«Lase» redirects here. For uses of «Laze», see Laze.
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word laser is an anacronym that originated as an acronym for light amplification by stimulated emission of radiation.[1][2][3][4][5] The first laser was built in 1960 by Theodore Maiman at Hughes Research Laboratories, based on theoretical work by Charles H. Townes and Arthur Leonard Schawlow.[6]
Red (660 & 635 nm), green (532 & 520 nm), and blue-violet (445 & 405 nm) lasers
A laser differs from other sources of light in that it emits light that is coherent. Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as laser cutting and lithography. Spatial coherence also allows a laser beam to stay narrow over great distances (collimation), enabling applications such as laser pointers and lidar (light detection and ranging). Lasers can also have high temporal coherence, which allows them to emit light with a very narrow spectrum. Alternatively, temporal coherence can be used to produce ultrashort pulses of light with a broad spectrum but durations as short as a femtosecond.
Lasers are used in optical disc drives, laser printers, barcode scanners, DNA sequencing instruments, fiber-optic, and free-space optical communication, semiconducting chip manufacturing (photolithography), laser surgery and skin treatments, cutting and welding materials, military and law enforcement devices for marking targets and measuring range and speed, and in laser lighting displays for entertainment. Semiconductor lasers in the blue to near-UV have also been used in place of light-emitting diodes (LEDs) to excite fluorescence as a white light source. This permits a much smaller emitting area due to the much greater radiance of a laser and avoids the droop suffered by LEDs; such devices are already used in some car headlamps.[7][8][9][10]
Fundamentals
Lasers are distinguished from other light sources by their coherence. Spatial (or transverse) coherence is typically expressed through the output being a narrow beam, which is diffraction-limited. Laser beams can be focused to very tiny spots, achieving a very high irradiance, or they can have a very low divergence to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a polarized wave at a single frequency, whose phase is correlated over a relatively great distance (the coherence length) along the beam.[11] A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase that vary randomly with respect to time and position, thus having a short coherence length.
Lasers are characterized according to their wavelength in a vacuum. Most «single wavelength» lasers produce radiation in several modes with slightly different wavelengths. Although temporal coherence implies some degree of monochromaticity, some lasers emit a broad spectrum of light or emit different wavelengths of light simultaneously. Some lasers are not single spatial mode and have light beams that diverge more than is required by the diffraction limit. All such devices are classified as «lasers» based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies.
Terminology
The first device using amplification by stimulated emission operated at microwave frequencies, and was named «maser» («microwave amplification by stimulated emission of radiation».) When similar optical devices were developed they were first known as «optical masers», until «microwave» was replaced by «light» in its acronym.[12]
All such devices operating at frequencies higher than microwaves are called lasers (including infrared lasers, ultraviolet lasers, X-ray laser, and gamma-ray laser). All devices operating at microwave or lower radio frequencies are called masers.
A laser that produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym. It has been humorously noted that the acronym LOSER, for «light oscillation by stimulated emission of radiation», would have been more correct.[13] With the widespread use of the original acronym as a common noun, optical amplifiers have come to be referred to as «laser amplifiers».
The back-formed verb to lase is frequently used in the field, meaning «to give off coherent light,»[14] especially about the gain medium of a laser; when a laser is operating it is said to be «lasing». The words laser and maser are also used in cases where there is a coherent state unconnected with any manufactured device, as in astrophysical maser and atom laser.
Design
Components of a typical laser:
- Gain medium
- Laser pumping energy
- High reflector
- Output coupler
- Laser beam
A laser consists of a gain medium, a mechanism to energize it, and something to provide optical feedback.[15] The gain medium is a material with properties that allow it to amplify light by way of stimulated emission. Light of a specific wavelength that passes through the gain medium is amplified (power increases). Feedback enables stimulated emission to amplify predominantly the optical frequency at the peak of the gain-frequency curve. As stimulated emission grows, eventually one frequency dominates over all others, meaning that a coherent beam has been formed.[16] The process of stimulated emission is analogous to that of an audio oscillator with positive feedback which can occur, for example, when the speaker in a public-address system is placed in proximity to the microphone. The screech one hears is audio oscillation at the peak of the gain-frequency curve for the amplifier.[17]
For the gain medium to amplify light, it needs to be supplied with energy in a process called pumping. The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a flash lamp or by another laser.
The most common type of laser uses feedback from an optical cavity—a pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of the two mirrors, the output coupler, is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity (whether the mirrors are flat or curved), the light coming out of the laser may spread out or form a narrow beam. In analogy to electronic oscillators, this device is sometimes called a laser oscillator.
Most practical lasers contain additional elements that affect the properties of the emitted light, such as the polarization, wavelength, and shape of the beam.[citation needed]
Laser physics
Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics.
Stimulated emission
Animation explaining stimulated emission and the laser principle
In the classical view, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the nucleus of an atom. However, quantum mechanical effects force electrons to take on discrete positions in orbitals. Thus, electrons are found in specific energy levels of an atom, two of which are shown below:
An electron in an atom can absorb energy from light (photons) or heat (phonons) only if there is a transition between energy levels that match the energy carried by the photon or phonon. For light, this means that any given transition will only absorb one particular wavelength of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process.
When an electron is excited from one state to that at a higher energy level with energy difference ΔE, it will not stay that way forever. Eventually, a photon will be spontaneously created from the vacuum having energy ΔE. Conserving energy, the electron transitions to a lower energy level that is not occupied, with transitions to different levels having different time constants. This process is called spontaneous emission. Spontaneous emission is a quantum-mechanical effect and a direct physical manifestation of the Heisenberg uncertainty principle. The emitted photon has a random direction, but its wavelength matches the absorption wavelength of the transition. This is the mechanism of fluorescence and thermal emission.
A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to the lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission.
Gain medium and cavity
A helium–neon laser demonstration. The glow running through the center of the tube is an electric discharge. This glowing plasma is the gain medium for the laser. The laser produces a tiny, intense spot on the screen to the right. The center of the spot appears white because the image is overexposed there.
Spectrum of a helium–neon laser. The actual bandwidth is much narrower than shown; the spectrum is limited by the measuring apparatus.
The gain medium is put into an excited state by an external source of energy. In most lasers, this medium consists of a population of atoms that have been excited into such a state using an outside light source, or an electrical field that supplies energy for atoms to absorb and be transformed into their excited states.
The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state: gas, liquid, solid, or plasma. The gain medium absorbs pump energy, which raises some electrons into higher energy («excited») quantum states. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property is called an optical amplifier. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.[18]
For lasing media with extremely high gain, so-called superluminescence, light can be sufficiently amplified in a single pass through the gain medium without requiring a resonator. Although often referred to as a laser (see for example nitrogen laser),[19] the light output from such a device lacks the spatial and temporal coherence achievable with lasers. Such a device cannot be described as an oscillator but rather as a high-gain optical amplifier that amplifies its spontaneous emission. The same mechanism describes so-called astrophysical masers/lasers.
The optical resonator is sometimes referred to as an «optical cavity», but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a maser.
The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption.
If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain (gain minus loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the lasing threshold. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification.
The light emitted
In most lasers, lasing begins with spontaneous emission into the lasing mode. This initial light is then amplified by stimulated emission in the gain medium. Stimulated emission produces light that matches the input signal in direction, wavelength, and polarization, whereas the phase of the emitted light is 90 degrees in lead of the stimulating light.[20] This, combined with the filtering effect of the optical resonator gives laser light its characteristic coherence, and may give it uniform polarization and monochromaticity, depending on the resonator’s design. The fundamental laser linewidth[21] of light emitted from the lasing resonator can be orders of magnitude narrower than the linewidth of light emitted from the passive resonator. Some lasers use a separate injection seeder to start the process off with a beam that is already highly coherent. This can produce beams with a narrower spectrum than would otherwise be possible.
In 1963, Roy J. Glauber showed that coherent states are formed from combinations of photon number states, for which he was awarded the Nobel Prize in physics.[22] A coherent beam of light is formed by single-frequency quantum photon states distributed according to a Poisson distribution. As a result, the arrival rate of photons in a laser beam is described by Poisson statistics.[16]
Many lasers produce a beam that can be approximated as a Gaussian beam; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with the transverse modes often approximated using Hermite–Gaussian or Laguerre-Gaussian functions. Some high-power lasers use a flat-topped profile known as a «tophat beam». Unstable laser resonators (not used in most lasers) produce fractal-shaped beams.[23] Specialized optical systems can produce more complex beam geometries, such as Bessel beams and optical vortexes.
Near the «waist» (or focal region) of a laser beam, it is highly collimated: the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However, due to diffraction, that can only remain true well within the Rayleigh range. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle that varies inversely with the beam diameter, as required by diffraction theory. Thus, the «pencil beam» directly generated by a common helium–neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the earth). On the other hand, the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam employing a lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode. That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser.
A laser beam profiler is used to measure the intensity profile, width, and divergence of laser beams.
Diffuse reflection of a laser beam from a matte surface produces a speckle pattern with interesting properties.
Quantum vs. classical emission processes
The mechanism of producing radiation in a laser relies on stimulated emission, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon[dubious – discuss] that was predicted by Albert Einstein, who derived the relationship between the A coefficient describing spontaneous emission and the B coefficient which applies to absorption and stimulated emission. However, in the case of the free electron laser, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to quantum mechanics.
Continuous and pulsed modes of operation
Mercury Laser Altimeter (MLA) of the MESSENGER spacecraft
A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course, even a laser whose output is normally continuous can be intentionally turned on and off at some rate to create pulses of light. When the modulation rate is on time scales much slower than the cavity lifetime and the period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a «modulated» or «pulsed» continuous wave laser. Most laser diodes used in communication systems fall into that category.
Continuous-wave operation
Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as continuous-wave (CW) laser. Many types of lasers can be made to operate in continuous-wave mode to satisfy such an application. Many of these lasers lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the frequency spacing between modes), typically a few nanoseconds or less. In most cases, these lasers are still termed «continuous-wave» as their output power is steady when averaged over longer periods, with the very high-frequency power variations having little or no impact on the intended application. (However, the term is not applied to mode-locked lasers, where the intention is to create very short pulses at the rate of the round-trip time.)
For continuous-wave operation, it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media, this is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level, which would be impractical, or destroying the laser by producing excessive heat. Such lasers cannot be run in CW mode.
Pulsed operation
The pulsed operation of lasers refers to any laser not classified as a continuous wave so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing many different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode.
In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up between pulses. In laser ablation, for example, a small volume of material at the surface of a workpiece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.
Other applications rely on the peak pulse power (rather than the energy in the pulse), especially to obtain nonlinear optical effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching.
The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some dye lasers and vibronic solid-state lasers produces optical gain over a wide bandwidth, making a laser possible that can thus generate pulses of light as short as a few femtoseconds (10−15 s).
Q-switching
In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or ‘Q’ of the cavity. Then, after the pump energy stored in the laser medium has approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power.
Mode locking
A mode-locked laser is capable of emitting extremely short pulses on the order of tens of picoseconds down to less than 10 femtoseconds. These pulses repeat at the round-trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the Fourier limit (also known as energy–time uncertainty), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is titanium-doped, artificially grown sapphire (Ti:sapphire), which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration.
Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science), for maximizing the effect of nonlinearity in optical materials (e.g. in second-harmonic generation, parametric down-conversion, optical parametric oscillators and the like). Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent, that is, the pulses (and not just their envelopes) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research.
Pulsed pumping
Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser that is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high-energy, fast pump was needed. The way to overcome this problem was to charge up large capacitors which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode.
History
Foundations
In 1917, Albert Einstein established the theoretical foundations for the laser and the maser in the paper «Zur Quantentheorie der Strahlung» («On the Quantum Theory of Radiation») via a re-derivation of Max Planck’s law of radiation, conceptually based upon probability coefficients (Einstein coefficients) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation.[24] In 1928, Rudolf W. Ladenburg confirmed the existence of the phenomena of stimulated emission and negative absorption.[25] In 1939, Valentin A. Fabrikant predicted the use of stimulated emission to amplify «short» waves.[26] In 1947, Willis E. Lamb and R. C. Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission.[25] In 1950, Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical pumping, which was experimentally demonstrated two years later by Brossel, Kastler, and Winter.[27]
Maser
In 1951, Joseph Weber submitted a paper on using stimulated emissions to make a microwave amplifier to the June 1952 Institute of Radio Engineers Vacuum Tube Research Conference at Ottawa, Ontario, Canada.[28] After this presentation, RCA asked Weber to give a seminar on this idea, and Charles H. Townes asked him for a copy of the paper.[29]
In 1953, Charles H. Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation. Townes’s maser was incapable of continuous output.[30] Meanwhile, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.
Townes reports that several eminent physicists—among them Niels Bohr, John von Neumann, and Llewellyn Thomas—argued the maser violated Heisenberg’s uncertainty principle and hence could not work. Others such as Isidor Rabi and Polykarp Kusch expected that it would be impractical and not worth the effort.[31] In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics, «for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle».
Laser
In April 1957, Japanese engineer Jun-ichi Nishizawa proposed the concept of a «semiconductor optical maser» in a patent application.[32]
External audio |
---|
“The Man, the Myth, the Laser”, Distillations Podcast, Science History Institute |
That same year, Charles H. Townes and Arthur Leonard Schawlow, then at Bell Labs, began a serious study of infrared «optical masers». As ideas developed, they abandoned infrared radiation to instead concentrate on visible light. In 1958, Bell Labs filed a patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the Physical Review, which was published in 1958.[33]
LASER notebook: First page of the notebook wherein Gordon Gould coined the acronym LASER, and described the elements required to construct one. Manuscript text: «Some rough calculations on the feasibility / of a LASER: Light Amplification by Stimulated / Emission of Radiation. / Conceive a tube terminated by optically flat / [Sketch of a tube] / partially reflecting parallel mirrors…»
Simultaneously Columbia University, graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium. When Gould and Townes met, they spoke of radiation emission, as a general subject; afterward, in November 1957, Gould noted his ideas for a «laser», including using an open resonator (later an essential laser-device component). Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance of this idea. Meanwhile, Schawlow and Townes had decided on an open-resonator laser design – apparently unaware of Prokhorov’s publications and Gould’s unpublished laser work.
At a conference in 1959, Gordon Gould first published the acronym «LASER» in the paper The LASER, Light Amplification by Stimulated Emission of Radiation.[3][13] Gould’s intention was that different «-ASER» acronyms should be used for different parts of the spectrum: «XASER» for x-rays, «UVASER» for ultraviolet, etc. «LASER» ended up becoming the generic term for non-microwave devices, although «RASER» was briefly popular for denoting radio-frequency-emitting devices.
Gould’s notes included possible applications for a laser, such as spectrometry, interferometry, radar, and nuclear fusion. He continued developing the idea and filed a patent application in April 1959. The United States Patent and Trademark Office (USPTO) denied his application, and awarded a patent to Bell Labs, in 1960. That provoked a twenty-eight-year lawsuit, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory when a Federal judge ordered the USPTO to issue patents to Gould for the optically pumped and the gas discharge laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians.[34]
On May 16, 1960, Theodore H. Maiman operated the first functioning laser[35][36] at Hughes Research Laboratories, Malibu, California, ahead of several research teams, including those of Townes, at Columbia University, Arthur L. Schawlow, at Bell Labs,[37] and Gould, at the TRG (Technical Research Group) company. Maiman’s functional laser used a flashlamp-pumped synthetic ruby crystal to produce red laser light at 694 nanometers wavelength. The device was only capable of pulsed operation, due to its three-level pumping design scheme. Later that year, the Iranian physicist Ali Javan, and William R. Bennett Jr., and Donald R. Herriott, constructed the first gas laser, using helium and neon that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the Albert Einstein World Award of Science in 1993. Basov and Javan proposed the semiconductor laser diode concept. In 1962, Robert N. Hall demonstrated the first laser diode device, which was made of gallium arsenide and emitted in the near-infrared band of the spectrum at 850 nm. Later that year, Nick Holonyak Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen temperatures (77 K). In 1970, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Labs also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure.
Recent innovations
Graph showing the history of maximum laser pulse intensity since 1960
Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:
- new wavelength bands
- maximum average output power
- maximum peak pulse energy
- maximum peak pulse power
- minimum output pulse duration
- minimum linewidth
- maximum power efficiency
- minimum cost
and this research continues to this day.
In 2015, researchers made a white laser, whose light is modulated by a synthetic nanosheet made out of zinc, cadmium, sulfur, and selenium that can emit red, green, and blue light in varying proportions, with each wavelength spanning 191 nm.[38][39][40]
In 2017, researchers at the Delft University of Technology demonstrated an AC Josephson junction microwave laser.[41] Since the laser operates in the superconducting regime, it is more stable than other semiconductor-based lasers. The device has the potential for applications in quantum computing.[42] In 2017, researchers at the Technical University of Munich demonstrated the smallest mode locking laser capable of emitting pairs of phase-locked picosecond laser pulses with a repetition frequency up to 200 GHz.[43]
In 2017, researchers from the Physikalisch-Technische Bundesanstalt (PTB), together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder, established a new world record by developing an erbium-doped fiber laser with a linewidth of only 10 millihertz.[44][45]
Types and operating principles
Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The color codifies the type of laser material (see the figure description for more details).
Gas lasers
Following the invention of the HeNe gas laser, many other gas discharges have been found to amplify light coherently.
Gas lasers using many different gases have been built and used for many purposes. The helium–neon laser (HeNe) can operate at many different wavelengths, however, the vast majority are engineered to lase at 633 nm; these relatively low-cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial carbon dioxide (CO2) lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 µm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO2 laser is unusually high: over 30%.[46] Argon-ion lasers can operate at several lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen transverse electrical discharge in gas at atmospheric pressure (TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm.[47] Metal ion lasers are gas lasers that generate deep ultraviolet wavelengths. Helium-silver (HeAg) 224 nm and neon-copper (NeCu) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation linewidths, less than 3 GHz (0.5 picometers),[48] making them candidates for use in fluorescence suppressed Raman spectroscopy.
Lasing without maintaining the medium excited into a population inversion was demonstrated in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams.[49][50] This was accomplished by using an external maser to induce «optical transparency» in the medium by introducing and destructively interfering the ground electron transitions between two paths so that the likelihood for the ground electrons to absorb any energy has been canceled.
Chemical lasers
Chemical lasers are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high-power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the hydrogen fluoride laser (2700–2900 nm) and the deuterium fluoride laser (3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride.
Excimer lasers
Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules that can only exist with one atom in an excited electronic state. Once the molecule transfers its excitation energy to a photon, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at ultraviolet wavelengths with major applications including semiconductor photolithography and LASIK eye surgery. Commonly used excimer molecules include ArF (emission at 193 nm), KrCl (222 nm), KrF (248 nm), XeCl (308 nm), and XeF (351 nm).[51]
The molecular fluorine laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however, this appears to be a misnomer since F2 is a stable compound.
Solid-state lasers
Solid-state lasers use a crystalline or glass rod that is «doped» with ions that provide the required energy states. For example, the first working laser was a ruby laser, made from ruby (chromium-doped corundum). The population inversion is maintained in the dopant. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flash tube or another laser. The usage of the term «solid-state» in laser physics is narrower than in typical use. Semiconductor lasers (laser diodes) are typically not referred to as solid-state lasers.
Neodymium is a common dopant in various solid-state laser crystals, including yttrium orthovanadate (Nd:YVO4), yttrium lithium fluoride (Nd:YLF) and yttrium aluminium garnet (Nd:YAG). All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding, and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers. These lasers are also commonly frequency doubled, tripled or quadrupled to produce 532 nm (green, visible), 355 nm and 266 nm (UV) beams, respectively. Frequency-doubled diode-pumped solid-state (DPSS) lasers are used to make bright green laser pointers.
Ytterbium, holmium, thulium, and erbium are other common «dopants» in solid-state lasers.[52] Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020–1050 nm. They are potentially very efficient and high-powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.
Titanium-doped sapphire (Ti:sapphire) produces a highly tunable infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing ultrashort pulses of extremely high peak power.
Thermal limitations in solid-state lasers arise from unconverted pump power that heats the medium. This heat, when coupled with a high thermo-optic coefficient (dn/dT) can cause thermal lensing and reduce the quantum efficiency. Diode-pumped thin disk lasers overcome these issues by having a gain medium that is much thinner than the diameter of the pump beam. This allows for a more uniform temperature in the material. Thin disk lasers have been shown to produce beams of up to one kilowatt.[53]
Fiber lasers
Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have a high surface area to volume ratio which allows efficient cooling. In addition, the fiber’s waveguiding properties tend to reduce the thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.
Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding, and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions.
Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.
Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber. This effect is called photodarkening. In bulk laser materials, the cooling is not so efficient, and it is difficult to separate the effects of photodarkening from the thermal effects, but the experiments in fibers show that the photodarkening can be attributed to the formation of long-living color centers.[citation needed]
Photonic crystal lasers
Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the density of optical states (DOS) structure required for the feedback to take place.[clarification needed] They are typical micrometer-sized[dubious – discuss] and tunable on the bands of the photonic crystals.[54][clarification needed]
Semiconductor lasers
A 5.6 mm ‘closed can’ commercial laser diode, such as those used in a CD or DVD player
Semiconductor lasers are diodes that are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal forms an optical resonator, although the resonator can be external to the semiconductor in some designs.
Commercial laser diodes emit at wavelengths from 375 nm to 3500 nm.[55] Low to medium power laser diodes are used in laser pointers, laser printers and CD/DVD players. Laser diodes are also frequently used to optically pump other lasers with high efficiency. The highest-power industrial laser diodes, with power of up to 20 kW, are used in industry for cutting and welding.[56] External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.
In 2012, Nichia and OSRAM developed and manufactured commercial high-power green laser diodes (515/520 nm), which compete with traditional diode-pumped solid-state lasers.[57][58]
Vertical cavity surface-emitting lasers (VCSELs) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized,[59] and 1550 nm devices an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy sub-bands of an electron in a structure containing several quantum wells.
The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials that allow coherent light to be produced from silicon. These are called hybrid silicon laser. Recent developments have also shown the use of monolithically integrated nanowire lasers directly on silicon for optical interconnects, paving the way for chip-level applications.[60] These heterostructure nanowire lasers capable of optical interconnects in silicon are also capable of emitting pairs of phase-locked picosecond pulses with a repetition frequency up to 200 GHz, allowing for on-chip optical signal processing.[43] Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon.
Dye lasers
Dye lasers use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (on the order of a few femtoseconds). Although these tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. In their most prevalent form, these solid state dye lasers use dye-doped polymers as laser media.
Free-electron lasers
The free-electron laser FELIX at the FOM Institute for Plasma Physics Rijnhuizen, Nieuwegein
Free-electron lasers (FEL) generate coherent, high-power radiation that is widely tunable, currently ranging in wavelength from microwaves through terahertz radiation and infrared to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term free-electron.
Exotic media
The pursuit of a high-quantum-energy laser using transitions between isomeric states of an atomic nucleus has been the subject of wide-ranging academic research since the early 1970s. Much of this is summarized in three review articles.[61][62][63] This research has been international in scope but mainly based in the former Soviet Union and the United States. While many scientists remain optimistic that a breakthrough is near, an operational gamma-ray laser is yet to be realized.[64]
Some of the early studies were directed toward short pulses of neutrons exciting the upper isomer state in a solid so the gamma-ray transition could benefit from the line-narrowing of Mössbauer effect.[65][66] In conjunction, several advantages were expected from two-stage pumping of a three-level system.[67] It was conjectured that the nucleus of an atom, embedded in the near field of a laser-driven coherently-oscillating electron cloud would experience a larger dipole field than that of the driving laser.[68][69] Furthermore, the nonlinearity of the oscillating cloud would produce both spatial and temporal harmonics, so nuclear transitions of higher multipolarity could also be driven at multiples of the laser frequency.[70][71][72][73][74][75][76]
In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser.[77] Dr. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments.[77]
Space-based X-ray lasers pumped by a nuclear explosion have also been proposed as antimissile weapons.[78][79] Such devices would be one-shot weapons.
Living cells have been used to produce laser light.[80][81] The cells were genetically engineered to produce green fluorescent protein, which served as the laser’s gain medium. The cells were then placed between two 20-micrometer-wide mirrors, which acted as the laser cavity. When the cell was illuminated with blue light, it emitted intensely directed green laser light.
Natural lasers
Like astrophysical masers, irradiated planetary or stellar gases may amplify light producing a natural laser.[82] Mars,[83] Venus and MWC 349 exhibit this phenomenon.
Uses
When lasers were invented in 1960, they were called «a solution looking for a problem».[84] Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry, law enforcement, entertainment, and the military. Fiber-optic communication using lasers is a key technology in modern communications, allowing services such as the Internet.
The first widely noticeable use of lasers was the supermarket barcode scanner, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by laser printers.
Some other uses are:
- Communications: besides fiber-optic communication, lasers are used for free-space optical communication, including laser communication in space
- Medicine: see below
- Industry: cutting including converting thin materials, welding, material heat treatment, marking parts (engraving and bonding), additive manufacturing or 3D printing processes such as selective laser sintering and selective laser melting, non-contact measurement of parts and 3D scanning, and laser cleaning.
- Military: marking targets, guiding munitions, missile defense, electro-optical countermeasures (EOCM), lidar, blinding troops, firearms sight. See below
- Law enforcement: LIDAR traffic enforcement. Lasers are used for latent fingerprint detection in the forensic identification field[85][86]
- Research: spectroscopy, laser ablation, laser annealing, laser scattering, laser interferometry, lidar, laser capture microdissection, fluorescence microscopy, metrology, laser cooling
- Commercial products: laser printers, barcode scanners, thermometers, laser pointers, holograms, bubblegrams
- Entertainment: optical discs, laser lighting displays, laser turntables
In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of US$2.19 billion.[87] In the same year, approximately 733 million diode lasers, valued at US$3.20 billion, were sold.[88]
In medicine
Lasers have many uses in medicine, including laser surgery (particularly eye surgery), laser healing (photobiomodulation therapy), kidney stone treatment, ophthalmoscopy, and cosmetic skin treatments such as acne treatment, cellulite and striae reduction, and hair removal.
Lasers are used to treat cancer by shrinking or destroying tumors or precancerous growths. They are most commonly used to treat superficial cancers that are on the surface of the body or the lining of internal organs. They are used to treat basal cell skin cancer and the very early stages of others like cervical, penile, vaginal, vulvar, and non-small cell lung cancer. Laser therapy is often combined with other treatments, such as surgery, chemotherapy, or radiation therapy. Laser-induced interstitial thermotherapy (LITT), or interstitial laser photocoagulation, uses lasers to treat some cancers using hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. Lasers are more precise than traditional surgery methods and cause less damage, pain, bleeding, swelling, and scarring. A disadvantage is that surgeons must acquire specialized training and thus it will likely be more expensive than other treatments.[89][90]
As weapons
A laser weapon is a laser that is used as a directed-energy weapon.
Hobbies
In recent years, some hobbyists have taken an interest in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb (see safety), although some have made their own class IV types.[91] However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red), Blu-ray players (violet), or even higher power laser diodes from CD or DVD burners.[92]
Hobbyists have also used surplus lasers taken from retired military applications and modified them for holography. Pulsed ruby and YAG lasers work well for this application.
Examples by power
Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the peak power of each pulse. The peak power of a pulsed laser is many orders of magnitude greater than its average power. The average output power is always less than the power consumed.
Power | Use |
---|---|
1–5 mW | Laser pointers |
5 mW | CD-ROM drive |
5–10 mW | DVD player or DVD-ROM drive |
100 mW | High-speed CD-RW burner |
250 mW | Consumer 16× DVD-R burner |
400 mW | DVD 24× dual-layer recording[93] |
1 W | Green laser in Holographic Versatile Disc prototype development |
1–20 W | Output of the majority of commercially available solid-state lasers used for micro machining |
30–100 W | Typical sealed CO2 surgical lasers[94] |
100–3000 W | Typical sealed CO2 lasers used in industrial laser cutting |
Examples of pulsed systems with high peak power:
- 700 TW (700×1012 W)—National Ignition Facility, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber[95]
- 10 PW (10×1015 W)—world’s most powerful laser as of 2019, located at the ELI-NP facility in Măgurele, Romania.[96]
Safety
Left: European laser warning symbol required for Class 2 lasers and higher. Right: US laser warning label, in this case for a Class 3B laser
Even the first laser was recognized as being potentially dangerous. Theodore Maiman characterized the first laser as having the power of one «Gillette» as it could burn through one Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight when the beam hits the eye directly or after reflection from a shiny surface. At wavelengths which the cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the eye into an extremely small spot on the retina, resulting in localized burning and permanent damage in seconds or even less time.
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:
- Class 1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players
- Class 2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example, laser pointers.
- Class 3R (formerly IIIa) lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina.
- Class 3B lasers (5–499 mW) can cause immediate eye damage upon exposure
- Class 4 lasers (≥ 500 mW) can burn skin, and in some cases, even scattered light from these lasers can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.
The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.
Infrared lasers with wavelengths longer than about 1.4 micrometers are often referred to as «eye-safe», because the cornea tends to absorb light at these wavelengths, protecting the retina from damage. The label «eye-safe» can be misleading, however, as it applies only to relatively low-power continuous wave beams; a high-power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage, and even moderate-power lasers can injure the eye.
Lasers can be a hazard to both civil and military aviation, due to the potential to temporarily distract or blind pilots. See Lasers and aviation safety for more on this topic.
Cameras based on charge-coupled devices may be more sensitive to laser damage than biological eyes.[97]
See also
- Anti-laser
- Coherent perfect absorber
- Homogeneous broadening
- Laser linewidth
- List of laser articles
- List of light sources
- Nanolaser
- Sound amplification by stimulated emission of radiation
- Spaser
- Fabry–Pérot interferometer
References
- ^ «BBC 7 words you probably didn’t know were acronyms». BBC. Archived from the original on March 3, 2021. Retrieved May 18, 2021.
- ^ «Why Laser Doesn’t Have a ‘Z’«. Merriam Webster. Archived from the original on May 18, 2021. Retrieved May 18, 2021.
‘Laser’ is an acronym
- ^ a b Gould, R. Gordon (1959). «The LASER, Light Amplification by Stimulated Emission of Radiation». In Franken, P.A.; Sands R.H. (eds.). The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959. p. 128. OCLC 02460155.
- ^ «laser». Dictionary.com. Archived from the original on March 31, 2008. Retrieved May 15, 2008.
- ^ Taylor, Nick (2000). Laser: The Inventor, The Nobel Laureate, and The Thirty-Year Patent War. Simon & Schuster. ISBN 978-0684835150.
- ^ «December 1958: Invention of the Laser». aps.org. Archived from the original on December 10, 2021. Retrieved January 27, 2022.
- ^ «Semiconductor Sources: Laser plus phosphor emits white light without droop». Archived from the original on June 13, 2016. Retrieved February 4, 2019.
- ^ «Laser Lighting: White-light lasers challenge LEDs in directional lighting applications». Archived from the original on February 7, 2019. Retrieved February 4, 2019.
- ^ «How Laser-powered Headlights Work». November 7, 2011. Archived from the original on November 16, 2011. Retrieved February 4, 2019.
- ^ «Laser light for headlights: Latest trend in car lighting | OSRAM Automotive». Archived from the original on February 7, 2019. Retrieved February 4, 2019.
- ^ Conceptual physics, Paul Hewitt, 2002
- ^ «Schawlow and Townes invent the laser». Lucent Technologies. 1998. Archived from the original on October 17, 2006. Retrieved October 24, 2006.
- ^ a b Chu, Steven; Townes, Charles (2003). «Arthur Schawlow». In Edward P. Lazear (ed.). Biographical Memoirs. Vol. 83. National Academy of Sciences. p. 202. ISBN 978-0-309-08699-8.
- ^ «lase». Dictionary.com. Archived from the original on October 1, 2009. Retrieved December 10, 2011.
- ^ Siegman, Anthony E. (1986). Lasers. University Science Books. p. 2. ISBN 978-0-935702-11-8.
- ^ a b Pearsall, Thomas (2020). Quantum Photonics, 2nd edition. Graduate Texts in Physics. Springer. doi:10.1007/978-3-030-47325-9. ISBN 978-3-030-47324-2. S2CID 240934073. Archived from the original on February 25, 2021. Retrieved February 23, 2021.
- ^ Pearsall, Thomas (2010). Photonics Essentials, 2nd edition. McGraw-Hill. ISBN 978-0-07-162935-5. Archived from the original on August 17, 2021. Retrieved February 23, 2021.
- ^ Siegman, Anthony E. (1986). Lasers. University Science Books. p. 4. ISBN 978-0-935702-11-8.
- ^ Walker, Jearl (June 1974). «Nitrogen Laser». Light and Its Uses. Scientific American. pp. 40–43. ISBN 978-0-7167-1185-8.
- ^ Pollnau, M. (2018). «Phase aspect in photon emission and absorption» (PDF). Optica. 5 (4): 465–474. Bibcode:2018Optic…5..465P. doi:10.1364/OPTICA.5.000465. Archived from the original on February 8, 2023. Retrieved June 28, 2020.
- ^ Pollnau, M.; Eichhorn, M. (2020). «Spectral coherence, Part I: Passive resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation». Progress in Quantum Electronics. 72: 100255. Bibcode:2020PQE….7200255P. doi:10.1016/j.pquantelec.2020.100255.
- ^ Glauber, R.J. (1963). «Coherent and incoherent states of the radiation field» (PDF). Phys. Rev. 131 (6): 2766–2788. Bibcode:1963PhRv..131.2766G. doi:10.1103/PhysRev.131.2766. Archived (PDF) from the original on May 8, 2021. Retrieved February 23, 2021.
- ^ Karman, G.P.; McDonald, G.S.; New, G.H.C.; Woerdman, J.P. (November 1999). «Laser Optics: Fractal modes in unstable resonators». Nature. 402 (6758): 138. Bibcode:1999Natur.402..138K. doi:10.1038/45960. S2CID 205046813.
- ^ Einstein, A (1917). «Zur Quantentheorie der Strahlung». Physikalische Zeitschrift. 18: 121–128. Bibcode:1917PhyZ…18..121E.
- ^ a b Steen, W.M. «Laser Materials Processing», 2nd Ed. 1998.
- ^ Batani, Dimitri (2004). «Il rischio da laser: cosa è e come affrontarlo; analisi di un problema non così lontano da noi» [The risk from laser: what it is and what it is like facing it; analysis of a problem which is thus not far away from us]. wwwold.unimib.it. Programma Corso di Formazione Obbligatorio (in Italian). University of Milano-Bicocca. p. 12. Archived from the original (Powerpoint) on June 14, 2007. Retrieved January 1, 2007.
- ^ The Nobel Prize in Physics 1966 Archived June 4, 2011, at the Wayback Machine Presentation Speech by Professor Ivar Waller. Retrieved January 1, 2007.
- ^ «American Institute of Physics Oral History Interview with Joseph Weber». May 4, 2015. Archived from the original on March 8, 2016. Retrieved March 16, 2016.
- ^ Bertolotti, Mario (2015). Masers and Lasers: An Historical Approach (2nd ed.). CRC Press. pp. 89–91. ISBN 978-1-4822-1780-3. Retrieved March 15, 2016.
- ^ «Guide to Lasers». Hobarts. Archived from the original on April 24, 2019. Retrieved April 24, 2017.
- ^ Townes, Charles H. (1999). How the Laser Happened: Adventures of a Scientist, Oxford University Press, ISBN 978-0-19-512268-8, pp. 69–70.
- ^ Nishizawa, Jun-ichi (December 2009). «Extension of frequencies from maser to laser». Proc Jpn Acad Ser B Phys Biol Sci. 85 (10): 454–465. Bibcode:2009PJAB…85..454N. doi:10.2183/pjab.85.454. PMC 3621550. PMID 20009378.
- ^ Schawlow, Arthur; Townes, Charles (1958). «Infrared and Optical Masers». Physical Review. 112 (6): 1940–1949. Bibcode:1958PhRv..112.1940S. doi:10.1103/PhysRev.112.1940.
- ^ Joan Lisa Bromberg, The Laser in America, 1950–1970 (1991), pp. 74–77 online Archived May 28, 2014, at the Wayback Machine
- ^ Maiman, T. H. (1960). «Stimulated optical radiation in ruby». Nature. 187 (4736): 493–494. Bibcode:1960Natur.187..493M. doi:10.1038/187493a0. S2CID 4224209.
- ^ Townes, Charles Hard. «The first laser». University of Chicago. Archived from the original on April 4, 2004. Retrieved May 15, 2008.
- ^ Hecht, Jeff (2005). Beam: The Race to Make the Laser. Oxford University Press. ISBN 978-0-19-514210-5.
- ^ «For The First Time, A Laser That Shines Pure White». Popular Science. March 18, 2019. Archived from the original on December 16, 2019. Retrieved December 16, 2019.
- ^ «Researchers demonstrate the world’s first white lasers». phys.org. Archived from the original on December 16, 2019. Retrieved December 16, 2019.
- ^ «Scientists Finally Created a White Laser—and It Could Light Your Home». gizmodo.com. Archived from the original on December 16, 2019. Retrieved December 16, 2019.
- ^ «Researchers demonstrate new type of laser». Phys.org. Archived from the original on March 3, 2017. Retrieved March 4, 2017.
- ^ Cassidy, M. C.; Bruno, A.; Rubbert, S.; Irfan, M.; Kammhuber, J.; Schouten, R.N.; Akhmerov, A.R.; Kouwenhoven, L.P. (March 2, 2017). «Demonstration of an ac Josephson junction laser». Science. 355 (6328): 939–942. arXiv:1703.05404. Bibcode:2017Sci…355..939C. doi:10.1126/science.aah6640. PMID 28254938. S2CID 1364541.
- ^ a b Mayer, B.; Regler, A.; Sterzl, S.; Stettner, T.; Koblmüller, G.; Kaniber, M.; Lingnau, B.; Lüdge, K.; Finley, J.J. (May 23, 2017). «Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser». Nature Communications. 8: 15521. arXiv:1603.02169. Bibcode:2017NatCo…815521M. doi:10.1038/ncomms15521. PMC 5457509. PMID 28534489.
- ^ Erika Schow (June 29, 2017). «The Physikalisch-Technische Bundesanstalt has developed a laser with a linewidth of only 10 mHz» (Press release). Archived from the original on July 3, 2017.
- ^ Matei, D.G.; Legero, T.; Häfner, S.; et al. (June 30, 2017). «1.5 μm Lasers with Sub-10 mHz Linewidth». Phys. Rev. Lett. 118 (26): 263202. arXiv:1702.04669. Bibcode:2017PhRvL.118z3202M. doi:10.1103/PhysRevLett.118.263202. PMID 28707932. S2CID 206293342.
- ^ Nolen, Jim; Derek Verno. «The Carbon Dioxide Laser». Davidson Physics. Archived from the original on October 11, 2014. Retrieved August 17, 2014.
- ^ Csele, Mark (2004). «The TEA Nitrogen Gas Laser». Homebuilt Lasers Page. Archived from the original on September 11, 2007. Retrieved September 15, 2007.
- ^ «Deep UV Lasers» (PDF). Photon Systems, Covina, Calif. Archived from the original (PDF) on July 1, 2007. Retrieved May 27, 2007.
- ^ Mompart, J.; Corbalán, R. (2000). «Lasing without inversion». J. Opt. B. 2 (3): R7–R24. Bibcode:2000JOptB…2R…7M. doi:10.1088/1464-4266/2/3/201. S2CID 121209763. Archived from the original on February 8, 2023. Retrieved December 17, 2019.
- ^ Javan, A. (2000). «On knowing Marlan». Ode to a quantum physicist: A festschrift in honor of Marlan O. Scully. Elsevier.
- ^ Schuocker, D. (1998). Handbook of the Eurolaser Academy. Springer. ISBN 978-0-412-81910-0.
- ^ Bass, Michael; DeCusatis, Casimer; Enoch, Jay; Lakshminarayanan, Vasudevan; Li, Guifang; MacDonald, Carolyn; Mahajan, Virendra; Stryland, Eric Van (November 13, 2009). Handbook of Optics, Third Edition Volume V: Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics. McGraw Hill Professional. ISBN 978-0-07-163314-7. Archived from the original on February 8, 2023. Retrieved July 16, 2017.
- ^ C. Stewen, M. Larionov, and A. Giesen, «Yb:YAG thin disk laser with 1 kW output power», in OSA Trends in Optics and Photonics, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, ed. (Optical Society of America, Washington, D.C., 2000) pp. 35–41.
- ^ Wu, X.; et al. (October 25, 2004). «Ultraviolet photonic crystal laser». Applied Physics Letters. 85 (17): 3657. arXiv:physics/0406005. Bibcode:2004ApPhL..85.3657W. doi:10.1063/1.1808888. S2CID 119460787.
- ^ «Laser Diode Market». Hanel Photonics. Archived from the original on December 7, 2015. Retrieved September 26, 2014.
- ^ «High-power direct-diode lasers for cutting and welding». industrial-lasers.com. Archived from the original on August 11, 2018. Retrieved August 11, 2018.
- ^ «LASER Diode». nichia.co.jp. Archived from the original on March 18, 2014. Retrieved March 18, 2014.
- ^ «Green Laser». osram-os.com. August 19, 2015. Archived from the original on March 18, 2014. Retrieved March 18, 2014.
- ^ «Picolight ships first 4-Gbit/s 1310-nm VCSEL transceivers». Laser Focus World Online. December 9, 2005. Archived from the original on March 13, 2006. Retrieved May 27, 2006.
- ^ Mayer, B.; Janker, L.; Loitsch, B.; Treu, J.; Kostenbader, T.; Lichtmannecker, S.; Reichert, T.; Morkötter, S.; Kaniber, M.; Abstreiter, G.; Gies, C.; Koblmüller, G.; Finley, J.J. (January 13, 2016). «Monolithically Integrated High-β Nanowire Lasers on Silicon». Nano Letters. 16 (1): 152–156. Bibcode:2016NanoL..16..152M. doi:10.1021/acs.nanolett.5b03404. PMID 26618638.
- ^ Baldwin, G.C.; Solem, J.C.; Gol’danskii, V. I. (1981). «Approaches to the development of gamma-ray lasers». Reviews of Modern Physics. 53 (4): 687–744. Bibcode:1981RvMP…53..687B. doi:10.1103/RevModPhys.53.687.
- ^ Baldwin, G.C.; Solem, J.C. (1995). «Recent proposals for gamma-ray lasers». Laser Physics. 5 (2): 231–239.
- ^ Baldwin, G.C.; Solem, J.C. (1997). «Recoilless gamma-ray lasers». Reviews of Modern Physics. 69 (4): 1085–1117. Bibcode:1997RvMP…69.1085B. doi:10.1103/RevModPhys.69.1085. Archived from the original on July 28, 2019. Retrieved June 13, 2019.
- ^ Baldwin, G.C.; Solem, J.C. (1982). «Is the time ripe? Or must we wait so long for breakthroughs?». Laser Focus. 18 (6): 6&8.
- ^ Solem, J.C. (1979). «On the feasibility of an impulsively driven gamma-ray laser». Los Alamos Scientific Laboratory Report LA-7898. doi:10.2172/6010532. OSTI 6010532.
- ^ Baldwin, G.C.; Solem, J.C. (1979). «Maximum density and capture rates of neutrons moderated from a pulsed source». Nuclear Science & Engineering. 72 (3): 281–289. Bibcode:1979NSE….72..281B. doi:10.13182/NSE79-A20384. Archived from the original on February 7, 2016. Retrieved January 13, 2016.
- ^ Baldwin, G.C.; Solem, J.C. (1980). «Two-stage pumping of three-level Mössbauer gamma-ray lasers». Journal of Applied Physics. 51 (5): 2372–2380. Bibcode:1980JAP….51.2372B. doi:10.1063/1.328007.
- ^ Solem, J.C. (1986). «Interlevel transfer mechanisms and their application to grasers». AIP Conference Proceedings. Proceedings of Advances in Laser Science-I, First International Laser Science Conference, Dallas, TX 1985 (American Institute of Physics, Optical Science and Engineering, Series 6). Vol. 146. pp. 22–25. Bibcode:1986AIPC..146…22S. doi:10.1063/1.35861. Archived from the original on November 27, 2018. Retrieved November 27, 2018.
- ^ Biedenharn, L.C.; Boyer, K.; Solem, J.C. (1986). «Possibility of grasing by laser-driven nuclear excitation». AIP Conference Proceedings. Proceedings of AIP Advances in Laser Science-I, Dallas, TX, November 18–22, 1985. Vol. 146. pp. 50–51. Bibcode:1986AIPC..146…50B. doi:10.1063/1.35928.
- ^ Rinker, G.A.; Solem, J.C.; Biedenharn, L.C. (April 27, 1988). «Calculation of harmonic radiation and nuclear coupling arising from atoms in strong laser fields». In Jones, Randy C (ed.). Proc. SPIE 0875, Short and Ultrashort Wavelength Lasers. 1988 Los Angeles Symposium: O-E/LASE ’88, 1988, Los Angeles, CA, United States. Short and Ultrashort Wavelength Lasers. Vol. 146. International Society for Optics and Photonics. pp. 92–101. doi:10.1117/12.943887.
- ^ Rinker, G. A.; Solem, J.C.; Biedenharn, L.C. (1987). Lapp, M.; Stwalley, W.C.; Kenney-Wallace G.A. (eds.). «Nuclear interlevel transfer driven by collective outer shell electron excitations». Proceedings of the Second International Laser Science Conference, Seattle, WA (Advances in Laser Science-II). New York: American Institute of Physics. 160: 75–86. OCLC 16971600.
- ^ Solem, J.C. (1988). «Theorem relating spatial and temporal harmonics for nuclear interlevel transfer driven by collective electronic oscillation». Journal of Quantitative Spectroscopy and Radiative Transfer. 40 (6): 713–715. Bibcode:1988JQSRT..40..713S. doi:10.1016/0022-4073(88)90067-2. Archived from the original on March 18, 2020. Retrieved September 8, 2019.
- ^ Solem, J.C.; Biedenharn, L.C. (1987). «Primer on coupling collective electronic oscillations to nuclei» (PDF). Los Alamos National Laboratory Report LA-10878. Bibcode:1987pcce.rept…..S. Archived (PDF) from the original on March 4, 2016. Retrieved January 13, 2016.
- ^ Solem, J.C.; Biedenharn, L.C. (1988). «Laser coupling to nuclei via collective electronic oscillations: A simple heuristic model study». Journal of Quantitative Spectroscopy and Radiative Transfer. 40 (6): 707–712. Bibcode:1988JQSRT..40..707S. doi:10.1016/0022-4073(88)90066-0.
- ^ Boyer, K.; Java, H.; Luk, T.S.; McIntyre, I.A.; McPherson, A.; Rosman, R.; Solem, J.C.; Rhodes, C.K.; Szöke, A. (1987). «Discussion of the role of many-electron motions in multiphoton ionization and excitation». In Smith, S.; Knight, P. (eds.). Proceedings of International Conference on Multiphoton Processes (ICOMP) IV, July 13–17, 1987, Boulder, CA. Cambridge, England: Cambridge University Press. p. 58. OSTI 10147730.
- ^ Biedenharn, L.C.; Rinker, G.A.; Solem, J.C. (1989). «A solvable approximate model for the response of atoms subjected to strong oscillatory electric fields». Journal of the Optical Society of America B. 6 (2): 221–227. Bibcode:1989JOSAB…6..221B. doi:10.1364/JOSAB.6.000221. Archived from the original on March 21, 2020. Retrieved June 13, 2019.
- ^ a b Fildes, Jonathan (September 12, 2007). «Mirror particles form new matter». BBC News. Archived from the original on April 21, 2009. Retrieved May 22, 2008.
- ^ Hecht, Jeff (May 2008). «The history of the x-ray laser». Optics and Photonics News. 19 (5): 26–33. Bibcode:2008OptPN..19R..26H. doi:10.1364/opn.19.5.000026.
- ^ Robinson, Clarence A. (February 23, 1981). «Advance made on high-energy laser». Aviation Week & Space Technology. pp. 25–27.
- ^ Palmer, Jason (June 13, 2011). «Laser is produced by a living cell». BBC News. Archived from the original on June 13, 2011. Retrieved June 13, 2011.
- ^ Malte C. Gather & Seok Hyun Yun (June 12, 2011). «Single-cell biological lasers». Nature Photonics. 5 (7): 406–410. Bibcode:2011NaPho…5..406G. doi:10.1038/nphoton.2011.99.
- ^ Chen, Sophia (January 1, 2020). «Alien Light». SPIE. Archived from the original on April 14, 2021. Retrieved February 9, 2021.
- ^ Mumma, Michael J (April 3, 1981). «Discovery of Natural Gain Amplification in the 10-Micrometer Carbon Dioxide Laser Bands on Mars: A Natural Laser». Science. 212 (4490): 45–49. Bibcode:1981Sci…212…45M. doi:10.1126/science.212.4490.45. PMID 17747630. Archived from the original on February 17, 2022. Retrieved February 9, 2021.
- ^ Charles H. Townes (2003). «The first laser». In Laura Garwin; Tim Lincoln (eds.). A Century of Nature: Twenty-One Discoveries that Changed Science and the World. University of Chicago Press. pp. 107–12. ISBN 978-0-226-28413-2.
- ^ Dalrymple B.E., Duff J.M., Menzel E.R. «Inherent fingerprint luminescence – detection by laser». Journal of Forensic Sciences, 22(1), 1977, 106–115
- ^ Dalrymple B.E. «Visible and infrared luminescence in documents : excitation by laser». Journal of Forensic Sciences, 28(3), 1983, 692–696
- ^ Kincade, Kathy; Anderson, Stephen (January 1, 2005). «Laser Marketplace 2005: Consumer applications boost laser sales 10%». Laser Focus World. Vol. 41, no. 1. Archived from the original on April 13, 2015. Retrieved April 6, 2015.
- ^ Steele, Robert V. (February 1, 2005). «Diode-laser market grows at a slower rate». Laser Focus World. Vol. 41, no. 2. Archived from the original on April 12, 2015. Retrieved April 6, 2015.
- ^ «Laser therapy for cancer: MedlinePlus Medical Encyclopedia». medlineplus.gov. Archived from the original on February 24, 2021. Retrieved December 15, 2017.
- ^ This article incorporates text from this source, which is in the public domain: «Lasers in Cancer Treatment». National Institutes of Health, National Cancer Institute. September 13, 2011. Archived from the original on April 5, 2020. Retrieved December 15, 2017.
- ^ PowerLabs CO2 LASER! Archived August 14, 2005, at the Wayback Machine Sam Barros June 21, 2006. Retrieved January 1, 2007.
- ^ Maks, Stephanie. «Howto: Make a DVD burner into a high-powered laser». Transmissions from Planet Stephanie. Archived from the original on February 17, 2022. Retrieved April 6, 2015.
- ^ «Laser Diode Power Output Based on DVD-R/RW specs». elabz.com. April 10, 2011. Archived from the original on November 22, 2011. Retrieved December 10, 2011.
- ^ Peavy, George M. (January 23, 2014). «How to select a surgical veterinary laser». Aesculight. Archived from the original on April 19, 2016. Retrieved March 30, 2016.
- ^ Heller, Arnie, «Orchestrating the world’s most powerful laser Archived November 21, 2008, at the Wayback Machine.» Science and Technology Review. Lawrence Livermore National Laboratory, July/August 2005. Retrieved May 27, 2006.
- ^ Dragan, Aurel (March 13, 2019). «Magurele Laser officially becomes the most powerful laser in the world». Business Review. Archived from the original on April 14, 2021. Retrieved March 23, 2021.
- ^ Hecht, Jeff (January 24, 2018). «Can Lidars Zap Camera Chips?». IEEE Spectrum. Archived from the original on February 2, 2019. Retrieved February 1, 2019.
Further reading
Books
- Bertolotti, Mario (1999, trans. 2004). The History of the Laser. Institute of Physics. ISBN 0-7503-0911-3.
- Bromberg, Joan Lisa (1991). The Laser in America, 1950–1970. MIT Press. ISBN 978-0-262-02318-4.
- Csele, Mark (2004). Fundamentals of Light Sources and Lasers. Wiley. ISBN 0-471-47660-9.
- Koechner, Walter (1992). Solid-State Laser Engineering. 3rd ed. Springer-Verlag. ISBN 0-387-53756-2.
- Siegman, Anthony E. (1986). Lasers. University Science Books. ISBN 0-935702-11-3.
- Silfvast, William T. (1996). Laser Fundamentals. Cambridge University Press. ISBN 0-521-55617-1.
- Svelto, Orazio (1998). Principles of Lasers. 4th ed. Trans. David Hanna. Springer. ISBN 0-306-45748-2.
- Taylor, Nick (2000). LASER: The inventor, the Nobel laureate, and the thirty-year patent war. New York: Simon & Schuster. ISBN 978-0-684-83515-0.
- Wilson, J. & Hawkes, J.F.B. (1987). Lasers: Principles and Applications. Prentice Hall International Series in Optoelectronics, Prentice Hall. ISBN 0-13-523697-5.
- Yariv, Amnon (1989). Quantum Electronics. 3rd ed. Wiley. ISBN 0-471-60997-8.
Periodicals
- Applied Physics B: Lasers and Optics (ISSN 0946-2171)
- IEEE Journal of Lightwave Technology (ISSN 0733-8724)
- IEEE Journal of Quantum Electronics (ISSN 0018-9197)
- IEEE Journal of Selected Topics in Quantum Electronics (ISSN 1077-260X)
- IEEE Photonics Technology Letters (ISSN 1041-1135)
- Journal of the Optical Society of America B: Optical Physics (ISSN 0740-3224)
- Laser Focus World (ISSN 0740-2511)
- Optics Letters (ISSN 0146-9592)
- Photonics Spectra (ISSN 0731-1230)
External links
Wikimedia Commons has media related to Lasers.
- Encyclopedia of laser physics and technology by Dr. Rüdiger Paschotta
- A Practical Guide to Lasers for Experimenters and Hobbyists by Samuel M. Goldwasser
- Homebuilt Lasers Page by Professor Mark Csele
- Powerful laser is ‘brightest light in the universe’—The world’s most powerful laser as of 2008 might create supernova-like shock waves and possibly even antimatter
- «Laser Fundamentals» an online course by Prof. F. Balembois and Dr. S. Forget.
- Northrop Grumman’s Press Release on the Firestrike 15 kW tactical laser product
- Website on Lasers 50th anniversary by APS, OSA, SPIE
- Advancing the Laser anniversary site by SPIE: Video interviews, open-access articles, posters, DVDs
- Bright Idea: The First Lasers Archived October 3, 2012, at the Wayback Machine history of the invention, with audio interview clips.
- Free software for Simulation of random laser dynamics
- Video Demonstrations in Lasers and Optics Produced by the Massachusetts Institute of Technology (MIT). Real-time effects are demonstrated in a way that would be difficult to see in a classroom setting.
- MIT Video Lecture: Understanding Lasers and Fiberoptics
- Virtual Museum of Laser History, from the touring exhibit by SPIE
- website with animations, applications and research about laser and other quantum based phenomena Universite Paris Sud
What
Is a Laser?
The word laser is an acronym for light amplification by stimulated
emission of radiation, although common usage today is to use the word
as a noun — laser — rather than as an acronym — LASER.
A laser is a device that creates and amplifies a narrow, intense beam
of coherent light.
Atoms emit radiation. We see it every day when the «excited»
neon atoms in a neon sign emit light. Normally, they radiate their
light in random directions at random times. The result is incoherent
light — a technical term for what you would consider a jumble of
photons going in all directions.
The trick in generating coherent light — of a single or just a few
frequencies going in one precise direction — is to find the right
atoms with the right internal storage mechanisms and create an
environment in which they can all cooperate — to give up their light
at the right time and all in the same direction.
Exciting
atoms or molecules
In a laser, the atoms or molecules of a crystal, such as ruby or
garnet — or of a gas, liquid, or other substance — are excited in
what is called the laser cavity so that more of them are at
higher energy levels than are at lower energy levels. Reflective
surfaces at both ends of the cavity permit energy to reflect back and
forth, building up in each passage.
If a photon whose frequency corresponds to the energy difference
between the excited and ground states strikes an excited atom, the
atom is stimulated as it falls back to a lower energy state to emit a
second photon of the same (or a proportional) frequency, in phase
with and in the same direction as the bombarding photon.
This process is called stimulated emission. The bombarding
photon and the emitted photon may then each strike other excited
atoms, stimulating further emission of photons, all of the same
frequency and phase. This process produces a sudden burst of coherent
radiation as all the atoms discharge in a rapid chain reaction.
Wide
range of sizes and uses
First built in 1960, lasers now range in size from semiconductor
lasers as small as a grain of salt to solid-state and gas lasers as
large as a storage building. The light beam produced by most lasers
is pencil-thin and maintains its size and direction over very large
distances.
Lasers are widely used in industry for cutting and boring metals and
other materials, in medicine for surgery, and in communications,
scientific research, and holography. They are an integral part of
such familiar devices as bar-code scanners used in supermarkets,
scanners, laser printers, and compact disk players.
Why
Lasers Are Important Today
The laser has contributed to humanity as a powerful scientific tool
for expanding human knowledge and in its many applications that help
people directly. In the 40 years since Arthur L. Schawlow and Charles
H. Townes published their technical paper on the principles of the
laser in 1958, the device has been put to work in a vast range of
applications and has assumed many forms.
Their paper caused an explosion of research by scientists at Bell
Labs and at universities and industrial laboratories around the world
that is unabated today at Bell Labs and elsewhere.
In communications, engineers recognized the potential of the laser to
replace electrical transmission over copper wires, but how to
transmit the pulses presented enormous problems. In 1960, Schawlow,
D.F. Nelson, R.J. Collins and others transmitted pulses of light
between Bell Labs facilities in Murray Hill, N.J., and Crawford Hill,
N.J., a distance of 25 miles. Then called an optical maser, Townes’
preferred name for the device, the laser produced an intense and
extremely narrow beam of light that was more than a million times
brighter than the sun.
Lasers
in search of a medium
Unfortunately, laser beams could easily be adversely affected by
atmospheric conditions, such as rain, fog, low clouds, and objects in
the air, such a birds. Scientists and engineers suggested a number of
novel schemes to protect the light from interference, including
shielding it in metal tubes and using specially designed mirrors and
thermal gas lenses to navigate around bends.
It took another major innovation, the development in the early 1970s
of hair-thin strands of encased glass, called fiber optic waveguides,
before the laser could transmit telephone signals. Since then,
optical fiber has increasingly become the medium of choice for
telecommunications companies to transmit voice, data, and video.
Telecommunications, once largely electronic, today relies on photons,
as tiny semiconductor lasers routinely transmit light pulses carrying
billions of bits of information per second over glass fibers.
Wavelength division multiplexing technology uses various wavelengths,
or colors, of light to transmit trillions of bits simultaneously over
a single fiber.
Last updated on July 6th, 2021
1. The first laser was built by Theodore H Maiman in 1960 at Hughes Research Laboratories and was based on the theoretical work of Charles Hard Townes and Arthur Leonard Schawlow. Before lasers were invented there were ‘masers’ which used a similar technique for microwave radiation and were based on Albert Einstein’s theory of stimulated emission of radiation.
2. The word laser is an acronym for Light Amplification by Stimulated Emission of Radiation. It works by controlling how energized atoms release photons; they operate by pumping electrical discharges (that produce intense flashes of light) through a lasing medium to create a large number of excited state atoms that contain high-energy electrons.
3. The strength of early lasers was measured in ‘Gillettes’ which was a measure of how many razor blades a laser beam could penetrate. Today, the world’s most powerful lasers can direct as much power as a hydrogen bomb.
4. Laser beams have been developed that are precise and powerful enough to etch a tiny serial number onto diamonds (which are the hardest substance known) and can generate higher temperatures than those at the surface of the sun.
5. Scientists are experimenting with huge, 2 foot wide, lasers that are designed to reproduce conditions on the surface of the sun at the National Ignition Facility (which featured in one of the Star Trek movies).
6. Speaking of Star Trek, the first commercial toy to use laser technology was a phaser gun which featured on the show and produced a very weak laser beam.
7. The ability of lasers to focus light with intense power at very precise areas makes them excellent tools for cutting, welding and even performing surgery on human beings.
8. Laser cutting equipment uses mirrors and lenses to focus a highly concentrated beam onto materials to cut them very accurately. This can include plastics, acrylics, wood, brass and various other types of metal such as steel, stainless steel and aluminum.
9. Laser cutting equipment is highly accurate and can be used to engrave to a microscopic level. Scientists have found that lasers are accurate to more than a nanometer which is one billionth of a meter.
LASER TYPE | WAVELENGTH (Nanometers) |
---|---|
Argon Fluoride | 193 |
Xenon Chloride | 308 and 459 |
Xenon Fluoride | 353 and 459 |
Helium Cadmium | 325 — 442 |
Rhodamine 6G | 450 — 650 |
Copper Vapor | 511 and 578 |
Argon | 457 — 528 (514.5 and 488 most used) |
Frequency doubled Nd:YAG | 532 |
Helium Neon | 543, 594, 612, and 632.8 |
Krypton | 337.5 — 799.3 (647.1 — 676.4 most used) |
Ruby | 694.3 |
Laser Diodes | 630 — 950 |
Ti:Sapphire | 690 — 960 |
Alexandrite | 720 — 780 |
Nd:YAG | 1064 |
Hydgrogen Fluoride | 2600 — 3000 |
Erbium:Glass | 1540 |
Carbon Monoxide | 5000 — 6000 |
Carbon Dioxide | 10600 |
Table data source | Fas.org |
Table last updated | 28/06/2021 |
10. Lasers have been used in a wide range of consumer technologies such as optical disk drives, barcode scanners, fibre optics, manufacturing computer chips and as lighting displays for entertainment.
11. Lasers can be used as spectrometers which are devices that use light to determine the specific chemical components in different types of matter. When laser light passes through a gas made from matter it reflects certain colors in specific wavelengths that are then studied to identify the different elements that are present in it.
12. A laser was used to provide an accurate measurement of the distance from the earth to the moon. During the Apollo 11 mission to the moon astronauts placed reflectors on the moon which enabled earth-based lasers to be fired at them to get an extremely accurate measure of the distance between the two bodies.
13. Lasers have found applications in law enforcement. They are used in speed cameras to determine whether drivers are exceeding the speed limit. Lasers are also used for latent fingerprint detection and are much more accurate than previous methods that were used.
14. Lasers can be used to treat cancers by destroying or shrinking cancerous tumors or growths that appear before cancer develops. They are most often used to treat cancers that are on the surface of the body or those that occur in a person’s internal organs.
15. Lasers have also been developed that can determine whether a patient is suffering from cancer or diabetes; the tool is called a breathalyzer (but is not the same as machines that test for alcohol).
16. Lasers are classified by the amount of output power of the light pulses they use. Laser pointers, CD-ROM drives and DVD players use between 1 and 10mW. Lasers used for burning CDs use between 100mW and 400mW. Lasers used for cutting and machining can use up to 3000W of light power.
17. The most powerful laser ever created produced a beam with a peak power of 2000 trillion watts (2 petawatts) at Osaka University in Japan recently. Because of its massive power it was only fired for an extremely short duration: about a trillionth of a second (or picosecond).
18. Lasers are classified into different safety class numbers which reflect how dangerous they are. These range from class 1, which are inherently safe, to class 5 which have the potential to burn skin and cause eye damage.
19. Lasers have featured in many films and popular culture as their use has become more widespread. One of the first, and most famous, examples was in the 1964 James Bond movie Goldfinger where the eponymous spy was threatened with being cut in half by one.
20. Lasers can be used in the sequencing of DNA. They are so accurate that it is possible to get the sequencing information contained in a single molecule.
21. Lasers have had military applications and there are many weapons used that rely on laser-targeting because of the technique’s ability to deliver ordnance precisely. The first laser-guided bomb as the Bolt-117 produced in 1967.
22. Lasers are being studied by scientists for their ability to draw lightning strikes away from sensitive buildings and structures such as airports and power plants.
23. Laser lights can’t be seen in space because they do not consist of any matter; matter is required to give the scattering effect which makes them visible.
24. Laser beams have been developed by scientists that can now be used to manipulate objects by using very small and highly focused beams.
25. Living cells have also been used to produce laser light. This was done by genetically engineering cells that produce a green fluorescent protein which was used to provide the light amplification. Cells were placed between two tiny mirrors (a 20 millionths of a meter wide) and, once they were bathed with light, they emitted a green laser light.
For the plant used in ancient times as a medicine, see Silphium.
Red (660, 635nm), green (532, 520nm), and blue (445, 405nm) lasers
A laser is a machine that makes an amplified, single-colour source of light. It uses special gases or crystals to make the light with only a single color. The gases are energized to make them emit light. Then mirrors are used to amplify (make stronger) the light. In many lasers all the light travels in one direction, so it stays as a narrow beam of Collimated light that does not get wider or weaker as most sources of light do.
When pointed at something, this narrow beam makes a single point of light. The energy of the light stays in that one narrow beam instead of spreading out like a flashlight (electric torch).
The word «laser» is an acronym for «light amplification by stimulated emission of radiation».[1][2] Both the device and its name were developed from the earlier Maser.
Mechanism
A laser creates light by special actions involving a material called an «optical gain medium». Energy is put into this material using an ‘energy pump’. This can be electricity, another light source, or some other source of energy. The energy makes the material go into what is called an excited state. This means the electrons in the material have extra energy, and after a bit of time they will lose that energy. When they lose the energy they will release a photon (a particle of light). The type of optical gain medium used will change what color (wavelength) will be produced. Releasing photons is the «stimulated emission of radiation» part of laser.
Many things can radiate light, like a light bulb, but the light will not be organized in one direction and phase. By using an electric field to control how the light is created, this light will now be one kind, going in one direction. This is «coherent radiation».
At this point, the light is still weak. The mirrors on either side bounce the light back and forth, and this hits other parts of the optical gain medium, causing those parts to also release photons, generating more light («light amplification»). When all of the optical gain medium is producing light, this is called saturation and creates a very strong beam of light at a very narrow wavelength, which we would call a laser beam.[3]
Design
The light moves through the medium between the two mirrors that reflect the light back and forth between them. One of the mirrors, however, only partially reflects the light, allowing some to escape. The escaping light makes up the laser beam.[3]
This is a simple design; the type of optical gain medium used usually defines the type of laser. It can be a crystal, examples are ruby and a garnet crystal made of yttrium and aluminum with the rare earth metal mixed in. Gases can be used for laser by using helium, nitrogen, carbon dioxide, neon or others. Large, powerful lasers are usually gas lasers. A free-electron laser uses a beam of electrons and can be tuned to emit different colors. Finally, the smallest lasers use semiconductor diodes to produce the light. These are the most numerous kind, used in electronics.[3]
History
Albert Einstein was the first to have the idea of stimulated emission that could produce a laser. From that point many years were spent to see if the idea worked. At first, people succeeded in making masers and later figured how to make shorter visible wavelengths. It was not until 1959 that the name laser was coined by Gordon Gould in a research paper. The first working laser was put together and operated by Theodore Maiman at the Hughes Research Laboratories in 1960.[4] Many people started working on lasers at this time, and the question of who would get the patent for the laser wasn’t decided until 1987 (Gould won the rights).[5]
Applications
Lasers have found many uses in everyday life as well as in industry. Lasers are found in CD and DVD players, where they read the code from the disk that stores a song or movie. A laser is often used to read the bar codes or SQR codes on things sold in a store, to identify a product and give its price. Lasers are used in medicine, particularly in LASIK eye surgery, where the laser is used to repair the shape of the cornea. It is used in chemistry with spectroscopy to identify materials, to find out what kind of gases, solids or liquids something is made of. Stronger lasers can be used to cut metal.
Lasers are used to measure the distance of the Moon from Earth by reflecting off reflectors left by the Apollo missions.[6] By measuring the time it takes for the light to travel to the Moon and back again we can find out exactly how far away the moon is.
Laser pointers are used by people to point at a place on a map or diagram. For example, lecturers use them. Also, many people like to play with laser pointers. Some people have pointed them at aircraft. This is dangerous, and it is also illegal in many countries. People have been arrested and prosecuted for this crime.
Computers commonly use an optical computer mouse as an input device. Modern laser pointers are too big and powerful for this use, so most mice use small VCSEL’s, or «Vertical cavity surface-emitting lasers» for this purpose. These lasers are also used in DVD, CD-ROM drives and holography.
References
- ↑ «laser». http://dictionary.reference.com/browse/laser. Retrieved May 15, 2008.
- ↑ Taylor, Nick (2000). Laser: The Inventor, The Nobel Laureate, and The Thirty-Year Patent War. Simon & Schuster. ISBN 978-0684835150
. - ↑ 3.0 3.1 3.2 Skoog, Douglas A., Holler, F. James, Crouch, Stanley R. (2007). Principles of Instrumental Analysis. Toronto, ON: Thomson Brooks/Cole.
- ↑ Gribbin, J (1984). In Search of Schroedinger’s Cat. New York: Bantam.
- ↑ |url=http://www.aip.org/history/exhibits/laser/sections/whoinvented.html%7Cpublisher=American Institute of Physics|accessdate=2013-02-07
- ↑ Dickey, J. O.; Bender, P. L.; Faller, J. E.; Newhall, X X; Ricklefs, R. L.; Ries, J. G.; Shelus, P. J.; Veillet, C. et al. (1994). «Lunar Laser Ranging: A Continuing Legacy of the Apollo Program». Science 265 (5171): 482–490. doi:10.1126/science.265.5171.482
. ISSN 0036-8075
.
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word «laser» is an acronym[1] [2] for «light amplification by stimulated emission of radiation«.[3] [4] The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow.[5]
A laser differs from other sources of light in that it emits light which is coherent. Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as laser cutting and lithography. Spatial coherence also allows a laser beam to stay narrow over great distances (collimation), enabling applications such as laser pointers and lidar (light detection and ranging). Lasers can also have high temporal coherence, which allows them to emit light with a very narrow spectrum. Alternatively, temporal coherence can be used to produce ultrashort pulses of light with a broad spectrum but durations as short as a femtosecond.
Lasers are used in optical disc drives, laser printers, barcode scanners, DNA sequencing instruments, fiber-optic and free-space optical communication, semiconducting chip manufacturing (photolithography), laser surgery and skin treatments, cutting and welding materials, military and law enforcement devices for marking targets and measuring range and speed, and in laser lighting displays for entertainment. Semiconductor lasers in the blue to near-UV have also been used in place of light-emitting diodes (LEDs) to excite fluorescence as a white light source. This permits a much smaller emitting area due to the much greater radiance of a laser and avoids the droop suffered by LEDs; such devices are already used in some car headlamps.[6] [7] [8] [9]
Fundamentals
Lasers are distinguished from other light sources by their coherence. Spatial (or transverse) coherence is typically expressed through the output being a narrow beam, which is diffraction-limited. Laser beams can be focused to very tiny spots, achieving a very high irradiance, or they can have very low divergence in order to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a polarized wave at a single frequency, whose phase is correlated over a relatively great distance (the coherence length) along the beam.[10] A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase that vary randomly with respect to time and position, thus having a short coherence length.
Lasers are characterized according to their wavelength in a vacuum. Most «single wavelength» lasers actually produce radiation in several modes with slightly different wavelengths. Although temporal coherence implies some degree of monochromaticity, there are lasers that emit a broad spectrum of light or emit different wavelengths of light simultaneously. Some lasers are not single spatial mode and have light beams that diverge more than is required by the diffraction limit. All such devices are classified as «lasers» based on the method of producing light by stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies.
Terminology
The first device using amplification by stimulated emission operated at microwave frequencies, and was named «maser», an acronym for «microwave amplification by stimulated emission of radiation». When similar optical devices were developed they were first known as «optical masers», until «microwave» was replaced by «light» in the acronym.[11]
All such devices operating at frequencies higher than microwaves are called lasers (including infrared laser, ultraviolet laser, X-ray laser and gamma-ray laser). All devices operating at microwave or lower radio frequencies are called masers.
A laser that produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym. It has been humorously noted that the acronym LOSER, for «light oscillation by stimulated emission of radiation», would have been more correct.[12] With the widespread use of the original acronym as a common noun, optical amplifiers have come to be referred to as «laser amplifiers».
The back-formed verb to lase is frequently used in the field, meaning «to give off coherent light,»[13] especially in reference to the gain medium of a laser; when a laser is operating it is said to be «lasing». The words laser and maser are also used in cases where there is a coherent state unconnected with any manufactured device, as in astrophysical maser and atom laser.
Design
See main article: Laser construction. A laser consists of a gain medium, a mechanism to energize it, and something to provide optical feedback.[14] The gain medium is a material with properties that allow it to amplify light by way of stimulated emission. Light of a specific wavelength that passes through the gain medium is amplified (increases in power). Feedback enables stimulated emission to amplify predominantly the optical frequency at the peak of the gain-frequency curve. As stimulated emission grows, eventually one frequency dominates over all others, meaning that a coherent beam has been formed.[15] The process of stimulated emission is analogous to that of an audio oscillator with positive feedback which can occur, for example, when the speaker in a public-address system is placed in proximity to the microphone. The screech one hears is audio oscillation at the peak of the gain-frequency curve for the amplifier.[16]
For the gain medium to amplify light, it needs to be supplied with energy in a process called pumping. The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a flash lamp or by another laser.
The most common type of laser uses feedback from an optical cavity—a pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of the two mirrors, the output coupler, is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity (whether the mirrors are flat or curved), the light coming out of the laser may spread out or form a narrow beam. In analogy to electronic oscillators, this device is sometimes called a laser oscillator.
Most practical lasers contain additional elements that affect properties of the emitted light, such as the polarization, wavelength, and shape of the beam.
Laser physics
See also: Laser science. Electrons and how they interact with electromagnetic fields are important in our understanding of chemistry and physics.
Stimulated emission
See main article: Stimulated emission. In the classical view, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the nucleus of an atom. However, quantum mechanical effects force electrons to take on discrete positions in orbitals. Thus, electrons are found in specific energy levels of an atom, two of which are shown below:
An electron in an atom can absorb energy from light (photons) or heat (phonons) only if there is a transition between energy levels that matches the energy carried by the photon or phonon. For light, this means that any given transition will only absorb one particular wavelength of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process.
When an electron is excited from one state to that at a higher energy level with energy difference ΔE, it will not stay that way forever. Eventually, a photon will be spontaneously created from the vacuum having energy ΔE . Conserving energy, the electron transitions to a lower energy level which is not occupied, with transitions to different levels having different time constants. This process is called «spontaneous emission». Spontaneous emission is a quantum-mechanical effect and a direct physical manifestation of the Heisenberg uncertainty principle. The emitted photon has random direction, but its wavelength matches the absorption wavelength of the transition. This is the mechanism of fluorescence and thermal emission.
A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to the lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission.
Gain medium and cavity
The gain medium is put into an excited state by an external source of energy. In most lasers this medium consists of a population of atoms which have been excited into such a state by means of an outside light source, or an electrical field which supplies energy for atoms to absorb and be transformed into their excited states.
The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state: gas, liquid, solid, or plasma. The gain medium absorbs pump energy, which raises some electrons into higher-energy («excited») quantum states. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property is called an optical amplifier. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.[17]
For lasing media with extremely high gain, so-called superluminescence, it is possible for light to be sufficiently amplified in a single pass through the gain medium without requiring a resonator. Although often referred to as a laser (see for example nitrogen laser),[18] the light output from such a device lacks the spatial and temporal coherence achievable with lasers. Such a device cannot be described as an oscillator but rather is a high gain optical amplifier which amplifies its own spontaneous emission. The same mechanism describes so-called astrophysical masers/lasers.
The optical resonator is sometimes referred to as an «optical cavity», but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a maser.The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting back on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption.If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain (gain minus loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the lasing threshold. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification.
The light emitted
In most lasers, lasing begins with spontaneous emission into the lasing mode. This initial light is then amplified by stimulated emission in the gain medium. Stimulated emission produces light that matches the input signal in direction, wavelength, and polarization, whereas the phase of emitted light is 90 degrees in lead of the stimulating light.[19] This, combined with the filtering effect of the optical resonator gives laser light its characteristic coherence, and may give it uniform polarization and monochromaticity, depending on the resonator’s design. The fundamental laser linewidth[20] of light emitted from the lasing resonator can be orders of magnitude narrower than the linewidth of light emitted from the passive resonator. Some lasers use a separate injection seeder to start the process off with a beam that is already highly coherent. This can produce beams with a narrower spectrum than would otherwise be possible.
In 1963, Roy J. Glauber showed that coherent states are formed from combinations of photon number states, for which he was awarded the Nobel Prize in physics.[21] A coherent beam of light is formed by single-frequency quantum photon states distributed according to a Poisson distribution. As a result, the arrival rate of photons in a laser beam is described by Poisson statistics.[15]
Many lasers produce a beam that can be approximated as a Gaussian beam; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with the transverse modes often approximated using Hermite–Gaussian or Laguerre-Gaussian functions. Some high power lasers use a flat-topped profile known as a «tophat beam». Unstable laser resonators (not used in most lasers) produce fractal-shaped beams.[22] Specialized optical systems can produce more complex beam geometries, such as Bessel beams and optical vortexes.
Near the «waist» (or focal region) of a laser beam, it is highly collimated: the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However, due to diffraction, that can only remain true well within the Rayleigh range. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle which varies inversely with the beam diameter, as required by diffraction theory. Thus, the «pencil beam» directly generated by a common helium–neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the earth). On the other hand, the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam by means of a lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode. That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser.
A laser beam profiler is used to measure the intensity profile, width, and divergence of laser beams.
Diffuse reflection of a laser beam from a matte surface produces a speckle pattern with interesting properties.
Quantum vs. classical emission processes
The mechanism of producing radiation in a laser relies on stimulated emission, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon that was predicted by Albert Einstein, who derived the relationship between the A coefficient describing spontaneous emission and the B coefficient which applies to absorption and stimulated emission. However, in the case of the free electron laser, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to quantum mechanics.
Continuous and pulsed modes of operation
A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course even a laser whose output is normally continuous can be intentionally turned on and off at some rate in order to create pulses of light. When the modulation rate is on time scales much slower than the cavity lifetime and the time period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a «modulated» or «pulsed» continuous wave laser. Most laser diodes used in communication systems fall in that category.
Continuous-wave operation
Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as continuous-wave (CW) laser. Many types of lasers can be made to operate in continuous-wave mode to satisfy such an application. Many of these lasers actually lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will, in fact, produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the frequency spacing between modes), typically a few nanoseconds or less. In most cases, these lasers are still termed «continuous-wave» as their output power is steady when averaged over any longer time periods, with the very high-frequency power variations having little or no impact in the intended application. (However, the term is not applied to mode-locked lasers, where the intention is to create very short pulses at the rate of the round-trip time.)
For continuous-wave operation, it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media, this is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level, which would be impractical or destroy the laser by producing excessive heat. Such lasers cannot be run in CW mode.
Pulsed operation
See main article: Pulsed laser.
Pulsed operation of lasers refers to any laser not classified as continuous wave, so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing a number of different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode.
In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up in between pulses. In laser ablation, for example, a small volume of material at the surface of a work piece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.
Other applications rely on the peak pulse power (rather than the energy in the pulse), especially in order to obtain nonlinear optical effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching.
The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some dye lasers and vibronic solid-state lasers produces optical gain over a wide bandwidth, making a laser possible which can thus generate pulses of light as short as a few femtoseconds (10−15 s).
Q-switching
See main article: Q-switching.
In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or ‘Q’ of the cavity. Then, after the pump energy stored in the laser medium has approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power.
Mode locking
See main article: Mode locking. A mode-locked laser is capable of emitting extremely short pulses on the order of tens of picoseconds down to less than 10 femtoseconds. These pulses repeat at the round-trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the Fourier limit (also known as energy–time uncertainty), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is titanium-doped, artificially grown sapphire (Ti:sapphire), which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration.
Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science), for maximizing the effect of nonlinearity in optical materials (e.g. in second-harmonic generation, parametric down-conversion, optical parametric oscillators and the like). Unlike the giant pulse of a Q-switched laser, consecutive pulses from a mode-locked laser are phase-coherent, that is, the pulses (and not just their envelopes) are identical and perfectly periodic. For this reason, and the extremely large peak powers attained by such short pulses, such lasers are invaluable in certain areas of research.
Pulsed pumping
Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser which is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high energy, fast pump was needed. The way to overcome this problem was to charge up large capacitors which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode.
History
Foundations
In 1917, Albert Einstein established the theoretical foundations for the laser and the maser in the paper Zur Quantentheorie der Strahlung (On the Quantum Theory of Radiation) via a re-derivation of Max Planck’s law of radiation, conceptually based upon probability coefficients (Einstein coefficients) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation.[23] In 1928, Rudolf W. Ladenburg confirmed the existence of the phenomena of stimulated emission and negative absorption.[24] In 1939, Valentin A. Fabrikant predicted the use of stimulated emission to amplify «short» waves.[25] In 1947, Willis E. Lamb and R.C. Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission. In 1950, Alfred Kastler (Nobel Prize for Physics 1966) proposed the method of optical pumping, which was experimentally demonstrated two years later by Brossel, Kastler, and Winter.[26]
Maser
See main article: Maser. In 1951, Joseph Weber submitted a paper on using stimulated emissions to make a microwave amplifier to the June 1952 Institute of Radio Engineers Vacuum Tube Research Conference at Ottawa, Ontario, Canada.[27] After this presentation, RCA asked Weber to give a seminar on this idea, and Charles Hard Townes asked him for a copy of the paper.[28]
In 1953, Charles Hard Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation. Townes’s maser was incapable of continuous output.[29] Meanwhile, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.
Townes reports that several eminent physicists—among them Niels Bohr, John von Neumann, and Llewellyn Thomas—argued the maser violated Heisenberg’s uncertainty principle and hence could not work. Others such as Isidor Rabi and Polykarp Kusch expected that it would be impractical and not worth the effort.[30] In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics, «for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle».
Laser
In April 1957, Japanese engineer Jun-ichi Nishizawa proposed the concept of a «semiconductor optical maser» in a patent application.[31]
That same year, Charles Hard Townes and Arthur Leonard Schawlow, then at Bell Labs, began a serious study of infrared «optical masers». As ideas developed, they abandoned infrared radiation to instead concentrate on visible light. In 1958, Bell Labs filed a patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the Physical Review, which was published in 1958.[32]
Simultaneously, at Columbia University, graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium. When Gould and Townes met, they spoke of radiation emission, as a general subject; afterwards, in November 1957, Gould noted his ideas for a «laser», including using an open resonator (later an essential laser-device component). Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance of this idea. Meanwhile, Schawlow and Townes had decided on an open-resonator laser design – apparently unaware of Prokhorov’s publications and Gould’s unpublished laser work.
At a conference in 1959, Gordon Gould first published the acronym «LASER» in the paper The LASER, Light Amplification by Stimulated Emission of Radiation.[33] Gould’s intention was that different «-ASER» acronyms should be used for different parts of the spectrum: «XASER» for x-rays, «UVASER» for ultraviolet, etc. «LASER» ended up becoming the generic term for non-microwave devices, although «RASER» was briefly popular for denoting radio-frequency-emitting devices.
Gould’s notes included possible applications for a laser, such as spectrometry, interferometry, radar, and nuclear fusion. He continued developing the idea, and filed a patent application in April 1959. The U.S. Patent Office denied his application, and awarded a patent to Bell Labs, in 1960. That provoked a twenty-eight-year lawsuit, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory, when a Federal judge ordered the U.S. Patent Office to issue patents to Gould for the optically pumped and the gas discharge laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians.[34]
On May 16, 1960, Theodore H. Maiman operated the first functioning laser[35] [36] at Hughes Research Laboratories, Malibu, California, ahead of several research teams, including those of Townes, at Columbia University, Arthur Schawlow, at Bell Labs,[37] and Gould, at the TRG (Technical Research Group) company. Maiman’s functional laser used a flashlamp-pumped synthetic ruby crystal to produce red laser light at 694 nanometers wavelength. The device was only capable of pulsed operation, due to its three-level pumping design scheme. Later that year, the Iranian physicist Ali Javan, and William R. Bennett, and Donald Herriott, constructed the first gas laser, using helium and neon that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the Albert Einstein World Award of Science in 1993. Basov and Javan proposed the semiconductor laser diode concept. In 1962, Robert N. Hall demonstrated the first laser diode device, which was made of gallium arsenide and emitted in the near-infrared band of the spectrum at 850 nm. Later that year, Nick Holonyak, Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen temperatures (77 K). In 1970, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Telephone Laboratories also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure.
Recent innovations
Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:
- new wavelength bands
- maximum average output power
- maximum peak pulse energy
- maximum peak pulse power
- minimum output pulse duration
- minimum linewidth
- maximum power efficiency
- minimum cost
and this research continues to this day.
In 2015, researchers made a white laser, whose light is modulated by a synthetic nanosheet made out of zinc, cadmium, sulfur, and selenium that can emit red, green, and blue light in varying proportions, with each wavelength spanning 191 nm.[38] [39] [40]
In 2017, researchers at TU Delft demonstrated an AC Josephson junction microwave laser.[41] Since the laser operates in the superconducting regime, it is more stable than other semiconductor-based lasers. The device has potential for applications in quantum computing.[42] In 2017, researchers at TU Munich demonstrated the smallest mode locking laser capable of emitting pairs of phase-locked picosecond laser pulses with a repetition frequency up to 200 GHz.[43]
In 2017, researchers from the Physikalisch-Technische Bundesanstalt (PTB), together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology (NIST) and the University of Colorado Boulder, established a new world record by developing an erbium-doped fiber laser with a linewidth of only 10 millihertz.[44] [45]
Types and operating principles
Gas lasers
See main article: Gas laser. Following the invention of the HeNe gas laser, many other gas discharges have been found to amplify light coherently.Gas lasers using many different gases have been built and used for many purposes. The helium–neon laser (HeNe) is able to operate at a number of different wavelengths, however the vast majority are engineered to lase at 633 nm; these relatively low cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial carbon dioxide (CO2) lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 µm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO2 laser is unusually high: over 30%.[46] Argon-ion lasers can operate at a number of lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen transverse electrical discharge in gas at atmospheric pressure (TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm.[47] Metal ion lasers are gas lasers that generate deep ultraviolet wavelengths. Helium-silver (HeAg) 224 nm and neon-copper (NeCu) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation linewidths, less than 3 GHz (0.5 picometers),[48] making them candidates for use in fluorescence suppressed Raman spectroscopy.
Lasing without maintaining the medium excited into a population inversion was demonstrated in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams.[49] [50] This was accomplished by using an external maser to induce «optical transparency» in the medium by introducing and destructively interfering the ground electron transitions between two paths, so that the likelihood for the ground electrons to absorb any energy has been cancelled.
Chemical lasers
Chemical lasers are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the hydrogen fluoride laser (2700–2900 nm) and the deuterium fluoride laser (3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride.
Excimer lasers
Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules which can only exist with one atom in an excited electronic state. Once the molecule transfers its excitation energy to a photon, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at ultraviolet wavelengths with major applications including semiconductor photolithography and LASIK eye surgery. Commonly used excimer molecules include ArF (emission at 193 nm), KrCl (222 nm), KrF (248 nm), XeCl (308 nm), and XeF (351 nm).[51] The molecular fluorine laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however this appears to be a misnomer inasmuch as F2 is a stable compound.
Solid-state lasers
Solid-state lasers use a crystalline or glass rod which is «doped» with ions that provide the required energy states. For example, the first working laser was a ruby laser, made from ruby (chromium-doped corundum). The population inversion is actually maintained in the dopant. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flashtube or from another laser. The usage of the term «solid-state» in laser physics is narrower than in typical use. Semiconductor lasers (laser diodes) are typically not referred to as solid-state lasers.
Neodymium is a common dopant in various solid-state laser crystals, including yttrium orthovanadate (Nd:YVO4), yttrium lithium fluoride and yttrium aluminium garnet . All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers. These lasers are also commonly frequency doubled, tripled or quadrupled to produce 532 nm (green, visible), 355 nm and 266 nm (UV) beams, respectively. Frequency-doubled diode-pumped solid-state (DPSS) lasers are used to make bright green laser pointers.
Ytterbium, holmium, thulium, and erbium are other common «dopants» in solid-state lasers.[52] Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020–1050 nm. They are potentially very efficient and high powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode, and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.
Titanium-doped sapphire (Ti:sapphire) produces a highly tunable infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing ultrashort pulses of extremely high peak power.
Thermal limitations in solid-state lasers arise from unconverted pump power that heats the medium. This heat, when coupled with a high thermo-optic coefficient (dn/dT) can cause thermal lensing and reduce the quantum efficiency. Diode-pumped thin disk lasers overcome these issues by having a gain medium that is much thinner than the diameter of the pump beam. This allows for a more uniform temperature in the material. Thin disk lasers have been shown to produce beams of up to one kilowatt.[53]
Fiber lasers
See main article: Fiber laser.
Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have high surface area to volume ratio which allows efficient cooling. In addition, the fiber’s waveguiding properties tend to reduce thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.
Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions.
Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.
Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber. This effect is called photodarkening. In bulk laser materials, the cooling is not so efficient, and it is difficult to separate the effects of photodarkening from the thermal effects, but the experiments in fibers show that the photodarkening can be attributed to the formation of long-living color centers.
Photonic crystal lasers
Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the density of optical states (DOS) structure required for the feedback to take place. They are typical micrometer-sized and tunable on the bands of the photonic crystals.[54]
Semiconductor lasers
See main article: Semiconductor lasers. Semiconductor lasers are diodes which are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal form an optical resonator, although the resonator can be external to the semiconductor in some designs.
Commercial laser diodes emit at wavelengths from 375 nm to 3500 nm.[55] Low to medium power laser diodes are used in laser pointers, laser printers and CD/DVD players. Laser diodes are also frequently used to optically pump other lasers with high efficiency. The highest power industrial laser diodes, with power up to 20 kW, are used in industry for cutting and welding.[56] External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.
In 2012, Nichia and OSRAM developed and manufactured commercial high-power green laser diodes (515/520 nm), which compete with traditional diode-pumped solid-state lasers.[57] [58]
Vertical cavity surface-emitting lasers (VCSELs) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized,[59] and 1550 nm devices an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy sub-bands of an electron in a structure containing several quantum wells.
The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials which allow coherent light to be produced from silicon. These are called hybrid silicon laser. Recent developments have also shown the use of monolithically integrated nanowire lasers directly on silicon for optical interconnects, paving the way for chip level applications.[60] These heterostructure nanowire lasers capable of optical interconnects in silicon are also capable of emitting pairs of phase-locked picosecond pulses with a repetition frequency up to 200 GHz, allowing for on-chip optical signal processing.[43] Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon.
Dye lasers
Dye lasers use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (on the order of a few femtoseconds). Although these tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. In their most prevalent form these solid state dye lasers use dye-doped polymers as laser media.
Free-electron lasers
Free-electron lasers, or FELs, generate coherent, high power radiation that is widely tunable, currently ranging in wavelength from microwaves through terahertz radiation and infrared to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term free-electron.
Exotic media
The pursuit of a high-quantum-energy laser using transitions between isomeric states of an atomic nucleus has been the subject of wide-ranging academic research since the early 1970s. Much of this is summarized in three review articles.[61] [62] [63] This research has been international in scope, but mainly based in the former Soviet Union and the United States. While many scientists remain optimistic that a breakthrough is near, an operational gamma-ray laser is yet to be realized.[64]
Some of the early studies were directed toward short pulses of neutrons exciting the upper isomer state in a solid so the gamma-ray transition could benefit from the line-narrowing of Mössbauer effect.[65] [66] In conjunction, several advantages were expected from two-stage pumping of a three-level system.[67] It was conjectured that the nucleus of an atom, embedded in the near field of a laser-driven coherently-oscillating electron cloud would experience a larger dipole field than that of the driving laser.[68] [69] Furthermore, nonlinearity of the oscillating cloud would produce both spatial and temporal harmonics, so nuclear transitions of higher multipolarity could also be driven at multiples of the laser frequency.[70] [71] [72] [73] [74] [75] [76]
In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser.[77] Dr. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments.
Space-based X-ray lasers pumped by a nuclear explosion have also been proposed as antimissile weapons.[78] [79] Such devices would be one-shot weapons.
Living cells have been used to produce laser light.[80] [81] The cells were genetically engineered to produce green fluorescent protein, which served as the laser’s gain medium. The cells were then placed between two 20 micrometer wide mirrors, which acted as the laser cavity. When the cell was illuminated with blue light, it emitted intense, directed green laser light.
Natural lasers
Like astrophysical masers, irradiated planetary or stellar gases may amplify light producing a natural laser.[82] Mars,[83] Venus and MWC 349 exhibit this phenomenon.
Uses
See main article: List of applications for lasers.
When lasers were invented in 1960, they were called «a solution looking for a problem».[84] Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry, law enforcement, entertainment, and the military. Fiber-optic communication using lasers is a key technology in modern communications, allowing services such as the Internet.
The first widely noticeable use of lasers was the supermarket barcode scanner, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by laser printers.
Some other uses are:
- Communications: besides fiber-optic communication, lasers are used for free-space optical communication, including laser communication in space.
- Medicine: see below.
- Industry: cutting including converting thin materials, welding, material heat treatment, marking parts (engraving and bonding), additive manufacturing or 3D printing processes such as selective laser sintering and selective laser melting, non-contact measurement of parts and 3D scanning, and laser cleaning.
- Military: marking targets, guiding munitions, missile defense, electro-optical countermeasures (EOCM), lidar, blinding troops, firearms sight. See below
- Law enforcement: LIDAR traffic enforcement. Lasers are used for latent fingerprint detection in the forensic identification field[85] [86]
- Research: spectroscopy, laser ablation, laser annealing, laser scattering, laser interferometry, lidar, laser capture microdissection, fluorescence microscopy, metrology, laser cooling.
- Commercial products: laser printers, barcode scanners, thermometers, laser pointers, holograms, bubblegrams.
- Entertainment: optical discs, laser lighting displays, laser turntables
In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of US$2.19 billion.[87] In the same year, approximately 733 million diode lasers, valued at $3.20 billion, were sold.[88]
In medicine
See main article: Laser medicine and Lasers in cancer treatment. Lasers have many uses in medicine, including laser surgery (particularly eye surgery), laser healing (photobiomodulation therapy), kidney stone treatment, ophthalmoscopy, and cosmetic skin treatments such as acne treatment, cellulite and striae reduction, and hair removal.
Lasers are used to treat cancer by shrinking or destroying tumors or precancerous growths. They are most commonly used to treat superficial cancers that are on the surface of the body or the lining of internal organs. They are used to treat basal cell skin cancer and the very early stages of others like cervical, penile, vaginal, vulvar, and non-small cell lung cancer. Laser therapy is often combined with other treatments, such as surgery, chemotherapy, or radiation therapy. Laser-induced interstitial thermotherapy (LITT), or interstitial laser photocoagulation, uses lasers to treat some cancers using hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. Lasers are more precise than traditional surgery methods and cause less damage, pain, bleeding, swelling, and scarring. A disadvantage is that surgeons must acquire specialized training and thus it will likely be more expensive than other treatments.[89]
As weapons
See main article: Laser weapon. A laser weapon is a laser that is used as a directed-energy weapon.
Hobbies
In recent years, some hobbyists have taken an interest in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb (see Safety), although some have made their own class IV types.[90] However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red), Blu-ray players (violet), or even higher power laser diodes from CD or DVD burners.[91]
Hobbyists have also used surplus lasers taken from retired military applications and modified them for holography. Pulsed ruby and YAG lasers work well for this application.
Examples by power
Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the peak power of each pulse. The peak power of a pulsed laser is many orders of magnitude greater than its average power. The average output power is always less than the power consumed.
Power | Use | |
---|---|---|
Laser pointers | ||
CD-ROM drive | ||
DVD player or DVD-ROM drive | ||
High-speed CD-RW burner | ||
Consumer 16× DVD-R burner | ||
DVD 24× dual-layer recording[92] | ||
Green laser in Holographic Versatile Disc prototype development | ||
Output of the majority of commercially available solid-state lasers used for micro machining | ||
Typical sealed CO2 surgical lasers[93] | ||
Typical sealed CO2 lasers used in industrial laser cutting |
Examples of pulsed systems with high peak power:
- 700 TW (700×1012 W) – National Ignition Facility, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber[94]
- 10 PW (10×1015 W) – world’s most powerful laser as of 2019, located at the ELI-NP facility in Măgurele, Romania.[95]
Safety
See main article: Laser safety. Even the first laser was recognized as being potentially dangerous. Theodore Maiman characterized the first laser as having a power of one «Gillette» as it could burn through one Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight when the beam hits the eye directly or after reflection from a shiny surface. At wavelengths which the cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the eye into an extremely small spot on the retina, resulting in localized burning and permanent damage in seconds or even less time.
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:
- Class 1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players.
- Class 2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example laser pointers.
- Class 3R (formerly IIIa) lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina.
- Class 3B lasers (5–499 mW) can cause immediate eye damage upon exposure.
- Class 4 lasers (≥ 500 mW) can burn skin, and in some cases, even scattered light from these lasers can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.
The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.
Infrared lasers with wavelengths longer than about 1.4 micrometers are often referred to as «eye-safe», because the cornea tends to absorb light at these wavelengths, protecting the retina from damage. The label «eye-safe» can be misleading, however, as it applies only to relatively low power continuous wave beams; a high power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage, and even moderate power lasers can injure the eye.
Lasers can be a hazard to both civil and military aviation, due to the potential to temporarily distract or blind pilots. See Lasers and aviation safety for more on this topic.
Cameras based on charge-coupled devices may actually be more sensitive to laser damage than biological eyes.[96]
See also
- Anti-laser
- Coherent perfect absorber
- Homogeneous broadening
- Laser linewidth
- List of laser articles
- List of light sources
- Nanolaser
- Sound amplification by stimulated emission of radiation
- Spaser
- Fabry–Pérot interferometer
Further reading
Books
- Bertolotti, Mario (1999, trans. 2004). The History of the Laser. Institute of Physics. .
- Bromberg, Joan Lisa (1991). The Laser in America, 1950–1970. MIT Press. .
- Csele, Mark (2004). Fundamentals of Light Sources and Lasers. Wiley. .
- Koechner, Walter (1992). Solid-State Laser Engineering. 3rd ed. Springer-Verlag. .
- Siegman, Anthony E. (1986). Lasers. University Science Books. .
- Silfvast, William T. (1996). Laser Fundamentals. Cambridge University Press. .
- Svelto, Orazio (1998). Principles of Lasers. 4th ed. Trans. David Hanna. Springer. .
- Book: Taylor, Nick . LASER: The inventor, the Nobel laureate, and the thirty-year patent war . 2000 . Simon & Schuster . New York . 978-0-684-83515-0 .
- Wilson, J. & Hawkes, J.F.B. (1987). Lasers: Principles and Applications. Prentice Hall International Series in Optoelectronics, Prentice Hall. .
- Yariv, Amnon (1989). Quantum Electronics. 3rd ed. Wiley. .
Periodicals
- IEEE Journal of Lightwave Technology
- IEEE Journal of Quantum Electronics
- IEEE Journal of Selected Topics in Quantum Electronics
- IEEE Photonics Technology Letters
- Laser Focus World
- Optics Letters
- Photonics Spectra
External links
- Encyclopedia of laser physics and technology by Dr. Rüdiger Paschotta
- A Practical Guide to Lasers for Experimenters and Hobbyists by Samuel M. Goldwasser
- Homebuilt Lasers Page by Professor Mark Csele
- Powerful laser is ‘brightest light in the universe’ – The world’s most powerful laser as of 2008 might create supernova-like shock waves and possibly even antimatter (New Scientist, April 9, 2008)
- «Laser Fundamentals» an online course by Prof. F. Balembois and Dr. S. Forget. Instrumentation for Optics, 2008, (accessed January 17, 2014)
- Northrop Grumman’s Press Release on the Firestrike 15 kW tactical laser product.
- Website on Lasers 50th anniversary by APS, OSA, SPIE
- Advancing the Laser anniversary site by SPIE: Video interviews, open-access articles, posters, DVDs
- Bright Idea: The First Lasers history of the invention, with audio interview clips.
- Free software for Simulation of random laser dynamics
- Video Demonstrations in Lasers and Optics Produced by the Massachusetts Institute of Technology (MIT). Real-time effects are demonstrated in a way that would be difficult to see in a classroom setting.
- MIT Video Lecture: Understanding Lasers and Fiberoptics
- Virtual Museum of Laser History, from the touring exhibit by SPIE
- website with animations, applications and research about laser and other quantum based phenomena Universite Paris Sud
Notes and References
- Web site: BBC — 7 words you probably didn’t know were acronyms . BBC . 18 May 2021 .
- Why Laser Doesn’t Have a ‘Z’. Merriam Webster . 18 May 2021 . ‘Laser’ is an acronym .
- Web site: May 15, 2008 . laser . Dictionary.com .
- Book: Taylor, Nick. Laser: The Inventor, The Nobel Laureate, and The Thirty-Year Patent War. Simon & Schuster. 2000. 978-0684835150.
- Web site: December 1958: Invention of the Laser. 2022-01-27. www.aps.org. en.
- Web site: Semiconductor Sources: Laser plus phosphor emits white light without droop.
- Web site: Laser Lighting: White-light lasers challenge LEDs in directional lighting applications.
- Web site: How Laser-powered Headlights Work. November 7, 2011.
- Web site: Laser light for headlights: Latest trend in car lighting | OSRAM Automotive.
- Conceptual physics, Paul Hewitt, 2002
- Web site: Schawlow and Townes invent the laser . Lucent Technologies . 1998 . October 24, 2006 . https://web.archive.org/web/20061017080654/http://www.bell-labs.com/about/history/laser/ . October 17, 2006.
- Book: Chu . Steven . Steven Chu . Townes . Charles . Charles Hard Townes . Edward P. Lazear . Biographical Memoirs . 2003 . 83 . National Academy of Sciences . 978-0-309-08699-8 . 202 . Arthur Schawlow .
- Web site: lase . Dictionary.com . December 10, 2011.
- Book: Siegman, Anthony E. . 1986 . Lasers . registration . University Science Books . 978-0-935702-11-8 . 2.
- Book: Pearsall. Thomas. Quantum Photonics, 2nd edition. Springer. 2020. 10.1007/978-3-030-47325-9. 978-3-030-47324-2. Graduate Texts in Physics. 240934073.
- Book: Pearsall. Thomas. Photonics Essentials, 2nd edition. McGraw-Hill. 2010. 978-0-07-162935-5.
- Book: Siegman, Anthony E. . 1986 . Lasers . registration . University Science Books . 978-0-935702-11-8 . 4.
- Book: Light and Its Uses . Nitrogen Laser . Scientific American . June 1974 . 978-0-7167-1185-8 . 40–43 . Light and Its Uses . https://archive.org/details/lightitsusesmaki0000unse/page/40 .
- Pollnau . M. . 2018 . Phase aspect in photon emission and absorption . Optica . 5 . 4 . 465–474 . 10.1364/OPTICA.5.000465 . 2018Optic…5..465P . free .
- Pollnau . M. . Eichhorn . M. . 2020 . Spectral coherence, Part I: Passive resonator linewidth, fundamental laser linewidth, and Schawlow-Townes approximation . Progress in Quantum Electronics . 72 . 100255 . 10.1016/j.pquantelec.2020.100255 . 2020PQE….7200255P . free .
- Glauber . R.J. . 1963 . Coherent and incoherent states of the radiation field . Phys. Rev. . 131 . 6 . 2766–2788 . 10.1103/PhysRev.131.2766 . 1963PhRv..131.2766G .
- Karman . G.P. . McDonald . G.S. . New . G.H.C. . Woerdman . J.P. . Han Woerdman . Laser Optics: Fractal modes in unstable resonators . Nature . 402 . 6758. 138 . 10.1038/45960. 1999Natur.402..138K . November 1999 . 205046813 . free .
- Einstein. A. Zur Quantentheorie der Strahlung. Physikalische Zeitschrift . 1917 . 18 . 121–128 . 1917PhyZ…18..121E .
- Steen, W.M. «Laser Materials Processing», 2nd Ed. 1998.
- Web site: Il rischio da laser: cosa è e come affrontarlo; analisi di un problema non così lontano da noi . The risk from laser: what it is and what it is like facing it; analysis of a problem which is thus not far away from us . Programma Corso di Formazione Obbligatorio . 2004 . Dimitri . Batani . Powerpoint . January 1, 2007 . wwwold.unimib.it . University of Milano-Bicocca . it . https://web.archive.org/web/20070614115935/http://wwwold.unimib.it/ateneo/presentazione/direzione_ammva/prevenzione_protezione/Semin_sicur_laser.ppt . June 14, 2007 . 12.
- http://nobelprize.org/nobel_prizes/physics/laureates/1966/press.html The Nobel Prize in Physics 1966
- Web site: American Institute of Physics Oral History Interview with Joseph Weber. 2015-05-04.
- Book: Bertolotti, Mario . 2015 . Masers and Lasers: An Historical Approach . CRC Press . 89–91 . 978-1-4822-1780-3 . 2nd . March 15, 2016.
- Web site: Guide to Lasers . Hobarts . 24 April 2017.
- Townes, Charles H. (1999). How the Laser Happened: Adventures of a Scientist, Oxford University Press,, pp. 69–70.
- Extension of frequencies from maser to laser . Jun-ichi . Nishizawa . Proc Jpn Acad Ser B Phys Biol Sci . Dec 2009 . 85 . 10 . 454–465 . 10.2183/pjab.85.454. 20009378 . 3621550 . 2009PJAB…85..454N . free .
- Schawlow . Arthur . Townes . Charles . Infrared and Optical Masers . 1958 . 10.1103/PhysRev.112.1940 . Physical Review . 112 . 6 . 1940–1949. 1958PhRv..112.1940S . free .
- Book: Gould, R. Gordon . Gordon Gould . 1959 . The LASER, Light Amplification by Stimulated Emission of Radiation . Franken, P.A. . Sands R.H.. The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959 . 128 . 02460155.
- Joan Lisa Bromberg, The Laser in America, 1950–1970 (1991), pp. 74–77 online
- Maiman . T. H. . Theodore Harold Maiman . 1960 . Stimulated optical radiation in ruby . Nature . 187 . 4736 . 493–494 . 10.1038/187493a0. 1960Natur.187..493M . 4224209 .
- Web site: May 15, 2008. The first laser . University of Chicago. Townes . Charles Hard . Charles Hard Townes.
- Book: Hecht, Jeff . 2005 . Beam: The Race to Make the Laser . Oxford University Press . 978-0-19-514210-5.
- Web site: For The First Time, A Laser That Shines Pure White. Popular Science. March 18, 2019.
- Web site: Researchers demonstrate the world’s first white lasers. phys.org.
- Web site: Scientists Finally Created a White Laser—and It Could Light Your Home. gizmodo.com.
- Web site: Researchers demonstrate new type of laser . Phys.org . 4 March 2017.
- Cassidy. M. C.. Bruno. A.. Rubbert. S.. Irfan. M.. Kammhuber. J.. Schouten. R.N.. Akhmerov. A.R.. Kouwenhoven. L.P.. Demonstration of an ac Josephson junction laser. Science. 2 March 2017. 355. 6328. 939–942. 10.1126/science.aah6640. 28254938. 1703.05404. 2017Sci…355..939C. 1364541.
- Long-term mutual phase locking of picosecond pulse pairs generated by a semiconductor nanowire laser. B.. Mayer. A.. Regler. S.. Sterzl. T.. Stettner. G.. Koblmüller. M.. Kaniber. B.. Lingnau. K.. Lüdge. J.J.. Finley. May 23, 2017. Nature Communications. 8. 15521. 10.1038/ncomms15521. 28534489. 5457509. 1603.02169. 2017NatCo…815521M.
- Erika Schow . The Physikalisch-Technische Bundesanstalt has developed a laser with a linewidth of only 10 mHz . June 29, 2017 . dead . https://web.archive.org/web/20170703235028/http://www.ptb.de/cms/en/presseaktuelles/journalisten/news-press-releases/press-release.html . 2017-07-03.
- 1.5 μm Lasers with Sub-10 mHz Linewidth . D.G. . Matei . T. . Legero . S. . Häfner . C. . Grebing . R. . Weyrich . W. . Zhang . L. . Sonderhouse . J.M. . Robinson . J. . Ye . 3 . Phys. Rev. Lett. . 118 . 263202 . 26 . 30 June 2017 . 10.1103/PhysRevLett.118.263202 . 28707932 . 1702.04669 . 2017PhRvL.118z3202M . 206293342 .
- Web site: The Carbon Dioxide Laser. Nolen. Jim. Davidson Physics. 17 August 2014. Derek Verno .
- Web site: Csele . Mark . The TEA Nitrogen Gas Laser . Homebuilt Lasers Page . 2004 . September 15, 2007 . https://web.archive.org/web/20070911190723/http://www.technology.niagarac.on.ca/people/mcsele/lasers/LasersTEA.htm . September 11, 2007.
- Web site: Deep UV Lasers . Photon Systems, Covina, Calif . https://web.archive.org/web/20070701004933/http://www.photonsystems.com/pdfs/duv-lasersource.pdf . 2007-07-01 . May 27, 2007 .
- Lasing without inversion . 2000 . Mompart . J. . Corbalán . R. . J. Opt. B . 2 . 3 . 10.1088/1464-4266/2/3/201 . 2000JOptB…2R…7M . R7–R24. 121209763 .
- Book: Javan, A. . 2000 . On knowing Marlan . Ode to a quantum physicist: A festschrift in honor of Marlan O. Scully . Elsevier.
- Book: Schuocker, D. . 1998 . Handbook of the Eurolaser Academy . Springer . 978-0-412-81910-0 .
- Book: Handbook of Optics, Third Edition Volume V: Atmospheric Optics, Modulators, Fiber Optics, X-Ray and Neutron Optics . Bass . Michael . DeCusatis . Casimer . Enoch . Jay . Lakshminarayanan . Vasudevan . Li . Guifang . MacDonald . Carolyn . Mahajan. Virendra. Stryland. Eric Van . 2009-11-13 . McGraw Hill Professional . 978-0-07-163314-7 . en.
- C. Stewen, M. Larionov, and A. Giesen, «Yb:YAG thin disk laser with 1 kW output power», in OSA Trends in Optics and Photonics, Advanced Solid-State Lasers, H. Injeyan, U. Keller, and C. Marshall, ed. (Optical Society of America, Washington, D.C., 2000) pp. 35–41.
- Ultraviolet photonic crystal laser . X. . Wu . 85 . 17 . October 25, 2004. Applied Physics Letters . 10.1063/1.1808888. physics/0406005 . 2004ApPhL..85.3657W . 3657 . 119460787 . etal.
- Web site: Laser Diode Market . Hanel Photonics . Sep 26, 2014.
- Web site: High-power direct-diode lasers for cutting and welding. www.industrial-lasers.com. 2018-08-11.
- Web site: LASER Diode. nichia.co.jp.
- Web site: Green Laser. August 19, 2015. osram-os.com.
- Web site: Picolight ships first 4-Gbit/s 1310-nm VCSEL transceivers . Laser Focus World Online . December 9, 2005 . May 27, 2006 . https://web.archive.org/web/20060313161940/http://lfw.pennnet.com/Articles/Article_Display.cfm?ARTICLE_ID=243400&p=12 . March 13, 2006.
- Monolithically Integrated High-β Nanowire Lasers on Silicon . B. . Mayer . L. . Janker . B. . Loitsch . J. . Treu . T. . Kostenbader . S. . Lichtmannecker . T. . Reichert . S. . Morkötter . M. . Kaniber . G. . Abstreiter . C. . Gies . G. . Koblmüller . J.J. . Finley . January 13, 2016 . Nano Letters . 16 . 1 . 152–156 . 10.1021/acs.nanolett.5b03404 . 26618638 . 2016NanoL..16..152M.
- Baldwin. G.C.. Solem. J.C.. Gol’danskii. V. I.. 1981. Approaches to the development of gamma-ray lasers. Reviews of Modern Physics . 53. 4. 687–744. 1981RvMP…53..687B . 10.1103/RevModPhys.53.687 .
- Baldwin. G.C.. Solem. J.C.. 1995. Recent proposals for gamma-ray lasers . Laser Physics. 5. 2. 231–239.
- Baldwin. G.C.. Solem. J.C.. 1997. Recoilless gamma-ray lasers. Reviews of Modern Physics . 69 . 4 . 1085–1117. 1997RvMP…69.1085B . 10.1103/RevModPhys.69.1085 .
- Baldwin . G.C. . Solem . J.C. . 1982 . Is the time ripe? Or must we wait so long for breakthroughs?. Laser Focus. 18. 6. 6&8.
- Solem. J.C.. 1979. On the feasibility of an impulsively driven gamma-ray laser. Los Alamos Scientific Laboratory Report LA-7898. 10.2172/6010532. 6010532.
- Baldwin. G.C.. Solem. J.C.. 1979. Maximum density and capture rates of neutrons moderated from a pulsed source. Nuclear Science & Engineering. 72. 3. 281–289 . 10.13182/NSE79-A20384.
- Baldwin . G.C. . Solem . J.C. . 1980. Two-stage pumping of three-level Mössbauer gamma-ray lasers. Journal of Applied Physics. 51. 5. 2372–2380. 1980JAP….51.2372B . 10.1063/1.328007 .
- Solem. J.C.. AIP Conference Proceedings. 1986. Interlevel transfer mechanisms and their application to grasers. Proceedings of Advances in Laser Science-I, First International Laser Science Conference, Dallas, TX 1985 (American Institute of Physics, Optical Science and Engineering, Series 6). 146. 22–25. 10.1063/1.35861. 1986AIPC..146…22S. https://digital.library.unt.edu/ark:/67531/metadc1105924/.
- Biedenharn . L.C. . Boyer. K.. Solem. J.C.. AIP Conference Proceedings . 1986. Possibility of grasing by laser-driven nuclear excitation. Proceedings of AIP Advances in Laser Science-I, Dallas, TX, November 18–22, 1985 . 146 . 50–51. 10.1063/1.35928. 1986AIPC..146…50B .
- Rinker . G.A. . Solem . J.C. . Biedenharn . L.C. . Randy C . Jones . Calculation of harmonic radiation and nuclear coupling arising from atoms in strong laser fields . Proc. SPIE 0875, Short and Ultrashort Wavelength Lasers . 1988 Los Angeles Symposium: O-E/LASE ’88, 1988, Los Angeles, CA, United States . April 27, 1988 . International Society for Optics and Photonics . 146 . 92–101 . 10.1117/12.943887 . Short and Ultrashort Wavelength Lasers.
- Rinker. G. A. . Solem . J.C. . Biedenharn . L.C. . 1987 . Nuclear interlevel transfer driven by collective outer shell electron excitations. Proceedings of the Second International Laser Science Conference, Seattle, WA (Advances in Laser Science-II) . Lapp, M. . Stwalley, W.C. . Kenney-Wallace G.A. . American Institute of Physics . New York . 160. 75–86. 16971600.
- Solem . J.C. . 1988 . Theorem relating spatial and temporal harmonics for nuclear interlevel transfer driven by collective electronic oscillation . Journal of Quantitative Spectroscopy and Radiative Transfer . 40 . 6 . 713–715 . 1988JQSRT..40..713S . 10.1016/0022-4073(88)90067-2 .
- Solem. J.C.. Biedenharn . L.C. . 1987 . Primer on coupling collective electronic oscillations to nuclei . Los Alamos National Laboratory Report LA-10878 . 1987pcce.rept…..S.
- Solem . J.C. . Biedenharn . L.C.. 1988. Laser coupling to nuclei via collective electronic oscillations: A simple heuristic model study . Journal of Quantitative Spectroscopy and Radiative Transfer . 40 . 6 . 707–712 . 1988JQSRT..40..707S . 10.1016/0022-4073(88)90066-0 .
- Boyer . K. . Java . H. . Luk . T.S.. McIntyre . I.A.. McPherson . A.. Rosman . R.. Solem . J.C.. Rhodes . C.K. . Szöke . A. . 1987 . Discussion of the role of many-electron motions in multiphoton ionization and excitation . Proceedings of International Conference on Multiphoton Processes (ICOMP) IV, July 13–17, 1987, Boulder, CA . Smith, S. . Knight, P. . Cambridge University Press . Cambridge, England . 58. 10147730.
- Biedenharn . L.C. . Rinker . G.A.. Solem. J.C.. 1989. A solvable approximate model for the response of atoms subjected to strong oscillatory electric fields. Journal of the Optical Society of America B . 6 . 2 . 221–227. 1989JOSAB…6..221B . 10.1364/JOSAB.6.000221 .
- News: Mirror particles form new matter . Jonathan . Fildes . September 12, 2007 . BBC News . May 22, 2008.
- Jeff . Hecht . The history of the x-ray laser . Optics and Photonics News . 19. 5 . May 2008 . 26–33 . 10.1364/opn.19.5.000026. 2008OptPN..19R..26H .
- Clarence A. . Robinson . Advance made on high-energy laser . Aviation Week & Space Technology . February 23, 1981 . 25–27.
- News: Laser is produced by a living cell . Jason . Palmer . June 13, 2011 . BBC News . June 13, 2011.
- Single-cell biological lasers . Malte C. Gather . Seok Hyun Yun . amp . June 12, 2011 . Nature Photonics . 10.1038/nphoton.2011.99 . 5 . 7 . 406–410. 2011NaPho…5..406G.
- News: Chen . Sophia . Alien Light . 9 February 2021 . . 1 January 2020.
- Mumma . Michael J . Discovery of Natural Gain Amplification in the 10-Micrometer Carbon Dioxide Laser Bands on Mars: A Natural Laser . . 3 April 1981 . 212 . 4490 . 45–49 . 10.1126/science.212.4490.45 . 17747630 . 1981Sci…212…45M . 9 February 2021.
- Book: A Century of Nature: Twenty-One Discoveries that Changed Science and the World. Charles H. Townes. Charles Hard Townes. The first laser. http://www.press.uchicago.edu/Misc/Chicago/284158_townes.html. Laura Garwin. Laura Garwin . Tim Lincoln. University of Chicago Press. 2003. 107–12. 978-0-226-28413-2. registration.
- Dalrymple B.E., Duff J.M., Menzel E.R. «Inherent fingerprint luminescence – detection by laser». Journal of Forensic Sciences, 22(1), 1977, 106–115
- Dalrymple B.E. «Visible and infrared luminescence in documents : excitation by laser». Journal of Forensic Sciences, 28(3), 1983, 692–696
- Kincade . Kathy . Stephen . Anderson . January 1, 2005 . Laser Marketplace 2005: Consumer applications boost laser sales 10% . Laser Focus World . 41 . 1 .
- Steele . Robert V. . February 1, 2005 . Diode-laser market grows at a slower rate . Laser Focus World . 41 . 2 .
- Web site: Laser therapy for cancer: MedlinePlus Medical Encyclopedia. medlineplus.gov. en. 15 December 2017.
- http://www.powerlabs.org/laser.htm PowerLabs CO2 LASER!
- Web site: Stephanie . Maks . Howto: Make a DVD burner into a high-powered laser . Transmissions from Planet Stephanie . April 6, 2015.
- Web site: Laser Diode Power Output Based on DVD-R/RW specs . April 10, 2011 . elabz.com . December 10, 2011.
- Web site: How to select a surgical veterinary laser . Peavy . George M. . Aesculight . March 30, 2016. 2014-01-23 .
- Heller, Arnie, «Orchestrating the world’s most powerful laser .» Science and Technology Review. Lawrence Livermore National Laboratory, July/August 2005. URL accessed May 27, 2006.
- Web site: Dragan . Aurel . Magurele Laser officially becomes the most powerful laser in the world . Business Review . 23 March 2021 . 13 March 2019.
- News: Hecht . Jeff . Can Lidars Zap Camera Chips? . 1 February 2019 . . 24 January 2018.
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The term «laser» originated as an acronym for «light amplification by stimulated emission of radiation«. The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow.
A laser differs from other sources of light in that it emits light which is coherent. Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as laser cutting and lithography. Spatial coherence also allows a laser beam to stay narrow over great distances, enabling applications such as laser pointers and lidar. Lasers can also have high temporal coherence, which allows them to emit light with a very narrow spectrum, i.e., they can emit a single color of light. Alternatively, temporal coherence can be used to produce pulses of light with a broad spectrum but durations as short as a femtosecond.
Lasers are used in optical disk drives, laser printers, barcode scanners, DNA sequencing instruments, fiber-optic, semiconducting chip manufacturing, and free-space optical communication, laser surgery and skin treatments, cutting and welding materials, military and law enforcement devices for marking targets and measuring range and speed, and in laser lighting displays for entertainment. They have been used for car headlamps on luxury cars, by using a blue laser and a phosphor to produce highly directional white light.
Fundamentals
Lasers are distinguished from other light sources by their coherence. Spatial coherence is typically expressed through the output being a narrow beam, which is diffraction-limited. Laser beams can be focused to very tiny spots, achieving a very high irradiance, or they can have very low divergence in order to concentrate their power at a great distance. Temporal coherence implies a polarized wave at a single frequency, whose phase is correlated over a relatively great distance along the beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase that vary randomly with respect to time and position, thus having a short coherence length.
Lasers are characterized according to their wavelength in a vacuum. Most «single wavelength» lasers actually produce radiation in several modes with slightly different wavelengths. Although temporal coherence implies monochromaticity, there are lasers that emit a broad spectrum of light or emit different wavelengths of light simultaneously. Some lasers are not single spatial mode and have light beams that diverge more than is required by the diffraction limit. All such devices are classified as «lasers» based on their method of producing light, i.e., stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies.
Terminology
The word laser started as an acronym for «light amplification by stimulated emission of radiation». In this usage, the term «light» includes electromagnetic radiation of any frequency, not only visible light, hence the terms infrared laser, ultraviolet laser, X-ray laser and gamma-ray laser. Because the microwave predecessor of the laser, the maser, was developed first, devices of this sort operating at microwave and radio frequencies are referred to as «masers» rather than «microwave lasers» or «radio lasers». In the early technical literature, especially at Bell Telephone Laboratories, the laser was called an optical maser; this term is now obsolete.
A laser that produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym. It has been humorously noted that the acronym LOSER, for «light oscillation by stimulated emission of radiation», would have been more correct. With the widespread use of the original acronym as a common noun, optical amplifiers have come to be referred to as «laser amplifiers», notwithstanding the apparent redundancy in that designation.
The back-formed verb to lase is frequently used in the field, meaning «to produce laser light,» especially in reference to the gain medium of a laser; when a laser is operating it is said to be «lasing.» Further use of the words laser and maser in an extended sense, not referring to laser technology or devices, can be seen in usages such as astrophysical maser and atom laser.
Design
A laser consists of a gain medium, a mechanism to energize it, and something to provide optical feedback. The gain medium is a material with properties that allow it to amplify light by way of stimulated emission. Light of a specific wavelength that passes through the gain medium is amplified.
For the gain medium to amplify light, it needs to be supplied with energy in a process called pumping. The energy is typically supplied as an electric current or as light at a different wavelength. Pump light may be provided by a flash lamp or by another laser.
The most common type of laser uses feedback from an optical cavity—a pair of mirrors on either end of the gain medium. Light bounces back and forth between the mirrors, passing through the gain medium and being amplified each time. Typically one of the two mirrors, the output coupler, is partially transparent. Some of the light escapes through this mirror. Depending on the design of the cavity, the light coming out of the laser may spread out or form a narrow beam. In analogy to electronic oscillators, this device is sometimes called a laser oscillator.
Most practical lasers contain additional elements that affect properties of the emitted light, such as the polarization, wavelength, and shape of the beam.
Laser physics
s and how they interact with electromagnetic fields are important in our understanding of chemistry and physics.
Stimulated emission
In the classical view, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the nucleus of an atom. However, quantum mechanical effects force electrons to take on discrete positions in orbitals. Thus, electrons are found in specific energy levels of an atom, two of which are shown below:
An electron in an atom can absorb energy from light or heat only if there is a transition between energy levels that matches the energy carried by the photon or phonon. For light, this means that any given transition will only absorb one particular wavelength of light. Photons with the correct wavelength can cause an electron to jump from the lower to the higher energy level. The photon is consumed in this process.
When an electron is excited to a higher energy level, it will not stay that way forever. Eventually, the electron decays to a lower energy level which is not occupied, with transitions to different levels having different time constants. When such an electron decays without external influence, it emits a photon. This process is called «spontaneous emission». The emitted photon has random phase and direction, but its wavelength matches the absorption wavelength of the transitiion. This is the mechanism of fluorescence and thermal emission.
A photon with the correct wavelength to be absorbed by a transition can also cause an electron to drop from the higher to the lower level, emitting a new photon. The emitted photon exactly matches the original photon in wavelength, phase, and direction. This process is called stimulated emission.
Gain medium and cavity
The gain medium is put into an excited state by an external source of energy. In most lasers this medium consists of a population of atoms which have been excited into such a state by means of an outside light source, or an electrical field which supplies energy for atoms to absorb and be transformed into their excited states.
The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state: gas, liquid, solid, or plasma. The gain medium absorbs pump energy, which raises some electrons into higher-energy quantum states. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved. In this state, the rate of stimulated emission is larger than the rate of absorption of light in the medium, and therefore the light is amplified. A system with this property is called an optical amplifier. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.
In a few situations it is possible to obtain lasing with only a single pass of EM radiation through the gain medium, and this produces a laser beam without any need for a resonant or reflective cavity. Thus, reflection in a resonant cavity is usually required for a laser, but is not absolutely necessary.
The optical resonator is sometimes referred to as an «optical cavity», but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a maser.
The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting back on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption.
If the gain in the medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain reduces to unity and the gain medium is said to be saturated. In a continuous wave laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the cavity losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the lasing threshold. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification.
The light emitted
In most lasers, lasing begins with spontaneous emission into the lasing mode. This initial light is then amplified by stimulated emission in the gain medium. Stimulated emission produces light that matches the input signal in direction, wavelength, and polarization, whereas the phase of emitted light is 90 degrees in lead of the stimulating light. This, combined with the filtering effect of the optical resonator gives laser light its characteristic coherence, and may give it uniform polarization and monochromaticity, depending on the resonator’s design. The fundamental laser linewidth of light emitted from the lasing resonator can be orders of magnitude narrower than the linewidth of light emitted from the passive resonator. Some lasers use a separate injection seeder to start the process off with a beam that is already highly coherent. This can produce beams with a narrower spectrum than would otherwise be possible.
Many lasers produce a beam that can be approximated as a Gaussian beam; such beams have the minimum divergence possible for a given beam diameter. Some lasers, particularly high-power ones, produce multimode beams, with the transverse modes often approximated using Hermite–Gaussian or Laguerre-Gaussian functions. Some high power lasers use a flat-topped profile known as a «tophat beam». Unstable laser resonators produce fractal-shaped beams. Specialized optical systems can produce more complex beam geometries, such as Bessel beams and optical vortexes.
Near the «waist» of a laser beam, it is highly collimated: the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However, due to diffraction, that can only remain true well within the Rayleigh range. The beam of a single transverse mode laser eventually diverges at an angle which varies inversely with the beam diameter, as required by diffraction theory. Thus, the «pencil beam» directly generated by a common helium–neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon. On the other hand, the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam by means of a lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode. That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence, cannot be replicated using standard light sources as can be appreciated by comparing the beam from a flashlight or spotlight to that of almost any laser.
A laser beam profiler is used to measure the intensity profile, width, and divergence of laser beams.
Diffuse reflection of a laser beam from a matte surface produces a speckle pattern with interesting properties.
Quantum vs. classical emission processes
The mechanism of producing radiation in a laser relies on stimulated emission, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon discovered by Albert Einstein who derived the relationship between the A coefficient describing spontaneous emission and the B coefficient which applies to absorption and stimulated emission. However, in the case of the free electron laser, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to quantum mechanics.
Continuous and pulsed modes of operation
A laser can be classified as operating in either [|continuous] or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course even a laser whose output is normally continuous can be intentionally turned on and off at some rate in order to create pulses of light. When the modulation rate is on time scales much slower than the cavity lifetime and the time period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a «modulated» or «pulsed» continuous wave laser. Most laser diodes used in communication systems fall in that category.
Continuous wave operation
Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as continuous wave. Many types of lasers can be made to operate in continuous wave mode to satisfy such an application. Many of these lasers actually lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will, in fact, produce amplitude variations on time scales shorter than the round-trip time, typically a few nanoseconds or less. In most cases, these lasers are still termed «continuous wave» as their output power is steady when averaged over any longer time periods, with the very high-frequency power variations having little or no impact in the intended application.
For continuous wave operation, it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media, this is impossible. In some other lasers, it would require pumping the laser at a very high continuous power level which would be impractical or destroy the laser by producing excessive heat. Such lasers cannot be run in CW mode.
Pulsed operation
Pulsed operation of lasers refers to any laser not classified as continuous wave, so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing a number of different motivations. Some lasers are pulsed simply because they cannot be run in continuous mode.
In other cases, the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up in between pulses. In laser ablation, for example, a small volume of material at the surface of a work piece can be evaporated if it is heated in a very short time, while supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.
Other applications rely on the peak pulse power, especially in order to obtain nonlinear optical effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching.
The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some dye lasers and vibronic solid-state lasers produces optical gain over a wide bandwidth, making a laser possible which can thus generate pulses of light as short as a few femtoseconds.
Q-switching
In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or ‘Q’ of the cavity. Then, after the pump energy stored in the laser medium has approached the maximum possible level, the introduced loss mechanism is rapidly removed, allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power.
Mode-locking
A mode-locked laser is capable of emitting extremely short pulses on the order of tens of picoseconds down to less than 10 femtoseconds. These pulses will repeat at the round trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the Fourier limit, a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is titanium-doped, artificially grown sapphire which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration.
Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales, for maximizing the effect of nonlinearity in optical materials. Due to the large peak power and the ability to generate phase-stabilized trains of ultrafast laser pulses, mode-locking ultrafast lasers underpin precision metrology and spectroscopy applications.
Pulsed pumping
Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser which is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high energy, fast pump was needed. The way to overcome this problem was to charge up large capacitors which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode.
History
Foundations
In 1917, Albert Einstein established the theoretical foundations for the laser and the maser in the paper Zur Quantentheorie der Strahlung via a re-derivation of Max Planck’s law of radiation, conceptually based upon probability coefficients for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation. In 1928, Rudolf W. Ladenburg confirmed the existence of the phenomena of stimulated emission and negative absorption. In 1939, Valentin A. Fabrikant predicted the use of stimulated emission to amplify «short» waves. In 1947, Willis E. Lamb and R.C. Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission. In 1950, Alfred Kastler proposed the method of optical pumping, experimentally confirmed, two years later, by Brossel, Kastler, and Winter.
Maser
In 1951, Joseph Weber submitted a paper on using stimulated emissions to make a microwave amplifier to the June 1952 Institute of Radio Engineers Vacuum Tube Research Conference at Ottawa, Ontario, Canada. After this presentation, RCA asked Weber to give a seminar on this idea, and Charles Hard Townes asked him for a copy of the paper.
In 1953, Charles Hard Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying microwave radiation rather than infrared or visible radiation. Townes’s maser was incapable of continuous output. Meanwhile, in the Soviet Union, Nikolay Basov and Aleksandr Prokhorov were independently working on the quantum oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a population inversion. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.
Townes reports that several eminent physicists—among them Niels Bohr, John von Neumann, and Llewellyn Thomas—argued the maser violated Heisenberg’s uncertainty principle and hence could not work. Others such as Isidor Rabi and Polykarp Kusch expected that it would be impractical and not worth the effort. In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics, «for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle».
Laser
In 1957, Charles Hard Townes and Arthur Leonard Schawlow, then at Bell Labs, began a serious study of the infrared laser. As ideas developed, they abandoned infrared radiation to instead concentrate upon visible light. The concept originally was called an «optical maser». In 1958, Bell Labs filed a patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the Physical Review, published that year in Volume 112, Issue No. 6.
coined the LASER acronym, and described the elements for constructing the device.
Simultaneously, at Columbia University, graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium. When Gould and Townes met, they spoke of radiation emission, as a general subject; afterwards, in November 1957, Gould noted his ideas for a «laser», including using an open resonator. Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance of this idea. Elsewhere, in the U.S., Schawlow and Townes had agreed to an open-resonator laser design – apparently unaware of Prokhorov’s publications and Gould’s unpublished laser work.
At a conference in 1959, Gordon Gould published the term LASER in the paper The LASER, Light Amplification by Stimulated Emission of Radiation. Gould’s linguistic intention was using the «-aser» word particle as a suffix – to accurately denote the spectrum of the light emitted by the LASER device; thus x-rays: xaser, ultraviolet: uvaser, et cetera; none established itself as a discrete term, although «raser» was briefly popular for denoting radio-frequency-emitting devices.
Gould’s notes included possible applications for a laser, such as spectrometry, interferometry, radar, and nuclear fusion. He continued developing the idea, and filed a patent application in April 1959. The U.S. Patent Office denied his application, and awarded a patent to Bell Labs, in 1960. That provoked a twenty-eight-year lawsuit, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory, when a Federal judge ordered the U.S. Patent Office to issue patents to Gould for the optically pumped and the gas discharge laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians.
On May 16, 1960, Theodore H. Maiman operated the first functioning laser at Hughes Research Laboratories, Malibu, California, ahead of several research teams, including those of Townes, at Columbia University, Arthur Schawlow, at Bell Labs, and Gould, at the TRG company. Maiman’s functional laser used a flashlamp-pumped synthetic ruby crystal to produce red laser light at 694 nanometers wavelength. The device was only capable of pulsed operation, due to its three-level pumping design scheme. Later that year, the Iranian physicist Ali Javan, and William R. Bennett, and Donald Herriott, constructed the first gas laser, using helium and neon that was capable of continuous operation in the infrared ; later, Javan received the Albert Einstein Award in 1993. Basov and Javan proposed the semiconductor laser diode concept. In 1962, Robert N. Hall demonstrated the first laser diode device, which was made of gallium arsenide and emitted in the near-infrared band of the spectrum at 850 nm. Later that year, Nick Holonyak, Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen temperatures. In 1970, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Telephone Laboratories also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure.
Recent innovations
Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:
- new wavelength bands
- maximum average output power
- maximum peak pulse energy
- maximum peak pulse power
- minimum output pulse duration
- minimum linewidth
- maximum power efficiency
- minimum cost
and this research continues to this day.
In 2015, researchers made a white laser, whose light is modulated by a synthetic nanosheet made out of zinc, cadmium, sulfur, and selenium that can emit red, green, and blue light in varying proportions, with each wavelength spanning 191 nm.
In 2017, researchers at TU Delft demonstrated an AC Josephson junction microwave laser. Since the laser operates in the superconducting regime, it is more stable than other semiconductor-based lasers. The device has potential for applications in quantum computing. In 2017, researchers at TU Munich demonstrated the smallest mode locking laser capable of emitting pairs of phase-locked picosecond laser pulses with a repetition frequency up to 200 GHz.
In 2017, researchers from the Physikalisch-Technische Bundesanstalt, together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology and the University of Colorado Boulder, established a new world record by developing an erbium-doped fiber laser with a linewidth of only 10 millihertz.
Types and operating principles
Gas lasers
Following the invention of the HeNe gas laser, many other gas discharges have been found to amplify light coherently.
Gas lasers using many different gases have been built and used for many purposes. The helium–neon laser is able to operate at a number of different wavelengths, however the vast majority are engineered to lase at 633 nm; these relatively low cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial carbon dioxide lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 µm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO2 laser is unusually high: over 30%. Argon-ion lasers can operate at a number of lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen transverse electrical discharge in gas at atmospheric pressure laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm. Metal ion lasers are gas lasers that generate deep ultraviolet wavelengths. Helium-silver 224 nm and neon-copper 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation linewidths, less than 3 GHz, making them candidates for use in fluorescence suppressed Raman spectroscopy.
Chemical lasers
s are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the hydrogen fluoride laser and the deuterium fluoride laser the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride.
Excimer lasers
s are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules which can only exist with one atom in an excited electronic state. Once the molecule transfers its excitation energy to a photon, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all :Category:Noble gas compounds|noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at ultraviolet wavelengths with major applications including semiconductor photolithography and LASIK eye surgery. Commonly used excimer molecules include ArF, KrCl, KrF, XeCl, and XeF.
The molecular fluorine laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however this appears to be a misnomer inasmuch as F2 is a stable compound.
Solid-state lasers
s use a crystalline or glass rod which is «doped» with ions that provide the required energy states. For example, the first working laser was a ruby laser, made from ruby. The population inversion is actually maintained in the dopant. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flashtube or from another laser. The usage of the term «solid-state» in laser physics is narrower than in typical use. Semiconductor lasers are typically not referred to as solid-state lasers.
Neodymium is a common dopant in various solid-state laser crystals, including yttrium orthovanadate, yttrium lithium fluoride and yttrium aluminium garnet. All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers. These lasers are also commonly frequency doubled, tripled or quadrupled to produce 532 nm, 355 nm and 266 nm beams, respectively. Frequency-doubled diode-pumped solid-state lasers are used to make bright green laser pointers.
Ytterbium, holmium, thulium, and erbium are other common «dopants» in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020–1050 nm. They are potentially very efficient and high powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode, and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.
Titanium-doped sapphire produces a highly tunable infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing ultrashort pulses of extremely high peak power.
Thermal limitations in solid-state lasers arise from unconverted pump power that heats the medium. This heat, when coupled with a high thermo-optic coefficient can cause thermal lensing and reduce the quantum efficiency. Diode-pumped thin disk lasers overcome these issues by having a gain medium that is much thinner than the diameter of the pump beam. This allows for a more uniform temperature in the material. Thin disk lasers have been shown to produce beams of up to one kilowatt.
Fiber lasers
Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have high surface area to volume ratio which allows efficient cooling. In addition, the fiber’s waveguiding properties tend to reduce thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.
Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture to have easy launching conditions.
Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.
Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber. This effect is called photodarkening. In bulk laser materials, the cooling is not so efficient, and it is difficult to separate the effects of photodarkening from the thermal effects, but the experiments in fibers show that the photodarkening can be attributed to the formation of long-living color centers.
Photonic crystal lasers
Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the density of optical states structure required for the feedback to take place. They are typical micrometer-sized and tunable on the bands of the photonic crystals.
Semiconductor lasers
Semiconductor lasers are diodes which are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal form an optical resonator, although the resonator can be external to the semiconductor in some designs.
Commercial laser diodes emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in laser pointers, laser printers and CD/DVD players. Laser diodes are also frequently used to optically pump other lasers with high efficiency. The highest power industrial laser diodes, with power up to 20 kW, are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.
In 2012, Nichia and OSRAM developed and manufactured commercial high-power green laser diodes, which compete with traditional diode-pumped solid-state lasers.
Vertical cavity surface-emitting lasers are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized, and 1550 nm devices an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy sub-bands of an electron in a structure containing several quantum wells.
The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium phosphide or gallium arsenide, materials which allow coherent light to be produced from silicon. These are called hybrid silicon laser. Recent developments have also shown the use of monolithically integrated nanowire lasers directly on silicon for optical interconnects, paving the way for chip level applications. These heterostructure nanowire lasers capable of optical interconnects in silicon are also capable of emitting pairs of phase-locked picosecond pulses with a repetition frequency up to 200 GHz, allowing for on-chip optical signal processing. Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon.
Lasing without maintaining the medium excited into a population inversion was demonstrated in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams. This was accomplished by using an external maser to induce «optical transparency» in the medium by introducing and destructively interfering the ground electron transitions between two paths, so that the likelihood for the ground electrons to absorb any energy has been cancelled.
Dye lasers
s use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses. Although these tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. In their most prevalent form these solid state dye lasers use dye-doped polymers as laser media.
Free-electron lasers
s, or FELs, generate coherent, high power radiation that is widely tunable, currently ranging in wavelength from microwaves through terahertz radiation and infrared to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term free-electron.
Exotic media
The pursuit of a high-quantum-energy laser using transitions between isomeric states of an atomic nucleus has been the subject of wide-ranging academic research since the early 1970s. Much of this is summarized in three review articles. This research has been international in scope, but mainly based in the former Soviet Union and the United States. While many scientists remain optimistic that a breakthrough is near, an operational gamma-ray laser is yet to be realized.
Some of the early studies were directed toward short pulses of neutrons exciting the upper isomer state in a solid so the gamma-ray transition could benefit from the line-narrowing of Mössbauer effect. In conjunction, several advantages were expected from two-stage pumping of a three-level system. It was conjectured that the nucleus of an atom, embedded in the near field of a laser-driven coherently-oscillating electron cloud would experience a larger dipole field than that of the driving laser. Furthermore, nonlinearity of the oscillating cloud would produce both spatial and temporal harmonics, so nuclear transitions of higher multipolarity could also be driven at multiples of the laser frequency.
In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser. Dr. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments.
Space-based X-ray lasers pumped by a nuclear explosion have also been proposed as antimissile weapons. Such devices would be one-shot weapons.
Living cells have been used to produce laser light. The cells were genetically engineered to produce green fluorescent protein. The GFP is used as the laser’s «gain medium», where light amplification takes place. The cells were then placed between two tiny mirrors, just 20 millionths of a meter across, which acted as the «laser cavity» in which light could bounce many times through the cell. Upon bathing the cell with blue light, it could be seen to emit directed and intense green laser light.
Uses
When lasers were invented in 1960, they were called «a solution looking for a problem». Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry, law enforcement, entertainment, and the military. Fiber-optic communication using lasers is a key technology in modern communications, allowing services such as the Internet.
The first widely noticeable use of lasers was the supermarket barcode scanner, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by laser printers.
Some other uses are:
- Communications: besides fiber-optic communication, lasers are used for free-space optical communication, including laser communication in space.
- Medicine: see [|below].
- Industry: cutting including converting thin materials, welding, material heat treatment, marking parts, additive manufacturing or 3D printing processes such as selective laser sintering and selective laser melting, non-contact measurement of parts and 3D scanning, and laser cleaning.
- Military: marking targets, guiding munitions, missile defense, electro-optical countermeasures, lidar, blinding troops. See below
- Law enforcement: LIDAR traffic enforcement. Lasers are used for latent fingerprint detection in the forensic identification field
- Research: spectroscopy, laser ablation, laser annealing, laser scattering, laser interferometry, lidar, laser capture microdissection, fluorescence microscopy, metrology, laser cooling.
- Commercial products: laser printers, barcode scanners, thermometers, laser pointers, holograms, bubblegrams.
- Entertainment: optical discs, laser lighting displays, laser turntables
In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of US$2.19 billion. In the same year, approximately 733 million diode lasers, valued at $3.20 billion, were sold.
In medicine
Lasers have many uses in medicine, including laser surgery, laser healing, kidney stone treatment, ophthalmoscopy, and cosmetic skin treatments such as acne treatment, cellulite and striae reduction, and hair removal.
Lasers are used to treat cancer by shrinking or destroying tumors or precancerous growths. They are most commonly used to treat superficial cancers that are on the surface of the body or the lining of internal organs. They are used to treat basal cell skin cancer and the very early stages of others like cervical, penile, vaginal, vulvar, and non-small cell lung cancer. Laser therapy is often combined with other treatments, such as surgery, chemotherapy, or radiation therapy. Laser-induced interstitial thermotherapy, or interstitial laser photocoagulation, uses lasers to treat some cancers using hyperthermia, which uses heat to shrink tumors by damaging or killing cancer cells. Lasers are more precise than traditional surgery methods and cause less damage, pain, bleeding, swelling, and scarring. A disadvantage is that surgeons must have specialized training. It may be more expensive than other treatments.
As weapons
A laser weapon is a laser that is used as a directed-energy weapon.
Hobbies
In recent years, some hobbyists have taken interests in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb, although some have made their own class IV types. However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players, Blu-ray players, or even higher power laser diodes from CD or DVD burners.
Hobbyists also have been taking surplus pulsed lasers from retired military applications and modifying them for pulsed holography. Pulsed Ruby and pulsed YAG lasers have been used.
Examples by power
Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the peak power of each pulse. The peak power of a pulsed laser is many orders of magnitude greater than its average power. The average output power is always less than the power consumed.
Power | Use |
Laser pointers | |
CD-ROM drive | |
DVD player or DVD-ROM drive | |
High-speed CD-RW burner | |
Consumer 16× DVD-R burner | |
Burning through a jewel case including disc within | |
DVD 24× dual-layer recording | |
Green laser in Holographic Versatile Disc prototype development | |
Output of the majority of commercially available solid-state lasers used for micro machining | |
Typical sealed CO2 surgical lasers | |
Typical sealed CO2 lasers used in industrial laser cutting |
Examples of pulsed systems with high peak power:
- 700 TW – National Ignition Facility, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber
- 1.3 PW – world’s most powerful laser as of 1998, located at the Lawrence Livermore Laboratory
Safety
Even the first laser was recognized as being potentially dangerous. Theodore Maiman characterized the first laser as having a power of one «Gillette» as it could burn through one Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight when the beam hits the eye directly or after reflection from a shiny surface. At wavelengths which the cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the eye into an extremely small spot on the retina, resulting in localized burning and permanent damage in seconds or even less time.
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:
- Class 1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players.
- Class 2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example laser pointers.
- Class 3R lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina.
- Class 3B can cause immediate eye damage upon exposure.
- Class 4 lasers can burn skin, and in some cases, even scattered light can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.
The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.
Infrared lasers with wavelengths longer than about 1.4 micrometers are often referred to as «eye-safe», because the cornea tends to absorb light at these wavelengths, protecting the retina from damage. The label «eye-safe» can be misleading, however, as it applies only to relatively low power continuous wave beams; a high power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage, and even moderate power lasers can injure the eye.
Lasers can be a hazard to both civil and military aviation, due to the potential to temporarily distract or blind pilots. See Lasers and aviation safety for more on this topic.
Cameras based on charge-coupled devices may actually be more sensitive to laser damage than biological eyes.
Books
- Bertolotti, Mario. The History of the Laser. Institute of Physics..
- Bromberg, Joan Lisa. The Laser in America, 1950–1970. MIT Press..
- Csele, Mark. Fundamentals of Light Sources and Lasers. Wiley..
- Koechner, Walter. Solid-State Laser Engineering. 3rd ed. Springer-Verlag..
- Siegman, Anthony E.. Lasers. University Science Books..
- Silfvast, William T.. Laser Fundamentals. Cambridge University Press..
- Svelto, Orazio. Principles of Lasers. 4th ed. Trans. David Hanna. Springer..
- Wilson, J. & Hawkes, J.F.B.. Lasers: Principles and Applications. Prentice Hall International Series in Optoelectronics, Prentice Hall..
- Yariv, Amnon. Quantum Electronics. 3rd ed. Wiley..
Periodicals
- ‘
- IEEE Journal of Lightwave Technology
- IEEE Journal of Quantum Electronics
- IEEE Journal of Selected Topics in Quantum Electronics
- IEEE Photonics Technology Letters
- ‘
- Laser Focus World
- Optics Letters
- Photonics Spectra