018.
  158. ^ Johnson, Tim (September 1, 2009). «What is financial mathematics?». +Plus Magazine. Archived from the original on April 8, 2022. Retrieved March 1, 2021.
  159. ^ Varian, Hal (1997). «What Use Is Economic Theory?». In D’Autume, A.; Cartelier, J. (eds.). Is Economics Becoming a Hard Science?. Edward Elgar. Pre-publication. Archived June 25, 2006, at the Wayback Machine. Retrieved April 1, 2008.
  160. ^ Abraham, Reem Rachel (2004). «Clinically oriented physiology teaching: strategy for developing critical-thinking skills in undergraduate medical students». Advances in Physiology Education. 28 (3): 102–04. doi:10.1152/advan.00001.2004. PMID 15319191. S2CID 21610124. Archived from the original on January 22, 2020. Retrieved December 4, 2019.
  161. ^ «Cambridge Dictionary». Cambridge University Press. Archived from the original on August 19, 2019. Retrieved March 25, 2021.
  162. ^ Brooks, Harvey (September 1, 1994). «The relationship between science and technology» (PDF). Research Policy. Special Issue in Honor of Nathan Rosenberg. 23 (5): 477–486. doi:10.1016/0048-7333(94)01001-3. ISSN 0048-7333.
  163. ^ Firth, John (2020). «Science in medicine: when, how, and what». Oxford textbook of medicine. Oxford: Oxford University Press. ISBN 978-0-19-874669-0.
  164. ^ Saunders, J. (June 2000). «The practice of clinical medicine as an art and as a science». Med Humanit. 26 (1): 18–22. doi:10.1136/mh.26.1.18. PMID 12484313. S2CID 73306806.
  165. ^ Davis, Bernard D. (March 2000). «Limited scope of science». Microbiology and Molecular Biology Reviews. 64 (1): 1–12. doi:10.1128/MMBR.64.1.1-12.2000. PMC 98983. PMID 10704471 & «Technology» in Bernard Davis (March 2000). «The scientist’s world». Microbiology and Molecular Biology Reviews. 64 (1): 1–12. doi:10.1128/MMBR.64.1.1-12.2000. PMC 98983. PMID 10704471.
  166. ^ James McCormick (2001). «Scientific medicine—fact of fiction? The contribution of science to medicine». Occasional Paper (Royal College of General Practitioners) (80): 3–6. PMC 2560978. PMID 19790950.
  167. ^ Breznau, Nate (2022). «Integrating Computer Prediction Methods in Social Science: A Comment on Hofman et al. (2021)». Social Science Computer Review. 40 (3): 844–853. doi:10.1177/08944393211049776. S2CID 248334446.
  168. ^ Hofman, Jake M.; Watts, Duncan J.; Athey, Susan; Garip, Filiz; Griffiths, Thomas L.; Kleinberg, Jon; Margetts, Helen; Mullainathan, Sendhil; Salganik, Matthew J.; Vazire, Simine; Vespignani, Alessandro (July 2021). «Integrating explanation and prediction in computational social science». Nature. 595 (7866): 181–188. Bibcode:2021Natur.595..181H. doi:10.1038/s41586-021-03659-0. ISSN 1476-4687. PMID 34194044. S2CID 235697917. Archived from the original on September 25, 2021. Retrieved September 25, 2021.
  169. ^ Nissani, M. (1995). «Fruits, Salads, and Smoothies: A Working definition of Interdisciplinarity». The Journal of Educational Thought. 29 (2): 121–128. JSTOR 23767672.
  170. ^ Moody G (2004). Digital Code of Life: How Bioinformatics is Revolutionizing Science, Medicine, and Business. p. vii. ISBN 978-0-471-32788-2.
  171. ^ Ausburg, Tanya (2006). Becoming Interdisciplinary: An Introduction to Interdisciplinary Studies (2nd ed.). New York: Kendall/Hunt Publishing.
  172. ^ Dawkins, Richard (May 10, 2006). «To Live at All Is Miracle Enough». RichardDawkins.net. Archived from the original on January 19, 2012. Retrieved February 5, 2012.
  173. ^ a b di Francia, Giuliano Toraldo (1976). «The method of physics». The Investigation of the Physical World. Cambridge, United Kingdom: Cambridge University Press. pp. 1–52. ISBN 978-0-521-29925-1. The amazing point is that for the first time since the discovery of mathematics, a method has been introduced, the results of which have an intersubjective value!
  174. ^ Popper, Karl R. (2002e) [1959]. «The problem of the empirical basis». The Logic of Scientific Discovery. New York: Routledge Classics. pp. 3–26. ISBN 978-0-415-27844-7. OCLC 59377149.
  175. ^ Diggle, Peter J.; Chetwynd, Amanda G. (September 8, 2011). Statistics and Scientific Method: An Introduction for Students and Researchers. Oxford University Press. pp. 1, 2. ISBN 9780199543182.
  176. ^ Wilson, Edward (1999). Consilience: The Unity of Knowledge. New York: Vintage. ISBN 978-0-679-76867-8.
  177. ^ Fara, Patricia (2009). «Decisions». Science: A Four Thousand Year History. Oxford, United Kingdom: Oxford University Press. p. 408. ISBN 978-0-19-922689-4.
  178. ^ Aldrich, John (1995). «Correlations Genuine and Spurious in Pearson and Yule». Statistical Science. 10 (4): 364–376. doi:10.1214/ss/1177009870. JSTOR 2246135.
  179. ^ Nola, Robert; Irzik, Gürol (2005k). «naive inductivism as a methodology in science». Philosophy, science, education and culture. Science & technology education library. Vol. 28. Springer. pp. 207–230. ISBN 978-1-4020-3769-6.
  180. ^ Nola, Robert; Irzik, Gürol (2005j). «The aims of science and critical inquiry». Philosophy, science, education and culture. Science & technology education library. Vol. 28. Springer. pp. 207–230. ISBN 978-1-4020-3769-6.
  181. ^ van Gelder, Tim (1999). ««Heads I win, tails you lose»: A Foray Into the Psychology of Philosophy» (PDF). University of Melbourne. Archived from the original (PDF) on April 9, 2008. Retrieved March 28, 2008.
  182. ^ Pease, Craig (September 6, 2006). «Chapter 23. Deliberate bias: Conflict creates bad science». Science for Business, Law and Journalism. Vermont Law School. Archived from the original on June 19, 2010.
  183. ^ Shatz, David (2004). Peer Review: A Critical Inquiry. Rowman & Littlefield. ISBN 978-0-7425-1434-8. OCLC 54989960.
  184. ^ Krimsky, Sheldon (2003). Science in the Private Interest: Has the Lure of Profits Corrupted the Virtue of Biomedical Research. Rowman & Littlefield. ISBN 978-0-7425-1479-9. OCLC 185926306.
  185. ^ Bulger, Ruth Ellen; Heitman, Elizabeth; Reiser, Stanley Joel (2002). The Ethical Dimensions of the Biological and Health Sciences (2nd ed.). Cambridge University Press. ISBN 978-0-521-00886-0. OCLC 47791316.
  186. ^ Backer, Patricia Ryaby (October 29, 2004). «What is the scientific method?». San Jose State University. Archived from the original on April 8, 2008. Retrieved March 28, 2008.
  187. ^ Ziman, John (1978c). «Common observation». Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press. pp. 42–76. ISBN 978-0-521-22087-3.
  188. ^ Ziman, J.M. (1980). «The proliferation of scientific literature: a natural process». Science. 208 (4442): 369–71. Bibcode:1980Sci…208..369Z. doi:10.1126/science.7367863. PMID 7367863.
  189. ^ Subramanyam, Krishna; Subramanyam, Bhadriraju (1981). Scientific and Technical Information Resources. CRC Press. ISBN 978-0-8247-8297-9. OCLC 232950234.
  190. ^ a b Bush, Vannevar (July 1945). «Science the Endless Frontier». National Science Foundation. Archived from the original on November 7, 2016. Retrieved November 4, 2016.
  191. ^ Schooler, J. W. (2014). «Metascience could rescue the ‘replication crisis’«. Nature. 515 (7525): 9. Bibcode:2014Natur.515….9S. doi:10.1038/515009a. PMID 25373639.
  192. ^ Pashler, Harold; Wagenmakers, Eric Jan (2012). «Editors’ Introduction to the Special Section on Replicability in Psychological Science: A Crisis of Confidence?» (PDF). Perspectives on Psychological Science. 7 (6): 528–530. doi:10.1177/1745691612465253. PMID 26168108. S2CID 26361121. Archived (PDF) from the original on February 28, 2019. Retrieved April 12, 2020.
  193. ^ Ioannidis, John P. A.; Fanelli, Daniele; Dunne, Debbie Drake; Goodman, Steven N. (October 2, 2015). «Meta-research: Evaluation and Improvement of Research Methods and Practices». PLOS Biology. 13 (10): –1002264. doi:10.1371/journal.pbio.1002264. ISSN 1545-7885. PMC 4592065. PMID 26431313.
  194. ^ Hansson, Sven Ove; Zalta, Edward N. (September 3, 2008). «Science and Pseudoscience». Stanford Encyclopedia of Philosophy. Section 2: The «science» of pseudoscience. Archived from the original on October 29, 2021. Retrieved May 28, 2022.
  195. ^ Shermer M (1997). Why people believe weird things: pseudoscience, superstition, and other confusions of our time. New York: W. H. Freeman and Company. p. 17. ISBN 978-0-7167-3090-3.
  196. ^ Feynman, Richard (1974). «Cargo Cult Science». Center for Theoretical Neuroscience. Columbia University. Archived from the original on March 4, 2005. Retrieved November 4, 2016.
  197. ^ Novella, Steven (2018). The Skeptics’ Guide to the Universe: How to Know What’s Really Real in a World Increasingly Full of Fake. Hodder & Stoughton. p. 162. ISBN 9781473696419.
  198. ^ «Coping with fraud» (PDF). The COPE Report 1999: 11–18. Archived from the original (PDF) on September 28, 2007. Retrieved July 21, 2011. It is 10 years, to the month, since Stephen Lock … Reproduced with kind permission of the Editor, The Lancet.
  199. ^ a b Godfrey-Smith, Peter (2003c). «Induction and confirmation». Theory and Reality: An Introduction to the Philosophy of Science. Chicago: University of Chicago. pp. 39–56. ISBN 978-0-226-30062-7.
  200. ^ Godfrey-Smith, Peter (2003o). «Empiricism, naturalism, and scientific realism?». Theory and Reality: An Introduction to the Philosophy of Science. Chicago: University of Chicago. pp. 219–232. ISBN 978-0-226-30062-7.
  201. ^ Godfrey-Smith, Peter (2003b). «Logic plus empiricism». Theory and Reality: An Introduction to the Philosophy of Science. Chicago: University of Chicago. pp. 19–38. ISBN 978-0-226-30062-7.
  202. ^ a b Godfrey-Smith, Peter (2003d). «Popper: Conjecture and refutation». Theory and Reality: An Introduction to the Philosophy of Science. Chicago: University of Chicago. pp. 57–74. ISBN 978-0-226-30062-7.
  203. ^ Godfrey-Smith, Peter (2003g). «Lakatos, Laudan, Feyerabend, and frameworks». Theory and Reality: An Introduction to the Philosophy of Science. Chicago: University of Chicago. pp. 102–121. ISBN 978-0-226-30062-7.
  204. ^ Popper, Karl (1972). Objective Knowledge.
  205. ^ Newton-Smith, W.H. (1994). The Rationality of Science. London: Routledge. p. 30. ISBN 978-0-7100-0913-5.
  206. ^ Votsis, I. (2004). The Epistemological Status of Scientific Theories: An Investigation of the Structural Realist Account (PhD Thesis). University of London, London School of Economics. p. 39.
  207. ^ Bird, Alexander (2013). Zalta, Edward N. (ed.). «Thomas Kuhn». Stanford Encyclopedia of Philosophy. Archived from the original on July 15, 2020. Retrieved October 26, 2015.
  208. ^ Kuhn, Thomas S. (1970). The Structure of Scientific Revolutions (2nd ed.). University of Chicago Press. p. 206. ISBN 978-0-226-45804-5. Archived from the original on October 19, 2021. Retrieved May 30, 2022.
  209. ^ Godfrey-Smith, Peter (2003). «Naturalistic philosophy in theory and practice». Theory and Reality: An Introduction to the Philosophy of Science. Chicago: University of Chicago. pp. 149–162. ISBN 978-0-226-30062-7.
  210. ^ Brugger, E. Christian (2004). «Casebeer, William D. Natural Ethical Facts: Evolution, Connectionism, and Moral Cognition». The Review of Metaphysics. 58 (2).
  211. ^ Kornfeld, W; Hewitt, CE (1981). «The Scientific Community Metaphor» (PDF). IEEE Trans. Sys., Man, and Cyber. SMC-11 (1): 24–33. doi:10.1109/TSMC.1981.4308575. hdl:1721.1/5693. S2CID 1322857. Archived (PDF) from the original on April 8, 2016. Retrieved May 26, 2022.
  212. ^ «Eusocial climbers» (PDF). E.O. Wilson Foundation. Archived (PDF) from the original on April 27, 2019. Retrieved September 3, 2018. But he’s not a scientist, he’s never done scientific research. My definition of a scientist is that you can complete the following sentence: ‘he or she has shown that…’,» Wilson says.
  213. ^ «Our definition of a scientist». Science Council. Archived from the original on August 23, 2019. Retrieved September 7, 2018. A scientist is someone who systematically gathers and uses research and evidence, making a hypothesis and testing it, to gain and share understanding and knowledge.
  214. ^ Cyranoski, David; Gilbert, Natasha; Ledford, Heidi; Nayar, Anjali; Yahia, Mohammed (2011). «Education: The PhD factory». Nature. 472 (7343): 276–79. Bibcode:2011Natur.472..276C. doi:10.1038/472276a. PMID 21512548.
  215. ^ Kwok, Roberta (2017). «Flexible working: Science in the gig economy». Nature. 550: 419–21. doi:10.1038/nj7677-549a.
  216. ^ Woolston, Chris (2007). Editorial (ed.). «Many junior scientists need to take a hard look at their job prospects». Nature. 550: 549–552. doi:10.1038/nj7677-549a.
  217. ^ Lee, Adrian; Dennis, Carina; Campbell, Phillip (2007). «Graduate survey: A love–hurt relationship». Nature. 550 (7677): 549–52. doi:10.1038/nj7677-549a.
  218. ^ Cyranoski, David; Gilbert, Natasha; Ledford, Heidi; Nayar, Anjali; Yahia, Mohammed (2011). «Education: The PhD factory». Nature. 472 (7343): 276–279. Bibcode:2011Natur.472..276C. doi:10.1038/472276a. PMID 21512548.
  219. ^ Kwok, Roberta (2017). «Flexible working: Science in the gig economy». Nature. 550: 419–421. doi:10.1038/nj7677-549a.
  220. ^ Lee, Adrian; Dennis, Carina; Campbell, Phillip (2007). «Graduate survey: A love–hurt relationship». Nature. 550 (7677): 549–552. doi:10.1038/nj7677-549a.
  221. ^ Whaley, Leigh Ann (2003). Women’s History as Scientists. Santa Barbara, California: ABC-CLIO, INC.
  222. ^ Spanier, Bonnie (1995). «From Molecules to Brains, Normal Science Supports Sexist Beliefs about Difference». Im/partial Science: Gender Identity in Molecular Biology. Indiana University Press. ISBN 978-0-253-20968-9.
  223. ^ Change of Heart: Career intentions and the chemistry PhD. Royal Society of Chemistry. 2008.
  224. ^ Parrott, Jim (August 9, 2007). «Chronicle for Societies Founded from 1323 to 1599». Scholarly Societies Project. Archived from the original on January 6, 2014. Retrieved September 11, 2007.
  225. ^ «The Environmental Studies Association of Canada – What is a Learned Society?». Archived from the original on May 29, 2013. Retrieved May 10, 2013.
  226. ^ «Learned societies & academies». Archived from the original on June 3, 2014. Retrieved May 10, 2013.
  227. ^ «Learned Societies, the key to realising an open access future?». Impact of Social Sciences. LSE. June 24, 2019. Retrieved January 22, 2023.
  228. ^ «Accademia Nazionale dei Lincei» (in Italian). 2006. Archived from the original on February 28, 2010. Retrieved September 11, 2007.
  229. ^ «Prince of Wales opens Royal Society’s refurbished building». The Royal Society. July 7, 2004. Archived from the original on April 9, 2015. Retrieved December 7, 2009.
  230. ^ Meynell, G.G. «The French Academy of Sciences, 1666–91: A reassessment of the French Académie royale des sciences under Colbert (1666–83) and Louvois (1683–91)». Archived from the original on January 18, 2012. Retrieved October 13, 2011.
  231. ^ ITS. «Founding of the National Academy of Sciences». .nationalacademies.org. Archived from the original on February 3, 2013. Retrieved March 12, 2012.
  232. ^ «The founding of the Kaiser Wilhelm Society (1911)». Max-Planck-Gesellschaft. Archived from the original on March 2, 2022. Retrieved May 30, 2022.
  233. ^ «Introduction». Chinese Academy of Sciences. Archived from the original on March 31, 2022. Retrieved May 31, 2022.
  234. ^ «Two main Science Councils merge to address complex global challenges». UNESCO. July 5, 2018. Archived from the original on July 12, 2021. Retrieved October 21, 2018.
  235. ^ Stockton, Nick (October 7, 2014). «How did the Nobel Prize become the biggest award on Earth?». Wired. Archived from the original on June 19, 2019. Retrieved September 3, 2018.
  236. ^ «Main Science and Technology Indicators – 2008-1» (PDF). OECD. Archived from the original (PDF) on February 15, 2010.
  237. ^ OECD Science, Technology and Industry Scoreboard 2015: Innovation for growth and society. OECD Science, Technology and Industry Scoreboard. OECD. 2015. p. 156. doi:10.1787/sti_scoreboard-2015-en. ISBN 9789264239784. Archived from the original on May 25, 2022. Retrieved May 28, 2022 – via oecd-ilibrary.org.
  238. ^ Kevles, Daniel (1977). «The National Science Foundation and the Debate over Postwar Research Policy, 1942-1945». Isis. 68 (241): 4–26. doi:10.1086/351711. PMID 320157. S2CID 32956693.
  239. ^ «Argentina, National Scientific and Technological Research Council (CONICET)». International Science Council. Archived from the original on May 16, 2022. Retrieved May 31, 2022.
  240. ^ Innis, Michelle (May 17, 2016). «Australia to Lay Off Leading Scientist on Sea Levels». The New York Times. ISSN 0362-4331. Archived from the original on May 7, 2021. Retrieved May 31, 2022.
  241. ^ «Le CNRS recherche 10.000 passionnés du blob». Le Figaro (in French). October 20, 2021. Archived from the original on April 27, 2022. Retrieved May 31, 2022.
  242. ^ Bredow, Rafaela von (December 18, 2021). «How a Prestigious Scientific Organization Came Under Suspicion of Treating Women Unequally». Der Spiegel. ISSN 2195-1349. Archived from the original on May 29, 2022. Retrieved May 31, 2022.
  243. ^ «En espera de una «revolucionaria» noticia sobre Sagitario A*, el agujero negro supermasivo en el corazón de nuestra galaxia». ELMUNDO (in Spanish). May 12, 2022. Archived from the original on May 13, 2022. Retrieved May 31, 2022.
  244. ^ Fletcher, Anthony C.; Bourne, Philip E. (September 27, 2012). «Ten Simple Rules To Commercialize Scientific Research». PLOS Computational Biology. 8 (9): e1002712. Bibcode:2012PLSCB…8E2712F. doi:10.1371/journal.pcbi.1002712. ISSN 1553-734X. PMC 3459878. PMID 23028299.
  245. ^ Marburger, John H., III (John Harmen), 1941-2011 (February 10, 2015). Science policy up close. Crease, Robert P. Cambridge, Massachusetts. ISBN 978-0-674-41709-0. OCLC 875999943.{{cite book}}: CS1 maint: multiple names: authors list (link)
  246. ^ Benneworth, Paul; Jongbloed, Ben W. (July 31, 2009). «Who matters to universities? A stakeholder perspective on humanities, arts and social sciences valorisation». Higher Education. 59 (5): 567–588. doi:10.1007/s10734-009-9265-2. ISSN 0018-1560.
  247. ^ Dickson, David (October 11, 2004). «Science journalism must keep a critical edge». Science and Development Network. Archived from the original on June 21, 2010.
  248. ^ Mooney, Chris (November–December 2004). «Blinded By Science, How ‘Balanced’ Coverage Lets the Scientific Fringe Hijack Reality». Columbia Journalism Review. Vol. 43, no. 4. Archived from the original on January 17, 2010. Retrieved February 20, 2008.
  249. ^ McIlwaine, S.; Nguyen, D.A. (2005). «Are Journalism Students Equipped to Write About Science?». Australian Studies in Journalism. 14: 41–60. Archived from the original on August 1, 2008. Retrieved February 20, 2008.
  250. ^ Webb, Sarah (December 2013). «Popular science: Get the word out». Nature. 504 (7478): 177–9. doi:10.1038/nj7478-177a. PMID 24312943.
  251. ^ Wilde, Fran (January 21, 2016). «How Do You Like Your Science Fiction? Ten Authors Weigh In On ‘Hard’ vs. ‘Soft’ SF». Tor.com. Archived from the original on April 4, 2019. Retrieved April 4, 2019.
  252. ^ Petrucci, Mario. «Creative Writing – Science». Archived from the original on January 6, 2009. Retrieved April 27, 2008.
  253. ^ Tyson, Alec; Funk, Cary; Kennedy, Brian; Johnson, Courtney (September 15, 2021). «Majority in U.S. Says Public Health Benefits of COVID-19 Restrictions Worth the Costs, Even as Large Shares Also See Downsides». Pew Research Center Science & Society. Retrieved August 4, 2022.
  254. ^ Kennedy, Brian. «U.S. concern about climate change is rising, but mainly among Democrats». Pew Research Center. Retrieved August 4, 2022.
  255. ^ Philipp-Muller, Aviva; Lee, Spike W. S.; Petty, Richard E. (July 26, 2022). «Why are people antiscience, and what can we do about it?». Proceedings of the National Academy of Sciences. 119 (30): e2120755119. Bibcode:2022PNAS..11920755P. doi:10.1073/pnas.2120755119. ISSN 0027-8424. PMC 9335320. PMID 35858405.
  256. ^ Gauchat, Gordon William (2008). «A Test of Three Theories of Anti-Science Attitudes». Sociological Focus. 41 (4): 337–357. doi:10.1080/00380237.2008.10571338. S2CID 144645723.
  257. ^ Poushter, Jacob; Fagan, Moira; Gubbala, Sneha (August 31, 2022). «Climate Change Remains Top Global Threat Across 19-Country Survey». Pew Research Center’s Global Attitudes Project. Retrieved September 5, 2022.
  258. ^ McRaney, David (2022). How minds change : the surprising science of belief, opinion, and persuasion. [New York, NY]. ISBN 978-0-593-19029-6. OCLC 1322437138.
  259. ^ McGreal, Chris (October 26, 2021). «Revealed: 60% of Americans say oil firms are to blame for the climate crisis». The Guardian. Archived from the original on October 26, 2021. Source: Guardian/Vice/CCN/YouGov poll. Note: ±4% margin of error.
  260. ^ Goldberg, Jeanne (2017). «The Politicization of Scientific Issues: Looking through Galileo’s Lens or through the Imaginary Looking Glass». Skeptical Inquirer. 41 (5): 34–39. Archived from the original on August 16, 2018. Retrieved August 16, 2018.
  261. ^ Bolsen, Toby; Druckman, James N. (2015). «Counteracting the Politicization of Science». Journal of Communication (65): 746.
  262. ^ a b Freudenberg, William F.; Gramling, Robert; Davidson, Debra J. (2008). «Scientific Certainty Argumentation Methods (SCAMs): Science and the Politics of Doubt» (PDF). Sociological Inquiry. 78: 2–38. doi:10.1111/j.1475-682X.2008.00219.x. Archived (PDF) from the original on November 26, 2020. Retrieved April 12, 2020.
  263. ^ van der Linden, Sander; Leiserowitz, Anthony; Rosenthal, Seth; Maibach, Edward (2017). «Inoculating the Public against Misinformation about Climate Change» (PDF). Global Challenges. 1 (2): 1. doi:10.1002/gch2.201600008. PMC 6607159. PMID 31565263. Archived (PDF) from the original on April 4, 2020. Retrieved August 25, 2019.

External links

  •   Media related to Science at Wikimedia Commons

помогите пожалуйста составить 10 вопросов к тексту с использованием всех типов вопросов((
Mathematics
The English word mathematics tells us something about the influence the Ancient Greeks had on our knowledge. The word comes from the Greek for science, learning and knowledge. It is usually shortened to maths in British English and to math in the USA.
Mathematics developed from a series of ideas, each new idea building on earlier ones. Each new idea became more complex as mathematicians tried to explain how things in the world relate to one another. The first idea to have developed was certainly that of number. People needed to count their belongings. As society developed, numbers became more and more important for business dealings and taxation and it became especially important to be able to record numbers. A wide variety of systems for recording numbers developed in different parts of the world. One example is the tallies that were used by the Incas in South America. They used pieces of string of different length and by tying knots in different places along the string, they were able to keep tax records and business accounts throughout their land.
With writing, different ways of recording numbers developed in different countries, too. Roman numerals are a well-known example. In this system I is one and X is ten, so IX is one before ten, that is nine, and XI is eleven. It was not until the 16th century that the system of mathematical notation that we use today finally developed. It is a system that uses Arabic numerals ( 1, 2, 3 and so on) with a set of symbols + ( plus ), — ( minus ), = ( equals ) for example, along with letters, many of which are taken from the Greek alphabet. It is a system which is used by all mathematicians all over the world. In fact, it has been said that mathematics is one of only two genuinely international languages; the other one is music.
Whether or not mathematics is a science is still a matter of opinion in the mathematical community. Some say no, it is not because it does not pass the test of being a pure science. We know that one plus one is two because that is how we count. No one can set up an experiment to prove that one plus one is two without counting. Therefore, because it cannot be proved by experiment, mathematics is not a science. Others say yes, it is, because science is the search for knowledge and that is what mathematics does. Therefore, mathematics is a science.
Whatever your point of view, there is no doubt that mathematics is applied to all sciences. Many of the most important developments in fields such as physics or engineering have led to further developments in mathematics. The argument over whether mathematics is a science or not appears to be unimportant when you realise that it is impossible to separate mathematics from science or science from mathematics. Many universities recognise this. In many places of learning there are divisions of study, often called Mathematics and Science. The unbreakable connection between mathematics and all other sciences is recognised by the very way in which we study them.

The debate between science and philosophy is a fight between humanitarians and scientists that continues over the decades. Some argue the epistemological facet of science supersedes the dialectical analysis of philosophy and vice versa.

Key Takeaways

  1. Science is a systematic, empirical approach to acquiring knowledge through observation, experimentation, and the development of testable theories, focusing on the natural world and its phenomena.
  2. Philosophy is a discipline that examines fundamental questions about the nature of reality, existence, knowledge, ethics, and the meaning of life, using logical reasoning and critical thinking.
  3. The key differences between science and philosophy are found in their methods, areas of focus, and the nature of the questions they address. Science relies on empirical evidence and philosophy using logical analysis and argumentation.

The difference between science and philosophy is that science deals with hypothesis testing based on factual data whereas philosophy deals with logical analysis based on reason. Researchers opine science depends on philosophical theories that have not yet found empirical validation.

Science vs Philosophy

Want to save this article for later? Click the heart in the bottom right corner to save to your own articles box!

Science also differs from philosophy as science is the branch of activities that deal with testing and proving the hypothesis related to natural phenomena whereas philosophy is a broad term relating to the logical reasoning of the nature of our reality, ethics and aesthetics, limitations of our thinking, and many more.

Another difference is in the way each branch was named. Science comes from the Latin word “Scientia” meaning “knowledge” whereas philosophy comes from the Greek word “Philosophia” meaning “love for wisdom”.


Comparison Table

Parameter of Comparison Science Philosophy
Derived from Latin word “Scientia” meaning “knowledge” word “Philosophia” meaning “love for wisdom”
Basis deals with hypothesis testing based on factual data deals with logical analysis based on reason
Related areas related to the natural phenomenon logical reasoning of the nature of our reality, ethics and aesthetics, limitations of our thinking, etc.
Origin originally a branch of philosophy, natural philosophy Emerged from the basic search for knowledge
Practitioners are known as Scientists Philosophers

What is Science?

Science is the stream of knowledge that deals with proving a hypothesis related to natural phenomenon and it encompasses empirical reasoning of hypothesis testing.

Science comes from the Latin word “Scientia” meaning “knowledge”, was initially found evolving in Egypt and Mesopotamia which was later merged with the stream of natural philosophy emerging in Greece about the same time.

Modern Science is an enterprise that consists of four streams and they are natural sciences, social science, formal sciences, and applied sciences.

Applied sciences deal with the application of the natural and formal sciences combined and consists of medicine and engineering.

science

What is Philosophy

Philosophy comes from the Greek word “Philosophia” meaning “love for wisdom”. The origins of this intellectual enterprise are rooted in the basic questions concerning human existence and the realities surrounding us.

Philosophy deals with logical analysis based on reason and is a broad term relating to the logical reasoning of the nature of our reality, ethics and aesthetics, limitations of our thinking, and many more.

Traditionally, western philosophy in the ancient and medieval era was highly dominated by religious thoughts and dictions from the church.

The main branches of philosophy include epistemology, metaphysics, mind and language, value theory, logic, science and mathematics, and history of philosophy.

philosophy


Main Differences Between Science and Philosophy

  1. Modern Science is an enterprise that consists of four streams and they are natural sciences, social science, formal sciences, and applied sciences whereas main branches of philosophy include epistemology, metaphysics, mind and language, value theory, logic, science, and mathematics, and history of philosophy.
  2. Science originally was a branch of philosophy and was known as “natural philosophy” whereas philosophy deals with the relationship between our existence and our realities.

References

  1. https://philpapers.org/rec/MANHAP-2
  2. https://www.journals.uchicago.edu/doi/abs/10.1086/289075

Emma Smith 200x200 1

Emma Smith holds an MA degree in English from Irvine Valley College. She has been a Journalist since 2002, writing articles on the English language, Sports, and Law. Read more about me on her bio page.

Subjects>Jobs & Education>Education

User Avatar

Wiki User

∙ 13y ago


Best Answer

Copy

Science (from the Latin scientia, meaning «knowledge») does not come from a greek word.

User Avatar

Wiki User

∙ 13y ago

This answer is:

User Avatar

Study guides

Add your answer:

Earn +

20

pts

Q: The word ‘science’comes from the greek word meaning?

Write your answer…

Submit

Still have questions?

magnify glass

imp

Related questions

People also asked

Project Outline

Collect the top (maximum 100) definitions of science as it is defined by
famous scientists and philosophers from the time of Aristotle, Newton,
Descartes up to modern scientists like Einstein and contemporary
philosophers such as Russell, Whitehead, Karl Popper, Toulmin, Hawking, etc.

The purpose is not to find out how each scientist defined it, but to find
out how the conception of science has evolved over time and how many different definitions or conceptions exist today.

We are not interested in the history of science or descriptions of
scientific activities or methodologies or examples, simply in how scientists
and philosophers have defined the discipline and concept of science. What
constitutes science and what does not and why?

Research Information

Definitions of Science

Any strict definition of science seems to be inadequate. The word «science» came from the Latin word for knowledge: scientia. The word ‘science’ comes from a Latin word ‘scientia’ and originally meant ‘knowledge’. But it was used more particularly to stand for ‘systematic knowledge’ rather than just any kind of knowledge.

http://www.eequalsmcsquared.auckland.ac.nz/sites/emc2/tl/philosophy/what-is-science.cfm

The baseline definition of «science,» then, is human knowledge.

http://www.wsu.edu/~dee//SCIENCE/BASELINE.HTM

From the 1200’s to until the 1840’s science was known as natural philosophy

http://visionscentret.blogspot.com/2007_03_01_archive.html

The philosopher Martin Heidegger correctly observed that there is no etymological link between the terms ‘technology’ and ‘science’. The ‘techn’ in ‘technology’ and ‘technique’ is the Greek for ‘art’ (as in ‘artful’), and ‘art’ is the Latin for ‘skill’. The early Greek pioneers of science insisted on the careful distinction between ‘techne’ (= traditional practical know-how) and ‘episteme’ (= scientific knowledge), which the speakers of Latin later called ‘scientia’, and which the speakers of English today call ‘science’.

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

Ancient India

While it may surprise some to think of religious sages as mundane scientists, the Indian view is that religion (universal) and science are but two sides of the same coin — in short…semantics. Whether one calls a natural phenomena wind or the wind god — Vayu — one is speaking of the same thing. Yet it seems that having a spiritual foundation not only brought out important discoveries still in use today, but these discoveries also were helpful without causing harm or destruction — Swami Sada Shiva Tirtha

http://www.hinduism.co.za/amazing.htm

Spirituality gives helpful direction and science brings speed

http://www.hinduism.co.za/amazing.htm

The meaning of the term ‘science’ as it is used in the context of Yoga is specific and precise as well as broad and general. Specifically it means, simply, that Yoga is not a doctrine or set of speculative beliefs but rather an objective technique for training the body and mind so as to comprehend ultimate reality. More generally however, …, the term ‘science’ refers to the very precise, modern methods of experimentation, verification, and rational positivist investigation.

Yoga in Modern India: The Body Between Science and Philosophy — By Jo-seph S. Alter

Plato: (Plato around 400 BC)

Plato classified as knowledge only those things that are true all of the time; any «knowl-edge» we have that is true only some of the time, he called «opinion.»

Plato drew a sharp distinction between knowledge, which is certain, and mere opinion, which is not certain.

http://en.wikipedia.org/wiki/Platonic_epistemology

Aristotle’s Metaphysiscs: (Aristotle around 350 BC)

Aristotle himself described his subject matter in a variety of ways: as ‘first philosophy’, or ‘the study of being qua being’, or ‘wisdom’, or ‘theology’. First philosophy is not the only field of inquiry to study beings. Natural science and mathematics also study beings, but in different ways, under different aspects. The natural scientist studies them as things that are subject to the laws of nature, as things that move and undergo change. That is, the natural scientist studies things qua movable (i.e., in so far as they are subject to change). The mathematician studies things qua countable and measurable. The metaphysician, on the other hand, studies them in a more general and abstract way — qua beings. So first phi-losophy studies the causes and principles of beings qua beings.

In Book E, Aristotle adds another description to the study of the causes and principles of beings qua beings. Whereas natural science studies objects that are material and subject to change, and mathematics studies objects that although not subject to change are nevertheless not separate from (i.e., independent of) matter, there is still room for a science that studies things (if indeed there are any) that are eternal, not subject to change, and inde-pendent of matter. Such a science, he says, is theology, and this is the “first” and “high-est” science.

http://plato.stanford.edu/entries/aristotle-metaphysics/

Aristotle, on the other hand, believed that knowledge existed on a continuum. Some things, because they’re simple and only have a limited number of causes, are true all of the time. Such things are mathematics and logic. Some things, because they have a number of causes, are true only some of the time. This includes physics, biology, ethics, politics, lit-erary knowledge and so on. He called this latter category, «probable knowledge.» This dis-tinction would form the backbone of Western views of knowledge to this very day.

http://www.wsu.edu/~dee//SCIENCE/BASELINE.HTM

For Aristotle, knowledge existed on a continuum. At one end were things which were true all the time (mathematics). Moving further along the continuum were things which have a number of causes and that were true (biology). Finally, at the other end, were things which were only opinion (politics). Aristotle’s concepts formed the backbone of Western ideas on knowledge.

http://www.whoosh.org/issue34/carper14.html

… science does not relate exclusively to the immutable and necessary, but also to that which ordinarily happens….. Science is only a science of that which is presented to it, of that which is, or of the knowable; consequently the notion of science is clearly relative.

The History of Ancient Philosophy by Heinrich Ritter, Alexander James Wil-liam Morrison

…Science, which is formed by the discursive faculty of human mind…

The British Critic: A New Review (1796)

Archimedes (287 BC – 212 BC)

Brian Clegg: “I have my doubts about Archimedes (…as first scientist…). Although he was a great mathematician and engineer, he still had the ancient Greek tendency to ignore ex-periment and rely on pure argument.”

http://network.nature.com/forums/sciencewriters/609

Islamic civilization (8th — 15th Centuries)

Ibn al-Haytham developed rigorous experimental methods of controlled scientific testing in order to verify theoretical hypotheses and substantiate inductive conjectures. Ibn al-Haytham’s scientific method was very similar to the modern scientific method and consisted of the following procedures:

  1. Observation
  2. Statement of problem
  3. Formulation of hypotheses
  4. Testing of hypothesis using experimentation
  5. Analysis of experimental results
  6. Interpretation of data and formulation of conclusion
  7. Publication of findings

The development of the scientific method is considered to be so fundamental to modern science that some — especially philosophers of science and practicing scientists — consider earlier inquiries into nature to be pre-scientific. Some have described Ibn al-Haytham as the «first scientist» for this reason.

http://en.wikipedia.org/wiki/Islamic_science

«The debt of our science to that of the Arabs does not consist in startling discoveries or revolutionary theories; science owes a great deal more to Arab culture, it owes its existence. The ancient world was, as we saw, pre- scientific. The astronomy and mathematics of the Greeks were a foreign importation never thoroughly acclimatized in Greek culture. The Greeks systematized, generalized and theorized, but the patient ways of investigation, the accumulation of positive knowledge, the minute methods of science, detailed and pro-longed observation, experimental inquiry, were altogether alien to the Greek tempera-ment. […]

What we call science arose in Europe as a result of a new spirit of inquiry, of new methods of investigation, of the method of experiment, observation, measurement, of the development of mathematics in a form unknown to the Greeks. That spirit and those methods were introduced into the European world by the Arabs.» — Robert Briffault wrote in The Making of Humanity

http://en.wikipedia.org/wiki/Islamic_science

Roger Bacon’s Opus maius: (Roger Bacon around 1250 AD)

On the instruction of the Pope, June 22, 1266, Bacon quickly wrote “an introductory work,” the Opus maius and the related works Opus minus and Opus tertium. He set out his own new model for a system of philosophical studies that would incorporate language studies and science studies then unavailable at the Universities. He succeeded in setting out a model of an experimental science on the basis of his study of Optics (Perspectiva). He does this in a new context: the application of linguistic and scientific knowledge for a better understanding of Theology and in the service of the Res publica Christiana. It would appear that Bacon was condemned by his Order in 1278 “on account of certain suspected novel-ties.” This may have been due to his interests in astrology and alchemy. –

http://plato.stanford.edu/entries/roger-bacon/

At the beginning of the Opus maius and related works, Bacon offers a structural critique of the scholastic practice in the universities. He favors both language study and science over “Sentence-Method” as a way of interpreting the texts of Scripture. And he advocates training in mathematics and the sciences as requirements for students in theology.

The overall division of the Opus maius is Stoic: language study, natural philoso-phy/mathematics, morals. It is also clear that Bacon is constructing a “new model” for me-dieval philosophy, one in which Aristotelian concerns are taken up and transcended in a Neo-Platonism adapted towards Moral Philosophy and Christian Theology. Metaphysics is subordinated to Moral Philosophy. The latter becomes the end or finis of linguistic and sci-entific study. Logic is reduced to Mathematics, and the applications of mathematics be-come central to an understanding of the sciences.

http://plato.stanford.edu/entries/roger-bacon/#BacLatLanStuSciSerBotMorThe

Brian Clegg, “Some have disagreed about Bacon (..as first scientist..), because he was loose in his definition of experiment, including little more than ‘someone saw X’ as well as more formal experiments.”

http://network.nature.com/forums/sciencewriters/609

Brian Clegg, “Yet his biggest contribution was to link science and experiment, to insist that a study of the natural world by observation and exact measurement was the surest founda-tion for truth.”

http://www.brianclegg.net/brianclegg/books/firstscientist.htm

Galileo (1564 — 1642)

He (Dr Gerald Holton) added that Galileo … had «a wonderful way» of separating the super-natural from the natural. There are two equally worthy ways to understand the divine, Galileo said. «One was reverent contemplation of the Bible, God’s word,» Dr. Holton said. «The other was through scientific contemplation of the world, which is his creation.

http://mercey.org/racescinow/debatesonevolution/11.html

Descartes: (1637)

Descartes started his line of reasoning by doubting everything, so as to assess the world from a fresh perspective, clear of any preconceived notions.

The first was never to accept anything for true which I did not clearly know to be such;

The second, to divide each of the difficulties under examination into as many parts as possible,

The third, to conduct my thoughts in such order that, by commencing with objects the sim-plest and easiest to know, I might ascend by little and little, and, as it were, step by step, to the knowledge of the more complex;

And the last, in every case to make enumerations so complete, and reviews so general, that I might be assured that nothing was omitted.»

http://en.wikipedia.org/wiki/Discourse_on_the_Method

Isaac Newton (1642 – 1727)

Newton defined Newtonist Scholasticism as science and Peripatetic Philosophy as scholasticism.

http://www.alphysics.com/science/nwtnsevl2.htm

Newton found science a hodgepodge of isolated facts and laws, capable of describing some phenomena, but predicting only a few. He left it with a unified system of laws that can be applied to an enormous range of physical phenomena, and that can be used to make exact predications.

http://www.lucidcafe.com/library/95dec/newton.html

Newton called his theory of motion ‘natural philosophy’ and not ‘science’

http://www.eequalsmcsquared.auckland.ac.nz/sites/emc2/tl/philosophy/what-is-science.cfm

John Locke (1704)

Locke defines knowledge as «the perception of the connexion and agreement, or disagree-ment and repugnancy of any of our ideas.» (IV.i.2). Because it has only to do with internal relations that hold between ideas, knowledge is not actually of the world itself.

Locke identifies four different sorts of agreement and disagreement that reason can perceive in order to produce knowledge: identity and diversity (e.g. A=A); relation (e.g. a diamond is a square laid on its side); coexistence (e.g. that the area of a triangle always equals one half the base time the height); realizing that existence belongs to the very ideas themselves (e.g. the idea of God and of the self).

To count as knowledge, the connection between ideas must be very strong. In the case of disagreement, the connection must be one of logical inconsistency, and in the case of agreement, it needs to be a necessary connection. For example, in order to know that A caused B you need to know that given A, B could not have failed to happen. In other words, to know that A caused B, you need to be able to deduce B given only the information that A, or derive B from A.

Locke’s definition of knowledge was common among 17th century thinkers. Both Rene Des-cartes and David Hume defined knowledge in much the same way.

http://en.wikipedia.org/wiki/An_Essay_Concerning_Human_Understanding

19th century

And that this is what the author means, in fact, is shown expressly by his definition, which describes philosophy as pursuing the origin, the end and the essence of the facts of science.

Methodist Quarterly review 1854

…consider science as a process of questioning and answering.

Science, by American Association for the Advancement of Science

Science has been defined in terms of method of inquiry and testing. At first sight this definition may seem opposed t the current cnception that science is organized or systemaied knowledge. The opposition , however, is only seeming, and disappears when the ordinary definition is completed. Not organization but the kind of organization effected by adequate ethods of tested discovery marks off science.

Democracy and Education By John Dewey

Science is nature seen by the reason, and not merely by the senses. Science exists in the mind, and in the mind alone. Wherever the substantiveness of a science may be derived from, or whatever may be their character, they are portions of a science only as they are made to function logically in the human reason. Unless they ate connected by the law of reason, and consequent so that one proposition is capable of being correctly evolved from two or more propositions, called the premises, the science as yet has no existence, and has still to be discovered. Logic, therefore, is the universal form of all science.

The Journal of Sacred Literature By John Kitto, Henry Burgess, Benjamin Harris Cowper (1851)

Science is systematized truth.

American Education: Its Principles and Elements : Dedicated to the Teach-ers …By Edward Deering Mansfield (1851)

William Dilthey: (1890s)

He argued that natural sciences were based on demonstration and experiment; they yielded more or less certain and reproducible knowledge. The human sciences, however, were based primarily on interpretation, that is, human knowledge of all things human, is a com-bination of experience and the human imagination operating on that experience. That was why the human sciences were so uncertain. While one could postulate rules for interpreta-tion, there was ample room for each individual to arrive at different conclusions regarding the same experience.

http://www.wsu.edu/~dee//SCIENCE/BASELINE.HTM

Ernst Mach (1838 — 1916)

All of science was or should be nothing more than compact summaries of experience

http://www.pitt.edu/~jdnorton/Goodies/Einstein_and_S/index.html

Albert Einstein (1879 — 1955)

Science without religion is lame, religion without science is blind.

http://www.brainyquote.com/quotes/quotes/a/alberteins161289.html

He proclaimed that concepts and theories are «free inventions of the human spirit» and that no method could assuredly take us from experience to the true theory. …… he concluded that the right concepts and theories could be found merely by seeking the mathematically simplest theories.

http://www.pitt.edu/~jdnorton/Goodies/Einstein_and_S/index.html

Einstein’s notion … concepts and theories are free inventions not fixed by experience

http://www.pitt.edu/~jdnorton/Goodies/Einstein_and_S/index.html

This sense of the closeness of theory to experience was shattered by Einstein’s general the-ory of relativity. It required a new and complicated mathematics then unfamiliar to most physicists. Yet most of its predictions were no different than those of Newton’s much simpler theory. If theories were merely summaries of experience and did not add to them, how could two theories, so much in agreement on experience, differ so much in structure?

Einstein’s physics and the new physics developed by others in the twentieth century led to a sense of the fragility of theories and the powerlessness of evidence to pick out the unique truths of nature. Philosophers of science struggled to accommodate this new sense within their systems, all the while seeking to fit their ideas with Einstein’s theories.

http://www.pitt.edu/~jdnorton/Goodies/Einstein_and_S/index.html

Michael Atiyah (1960s)

Atiyah asserted that «independence of thought really is the hallmark of a scientist».

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

Karl Popper (1966) (1902 – 1994)

Karl Popper, «Science is a history of corrected mistakes»

In Popper’s view all the great theories of the past, such as Newtonian mechanics, are still scientific even though they have been shown to be false.

They exposed themselves to test (i.e., falsification); that is the mark of the scientific. Alas, they did not pass some of their tests and so were shown to be false.

The second way of being systematic concerns the organization of a body of knowledge into:

(a) The definition of all its fundamental concepts,
(b) The separation of all of its claims into

(b1) the fundamental laws, principles or axioms of the subject matter, and
(b2) the derivative or less fundamental laws or theorems,
(c) The vast number of observational facts that concern science, such as all the facts that one can observe and measure about bodies in motion, or their heat properties, and the like.
http://www.eequalsmcsquared.auckland.ac.nz/sites/emc2/tl/philosophy/what-is-science.cfm

(Newton presented his theory of motion in this way when he published his path-breaking book Principia Mathematica first in 1686)

A scientific statement, he said, is one that can be proved wrong, like «the sun always rises in the east» or «light in a vacuum travels 186,000 miles a second.» By Popper’s rules, a law of science can never be proved; it can only be used to make a prediction that can be tested, with the possibility of being proved wrong.

http://www.nytimes.com/2005/11/15/science/sciencespecial2/15evol.html?_r=1&oref=slogin

By Popper’s rules, a law of science can never be proved; it can only be used to make a pre-diction that can be tested, with the possibility of being proved wrong

http://www.nytimes.com/2005/11/15/science/sciencespecial2/15evol.html

Moreover, the natural sciences with their critical methods of problem solving, and some of the social sciences too, especially history and economics, have represented for quite a long time our best efforts in problem solving and fact finding (by fact finding I mean, of course, the discovery of statements or theories which correspond to facts). Thus these sciences contain, by and large, the best statements and theories from the point of view of truth; that is, those giving the best description of the world of facts, or of what one calls ‘reality’.

http://www.marxists.org/reference/subject/philosophy/works/at/popper.htm

Paul Feyerabend(1975) (1924 — 1994)

Feyerabend’s position is generally seen as radical in the philosophy of science, because it implies that philosophy can neither succeed in providing a general description of science, nor in devising a method for differentiating products of science from non-scientific entities like myths.

Feyerabend’s position is generally seen as radical in the philosophy of science, because it implies that philosophy can neither succeed in providing a general description of science, nor in devising a method for differentiating products of science from non-scientific entities like myths.

http://en.wikipedia.org/wiki/Paul_Feyerabend

Thus science is much closer to myth than a scientific philosophy is prepared to admit. It is one of the many forms of thought that have been developed by man, and not necessarily the best. It is conspicuous, noisy, and impudent, but it is inherently superior only for those who have already decided in favor of a certain ideology, or who have accepted it without having ever examined its advantages and its limits. And as the accepting and rejecting of ideologies should be left to the individual it follows that the separation of state and church must be supplemented by the separation of state and science, that most recent, most ag-gressive, and most dogmatic religious institution. Such a separation may be our only chance to achieve a humanity we are capable of, but have never fully realized.

http://www.marxists.org/reference/subject/philosophy/works/ge/feyerabe.htm

Willard Quine (1951)

The unit of empirical significance is the whole of science.

As an empiricist I continue to think of the conceptual scheme of science as a tool, ulti-mately, for predicting future experience in the light of past experience.

Science is a continuation of common sense, and it continues the common-sense expedient of swelling ontology to simplify theory.

http://www.marxists.org/reference/subject/philosophy/works/us/quine.htm

C Marchetti (1980s)

In one of his delightfully witty essays, entitled, “On Progress and Providence”, the Italian scientist, C Marchetti, proposes a new definition of science: “the exploration of the exter-nal word by an information system through mutation and selection.” … The same definition naturally covers technology.

The Network Revolution: Confessions of a Computer Scientist By Jacques Vallee

Stephen Hawking (1942 — )

Any sound scientific theory, whether of time or of any other concept, should in my opinion be based on the most workable philosophy of science:

Stephen Hawking, The Universe In a Nutshell p31

Alex Rosenberg (2000)

Science does not accept as knowledge what cannot be somehow subject to the test of ex-perience. But at the same time, the obligation of science to explain our experience re-quires that it go beyond and beneath that experience in the things, properties, processes and events it appeals to in providing these explanations. How to reconcile the demands of empiricism and explanation is the hardest problem for the philosophy of science, indeed, for philosophy as a whole. For if we cannot reconcile explanation and empiricism, it is pretty clear that it is empiricism that must be given up. … But if scientific knowledge is derived not from experiment and observation, but, say, rational reflection alone, then who is to say that alternative world-views, myths, revealed religion, which claim to compete with science to explain reality will not also claim to be justified in the same way?»

Alex Rosenberg, Philosophy of Science: A Contemporary Introduction

Douglas Allchin (2000)

«Cherish mistakes, since to err is science»

SCIENCE is a self-correcting process.

http://findarticles.com/p/articles/mi_qn4158/is_20000225/ai_n14292342

Theo Theocharis (2000)

Science is an open-ended quest for knowledge, it must be clarified that it is the horizons that are constantly and ceaselessly expanded, not that one never attains any definite and final article of knowledge. The open-endedness is in the quest, not in the specific findings resulting from the quest. The quest for knowledge is open-ended because the number of individual items of possible knowledge is infinite, but each item of course is in principle fully attainable and conclusively verifiable

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

The current (post-)modernist (mis-)conception of science implies that science goes on for ever not because the number of truths is infinite (for allegedly there aren’t any truths at all) but because science never gets anywhere.

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

Science is the systematic study of observational data in order to gain an understanding of the world around us. The understanding is (almost universally) supposed to somehow come about by devising models or theories that work; all that is required from a scientific theory in this scheme is empirical ‘adequacy’ and practical ‘reliability’. Models in this scheme are mere tools that serve as instruments for routine computations and standard predictions.

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

science is only one of many ways of producing ‘truth’; only very few insist that it is the most reliable way. It will be argued here that in fact only the scientific method (and only when correctly applied) can generate truth.

Conversely, apart from the obvious, the only truth possible is by definition scientific.

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

science is the one and only DEFINING characteristic of MODERN society. If one wants to really understand modern society, one will first have to understand science.

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

The fashionable view in recent decades has been that ALL scientific knowledge is imperma-nent and transitory.

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

Science is the conscious, disciplined, systematic, and sustained, endeavor to methodically discover the non-obvious truths — of both nature and society.

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

Another instructive lesson that one must learn from the long history of science is that theo-rizing must be securely grounded on the solid foundation of careful observation and sound logic.

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

The most basic hallmark of science must be CORRECTNESS of thought, expression, and exe-cution. Apart from accidental discoveries that can be made by anybody, it is ‘EPISTEMO-LOGICAL CORRECTNESS’ that CAUSES discovery, invention, and advancement. Freedom merely FACILITATES the communication and dissemination of discovery and invention (and, naturally, of everything else)

http://itis.volta.alessandria.it/episteme/ep4/ep4th1.htm

The American Heritage Dictionary of the English Lan-guage, Fourth Edition 2000

«The observation, identification, description, experimental investigation [scientific method], and theoretical explanation of phenomena. Such activities restricted to a class of natural phenomena. Such activities applied to an object of inquiry or study.»

http://www.bartleby.com/61/67/S0146700.html

Kansas Science Standards. Kansas State Board of Edu-cation. Adopted February 14, 2001

Science is the human activity of seeking natural explanations for what we observe in the world around us.

http://www.uwosh.edu/colleges/cols/Clergy%20Sermons%20PDF/chin_westhampton_ma.pdf

Mariano Artigas (2001) (1938 — 2006)

Empirical Science is a «state of affairs,» a goal-directed human activity whose existence and progress are necessarily grounded on some assumptions about the natural order and about our ability to know it. The general presuppositions of science can be considered necessary conditions of science; natural order, human cognitive ability, and science as a goal-directed enterprise are «state of affairs» tat exist in nature, in the human being, and in society, re-spectively.

The Mind of the Universe: Understanding Science and Religion — By Mariano Artigas

Kansas State Board of Education (2005)

…calls science «a systematic method of continuing investigation that uses observation, hy-pothesis testing, measurement, experimentation, logical argument and theory building to lead to more adequate explanations of natural phenomena.»

http://www.nytimes.com/2005/11/15/science/sciencespecial2/15evol.html?_r=1&oref=slogin

John Timmer (2007)

«[Science’s] conclusions are tentative, i.e., are not necessarily the final word.» In this con-text, tentative should be viewed as an indication that the models and theories used to di-rect and interpret scientific research may be incomplete, inexact, or, in some cases, simply wrong. In this sense, tentativeness in science is a form of decisiveness, as it allows research to move forward despite constant uncertainty.

In this capacity, tentativeness can also play a role in the demarcation between science and non-science. Many forms of pseudoscience, such as creationism, strive to squeeze data into support of a pre-ordained and invariant conclusion. Others, such as belief in UFO abduc-tions, persist despite extensive counter evidence.

In light of this, one potential way to gain a sense of how scientific a concept is would be to ask one of its proponents what pieces of data would cause them to modify or discard their favored model.

http://arstechnica.com/journals/science.ars/2006/10/13/5609

Reliance on natural law is central to the legal definition of science in the US

http://arstechnica.com/journals/science.ars/2006/11/28/6104

It is clear that much of science is performed in reference to natural law, or involves at-tempts to describe such laws via observations of natural systems. More commonly, how-ever, natural laws act as limitations on what science will consider: models and hypotheses are formulated in reference to natural laws in the sense that nothing is proposed that knowingly violates them, and those proposals that do are rejected.

It is equally clear, however, that much of science, as well as the applied fields derived from it, occurs at a significant distance from the most fundamental of natural laws, such as those of quantum mechanics. Science has coped with this in a variety of ways. In some of these cases, observations have led to other natural laws that are separated from those of physics (for example: all organisms on earth are related through common descent). In other fields, science is still awaiting the technological advances that can allow a more direct, quantitative study of processes that can link observations to natural laws. In cases such as these, the work focuses on a subset or approximation of natural laws. For example, those studying protein structures recognize that they ultimately form through processes that originate at the quantum level. Most of the insights in the field, however, can be derived by a focus on charge attraction/repulsion and Van der Waals forces.

Because of this important position, a significant aspect of evaluating the quality of science involves judging whether the use of natural laws is appropriate. Is the observational data that supports the existence of a natural law of sufficient quality to consider that law a valid basis for scientific thought? Do the approximations chosen in a study still reflect appropri-ate physical limitations? Even though some of those who responded did not recognize the term «natural law», it is clear that these sorts of evaluations play a major role in the evaluation of the scientific literature.

In this formulation, natural laws do serve as a powerful demarcation test between science and the non-scientific.

Jim Newton (2007)

In science, the term natural science refers to a rational approach to the study of the uni-verse, which is understood as obeying rules or laws of natural origin. The term natural science is also used to distinguish those fields that use the scientific method to study nature from the social sciences, which use the scientific method to study human behavior and society, and from the formal sciences, such as mathematics and logic, which use a different methodology.

http://figbranch.com/index2.php?option=com_content&do_pdf=1&id=25

Natural sciences form the basis for the applied sciences. Together, the natural and applied sciences are distinguished from the social sciences on the one hand, and from the humanities, theology and the arts on the other. Mathematics, statistics and computer science are not considered natural sciences, but provide many tools and frameworks used within the natural sciences. Alongside this traditional usage, the phrase natural sciences is also sometimes used more narrowly to refer to its everyday usage, that is, related to natural history. In this sense «natural sciences» may refer to the biological sciences and perhaps also the earth sciences, as distinguished from the physical sciences, including astronomy, physics, and chemistry. Within the natural sciences, the term hard science is sometimes used to describe those sub-fields that rely on experimental, quantifiable data or the scientific method and focus on accuracy and objectivity. These usually include physics, chemistry and many of the sub-fields of biology. By contrast, soft science is often used to describe the scientific fields that are more reliant on qualitative research, including the social sciences

http://figbranch.com/index2.php?option=com_content&do_pdf=1&id=25

Normdoering (2007)

Science is knowledge gained by testing ideas against reality

http://normdoering.blogspot.com/2007/03/religions-war-on-science-part-1.html

Bruce Railsback ()

Science is the concerted human effort to understand, or to understand better, the history of the natural world and how the natural world works, with observable physical evidence as the basis of that understanding — definition by Bruce Railsback, Geology Faculty, University of Georgia

The critical commonality is that all these people are making and recording observations of nature, or of simulations of nature, in order to learn more about how nature, in the broad-est sense, works

One of their main goals is to show that old ideas (the ideas of scientists a century ago or perhaps just a year ago) are wrong and that, instead, new ideas may better explain nature

http://www.gly.uga.edu/railsback/1122science2.html

Frank Wolf ()

The scientific method has four steps

  1. Observation and description of a phenomenon or group of phenomena.
  2. Formulation of an hypothesis to explain the phenomena. In physics, the hypothesis often takes the form of a causal mechanism or a mathematical relation.
  3. Use of the hypothesis to predict the existence of other phenomena, or to predict quanti-tatively the results of new observations.
  4. Performance of experimental tests of the predictions by several independent experi-menters and properly performed experiments.

If the experiments bear out the hypothesis it may come to be regarded as a theory or law of nature (more on the concepts of hypothesis, model, theory and law below). If the experiments do not bear out the hypothesis, it must be rejected or modified. What is key in the description of the scientific method just given is the predictive power (the ability to get more out of the theory than you put in; see Barrow, 1991) of the hypothesis or theory, as tested by experiment. It is often said in science that theories can never be proved, only disproved. There is always the possibility that a new observation or a new experiment will conflict with a long-standing theory.

http://teacher.nsrl.rochester.edu/phy_labs/AppendixE/AppendixE.html

Difference Between Science and Philosophy

Science vs. Philosophy

The distinction between philosophy and science is very slim, but there are some differences nonetheless. Many people assume that science and philosophy are concepts contradictory to each other, but both subjects share a more positive relationship rather than an animosity.

Science can be defined as a study and understanding of natural phenomena. It is concerned with empirical data, meaning data that can be observed, tested, and repeated. It is systematic in nature, and there is a specific course of action used called the scientific method. Science bases its explanation on the results of experiments, objective evidence, and observable facts.

“Science” comes from the Latin word “scientia,” meaning “knowledge.”
There are many branches or fields of science. These branches can be classified under various headings: pure and applied sciences, physical and life sciences, Earth and space sciences. Also included in these classifications are exact science and descriptive science.

Science started out as a part of philosophy. It was then called natural philosophy, but science deviated from philosophy in the 17th century and emerged as a separate study or domain.
Science involves objective types of questions. As a study, it tries to find answers and prove them to be objective fact or truth. In its method, the experiment creates certain hypotheses that can be proven or validated as fact. In the same manner, hypotheses can also be wrong or falsified. By observing and undertaking an experiment, science produces knowledge through observation. Science’s main purpose is to extract the objective truth out of existing or naturally occurring ideas.

Science’s “predecessor,” philosophy, is a more difficult concept to define. It is broadly defined as an activity that uses reason to explore issues in many areas. Its application to many different fields makes it impossible for it to have a definite and concrete definition.
Philosophy tries to study and understand the fundamental nature of two things: the existence of man, and the relationship between man and existence. It also has many branches: metaphysics, logic, politics, epistemology, ethics, aesthetics, and specific philosophy in fields like philosophy of language, history, the mind, and religion, among others. “Philosophy” comes from the Greek word “philosophia,” which translates into “love of wisdom.”

Philosophy is based on reason; its methods utilize logical argumentation. Philosophy uses arguments of principles as the basis for its explanation.
Philosophy entertains both subjective and objective types of questions. This means that aside from finding answers, it also resolves to generate questions. It raises questions and processes before finding out the answers. Philosophy is mostly involved with thinking and creating knowledge.

Summary:

1.Philosophy and science are two studies and domains. Philosophy came first and became the basis for science, formerly known as natural philosophy. Both studies have many branches or fields of study and make use reasoning, questioning, and analysis. The main difference is in the way they work and treat knowledge.
2.Science is concerned with natural phenomena, while philosophy attempts to understand the nature of man, existence, and the relationship that exists between the two concepts.
3.”Science” comes from a Latin word (scientia), while “philosophy” was derived from the Greek “philosophia.”
4.Another common element between the two studies is that they both try to explain situations and find answers. Philosophy does this by using logical argumentation, while science utilizes empirical data. Philosophy’s explanations are grounded in arguments of principles, while science tries to explain based on experiment results, observable facts, and objective evidence.
5.Science is used for instances that require empirical validation, while philosophy is used for situations where measurements and observations cannot be applied. Science also takes answers and proves them as objectively right or wrong.
6.Subjective and objective questions are involved in philosophy, while only some objective questions can be related in science. Aside from finding answers, philosophy also involves generating questions. Meanwhile, science is only concerned with the latter.
7.Philosophy creates knowledge through thinking; science does the same by observing.
8.Science is also a defined study, in contrast to philosophy, which can be applied to many extensive areas of discipline.

  • Author
  • Recent Posts

Loading…

Email This Post Email This Post
: If you like this article or our site. Please spread the word. Share it with your friends/family.

Cite

APA 7
Franscisco, . (2017, September 8). Difference Between Science and Philosophy. Difference Between Similar Terms and Objects. http://www.differencebetween.net/miscellaneous/career-education/difference-between-science-and-philosophy/.

MLA 8
Franscisco, . «Difference Between Science and Philosophy.» Difference Between Similar Terms and Objects, 8 September, 2017, http://www.differencebetween.net/miscellaneous/career-education/difference-between-science-and-philosophy/.

BrewBannerOriginal


Science16

Photo Mark Cartwright


Violatti01
By Cristian Violatti
PhD Candidate, University of Leicester

AncientHistoryEncyclopedia01

DEFINITION

The term science comes from the Latin word scientia, meaning “knowledge”. It can be defined as a systematic attempt to discover, by means of observation and reasoning, particular facts about the world, and to establish laws connecting facts with one another and, in some cases, to make it possible to predict future occurrences. There are other ways to define science, but all definitions refer in one way or another to this attempt to discover specific facts and the ability to figure out patterns in which these facts are connected.

There is an interesting quote from Carl Sagan about the scientific attitude:

If we lived on a planet where nothing ever changed, there would be little to do. There would be nothing to figure out. There would be no impetus for science. And if we lived in an unpredictable world, where things changed in random or very complex ways, we would not be able to figure things out. But we live in an in-between universe, where things change, but according to patterns, rules, or as we call them, laws of nature. If I throw a stick up in the air, it always falls down. If the sun sets in the west, it always rises again the next morning in the east. And so it becomes possible to figure things out. We can do science, and with it we can improve our lives. (Carl Sagan, 59)

EARLY SCIENTIFIC DEVELOPMENTS

The regular occurrence of natural events encouraged the development of some scientific disciplines. After a period of observation and careful recordkeeping, even some of the events perceived as random and unpredictable might begin to display a regular pattern which initially was not immediately obvious. Eclipses are a good example.

In North America, the Cherokee said that eclipses were caused when the moon (male) visits his wife, the sun, and the Ojibway believed the sun would be totally extinguished during an eclipse, so they used to shoot flaming arrows to keep it alight. According to the Vikings, the sun and the moon are being chased by two wolves, Skoll and Hati. When either wolf successfully catches their prey, an eclipse occurs. The Nordics made as much noise as they could to scare off the wolves, so they could rescue the victims:

Skoll a wolf is called who pursues the shining god

to the protecting woods;

and another is Hati, he is Hrodvitnir’s son,

who chases the bright bride of heaven.

(The Poetic Edda. Grimnir’s Sayings, 39)

People eventually realized that the sun and the moon would emerge from the eclipse regardless of whether they made noise to rescue the victims. In societies where they had record keeping on celestial events, they must have noticed after some time that eclipses do not happen at random, but rather in regular patterns that repeat themselves.

Some events in nature clearly occur according to rules, but there are others that do not display a clear pattern of occurrence, and they do not even seem to happen as a result of a specific cause. Earthquakes, storms, and pestilence all appear to occur randomly, and natural explanations do not seem to be relevant. Therefore, supernatural explanations arose to account for such events, most of them merged with myth and legends.

Supernatural explanations gave rise to magic, an attempt to control nature by means of rite and spell. Magic is based on people’s confidence that nature can be directly controlled. Magic thought is convinced that by performing certain spells, a specific event will take place. James Frazer has suggested that there is a link between magic and science, since both believe in the cause-and-effect principle. In magic, the causes are somehow unclear and they tend to be based upon spontaneous thoughts, while in science, through careful observation and reasoning, the causes are better isolated and understood. Science is founded on the idea that experience, effort, and reason are valid, while magic is founded on intuition and hope. In ancient times, it was common for science to be merged with magic, religion, mysticism, and philosophy, since the limits of the scientific discipline were not fully understood.

BABYLONIAN SCIENCE

Like in Egypt, priests encouraged much of the development of Babylonian science. Babylonians used a numeral system with 60 as its base, which allowed them to divide circles into 360 degrees. The use of 60 as a base of a mathematical system is not a minor issue: 60 is a number that has many divisors (1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60), which simplifies the representation of fractions: 1/2 (30/60), 1/3 (20/60), 1/4 (15/60), 1/5 (12/60), 1/6 (10/60), and so forth. As early as 1800 BCE, Babylonian mathematicians understood the properties of elementary sequences, such as arithmetic and geometrical progressions, and a number of geometrical relationships. They estimated the value of pi as 3 1/8, which is about a 0.6 percent error. It is highly likely that they also were familiar with what we today call the Pythagorean Theorem which states that the square of the longest side of a right triangle equals the sum of the squares of the other two sides. However, we have no evidence that the Babylonians proved it formally, since their mathematics rested on empirical knowledge rather than formal proof.

It was in astronomy where Babylonians showed a remarkable talent, and magic, mysticism, astrology, and divination were its main drivers. They believed that the movement of the heavenly bodies forecasted some terrestrial event. Since the reign of Nabonassar (747 BCE), the Babylonians kept complete lists of eclipses and by 700 BCE, it was already known that solar eclipses could only be possible during new moons and lunar eclipses only during full moons. It is possible that by this time Babylonians also knew the rule that lunar eclipses take place every six months, or occasionally every five months. By the time Nebuchadnezzar ruled Babylon, the priests had also calculated the courses of the planets and plotted the orbits of the sun and the moon.

Science17

The Pyramids at Giza. The modern city of Cairo is visible in the background. / Photo Oisin Mulvihill

EGYPTIAN SCIENCE

Despite their superstitions, Egyptian priests encouraged the development of many scientific disciplines, especially astronomy and mathematics. The construction of the pyramids and other astonishing monuments would have been impossible without a highly developed mathematical knowledge. The Rhind Mathematical Papyrus (also known as the Ahmes Papyrus) is an ancient mathematical treatise, dating back to approximately 1650 BCE. This work explains, using several examples, how to calculate the area of a field, the capacity of a barn, and it also deals with algebraic equations of the first degree. In the opening section, its author, a scribe named Ahmes, declares that the Papyrus is a transcription of an ancient copy, possibly 500 years before the time of Ahmes himself.

The flooding of the Nile, which constantly altered the border markers that separated the different portions of land, also encouraged the development of mathematics: Egyptian land surveyors had to perform measurements over and over again to restore the boundaries that had been lost. In fact, this is the origin of the word geometry: “measurement of land”. Egyptian land surveyors were very practical minded: in order to form right angles, which was critical for establishing the borders of a field, they used a rope divided into twelve equal parts, forming a triangle with three parts on one side, four parts on the second side, and five parts on the remaining side. The right angle was to be found where the three-unit side joined the four-unit side. In other words, Egyptians knew that a triangle whose sides are in a 3:4:5 ratio is a right triangle. This is a useful rule of thumb and it is also a step away from the Pythagoras Theorem, which is based on stretching the 3:4:5 triangle concept to its logical limit.

Egyptians calculated the value of the mathematical constant pi at 256/81 (3.16), and for the value of the square root of two, they used the fraction 7/5 (which they thought of as 1/5 seven times). For fractions, they always used the numerator 1 (in order to express 3/4, they wrote 1/2 + 1/4). Unfortunately they did not know the zero, and their numeral system lacked simplicity: 27 signs were required to express 999.

Science18

10th century CE Greek copy of Aristarchus of Samos‘s calculations of the relative sizes of the sun, moon and the earth. / Illustration Konstable

GREEK SCIENCE

Unlike other parts of the world were science was strongly connected with religion, Greek scientific thought had a stronger connection with philosophy. As a result, the Greek scientific spirit had a more secular approach and was able to replace the notion of supernatural explanation with the concept of a universe that is governed by laws of nature. Greek tradition credits Thales of Miletus as the first Greek who, around 600 BCE, developed the idea that the world can be explained in natural terms. Thales lived in Miletus, a Greek city locate in Ionia, the central sector of Anatolia’s Aegean shore in Asia Minor, present-day Turkey. This city was the main focus of the “Ionian awakening”, the initial phase of classical Greek civilization, a time when the ancient Greeks developed a number of ideas surprisingly similar to some of our modern scientific concepts.

One of the great advantages of Greece was the influence of Egyptian mathematics, when Egypt opened its ports to Greek trade during the 26th Dynasty (c. 685–525 BCE) and Babylonian astronomy, after Alexander’s conquest of Asia Minor and Mesopotamia during Hellenistic times. The Greeks were very talented at systematically innovating upon the Egyptian and Babylonian mathematical and astronomical knowledge. This turned the Greeks into some of the most competent mathematicians and astronomers of antiquity and their achievements in geometry were arguably the finest.

While observation was important at the beginning, Greek science eventually began to undervalue observation in favour of the deductive process, where knowledge is built by means of pure thought. This method is key in mathematics and the Greeks put such an emphasis on it that they falsely believed that deduction was the way to obtain the highest knowledge. Observation was underestimated, deduction was made king, and Greek scientific knowledge was led up a blind alley in virtually every branch of science other than exact sciences (mathematics).

INDIAN SCIENCE

In India, we find some aspects of astronomical science already in the Vedas (composed between 1500 and 1000 BCE), where the year is divided into twelve lunar months (occasionally adding an additional month to adjust the lunar with the solar year), six seasons of the year are named and related to different gods, and also the different phases of the moon are observed and personified as different deities. Many of the ceremonies and sacrificial rites of Indian society were regulated by the position of the moon, the sun, and other astronomical events, which encouraged a detailed study of astronomy.

Geometry was developed in India as a result of strict religious rules for the construction of altars. Book 5 of the Taittiriya Sanhita, included in the Yajur-Veda, describes the different shapes that the altars could have. The oldest of these altars had the shape of a falcon and an area of 7.50 squares purusha (a purusha was a unit equivalent to the height of a man with uplifted arms, about 7.6 feet or 2.3 meters). Sometimes other altar shapes were required (such as a wheel, a tortoise, a triangle), but the area of these new altars had to remain the same, 7.50 square purusha. Some other times, the size of the altar had to be increased without changing the shape or the relative proportion of the figure. All these procedures were impossible to carry out without a fine knowledge of geometry.

A work known as the Shulba Sutras, first composed in India around 800 BCE, contains detailed explanations on how to perform all the geometrical operations required to support the religious procedures regarding the altars. This text also develops mathematical topics such as square roots and squaring the circle. After developing important geometrical studies, religious practices changed in India, and the need for geometrical knowledge gradually died out as the construction of altars fell out of use.

Possibly the most influential achievement of Hindu science was the study of arithmetic, particularly the development of the numbers and the decimal notation that the world uses today. The so-called “Arabic numbers” actually originated in India; they already appear in the Rock Edicts of the Mauryan emperor Ashoka (3rd century BCE), about 1,000 years before they are used in Arabic literature.

CHINESE SCIENCE

In China, the priesthood never had any significant political power. In many cultures, science was encouraged by the priesthood, who were interested in astronony and the calendar, but in China, it was government officials who had the power and were concerned with these areas, and therefore the development of Chinese science is strongly linked to government officials. The court astronomers were particularly interested in the sciences of astronomy and mathematics, since the calendar was a sensitive imperial matter: the life of the sky and the life on earth had to develop in harmony, and the sun and the moon regulated the different festivals. During the time of Confucius (c. 551 to c. 479 BCE), Chinese astronomers successfully calculated the occurrence of eclipses.

Geometry developed as a result of the need to measure land, while algebra was imported from India. During the 2nd century BCE, after many centuries and generations, a mathematical treatise named The Nine Chapters on the Mathematical Art was completed. This work contained  mostly practical mathematical procedures including topics such as determining the areas of fields of different shapes (for taxation purposes), pricing of different goods, commodities rate exchange and equitable taxation. This book develops algebra, geometry and also mentions negative quantities for the first time in recorded history. Zu Chongzhi (429-500CE), estimated the right value of pi to the sixth decimal place and improved the magnet, which had been discovered centuries earlier.

Where the Chinese displayed an exceptional talent was at making inventions. Gunpowder, paper, woodblock printing, the compass (known as “south-pointing needle”), are some of the many Chinese inventions. Despite their immense creativity, it is ironic that Chinese industrial life did not undergo any significant development between the Han dynasty (206 BCE-220 CE) to the fall of the Manchu (1912 CE).

Science19

The Intihuatana Stone or ‘Hitching Post of the Sun’ at Machu Picchu in the High Andes. The stone was used by Inca priests for astronomical observations, especially of the sun. In ceremonies during the solstices the priests symbollically tied the sun to the stone using a sacred cord. / Photo Flickr User: David

MESOAMERICAN SCIENCE

Mesoamerican mathematics and astronomy were highly precise. The accuracy of the Maya calendar was comparable to the Egyptian calendar (both civilizations fixed the year at 365 days) and already in the 1st century CE the Maya used the number zero as a place-holder value in their records, many centuries before the zero appears in European and Asian literature.

Time record-keeping in Mesoamerica included a 260 day period known by the Maya as tzolkin “count of days” and tonalpohualli by the Aztecs. This interval was obtained by combining cycles of 20 days with thirteen numerical coefficients (20 x 13 = 260). The origin of this interval is believed to be around the 6th century BCE in the southern region of the Zapotec Civilization, and it is in tune with some important  natural events: 260 is a good approximation of the human gestation period and, in mid-Mesoamerican latitude, is perfectly consistent with the agricultural cycle. There was also a 360 day period known as tun by the Maya, composed of cycles of 20 days and 18 months (20 x 18 = 360). Most Mesoamerican calendars would be based on one tun plus an additional month of five days (360 + 5 = 365), which is a good approximation of the solar cycle.  This count regulated the holidays, religious ceremonies, sacrifices, work life, tributes, and many other aspects of religious, political and social life.

The 260 and 365 day count would be run simultaneously, and every 52 years the starting point of both would match up, an event termed as a “calendar round”. The Aztec codices suggest that during the time of a calendar round, it was believed that the world was vulnerable to destruction, so at that time they held a number of sacrifices and religious ceremonies in order to please the gods and ensure the world would continue.

The Mayas created the longest Mesoamerican calendar cycle by multiplying one tun by 20 (360 days x 20 = 7,200 days, or one katun) and one katun by 20 (7,200 days x 20 = 144,000 days, or one baktun). The Mayan Long Count was composed of 13 baktuns (144,000 days x 13 = 1,872,000 days), or 5,125.37 years. The starting point of the Mayan Long Count is August 11, 3114 BCE and it ended on December 21, 2012 BCE.

Comments

comments

What is science?

Science (from the Latin word scientia, meaning “knowledge”)[1] is a systematic enterprise that builds and organizes knowledge in the form of testable explanations and predictions about the universe.[2][3][4]

The earliest roots of science can be traced to Ancient Egypt and Mesopotamia in around 3500 to 3000 BCE.[5][6] Their contributions to mathematics, astronomy, and medicine entered and shaped Greek natural philosophy of classical antiquity, whereby formal attempts were made to provide explanations of events in the physical world based on natural causes.[5][6] After the fall of the Western Roman Empire, knowledge of Greek conceptions of the world deteriorated in Western Europe during the early centuries (400 to 1000 CE) of the Middle Ages[7] but was preserved in the Muslim world during the Islamic Golden Age.[8] The recovery and assimilation of Greek works and Islamic inquiries into Western Europe from the 10th to 13th century revived “natural philosophy”,[7][9] which was later transformed by the Scientific Revolution that began in the 16th century[10] as new ideas and discoveries departed from previous Greek conceptions and traditions.[11][12][13][14] The scientific method soon played a greater role in knowledge creation and it was not until the 19th century that many of the institutional and professional features of science began to take shape;[15][16][17] along with the changing of “natural philosophy” to “natural science.”[18]

Modern science is typically divided into three major branches that consist of the natural sciences (e.g., biology, chemistry, and physics), which study nature in the broadest sense; the social sciences (e.g., economics, psychology, and sociology), which study individuals and societies; and the formal sciences (e.g., logic, mathematics, and theoretical computer science), which study abstract concepts. There is disagreement,[19][20] however, on whether the formal sciences actually constitute a science as they do not rely on empirical evidence.[21] Disciplines that use existing scientific knowledge for practical purposes, such as engineering and medicine, are described as applied sciences.[22][23][24][25]

Science is based on research, which is commonly conducted in academic and research institutions as well as in government agencies and companies. The practical impact of scientific research has led to the emergence of science policies that seek to influence the scientific enterprise by prioritizing the development of commercial products, armaments, health care, and environmental protection.

Branches of science

Modern science is commonly divided into three major branches that consist of the natural sciences, social sciences, and formal sciences. Each of these branches comprise various specialized yet overlapping scientific disciplines that often possess their own nomenclature and expertise.[90] Both natural and social sciences are empirical sciences[91] as their knowledge is based on empirical observations and is capable of being tested for its validity by other researchers working under the same conditions.[92]

There are also closely related disciplines that use science, such as engineering and medicine, which are sometimes described as applied sciences. The relationships between the branches of science are summarized by the following table.

Science
Formal science Empirical sciences
Natural science Social science
Foundation Logic; Mathematics; Statistics Physics; Chemistry; Biology;
Earth science; Space science
Economics; Political science;
Sociology; Psychology
Application Computer science Engineering; Agricultural science;
Medicine; Dentistry; Pharmacy
Business administration;
Jurisprudence; Pedagogy

Natural science

The scale of the Universe mapped to branches of science and showing how one system is built atop the next through the hierarchy of the sciences.

Natural science is concerned with the description, prediction, and understanding of natural phenomena based on empirical evidence from observation and experimentation. It can be divided into two main branches: life science (or biological science) and physical science. Physical science is subdivided into branches, including physics, chemistry, astronomy and earth science. These two branches may be further divided into more specialized disciplines. Modern natural science is the successor to the natural philosophy that began in Ancient Greece. Galileo, Descartes, Bacon, and Newton debated the benefits of using approaches which were more mathematical and more experimental in a methodical way. Still, philosophical perspectives, conjectures, and presuppositions, often overlooked, remain necessary in natural science.[93] Systematic data collection, including discovery science, succeeded natural history, which emerged in the 16th century by describing and classifying plants, animals, minerals, and so on.[94] Today, “natural history” suggests observational descriptions aimed at popular audiences.[95]

In economics, the supply and demand model describes how prices vary as a result of a balance between product availability and demand.

Social science is concerned with society and the relationships among individuals within a society. It has many branches that include, but are not limited to, anthropology, archaeology, communication studies, economics, history, human geography, jurisprudence, linguistics, political science, psychology, public health, and sociology. Social scientists may adopt various philosophical theories to study individuals and society. For example, positivist social scientists use methods resembling those of the natural sciences as tools for understanding society, and so define science in its stricter modern sense. Interpretivist social scientists, by contrast, may use social critique or symbolic interpretation rather than constructing empirically falsifiable theories, and thus treat science in its broader sense. In modern academic practice, researchers are often eclectic, using multiple methodologies (for instance, by combining both quantitative and qualitative research). The term “social research” has also acquired a degree of autonomy as practitioners from various disciplines share in its aims and methods.

Formal science

Formal science is involved in the study of formal systems. It includes mathematics,[96][97] systems theory, and theoretical computer science. The formal sciences share similarities with the other two branches by relying on objective, careful, and systematic study of an area of knowledge. They are, however, different from the empirical sciences as they rely exclusively on deductive reasoning, without the need for empirical evidence, to verify their abstract concepts.[21][98][92] The formal sciences are therefore a priori disciplines and because of this, there is disagreement on whether they actually constitute a science.[19][20] Nevertheless, the formal sciences play an important role in the empirical sciences. Calculus, for example, was initially invented to understand motion in physics.[99] Natural and social sciences that rely heavily on mathematical applications include mathematical physics, mathematical chemistry, mathematical biology, mathematical finance, and mathematical economics.

References

  1. Harper, Douglas. “science”. Online Etymology Dictionary. Retrieved September 20, 2014.
  2. Wilson, E.O. (1999). “The natural sciences”. Consilience: The Unity of Knowledge (Reprint ed.). New York, New York: Vintage. pp. 49–71. ISBN978-0-679-76867-8.
  3. “… modern science is a discovery as well as an invention. It was a discovery that nature generally acts regularly enough to be described by laws and even by mathematics; and required invention to devise the techniques, abstractions, apparatus, and organization for exhibiting the regularities and securing their law-like descriptions.”— p.vii Heilbron, J.L. (editor-in-chief)(2003). “Preface”. The Oxford Companion to the History of Modern Science. New York: Oxford University Press. pp. vii–X. ISBN 978-0-19-511229-0.
  4. “science”. Merriam-Webster Online Dictionary. Merriam-Webster, Inc. Retrieved October 16, 2011. 3 a:knowledge or a system of knowledge covering general truths or the operation of general laws especially as obtained and tested through scientific method b: such knowledge or such a system of knowledge concerned with the physical world and its phenomena.
  5. “The historian … requires a very broad definition of “science” – one that … will help us to understand the modern scientific enterprise. We need to be broad and inclusive, rather than narrow and exclusive … and we should expect that the farther back we go [in time] the broader we will need to be.”  p.3—Lindberg, David C. (2007). “Science before the Greeks”. The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context(Second ed.). Chicago, Illinois: University of Chicago Press. pp. 1–27. ISBN978-0-226-48205-7.
  6. Grant, Edward (2007). “Ancient Egypt to Plato”. A History of Natural Philosophy: From the Ancient World to the Nineteenth Century (First ed.). New York, New York: Cambridge University Press. pp. 1–26. ISBN978-052-1-68957-1.
  7. Lindberg, David C. (2007). “The revival of learning in the West”. The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago, Illinois: University of Chicago Press. pp. 193–224. ISBN978-0-226-48205-7.
  8. Lindberg, David C. (2007). “Islamic science”. The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago, Illinois: University of Chicago Press. pp. 163–92. ISBN978-0-226-48205-7.
  9. Lindberg, David C. (2007). “The recovery and assimilation of Greek and Islamic science”. The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (2nd ed.). Chicago, Illinois: University of Chicago Press. pp. 225–53. ISBN978-0-226-48205-7.
  10. Principe, Lawrence M. (2011). “Introduction”. Scientific Revolution: A Very Short Introduction (First ed.). New York, New York: Oxford University Press. pp. 1–3. ISBN978-0-199-56741-6.
  11. Lindberg, David C. (1990). “Conceptions of the Scientific Revolution from Baker to Butterfield: A preliminary sketch”. In David C. Lindberg; Robert S. Westman (eds.). Reappraisals of the Scientific Revolution (First ed.). Chicago, Illinois: Cambridge University Press. pp. 1–26. ISBN978-0-521-34262-9.
  12. Lindberg, David C. (2007). “The legacy of ancient and medieval science”. The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (2nd ed.). Chicago, Illinois: University of Chicago Press. pp. 357–368. ISBN978-0-226-48205-7.
  13. Del Soldato, Eva (2016). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy(Fall 2016 ed.). Metaphysics Research Lab, Stanford University.
  14. Grant, Edward (2007). “Transformation of medieval natural philosophy from the early period modern period to the end of the nineteenth century”. A History of Natural Philosophy: From the Ancient World to the Nineteenth Century (First ed.). New York, New York: Cambridge University Press. pp. 274–322. ISBN978-052-1-68957-1.
  15. Cahan, David, ed. (2003). From Natural Philosophy to the Sciences: Writing the History of Nineteenth-Century Science. Chicago, Illinois: University of Chicago Press. ISBN978-0-226-08928-7.
  16. The Oxford English Dictionarydates the origin of the word “scientist” to 1834.
  17. Lightman, Bernard (2011). “13. Science and the Public”. In Shank, Michael; Numbers, Ronald; Harrison, Peter (eds.). Wrestling with Nature : From Omens to Science. Chicago: University of Chicago Press. p. 367. ISBN978-0226317830.
  18. Harrison, Peter(2015). The Territories of Science and Religion. Chicago: University of Chicago Press. pp. 164–165. ISBN 9780226184517. The changing character of those engaged in scientific endeavors was matched by a new nomenclature for their endeavors. The most conspicuous marker of this change was the replacement of “natural philosophy” by “natural science”. In 1800 few had spoken of the “natural sciences” but by 1880, this expression had overtaken the traditional label “natural philosophy”. The persistence of “natural philosophy” in the twentieth century is owing largely to historical references to a past practice (see figure 11). As should now be apparent, this was not simply the substitution of one term by another, but involved the jettisoning of a range of personal qualities relating to the conduct of philosophy and the living of the philosophical life.
  19. Bishop, Alan (1991). “Environmental activities and mathematical culture”. Mathematical Enculturation: A Cultural Perspective on Mathematics Education. Norwell, Massachusetts: Kluwer Academic Publishers. pp. 20–59. ISBN978-0-792-31270-3.
  20. Bunge, Mario (1998). “The Scientific Approach”. Philosophy of Science: Volume 1, From Problem to Theory. 1(revised ed.). New York, New York: Routledge. pp. 3–50. ISBN978-0-765-80413-6.
  21. Fetzer, James H. (2013). “Computer reliability and public policy: Limits of knowledge of computer-based systems”. Computers and Cognition: Why Minds are not Machines (1st ed.). Newcastle, United Kingdom: Kluwer Academic Publishers. pp. 271–308. ISBN978-1-443-81946-6.
  22. Fischer, M.R.; Fabry, G (2014). “Thinking and acting scientifically: Indispensable basis of medical education”. GMS Zeitschrift für Medizinische Ausbildung. 31(2): Doc24. doi:3205/zma000916. PMC 4027809. PMID 24872859.
  23. Abraham, Reem Rachel (2004). “Clinically oriented physiology teaching: strategy for developing critical-thinking skills in undergraduate medical students”. Advances in Physiology Education. 28(3): 102–04. doi:1152/advan.00001.2004. PMID 15319191.
  24. Sinclair, Marius. “On the Differences between the Engineering and Scientific Methods”. The International Journal of Engineering Education.
  25. “Engineering Technology :: Engineering Technology :: Purdue School of Engineering and Technology, IUPUI”. www.engr.iupui.edu. Retrieved September 7, 2018.
  26. Grant, Edward (January 1, 1997). “History of Science: When Did Modern Science Begin?”. The American Scholar. 66(1): 105–113. JSTOR 41212592.
  27. Pingree, David(December 1992). “Hellenophilia versus the History of Science”. Isis. 83 (4): 554–63. Bibcode:..83..554P. doi:10.1086/356288. JSTOR 234257.
  28. Sima Qian(司馬遷, d. 86 BCE) in his Records of the Grand Historian (太史公書) covering some 2500 years of Chinese history, records Sunshu Ao (孫叔敖, fl. c. 630–595 BCE – Zhou dynasty), the first known hydraulic engineer of China, cited in (Joseph Needham et al. (1971) Science and Civilisation in China 3 p. 271) as having built a reservoir which has lasted to this day.
  29. Rochberg, Francesca (2011). “Ch.1 Natural Knowledge in Ancient Mesopotamia”. In Shank, Michael; Numbers, Ronald; Harrison, Peter (eds.). Wrestling with Nature : From Omens to Science. Chicago: University of Chicago Press. p. 9. ISBN978-0226317830.
  30. McIntosh, Jane R. (2005). Ancient Mesopotamia: New Perspectives. Santa Barbara, California, Denver, Colorado, and Oxford, England: ABC-CLIO. pp. 273–76. ISBN978-1-57607-966-9.
  31. Aaboe (May 2, 1974). “Scientific Astronomy in Antiquity”. Philosophical Transactions of the Royal Society. 276(1257): 21–42. Bibcode:1974RSPTA.276…21A. doi:10.1098/rsta.1974.0007. JSTOR 74272.
  32. R D. Biggs (2005). “Medicine, Surgery, and Public Health in Ancient Mesopotamia”. Journal of Assyrian Academic Studies. 19(1): 7–18.
  33. Lehoux, Daryn (2011). “2. Natural Knowledge in the Classical World”. In Shank, Michael; Numbers, Ronald; Harrison, Peter (eds.). Wrestling with Nature : From Omens to Science. Chicago: University of Chicago Press. p. 39. ISBN978-0226317830.
  34. See the quotation in Homer(8th century BCE) Odyssey302–03
  35. “Progress or Return” in An Introduction to Political Philosophy: Ten Essays by Leo Strauss(Expanded version of Political Philosophy: Six Essays by Leo Strauss, 1975.) Ed. Hilail Gilden. Detroit: Wayne State UP, 1989.
  36. Cropsey; Strauss (eds.). History of Political Philosophy (3rd ed.). p. 209.
  37. O’Grady, Patricia F. (2016). Thales of Miletus: The Beginnings of Western Science and Philosophy. New York City, New York and London, England: Routledge. p. 245. ISBN978-0-7546-0533-1.
  38. Burkert, Walter(June 1, 1972). Lore and Science in Ancient Pythagoreanism. Cambridge, Massachusetts: Harvard University Press. ISBN 978-0-674-53918-1. Archived from the original on January 29, 2018.
  39. Pullman, Bernard (1998). The Atom in the History of Human Thought. pp. 31–33. Bibcode:book…..P. ISBN978-0-19-515040-7.
  40. Cohen, Henri; Lefebvre, Claire, eds. (2017). Handbook of Categorization in Cognitive Science(Second ed.). Amsterdam, The Netherlands: Elsevier. p. 427. ISBN 978-0-08-101107-2.
  41. Margotta, Roberto (1968). vFZrAAAAMAAJ The Story of MedicineCheck |url= value (help). New York City, New York: Golden Press.
  42. Touwaide, Alain (2005). Glick, Thomas F.; Livesey, Steven; Wallis, Faith (eds.). Medieval Science, Technology, and Medicine: An Encyclopedia. New York City, New York and London, England: Routledge. p. 224. ISBN978-0-415-96930-7.
  43. Leff, Samuel; Leff, Vera (1956). From Witchcraft to World Health. London, England: Macmillan.
  44. Mitchell, Jacqueline S. (February 18, 2003). “The Origins of Science”. Scientific American Frontiers. PBS. Archived from the originalon March 3, 2003. Retrieved November 3, 2016.
  45. “Plato, Apology”. p. 17. Archivedfrom the original on January 29, 2018. Retrieved November 1, 2017.
  46. “Plato, Apology”. p. 27. Archivedfrom the original on January 29, 2018. Retrieved November 1, 2017.
  47. “Plato, Apology, section 30”. Perseus Digital Library. Tufts University. 1966. Archivedfrom the original on January 27, 2017. Retrieved November 1, 2016.
  48. Nicomachean Ethics (H. Rackham ed.). Archived from the original on March 17, 2012. Retrieved September 22, 2010. 1139b
  49. McClellan III, James E.; Dorn, Harold (2015). Science and Technology in World History: An Introduction. Baltimore, Maryland: Johns Hopkins University Press. pp. 99–100. ISBN978-1-4214-1776-9.
  50. Edwards, C.H. Jr. (1979). The Historical Development of the Calculus(First ed.). New York City, New York: Springer-Verlag. p. 75. ISBN 978-0-387-94313-8.
  51. Lawson, Russell M. (2004). Science in the Ancient World: An Encyclopedia. Santa Barbara, California: ABC-CLIO. pp. 190–91. ISBN978-1-85109-539-1.
  52. Murphy, Trevor Morgan (2004). Pliny the Elder’s Natural History: The Empire in the Encyclopedia. Oxford, England: Oxford University Press. p. 1. ISBN9780199262885.
  53. Doode, Aude (2010). Pliny’s Encyclopedia: The Reception of the Natural History. Cambridge, England: Cambridge University Press. p. 1. ISBN9781139484534.
  54. Smith, A. Mark (June 2004), “What is the History of Medieval Optics Really About?”, Proceedings of the American Philosophical Society, 148(2): 180–94, JSTOR 1558283, PMID 15338543
  55. Lindberg, David C. (2007). “Roman and early medieval science”. The beginnings of Western science: the European Scientific tradition in philosophical, religious, and institutional context (Second ed.). Chicago, Illinois: University of Chicago Press. pp. 132–162. ISBN978-0-226-48205-7.
  56. Wildberg, Christian (May 1, 2018). Zalta, Edward N. (ed.). The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University – via Stanford Encyclopedia of Philosophy.
  57. Aristotle, PhysicsII, 3, and Metaphysics V, 2
  58. Grant, Edward (1996). The Foundations of Modern Science in the Middle Ages: Their Religious, Institutional and Intellectual Contexts. Cambridge Studies in the History of Science. Cambridge University Press. pp. 7–17. ISBN978-0521567626.
  59. Grant, Edward (2007). “Islam and the eastward shift of Aristotelian natural philosophy”. A History of Natural Philosophy: From the Ancient World to the Nineteenth Century. Cambridge University Press. pp. 62–67. ISBN978-0-521-68957-1.
  60. The Cambridge history of Iran. Fisher, W.B. (William Bayne). Cambridge: University Press. 1968–1991. ISBN978-0521200936. OCLC 745412.
  61. “Bayt al-Hikmah”. Encyclopædia Britannica. Archivedfrom the original on November 4, 2016. Retrieved November 3, 2016.
  62. Klein-Frank, F. Al-Kindi. In Leaman, O & Nasr, H (2001). History of Islamic Philosophy. London: Routledge. p. 165. Felix Klein-Frank (2001) Al-Kindi, pp. 166–67. In Oliver Leaman & Hossein Nasr. History of Islamic Philosophy. London: Routledge.
  63. “Science in Islam”. Oxford Dictionary of the Middle Ages. 2009.
  64. Toomer, G.J. (1964). “Reviewed work: Ibn al-Haythams Weg zur Physik, Matthias Schramm”. Isis. 55(4): 463–65. doi:1086/349914. JSTOR 228328. See p. 464: “Schramm sums up [Ibn Al-Haytham’s] achievement in the development of scientific method.”, p. 465: “Schramm has demonstrated .. beyond any dispute that Ibn al-Haytham is a major figure in the Islamic scientific tradition, particularly in the creation of experimental techniques.” p. 465: “only when the influence of ibn al-Haytam and others on the mainstream of later medieval physical writings has been seriously investigated can Schramm’s claim that ibn al-Haytam was the true founder of modern physics be evaluated.”
  65. Smith 2001:Book I, [6.54]. p. 372
  66. Selin, H (2006). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. pp. 155–156. Bibcode:book…..S. ISBN978-1-4020-4559-2.
  67. Numbers, Ronald (2009). 9780674057418 Galileo Goes to Jail and Other Myths about Science and ReligionCheck |url= value (help). Harvard University Press. p. 45. ISBN 978-0-674-03327-6.
  68. Shwayder, Maya (April 7, 2011). “Debunking a myth”. The Harvard Gazette. Retrieved May 11, 2019.
  69. Smith 2001
  70. McGinnis, Jon (2010). The Canon of Medicine. Oxford University. p. 227.
  71. Lindberg, David (1992). The Beginnings of Western Science. University of Chicago Press. p. 162. ISBN9780226482040.
  72. “St. Albertus Magnus | German theologian, scientist, and philosopher”. Archivedfrom the original on October 28, 2017. Retrieved October 27, 2017.
  73. Smith, A. Mark (2001). “Alhacen’s Theory of Visual Perception: A Critical Edition, with English Translation and Commentary, of the First Three Books of Alhacen’s “De aspectibus”, the Medieval Latin Version of Ibn al-Haytham’s “Kitāb al-Manāẓir”: Volume One”. Transactions of the American Philosophical Society. 91(4): i–337. JSTOR 3657358.
  74. Smith, A. Mark (1981). “Getting the Big Picture in Perspectivist Optics”. Isis. 72(4): 568–89. doi:1086/352843. JSTOR 231249. PMID 7040292.
  75. Goldstein, Bernard R (2016). “Copernicus and the Origin of his Heliocentric System”. Journal for the History of Astronomy. 33(3): 219–35. doi:1177/002182860203300301.
  76. Cohen, H. Floris(2010). How modern science came into the world. Four civilizations, one 17th-century breakthrough(Second ed.). Amsterdam: Amsterdam University Press. ISBN 9789089642394.
  77. “Galileo and the Birth of Modern Science”. American Heritage of Invention and Technology. 24.
  78. van Helden, Al (1995). “Pope Urban VIII”. The Galileo Project. Archivedfrom the original on November 11, 2016. Retrieved November 3, 2016.
  79. MacTutor Archive, Gottfried Wilhelm von Leibniz
  80. Freudenthal, Gideon; McLaughlin, Peter (May 20, 2009). The Social and Economic Roots of the Scientific Revolution: Texts by Boris Hessen and Henryk Grossmann. Springer Science & Business Media. ISBN9781402096044.
  81. Thomas G. Bergin (ed.), Encyclopedia of the Renaissance(Oxford and New York: New Market Books, 1987).
  82. see Hall (1954), iii; Mason (1956), 223.
  83. Cassels, Alan. Ideology and International Relations in the Modern World. p. 2.
  84. Ross, Sydney (1962). “Scientist: The story of a word”(PDF). Annals of Science. 18(2): 65–85. doi:1080/00033796200202722. Retrieved March 8, 2011.To be exact, the person who coined the term scientist was referred to in Whewell 1834 only as “some ingenious gentleman.” Ross added a comment that this “some ingenious gentleman” was Whewell himself, without giving the reason for the identification. Ross 1962, p. 72.
  85. von Bertalanffy, Ludwig (1972). “The History and Status of General Systems Theory”. The Academy of Management Journal. 15(4): 407–26. doi:2307/255139. JSTOR 255139.
  86. Naidoo, Nasheen; Pawitan, Yudi; Soong, Richie; Cooper, David N.; Ku, Chee-Seng (October 2011). “Human genetics and genomics a decade after the release of the draft sequence of the human genome”. Human Genomics. 5(6): 577–622. doi:1186/1479-7364-5-6-577. PMC 3525251. PMID 22155605.
  87. Rashid, S. Tamir; Alexander, Graeme J.M. (March 2013). “Induced pluripotent stem cells: from Nobel Prizes to clinical applications”. Journal of Hepatology. 58(3): 625–629. doi:1016/j.jhep.2012.10.026. ISSN 1600-0641. PMID 23131523.
  88. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O.D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P.A.; Amato, A.; Ananyeva, A.; Anderson, S.B.; Anderson, W.G.; Angelova, S.V.; et al. (2017). “Multi-messenger Observations of a Binary Neutron Star Merger”. The Astrophysical Journal. 848(2): L12. arXiv:05833. Bibcode:2017ApJ…848L..12A. doi:10.3847/2041-8213/aa91c9.
  89. Cho, Adrian (2017). “Merging neutron stars generate gravitational waves and a celestial light show”. Science. doi:1126/science.aar2149.
  90. “Scientific Method: Relationships Among Scientific Paradigms”. Seed Magazine. March 7, 2007. Archived from the originalon November 1, 2016. Retrieved November 4,2016.
  91. Bunge, Mario Augusto (1998). Philosophy of Science: From Problem to Theory. Transaction Publishers. p. 24. ISBN978-0-7658-0413-6.
  92. Popper, Karl R. (2002a) [1959]. “A survey of some fundamental problems”. The Logic of Scientific Discovery. New York, New York: Routledge Classics. pp. 3–26. ISBN978-0-415-27844-7. OCLC 59377149.
  93. Gauch Jr., Hugh G. (2003). “Science in perspective”. Scientific Method in Practice. Cambridge, United Kingdom: Cambridge University Press. pp. 21–73. ISBN978-0-52-101708-4.
  94. Oglivie, Brian W. (2008). “Introduction”. The Science of Describing: Natural History in Renaissance Europe(Paperback ed.). Chicago, Illinois: University of Chicago Press. pp. 1–24. ISBN978-0-226-62088-6.
  95. “Natural History”. Princeton University WordNet. Archivedfrom the original on March 3, 2012. Retrieved October 21, 2012.
  96. Tomalin, Marcus (2006). Linguistics and the Formal Sciences. doi:2277/0521854814.
  97. Löwe, Benedikt (2002). “The Formal Sciences: Their Scope, Their Foundations, and Their Unity”. Synthese. 133: 5–11. doi:1023/a:1020887832028.
  98. Bill, Thompson (2007), “2.4 Formal Science and Applied Mathematics”, The Nature of Statistical Evidence, Lecture Notes in Statistics, 189(1st ed.), Springer, p. 15
  99. Mujumdar, Anshu Gupta; Singh, Tejinder (2016). “Cognitive science and the connection between physics and mathematics”. In Anthony Aguirre; Brendan Foster (eds.). Trick or Truth?: The Mysterious Connection Between Physics and Mathematics. The Frontiers Collection (1st ed.). Switzerland: SpringerNature. pp. 201–218. ISBN978-3-319-27494-2.
  100. Richard Dawkins (May 10, 2006). “To Live at All Is Miracle Enough”. RichardDawkins.net. Archived from the originalon January 19, 2012. Retrieved February 5, 2012.
  101. Stanovich, Keith E. (2007). How to Think Straight About Psychology. Boston: Pearson Education. pp. 106–147. ISBN978-0-205-68590-5.
  102. “The amazing point is that for the first time since the discovery of mathematics, a method has been introduced, the results of which have an intersubjective value!” (Author’s punctuation)}} —di Francia, Giuliano Toraldo (1976). “The method of physics”. The Investigation of the Physical World. Cambridge, United Kingdom: Cambridge University Press. pp. 1–52. ISBN978-0-521-29925-1.
  103. Wilson, Edward (1999). Consilience: The Unity of Knowledge. New York: Vintage. ISBN978-0-679-76867-8.
  104. Fara, Patricia (2009). “Decisions”. Science: A Four Thousand Year History. Oxford, United Kingdom: Oxford University Press. p. 408. ISBN978-0-19-922689-4.
  105. Nola, Robert; Irzik, Gürol (2005k). “naive inductivism as a methodology in science”. Philosophy, science, education and culture. Science & technology education library. 28. Springer. pp. 207–230. ISBN978-1-4020-3769-6.
  106. Nola, Robert; Irzik, Gürol (2005j). “The aims of science and critical inquiry”. Philosophy, science, education and culture. Science & technology education library. 28. Springer. pp. 207–230. ISBN978-1-4020-3769-6.
  107. van Gelder, Tim (1999). “”Heads I win, tails you lose”: A Foray Into the Psychology of Philosophy”(PDF). University of Melbourne. Archived from the original (PDF) on April 9, 2008. Retrieved March 28, 2008.
  108. Pease, Craig (September 6, 2006). “Chapter 23. Deliberate bias: Conflict creates bad science”. Science for Business, Law and Journalism. Vermont Law School. Archived from the originalon June 19, 2010.
  109. Shatz, David (2004). Peer Review: A Critical Inquiry. Rowman & Littlefield. ISBN978-0-7425-1434-8. OCLC 54989960.
  110. Krimsky, Sheldon (2003). Science in the Private Interest: Has the Lure of Profits Corrupted the Virtue of Biomedical Research. Rowman & Littlefield. ISBN978-0-7425-1479-9. OCLC 185926306.
  111. Bulger, Ruth Ellen; Heitman, Elizabeth; Reiser, Stanley Joel (2002). The Ethical Dimensions of the Biological and Health Sciences (2nd ed.). Cambridge University Press. ISBN978-0-521-00886-0. OCLC 47791316.
  112. Backer, Patricia Ryaby (October 29, 2004). “What is the scientific method?”. San Jose State University. Archived from the originalon April 8, 2008. Retrieved March 28, 2008.
  113. Ziman, John (1978c). “Common observation”. Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press. pp. 42–76. ISBN978-0-521-22087-3.
  114. Ziman, John (1978c). “The stuff of reality”. Reliable knowledge: An exploration of the grounds for belief in science. Cambridge: Cambridge University Press. pp. 95–123. ISBN978-0-521-22087-3.
  115. Popper, Karl R. (2002e) [1959]. “The problem of the empirical basis”. The Logic of Scientific Discovery. New York, New York: Routledge Classics. pp. 3–26. ISBN978-0-415-27844-7. OCLC 59377149.
  116. “SIAM: Graduate Education for Computational Science and Engineering”. Society for Industrial and Applied Mathematics. Archivedfrom the original on December 28, 2016. Retrieved November 4, 2016.
  117. Godfrey-Smith, Peter (2003c). “Induction and confirmation”. Theory and Reality: An Introduction to the Philosophy of Science (1st ed.). Chicago, Illinois: University of Chicago. pp. 39–56. ISBN978-0-226-30062-7.
  118. Godfrey-Smith, Peter (2003o). “Empiricism, naturalism, and scientific realism?”. Theory and Reality: An Introduction to the Philosophy of Science (1st ed.). Chicago, Illinois: University of Chicago. pp. 219–232. ISBN978-0-226-30062-7.
  119. Godfrey-Smith, Peter (2003b). “Logic plus empiricism”. Theory and Reality: An Introduction to the Philosophy of Science (1st ed.). Chicago, Illinois: University of Chicago. pp. 19–38. ISBN978-0-226-30062-7.
  120. Godfrey-Smith, Peter (2003d). “Popper: Conjecture and refutation”. Theory and Reality: An Introduction to the Philosophy of Science (1st ed.). Chicago, Illinois: University of Chicago. pp. 57–74. ISBN978-0-226-30062-7.
  121. Godfrey-Smith, Peter (2003g). “Lakatos, Laudan, Feyerabend, and frameworks”. Theory and Reality: An Introduction to the Philosophy of Science (1st ed.). Chicago, Illinois: University of Chicago. pp. 102–121. ISBN978-0-226-30062-7.
  122. Popper, Karl (1972). Objective Knowledge.
  123. “Shut up and multiply”. LessWrong Wiki. September 13, 2015. Archivedfrom the original on October 19, 2016. Retrieved November 4, 2016.
  124. Newton-Smith, W.H. (1994). The Rationality of Science. London: Routledge. p. 30. ISBN978-0-7100-0913-5.
  125. Bird, Alexander (2013). Zalta, Edward N. (ed.). “Thomas Kuhn”. Stanford Encyclopedia of Philosophy. Retrieved October 26, 2015.
  126. S. Kuhn, The Structure of Scientific Revolutions, 2nd. ed., Chicago: Univ. of Chicago Pr., 1970, p. 206. ISBN0-226-45804-0
  127. Godfrey-Smith, Peter (2003j). “Naturalistic philosophy in theory and practice”. Theory and Reality: An Introduction to the Philosophy of Science (1st ed.). Chicago, Illinois: University of Chicago. pp. 149–162. ISBN978-0-226-30062-7.
  128. Brugger, E. Christian (2004). “Casebeer, William D. Natural Ethical Facts: Evolution, Connectionism, and Moral Cognition”. The Review of Metaphysics. 58(2).
  129. Winther, Rasmus Grønfeldt (2015). “The Structure of Scientific Theories”. Stanford Encyclopedia of Philosophy. Retrieved November 4, 2016.
  130. Popper, Karl Raimund (1996). In Search of a Better World: Lectures and Essays From Thirty Years. New York, New York: Routledge. ISBN978-0-415-13548-1.
  131. Dawkins, Richard; Coyne, Jerry (September 2, 2005). “One side can be wrong”. The Guardian. London. Archivedfrom the original on December 26, 2013.
  132. “Barry Stroud on Scepticism”. philosophy bites. December 16, 2007. Archivedfrom the original on January 23, 2012. Retrieved February 5, 2012.
  133. Peirce (1877), “The Fixation of Belief”, Popular Science Monthly, v. 12, pp. 1–15, see §IV on  6–7ArchivedApril 15, 2016, at the Wayback Machine. Reprinted Collected Papers v. 5, paragraphs 358–87 (see 374–76), Writings v. 3, pp. 242–57 (see 247–48), Essential Peirce v. 1, pp. 109–23 (see 114–15), and elsewhere.
  134. Peirce (1905), “Issues of Pragmaticism”, The Monist, v. XV, n. 4, pp. 481–99, see “Character V” on  491. Reprinted in Collected Papersv. 5, paragraphs 438–63 (see 451), Essential Peirce v. 2, pp. 346–59 (see 353), and elsewhere.
  135. Peirce (1868), “Some Consequences of Four Incapacities”, Journal of Speculative Philosophy 2, n. 3, pp. 140–57, see p. 141Archived April 15, 2016, at the Wayback Machine. Reprinted in Collected Papers, v. 5, paragraphs 264–317, Writings v. 2, pp. 211–42, Essential Peirce v. 1, pp. 28–55, and elsewhere.
  136. Ziman, J.M.(1980). “The proliferation of scientific literature: a natural process”. Science. 208 (4442): 369–71. Bibcode:..208..369Z. doi:10.1126/science.7367863. PMID 7367863.
  137. Subramanyam, Krishna; Subramanyam, Bhadriraju (1981). Scientific and Technical Information Resources. CRC Press. ISBN978-0-8247-8297-9. OCLC 232950234.
  138. “MEDLINE Fact Sheet”. Washington DC: United States National Library of Medicine. Archivedfrom the original on October 16, 2011. Retrieved October 15, 2011.
  139. Petrucci, Mario. “Creative Writing – Science”. Archived from the originalon January 6, 2009. Retrieved April 27,2008.
  140. Schooler, J. W. (2014). “Metascience could rescue the ‘replication crisis’”. Nature. 515(7525): 9. Bibcode:515….9S. doi:10.1038/515009a. PMID 25373639.
  141. Smith, Noah. “Why ‘Statistical Significance’ Is Often Insignificant”. Bloomberg. Retrieved November 7, 2017.
  142. Pashler, Harold; Wagenmakers, Eric Jan (2012). “Editors’ Introduction to the Special Section on Replicability in Psychological Science: A Crisis of Confidence?”. Perspectives on Psychological Science. 7(6): 528–530. doi:1177/1745691612465253. PMID 26168108.
  143. Ioannidis, John P. A.; Fanelli, Daniele; Dunne, Debbie Drake; Goodman, Steven N. (October 2, 2015). “Meta-research: Evaluation and Improvement of Research Methods and Practices”. PLOS Biology. 13(10): –1002264. doi:1371/journal.pbio.1002264. ISSN 1545-7885. PMC 4592065. PMID 26431313.
  144. Feynman, Richard (1974). “Cargo Cult Science”. Center for Theoretical Neuroscience. Columbia University. Archived from the originalon March 4, 2005. Retrieved November 4,2016.
  145. Novella, Steven, et al. The Skeptics’ Guide to the Universe: How to Know What’s Really Real in a World Increasingly Full of Fake. Grand Central Publishing, 2018. pp. 162.
  146. “Coping with fraud”(PDF). The COPE Report 1999: 11–18. Archived from the original (PDF) on September 28, 2007. Retrieved July 21, 2011. It is 10 years, to the month, since Stephen Lock … Reproduced with kind permission of the Editor, The Lancet.
  147. “Eusocial climbers”(PDF). E.O. Wilson Foundation. Retrieved September 3, 2018. But he’s not a scientist, he’s never done scientific research. My definition of a scientist is that you can complete the following sentence: ‘he or she has shown that…’,” Wilson says.
  148. “Our definition of a scientist”. Science Council. Retrieved September 7, 2018. A scientist is someone who systematically gathers and uses research and evidence, making a hypothesis and testing it, to gain and share understanding and knowledge.
  149. Cyranoski, David; Gilbert, Natasha; Ledford, Heidi; Nayar, Anjali; Yahia, Mohammed (2011). “Education: The PhD factory”. Nature. 472(7343): 276–79. Bibcode:472..276C. doi:10.1038/472276a. PMID 21512548.
  150. Kwok, Roberta (2017). “Flexible working: Science in the gig economy”. Nature. 550: 419–21. doi:1038/nj7677-549a.
  151. Woolston, Chris (2007). Editorial (ed.). “Many junior scientists need to take a hard look at their job prospects”. Nature. 550: 549–552. doi:1038/nj7677-549a.
  152. Lee, Adrian; Dennis, Carina; Campbell, Phillip (2007). “Graduate survey: A love–hurt relationship”. Nature. 550(7677): 549–52. doi:1038/nj7677-549a.
  153. Stockton, Nick (October 7, 2014), “How did the Nobel Prize become the biggest award on Earth?”, Wired, retrieved September 3, 2018
  154. “Nobel Prize Facts”. Nobel Foundation. Archivedfrom the original on July 8, 2017. Retrieved October 11, 2015.
  155. Spanier, Bonnie (1995). “From Molecules to Brains, Normal Science Supports Sexist Beliefs about Difference”. Im/partial Science: Gender Identity in Molecular Biology. Indiana University Press. ISBN9780253209689.
  156. Rosser, Sue V. (March 12, 2012). Breaking into the Lab: Engineering Progress for Women in Science. New York: New York University Press. p. 7. ISBN978-0-8147-7645-2.
  157. Goulden, Mark; Frasch, Karie; Mason, Mary Ann (2009). Staying Competitive: Patching America’s Leaky Pipeline in the Sciences. University of Berkeley Law.
  158. Change of Heart: Career intentions and the chemistry PhD. Royal Society of Chemistry. 2008.
  159. Parrott, Jim (August 9, 2007). “Chronicle for Societies Founded from 1323 to 1599”. Scholarly Societies Project. Archivedfrom the original on January 6, 2014. Retrieved September 11, 2007.
  160. “The Environmental Studies Association of Canada – What is a Learned Society?”. Archived from the originalon May 29, 2013. Retrieved May 10, 2013.
  161. “Learned societies & academies”. Archived from the originalon June 3, 2014. Retrieved May 10, 2013.
  162. “Accademia Nazionale dei Lincei”(in Italian). 2006. Archived from the original on February 28, 2010. Retrieved September 11, 2007.
  163. Meynell, G.G. “The French Academy of Sciences, 1666–91: A reassessment of the French Académie royale des sciences under Colbert (1666–83) and Louvois (1683–91)”. Archived from the originalon January 18, 2012. Retrieved October 13, 2011.
  164. Bush, Vannevar (July 1945). “Science the Endless Frontier”. National Science Foundation. Archivedfrom the original on November 7, 2016. Retrieved November 4, 2016.
  165. “Main Science and Technology Indicators – 2008-1”(PDF). OECD. Archived from the original(PDF) on February 15, 2010.
  166. Ladwig, Peter (2012). “Perceived familiarity or factual knowledge? Comparing operationalizations of scientific understanding”. Science and Public Policy. 39(6): 761–74. doi:1093/scipol/scs048.
  167. Eveland, William (2004). “How Web Site Organization Influences Free Recall, Factual Knowledge, and Knowledge Structure Density”. Human Communication Research. 30(2): 208–33. doi:1111/j.1468-2958.2004.tb00731.x.
  168. Dickson, David (October 11, 2004). “Science journalism must keep a critical edge”. Science and Development Network. Archived from the originalon June 21, 2010.
  169. Mooney, Chris (November–December 2004). “Blinded By Science, How ‘Balanced’ Coverage Lets the Scientific Fringe Hijack Reality”. Columbia Journalism Review. Vol. 43 no. 4. Archivedfrom the original on January 17, 2010. Retrieved February 20, 2008.
  170. McIlwaine, S.; Nguyen, D.A. (2005). “Are Journalism Students Equipped to Write About Science?”. Australian Studies in Journalism. 14: 41–60. Archivedfrom the original on August 1, 2008. Retrieved February 20, 2008.
  171. Goldberg, Jeanne (2017). “The Politicization of Scientific Issues: Looking through Galileo’s Lens or through the Imaginary Looking Glass”. Skeptical Inquirer. 41(5): 34–39. Archived from the original on August 16, 2018. Retrieved August 16, 2018.
  172. Bolsen, Toby; Druckman, James N. (2015). “Counteracting the Politicization of Science”. Journal of Communication (65): 746.
  173. Freudenberg, William F. “Scientific Certainty Argumentation Methods (SCAMs): Science and the Politics of Doubt”. Sociological Inquiry. 78: 2–38. doi:1111/j.1475-682X.2008.00219(inactive December 4, 2019).
  174. van der Linden, Sander; Leiserowitz, Anthony; Rosenthal, Seth; Maibach, Edward (2017). “Inoculating the Public against Misinformation about Climate Change”(PDF). Global Challenges. 1 (2): 1. doi:1002/gch2.201600008. PMC 6607159. PMID 31565263.

Понравилась статья? Поделить с друзьями:
  • The word strong in a sentence
  • The word science comes from science deals with
  • The word stroke in a sentence
  • The word school in russian
  • The word stress is very popular nowadays different articles and tv shows reveal the unpleasant