The word biology origin

From Simple English Wikipedia, the free encyclopedia

Biology is the science that studies life, living things, and the evolution of life. Living things include animals, plants, fungi (such as mushrooms), and microorganisms such as bacteria and archaea.

The term ‘biology’ is relatively modern. It was introduced in 1799 by a physician, Thomas Beddoes.[1]

People who study biology are called biologists. Biology looks at how animals and other living things behave and work, and what they are like. Biology also studies how organisms react with each other and the environment. It has existed as a science for about 200 years, and before that it was called «natural history». Biology has many research fields and branches. Like all sciences, biology uses the scientific method. This means that biologists must be able to show evidence for their ideas and that other biologists must be able to test the ideas for themselves.

Biology attempts to answer questions such as:

  • «What are the characteristics of this living thing?» (comparative anatomy)
  • «How do the parts work?» (physiology)
  • «How should we group living things?» (classification, taxonomy)
  • «What does this living thing do?» (behaviour, growth)
  • «How does inheritance work?» (genetics)
  • «What is the history of life?» (palaeontology)
  • «How do living things relate to their environment?» (ecology)

Modern biology is influenced by evolution, which answers the question: «How has the living world come to be as it is?»

History[change | change source]

The word biology comes from the Greek word βίος (bios), «life», and the suffix -λογία (logia), «study of».[2][3]

Branches[change | change source]

  • Algalogy
  • Anatomy
  • Arachnology
  • Bacteriology
  • Biochemistry
  • Biogeography
  • Biophysics
  • Botany
  • Bryology
  • Cell biology
  • Cytology
  • Dendrology
  • Developmental biology
  • Ecology
  • Endocrinology
  • Entomology
  • Embryology
  • Ethology
  • Evolution / Evolutionary biology
  • Genetics / Genomics
  • Herpetology
  • Histology
  • Human biology / Anthropology / Primatology
  • Ichthyology
  • Limnology
  • Mammalology
  • Marine biology
  • Microbiology / Bacteriology
  • Molecular biology
  • Morphology
  • Mycology / Lichenology
  • Ornithology
  • Palaeontology
  • Parasitology
  • Phycology
  • Phylogenetics
  • Physiology
  • Taxonomy
  • Virology
  • Zoology

References[change | change source]

Wikimedia Commons has media related to Biology.

  1. «biology, n.». OED Online. 2019. Oxford University Press. Physiology therefore—or more strictly biology—by which I mean the doctrine of the living system in all its states, appears to be the foundation of ethics and pneumatology.
  2. «Who coined the term biology?». Info.com. Archived from the original on 2013-05-09.
  3. «biology | Origin and meaning of biology by Online Etymology Dictionary». www.etymonline.com. Retrieved 2019-05-29.

The word biology is derived from the greek words /bios/ meaning /life/ and /logos/ meaning /study/ and is defined as the science of life and living organisms. An organism is a living entity consisting of one cell e.g. bacteria, or several cells e.g. animals, plants and fungi.

Who was first biologist?

The Lagoon: How Aristotle Invented Science. Aristotle is considered by many to be the first scientist, although the term postdates him by more than two millennia. In Greece in the fourth century BC, he pioneered the techniques of logic, observation, inquiry and demonstration.

Who started biology?

The science of biology was invented by Aristotle (384–322 BC).

What is biology and when did it begin?

Study Like an Egyptian

Ancient Egypt gets a lot of credit for having advanced knowledge about the human body in around 2800 BC. That’s almost 5,000 years ago! Most ancient biologists studied medicine and anatomy (the structure of the human body).

What is the role of biology in explaining the origin of life?

Perhaps the most fundamental and at the same time the least understood biological problem is the origin of life. … Life is coeternal with matter and has no beginning; life arrived on Earth at the time of Earth’s origin or shortly thereafter. Life arose on the early Earth by a series of progressive chemical reactions.

Who is mother of biology?

Field Person/s considered “father” or “mother”
Biology Aristotle (384–322 BC)
Botany Theophrastus (c. 371 – c. 287 BC)
Bryology Johann Hedwig (1730–1799)
Cheloniology Archie Carr (1909–1987)

You may also read,

Who is father of biology?

Therefore, Aristotle is called the Father of biology. He was a great Greek philosopher and polymath. His theory of biology also known as the “Aristotle’s biology” describes five major biological processes, namely, metabolism, temperature regulation, inheritance, information processing and embryogenesis. Check the answer of

Who is the king of science?

Physics is the king of all sciences as it helps us understand the way nature works. It is at the centre of science,“ he said.

Who is the No 1 scientist in the world?

Name 1. Alain Aspect
Field of Influence Quantum Theory
Name 26. Martin Karplus
Field of Influence Quantum Chemistry

Read:

Who is the best biologist in the world?

  • Richard Dawkins.
  • Carolyn Bertozzi.
  • Craig Venter.
  • Jennifer Doudna.
  • James D. Watson.
  • Richard Lewontin.
  • Edward O. Wilson.
  • Marcus Feldman.

What are the 3 main branches of biology?

Three major branches of biology are microbiology, zoology, and botany.

Who is the father of zoology?

He was born in Greece. Aristotle is considered the father of zoology because of his major contributions to zoology which include a huge amount of information regarding the variety, structure, behaviour of animals, the analysis of the different parts of living organisms and the beginnings of the science of taxonomy.

What do you mean by living in biology?

Something that can grow, move, reproduce, consciousness, respire, and carry out various cellular activities are said to be living. Living things can grow, move, reproduce, respires i.e. possess various life processes. Living things have structures known as cells; they grow and exhibit movement or locomotion.

What was the first living thing on earth?

Some scientists estimate that ‘life’ began on our planet as early as four billion years ago. And the first living things were simple, single-celled, micro-organisms called prokaryotes (they lacked a cell membrane and a cell nucleus).

Is RNA a life?

RNA as an enzyme. RNA enzymes, or ribozymes, are found in today’s DNA-based life and could be examples of living fossils. … The ability to self-replicate, or synthesize other RNA molecules; relatively short RNA molecules that can synthesize others have been artificially produced in the lab.

Is biology the study of non living things?

Biology is the study of everything that is, or was once, alive — whether it’s a plant, animal or microorganism. Biology is the study of life. … In general, biologists study the structure, function, growth, origin, evolution and distribution of living organisms.

English[edit]

Wikibooks has more about this subject:

Wikibooks

Etymology[edit]

A classical compound, being a naturalization into English via the German Biologie from the New Latin coinage biologia, with components derived from Ancient Greek βίος (bíos, bio-, life) +‎ -λογία (-logía, -logy, branch of study, to speak). The term *βιολογία (*biología) did not exist in Ancient Greek. The New Latin word was coined in the 18th century but did not yet have the sense that it now has. That sense was developed circa 1800 when the German word Biologie was naturalized from the New Latin word; see Wikipedia at Biology § Etymology for the details. The modern sibling cognates came into various European languages in the 19th century (e.g., French biologie, English biology). As the scientific era progressed in the 19th century, the modern surface analysis of the English word developed, as a compound using the combining forms bio- +‎ -logy. As for modern Greek βιολογία (viología): it is borrowed from both English and French biologie via international scientific vocabulary.

Pronunciation[edit]

  • enPR: bī-ŏl′-əjē
  • (Received Pronunciation) IPA(key): /baɪˈɒl.ə.d͡ʒɪ/
  • (General American) IPA(key): /baɪˈɑ.lə.d͡ʒi/, /baɪˌɑl(ə)ˈd͡ʒi/
  • Rhymes: -ɒlədʒi

Noun[edit]

biology (countable and uncountable, plural biologies)

  1. The study of all life or living matter.
    • 2012 January 1, Robert M. Pringle, “How to Be Manipulative”, in American Scientist[1], volume 100, number 1, page 31:

      As in much of biology, the most satisfying truths in ecology derive from manipulative experimentation. Tinker with nature and quantify how it responds.

  2. The living organisms of a particular region.
    • 1893, “Prizes for original work with the microscope”, in Proceedings of the American Microscopical Society[2], volume 14, page 38:

      The object of these prizes is to stimulate and encourage original investigation by the aid of the microscope in the biology of North America, and, while the competition is open to all, it is especially commended to advanced students in biology in such of our universities and colleges as furnish opportunity for suitable work.

  3. The structure, function, and behavior of an organism or type of organism.

    the biology of the whale

Synonyms[edit]

The terms below need to be checked and allocated to the definitions (senses) of the headword above. Each term should appear in the sense for which it is appropriate. For synonyms and antonyms you may use the templates {{syn|en|...}} or {{ant|en|...}}.
  • lifelore, life science, life sciences

Meronyms[edit]

  • See also Thesaurus:biology

Derived terms[edit]

  • actinobiology
  • aerobiology
  • agrobiology
  • astrobiology
  • chemical biology
  • chronobiology
  • conservation biology
  • cryobiology
  • developmental biology
  • electrobiology
  • evolutionary biology
  • evolutionary developmental biology
  • exobiology
  • forensic biology
  • geobiology
  • geomicrobiology
  • glycobiology
  • gnotobiology
  • hydrobiology
  • immunobiology
  • macrobiology
  • marine biology
  • microbiology
  • molecular biology
  • neurobiology
  • nonbiology
  • palaeobiology
  • paleobiology
  • pathobiology
  • photobiology
  • phytobiology
  • population biology
  • psychobiology
  • radiation biology
  • radiobiology
  • scotobiology
  • sociobiology
  • soil microbiology
  • space biology
  • structural biology
  • synthetic biology
  • systems biology
  • xenobiology

[edit]

  • biological
  • biologically
  • biologic
  • biologism
  • biologist
  • biologize

Translations[edit]

study of living matter

  • Afrikaans: biologie (af)
  • Albanian: biologji (sq) f
  • Arabic: عِلْم اَلْأَحْيَاء (ar) m (ʕilm al-ʔaḥyāʔ), بِيُولُوجِيَا (ar) f (biyulūjiyā)
    Hijazi Arabic: أحيا‎ f (ʾaḥya), أحياء‎ f (ʾaḥyāʾ)
  • Armenian: կենսաբանություն (hy) (kensabanutʿyun)
  • Assamese: জীৱ বিজ্ঞান (ziw biggan)
  • Assyrian Neo-Aramaic: ܝܘܼܠܦܵܢ ܚܲܝܘܼܬܵܐ‎ m (yulpan ḳāyuta)
  • Asturian: bioloxía (ast) f
  • Azerbaijani: biologiya
  • Balinese: ᬚᬶᬯᬯᬶᬤ᭄ᬬ (jiwawidya)
  • Basque: biologia (eu)
  • Belarusian: біяло́гія f (bijalóhija), біёлё́гія f (bijoljóhija) (Taraškievica), біолё́гія f (bioljóhija) (Taraškievica)
  • Bengali: জীববিজ্ঞান (bn) (jibobiggên)
  • Breton: bevoniezh (br)
  • Buginese: ᨅᨗᨕᨚᨒᨚᨁᨗ
  • Bulgarian: биология (bg) f (biologija)
  • Burmese: ဇီဝဗေဒ (my) (jiwa.beda.)
  • Buryat: биологи (biologi), амин шудалал (amin šudalal)
  • Catalan: biologia (ca) f
  • Chinese:
    Cantonese: 生物學生物学 (saang1 mat9 hok9)
    Hakka: 生物學生物学 (sâng-vu̍t-ho̍k)
    Mandarin: 生物學生物学 (zh) (shēngwùxué)
    Min Nan: 生物學生物学 (seng-bu̍t-ha̍k)
  • Cornish: bywonieth
  • Czech: biologie (cs) f
  • Danish: biologi (da)
  • Dhivehi: ދިރުމާބެހޭ އިލްމު(dirumābehē ilmu)
  • Dinka: piöcëpïr
  • Dutch: biologie (nl)
  • Esperanto: biologio (eo)
  • Estonian: bioloogia (et), eluteadus
  • Faroese: lívfrøði f
  • Finnish: biologia (fi)
  • French: biologie (fr) f
  • Galician: bioloxía (gl) f
  • Georgian: ბიოლოგია (biologia)
  • German: Biologie (de) f
  • Greek: βιολογία (el) f (viología)
  • Greenlandic: biologii, uumassusililerineq
  • Gujarati: જીવવિજ્ઞાન f (jīvvijñān)
  • Hawaiian: kālaimeaola
  • Hebrew: ביולוגיה (he) f (biologia)
  • Hindi: जीवविज्ञान (hi) (jīvvigyān), जीवशास्त्र m (jīvśāstra), जीवविद्या f (jīvvidyā)
  • Hungarian: biológia (hu)
  • Icelandic: líffræði (is) f
  • Ido: biologio (io)
  • Indonesian: biologi (id), ilmu hayat (id)
  • Interlingua: biologia (ia)
  • Inuktitut: ᐆᒪᔅᓱᓯᖃᕐᑐᓕᕆᓂᖅ (oomassosiqartoliriniq)
  • Irish: bitheolaíocht f
  • Italian: biologia (it) f
  • Japanese: 生物学 (ja) (せいぶつがく, seibutsugaku)
  • Kannada: ಜೀವಶಾಸ್ತ್ರ (kn) (jīvaśāstra)
  • Khmer: ជីវវិទ្យា (km) (chiivea vityie)
  • Korean: 생물학(生物學) (ko) (saengmulhak)
  • Kurdish:
    Northern Kurdish: biyolojî (ku), jiyannasî (ku), zîndewerzanî (ku)
  • Lao: ຊີວະສາດ (lo) (sī wa sāt)
  • Latin: biologia f
  • Latvian: bioloģija (lv) f
  • Lithuanian: biologija (lt) f
  • Malay: biologi (ms), kaji hayat (ms)
  • Malayalam: ജീവശാസ്ത്രം (ml) (jīvaśāstraṃ)
  • Maltese: bioloġija
  • Manx: bea-oaylleeaght
  • Maori: mātauranga koiora
  • Marathi: जीवशास्त्र (mr) n (jīvśāstra)
  • Mongolian: амин судлал (amin sudlal), ᠠᠮᠢᠨ ᠰᠤᠳᠤᠯᠤᠯ (ᠠᠮᠢᠨ ᠰᠤᠳᠤᠯᠤᠯ)
  • Nahuatl: yolizmatiliztli
  • Norwegian:
    Bokmål: biologi (no) m
    Nynorsk: biologi (nn) m
  • Occitan: biologia (oc) f
  • Pashto: ژوندپوهنه‎ f (žwandpohəna)
  • Plautdietsch: Läwenslia f
  • Persian: زیست‌شناسی (fa) (zist-šenâsi), بیولوژی (fa)
  • Polish: biologia (pl) f
  • Portuguese: biologia (pt) f
  • Punjabi: ਜੀਵ ਵਿਗਿਆਨ m (jīv vigiāna)
  • Quechua: kawsay yachay
  • Romanian: biologie (ro) f
  • Russian: биоло́гия (ru) f (biológija)
  • Scots: biologie
  • Scottish Gaelic: bith-eòlas m
  • Serbo-Croatian:
    Cyrillic: биологија f
    Roman: biologija (sh) f
  • Shona: ketaupenyu
  • Sindhi: جِياڀياسُ (sd) m
  • Sinhalese: ජීවවිද්‍යාව (jīwawidyāwa)
  • Slovak: biológia (sk) f
  • Slovene: biologija (sl)
  • Sorbian:
    Lower Sorbian: biologija f
    Upper Sorbian: biologija f
  • Spanish: biología (es) f
  • Swahili: biolojia (sw), elimuviumbe
  • Swedish: biologi (sv) c, fortplantningsbeteende
  • Tagalog: biyolohiya
  • Tamil: உயிரியல் (ta) (uyiriyal)
  • Thai: ชีววิทยา (th) (chii-wá-wít-tá-yaa)
  • Turkish: biyoloji (tr), dirim bilimi (tr), yaşam bilimi, canlı bilimi (tr)
  • Ukrainian: біологія (uk) f (biolohija)
  • Urdu: حیاتیات (ur) f (hiatiyaat)
  • Vietnamese: sinh học (vi), sinh vật học (vi) (生物學)
  • Volapük: lifav
  • Welsh: bioleg (cy) f, bywydeg (cy)
  • Yiddish: ביאָלאָגיע‎ f (byologye)
  • Yoruba: bàọ́lọ́jì, bàyọ́lọ́jì

structure, function, and behavior of an organism or type of organism

See also[edit]

  • Category:Biology


Asked by: Holly Littel

Score: 4.9/5
(39 votes)

The word biology is derived from the greek words /bios/ meaning /life/ and /logos/ meaning /study/ and is defined as the science of life and living organisms.

Is biology a scientific term?

Biology is the branch of science that primarily deals with the structure, function, growth, evolution, and distribution of organisms. As a science, it is a methodological study of life and living things.

Who termed the word biology?

The term biology in its modern sense appears to have been introduced independently by Thomas Beddoes (in 1799), Karl Friedrich Burdach (in 1800), Gottfried Reinhold Treviranus (Biologie oder Philosophie der lebenden Natur, 1802) and Jean-Baptiste Lamarck (Hydrogéologie, 1802).

What does biology mean dictionary?

biology. / (baɪˈɒlədʒɪ) / noun. the study of living organisms, including their structure, functioning, evolution, distribution, and interrelationships. the structure, functioning, etc, of a particular organism or group of organisms.

What is biology antonym?

noun. ( baɪˈɑːlədʒi) The science that studies living organisms. Antonyms. eugenics dysgenics prosecution defense decrease decrement disassembly. astrobiology phytology palaeobiology physiology zoological science.

34 related questions found

What is biology in your own words?

The word biology is derived from the greek words /bios/ meaning /life/ and /logos/ meaning /study/ and is defined as the science of life and living organisms.

How do biologist define life?

Life is defined as any system capable of performing functions such as eating, metabolizing, excreting, breathing, moving, growing, reproducing, and responding to external stimuli.

What are 8 Characteristics of life?

All living organisms share several key characteristics or functions: order, sensitivity or response to the environment, reproduction, growth and development, regulation, homeostasis, and energy processing. When viewed together, these eight characteristics serve to define life.

Who is the father of biology?

Therefore, Aristotle is called the Father of biology. He was a great Greek philosopher and polymath. His theory of biology also known as the “Aristotle’s biology” describes five major biological processes, namely, metabolism, temperature regulation, inheritance, information processing and embryogenesis.

Who created biology?

The science of biology was invented by Aristotle (384–322 BC). Before Aristotle, many Greek philosophers had speculated about the origins of the Earth and of Life, but their theorizing was unsupported by empirical investigation.

Who is the mother of biology?

Explanation: Maria Sibylla Merian, it is known as the mother of biology. she was born ‎in Frankfurt on 2 April 1647. Merian created some of the best-kept records of flora and fauna in Germany in the seventeenth-century.

What is Phytology the study of?

It is the study of plants life and a branch of biology. Plants means a wide range of living organisms from the smallest bacteria to the largest living things i.e from algae, fungi, lichens, mosses, ferns, conifers and flowering plants to the giant sequoia trees.

Is biology a hard class?

Biology and Biology majors are hard because of the vast amount of information required to learn but also involves a lot of unfamiliar concepts (some of which are difficult) and require mastering an unfamiliar vocabulary (which is true of any science).

Why biology is called multidimensional?

Explanation: Biology connects with various other disciplines of science and technology so that a better understanding of life can be made. Biology connects with various other subjects in order to understand more about life. Hence, biology is a multidimensional subject.

What biology means to me?

Biology is the study of life. The word «biology» is derived from the Greek words «bios» (meaning life) and «logos» (meaning «study»). In general, biologists study the structure, function, growth, origin, evolution and distribution of living organisms.

Is a virus alive?

Many scientists argue that even though viruses can use other cells to reproduce itself, viruses are still not considered alive under this category. This is because viruses do not have the tools to replicate their genetic material themselves.

Why is fire not considered alive?

The reason fire is non-living is because it does not have the eight characteristics of life. Also, fire is not made of cells. All living organisms is made of cells. Although fire needs oxygen to burn, this does not mean it is living.

Why is a virus not considered living?

Viruses are not living things. Viruses are complicated assemblies of molecules, including proteins, nucleic acids, lipids, and carbohydrates, but on their own they can do nothing until they enter a living cell. Without cells, viruses would not be able to multiply. Therefore, viruses are not living things.

Are mules scientifically alive?

The conclusion is the following: mule is a living individual, because it is a part belonging to an evolving population. To be precise, a mule—considered as a vehicle of survival—is a living object, because of owning the genes which constitute a part of an evolving gene pool.

Why do we live?

We live because of the happy things. We live because there are people who love us, and people we love back. We live because we want to find out things, and learn, and become able to do things that we would like to do. We live because others want us to, and we want them to live along with us.

What are the 7 characters of life?

All living organisms share several key characteristics or functions: order, sensitivity or response to the environment, reproduction, growth and development, regulation, homeostasis, and energy processing. When viewed together, these characteristics serve to define life.

How do I use biology in my everyday life?

Everyday Uses of Biology

  1. Foods and Beverages. People consume biological products both to survive and for enjoyment. …
  2. Clothing and Textiles. People wear clothing made from biological substances. …
  3. Beauty and Personal Care. …
  4. Transportation and Leisure. …
  5. Buildings. …
  6. Fuels. …
  7. Healthcare and Medicine.

What is biology for kids?

Biology is the study of living things. A biologist is a scientist who studies biology. Biologists try to understand the natural world and the things that live in it. These things include plants, animals, fungi, protozoa, algae, bacteria, and viruses. The study of biology covers many areas.

What is a biological example?

The definition of biological is something that relates to life or living. An example of biological is water helping the kidneys flush waste and toxins from the body. … An example of biological is a mother and her son to whom she gave birth.

History of biology

The history of biology traces the study of the living world from ancient to modern times. Although the concept of biology as a single coherent field arose in the 19th century, the biological sciences emerged from traditions of medicine and natural history reaching back to Galen and Aristotle in ancient Greece. During the Renaissance and early modern period, biological thought was revolutionized by a renewed interest in empiricism and the discovery of many novel organisms. Prominent in this movement were Vesalius and Harvey, who used experimentation and careful observation in physiology, and naturalists such as Linnaeus and Buffon who began to classify the diversity of life and the fossil record, as well as the development and behavior of organisms. Microscopy revealed the previously unknown world of microorganisms, laying the groundwork for cell theory. The growing importance of natural theology, partly a response to the rise of mechanical philosophy, encouraged the growth of natural history (although it entrenched the argument from design).

Over the 18th and 19th centuries, biological sciences such as botany and zoology became increasingly professional scientific disciplines. Lavoisier and other physical scientists began to connect the animate and inanimate worlds through physics and chemistry. Explorer-naturalists such as Alexander von Humboldt investigated the interaction between organisms and their environment, and the ways this relationship depends on geography—laying the foundations for biogeography, ecology and ethology. Naturalists began to reject essentialism and consider the importance of extinction and the mutability of species. Cell theory provided a new perspective on the fundamental basis of life. These developments, as well as the results from embryology and paleontology, were synthesized in Charles Darwin’s theory of evolution by natural selection. The end of the 19th century saw the fall of spontaneous generation and the rise of the germ theory of disease, though the mechanism of inheritance remained a mystery.

In the early 20th century, the rediscovery of Mendel’s work led to the rapid development of genetics by Thomas Hunt Morgan and his students, and by the 1930s the combination of population genetics and natural selection in the «neo-Darwinian synthesis». New disciplines developed rapidly, especially after Watson and Crick proposed the structure of DNA. Following the establishment of the Central Dogma and the cracking of the genetic code, biology was largely split between organismal biology—the fields that deal with whole organisms and groups of organisms—and the fields related to cellular and molecular biology. By the late 20th century, new fields like genomics and proteomics were reversing this trend, with organismal biologists using molecular techniques, and molecular and cell biologists investigating the interplay between genes and the environment, as well as the genetics of natural populations of organisms.

History of science
Background
Theories/sociology
Historiography
Pseudoscience
By era
In early cultures
in Classical Antiquity
In the Middle Ages
In the Renaissance
Scientific Revolution
By topic
Natural sciences
Astronomy
Biology
Chemistry
Ecology
Geography
Geology
Paleontology
Physics
Social sciences
Economics
Linguistics
Political science
Psychology
Sociology
Technology
Agricultural science
Computer science
Materials science
Medicine
Navigational pages
Timelines
Portal

Additional recommended knowledge

Contents

  • 1 Etymology of «biology»
  • 2 Ancient and medieval knowledge
    • 2.1 Biological knowledge in early cultures
    • 2.2 Ancient Greek biological traditions
    • 2.3 Medieval knowledge
  • 3 Renaissance and early modern developments
    • 3.1 Seventeenth and eighteenth centuries
  • 4 Nineteenth century: the emergence of biological disciplines
    • 4.1 Natural history and natural philosophy
      • 4.1.1 Geology and paleontology
      • 4.1.2 Evolution and biogeography
    • 4.2 Physiology
      • 4.2.1 Cell theory, embryology and germ theory
      • 4.2.2 Rise of organic chemistry and experimental physiology
  • 5 Twentieth century biological sciences
    • 5.1 Ecology and environmental science
    • 5.2 Classical genetics, the modern synthesis, and evolutionary theory
    • 5.3 Biochemistry, microbiology, and molecular biology
      • 5.3.1 Origins of molecular biology
      • 5.3.2 Expansion of molecular biology
    • 5.4 Biotechnology, genetic engineering, and genomics
      • 5.4.1 Recombinant DNA
      • 5.4.2 Molecular systematics and genomics
  • 6 Notes
  • 7 References

Etymology of «biology»

The word biology is formed by combining the Greek βίος (bios), meaning «life», and the suffix ‘-logy’, meaning «science of», «knowledge of», «study of», based on the Greek verb λεγειν, ‘legein’ = «to select», «to gather» (cf. the noun λόγος, ‘logos’ = «word»). The term biology in its modern sense appears to have been introduced independently by Karl Friedrich Burdach (in 1800), Gottfried Reinhold Treviranus (Biologie oder Philosophie der lebenden Natur, 1802) and Jean-Baptiste Lamarck (Hydrogéologie, 1802).[1][2] The word itself appears in the title of Volume 3 of Michael Christoph Hanov’s Philosophiae naturalis sive physicae dogmaticae: Geologia, biologia, phytologia generalis et dendrologia, published in 1766.

Before biology, there were several terms used for the study of animals and plants. Natural history referred to the descriptive aspects of biology, though it also included mineralogy and other non-biological fields; from the Middle Ages through the Renaissance, the unifying framework of natural history was the scala naturae or Great Chain of Being. Natural philosophy and natural theology encompassed the conceptual and metaphysical basis of plant and animal life, dealing with problems of why organisms exist and behave the way they do, though these subjects also included what is now geology, physics, chemistry, and astronomy. Physiology and (botanical) pharmacology were the province of medicine. Botany, zoology, and (in the case of fossils) geology replaced natural history and natural philosophy in the 18th and 19th centuries before biology was widely adopted.[3][4]

Ancient and medieval knowledge

Biological knowledge in early cultures

See also: History of the world and History of agriculture

The earliest humans must have had and passed on knowledge about plants and animals to increase their chances of survival. This may have included knowledge of human and animal anatomy and aspects of animal behavior (such as migration patterns). However, the first major turning point in biological knowledge came with the Neolithic Revolution about 10,000 years ago. Humans first domesticated plants for farming, then livestock animals to accompany the resulting sedentary societies.[5]

The ancient cultures of Mesopotamia, Egypt, the Indian subcontinent, and China (among others) had sophisticated systems of philosophical, religious, and technical knowledge that encompassed the living world, and creation myths often centered on some aspect of life. However, the roots of modern biology are usually traced back to the secular tradition of ancient Greek philosophy.[6]

Ancient Greek biological traditions

See also: Medicine in ancient Greece

The Pre-Socratic philosophers asked many questions about life but produced little systematic knowledge of specifically biological interest—though the attempts of the atomists to explain life in purely physical terms would recur periodically through the history of biology. However, the medical theories of Hippocrates and his followers, especially humorism, had a lasting impact.[7]

The philosopher Aristotle was the most influential scholar of the living world from antiquity. Though his early work in natural philosophy was speculative, Aristotle’s later biological writings were more empirical, focusing on biological causation and the diversity of life. He made countless observations of nature, especially the habits and attributes of plants and animals in the world around him, which he devoted considerable attention to categorizing. In all, Aristotle classified 540 animal species, and dissected at least 50. He believed that intellectual purposes, formal causes, guided all natural processes.[8]

Aristotle, and nearly all scholars after him until the 18th century, believed that creatures were arranged in a graded scale of perfection rising from plants on up to humans: the scala naturae or Great Chain of Being.[9] Aristotle’s successor at the Lyceum, Theophrastus, wrote a series of books on botany—the History of Plants—which survived as the most important contribution of antiquity to botany, even into the Middle Ages. Many of Theophrastus’ names survive into modern times, such as carpos for fruit, and pericarpion for seed vessel. Pliny the Elder was also known for his knowledge of plants and nature, and was the most prolific compiler of zoological descriptions.[10]

A few scholars in the Hellenistic period under the Ptolemies—particularly Herophilus of Chalcedon and Erasistratus of Chios—amended Aristotle’s physiological work, even performing experimental dissections and vivisections.[11] Claudius Galen became the most important authority on medicine and anatomy. Though a few ancient atomists such as Lucretius challenged the teleological Aristotelian viewpoint that all aspects of life are the result of design or purpose, teleology (and after the rise of Christianity, natural theology) would remain central to biological thought essentially until the 18th and 19th centuries. In the words of Ernst Mayr, «Nothing of any real consequence happened in biology after Lucretius and Galen until the Renaissance.»[12] The ideas of the Greek traditions of natural history and medicine survived, but they were generally taken unquestioningly.[13]

Medieval knowledge

The decline of the Roman Empire led to the disappearance or destruction of much knowledge, though physicians still incorporated many aspects of the Greek tradition into training and practice. In Byzantium and the Islamic world, many of the Greek works were translated into Arabic and many of the works of Aristotle were preserved. During the High Middle Ages, a few European scholars such as Hildegard of Bingen, Albertus Magnus, and Frederick II expanded the natural history canon. The rise of European universities, though important for the development of physics and philosophy, had little impact on biological scholarship.[14]

Renaissance and early modern developments

See also: History of anatomy and Scientific Revolution

The European Renaissance brought expanded interest in both empirical natural history and physiology. In 1543, Andreas Vesalius inaugurated the modern era of Western medicine with his seminal human anatomy treatise De humani corporis fabrica, which was based on dissection of corpses. Vesalius was the first in a series of anatomists who gradually replaced scholasticism with empiricism in physiology and medicine, relying on first-hand experience rather than authority and abstract reasoning. Via herbalism, medicine was also indirectly the source of renewed empiricism in the study of plants. Otto Brunfels, Hieronymus Bock and Leonhart Fuchs wrote extensively on wild plants, the beginning of a nature-based approach to the full range of plant life.[15] Bestiaries—a genre that combines both the natural and figurative knowledge of animals—also became more sophisticated, especially with the work of William Turner, Pierre Belon, Guillaume Rondelet, Conrad Gessner, and Ulisse Aldrovandi.[16]

Artists such as Albrecht Dürer and Leonardo da Vinci, often working with naturalists, were also interested in the bodies of animals and humans, studying physiology in detail and contributing to the growth of anatomical knowledge.[17] The traditions of alchemy and natural magic, especially in the work of Paracelsus, also laid claim to knowledge of the living world. Alchemists subjected organic matter to chemical analysis and experimented liberally with both biological and mineral pharmacology.[18] This was part of a larger transition in world views (the rise of the mechanical philosophy) that continued into the 17th century, as the traditional metaphor of nature as organism was replaced by the nature as machine metaphor.[19]

Seventeenth and eighteenth centuries

See also: History of plant systematics

Extending the work of Vesalius into experiments on still living bodies (of both humans and animals), William Harvey and other natural philosophers investigated the roles of blood, veins and arteries. Harvey’s De motu cordis in 1628 was the beginning of the end for Galenic theory, and alongside Santorio Santorio’s studies of metabolism, it served as an influential model of quantitative approaches to physiology.[20]

In the early 17th century, the micro-world of biology was just beginning to open up. A few lensmakers and natural philosophers had been creating crude microscopes since the late 16th century, and Robert Hooke published the seminal Micrographia based on observations with his own compound microscope in 1665. But it was not until Antony van Leeuwenhoek’s dramatic improvements in lensmaking beginning in the 1670s—ultimately producing up to 200-fold magnification with a single lens—that scholars discovered spermatozoa, bacteria, infusoria and the sheer strangeness and diversity of microscopic life. Similar investigations by Jan Swammerdam led to new interest in entomology and built the basic techniques of microscopic dissection and staining.[21]

As the microscopic world was expanding, the macroscopic world was shrinking. Botanists such as John Ray worked to incorporate the flood of newly discovered organisms shipped from across the globe into a coherent taxonomy, and a coherent theology (natural theology).[22] Debate over another flood, the Noachian, catalyzed the development of paleontology; in 1669 Nicholas Steno published an essay on how the remains of living organisms could be trapped in layers of sediment and mineralized to produce fossils. Although Steno’s ideas about fossilization were well known and much debated among natural philosophers, an organic origin for all fossils would not be accepted by all naturalists until the end of the 18th century due to philosophical and theological debate about issues such as the age of the earth and extinction.[23]

Systematizing, naming and classifying dominated natural history throughout much of the 17th and 18th centuries. Carolus Linnaeus published a basic taxonomy for the natural world in 1735 (variations of which have been in use ever since), and in the 1750s introduced scientific names for all his species.[24] While Linnaeus conceived of species as unchanging parts of a designed hierarchy, the other great naturalist of the 18th century, Georges-Louis Leclerc, Comte de Buffon, treated species as artificial categories and living forms as malleable—even suggesting the possibility of common descent. Though he was opposed to evolution, Buffon is a key figure in the history of evolutionary thought; his work would influence the evolutionary theories of both Lamarck and Darwin.[25]

The discovery and description of new species and the collection of specimens became a passion of scientific gentlemen and a lucrative enterprise for entrepreneurs; many naturalists traveled the globe in search of scientific knowledge and adventure.[26]

Nineteenth century: the emergence of biological disciplines

Up through the nineteenth century, the scope of biology was largely divided between medicine, which investigated questions of form and function (i.e., physiology), and natural history, which was concerned with the diversity of life and interactions among different forms of life and between life and non-life. By 1900, much of these domains overlapped, while natural history and (and its counterpart natural philosophy) had largely given way to more specialized scientific disciplines—cytology, bacteriology, morphology, embryology, geography, and geology.

Natural history and natural philosophy

See also: Humboldtian science

Widespread travel by naturalists in the early- to mid-nineteenth century resulted in a wealth of new information about the diversity and distribution of living organisms. Of particular importance was the work of Alexander von Humboldt, which analyzed the relationship between organisms and their environment (i.e., the domain of natural history) using the quantitative approaches of natural philosophy (i.e., physics and chemistry). Humboldt’s work laid the foundations of biogeography and inspired several generations of scientists.[27]

Geology and paleontology

See also: History of geology and History of paleontology

The emerging discipline of geology also brought natural history and natural philosophy closer together; the establishment of the stratigraphic column linked the spacial distribution of organisms to their temporal distribution, a key precursor to concepts of evolution. Georges Cuvier and others made great strides in comparative anatomy and paleontology in the late 1790s and early 1800s. In a series of lectures and papers that made detailed comparisons between living mammals and fossil remains Cuvier was able to establish that the fossils were remains of species that had become extinct—rather than being remains of species still alive elsewhere in the world, as had been widely believed.[28] Fossils discovered and described by Gideon Mantell, William Buckland, Mary Anning, and Richard Owen among others helped establish that there had been an ‘age of reptiles’ that had preceded even the prehistoric mammals. These discoveries captured the public imagination and focused attention on the history of life on earth.[29] Most of these geologists held to catastrophism, but Charles Lyell’s influential Principles of Geology (1830) popularised Hutton’s uniformitarianism, a theory that explained the geological past and present on equal terms.[30]

Evolution and biogeography

See also: History of evolutionary thought

The most significant evolutionary theory before Darwin’s was that of Jean-Baptiste Lamarck; based on the inheritance of acquired characteristics (an inheritance mechanism that was widely accepted until the 20th century), it described a chain of development stretching from the lowliest microbe to humans.[31] The British naturalist Charles Darwin, combining the biogeographical approach of Humboldt, the uniformitarian geology of Lyell, Thomas Malthus’s writings on population growth, and his own morphological expertise, created a more successful evolutionary theory based on natural selection; similar evidence lead Alfred Russel Wallace to independently reach the same conclusions.[32]

The 1859 publication of Darwin’s theory in On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life is often considered the central event in the history of modern biology. Darwin’s established credibility as a naturalist, the sober tone of the work, and most of all the sheer strength and volume of evidence presented, allowed Origin to succeed where previous evolutionary works such as the anonymous Vestiges of Creation had failed. Most scientists were convinced of evolution and common descent by the end of the 19th century. However, natural selection would not be accepted as the primary mechanism of evolution until well into the 20th century, as most contemporary theories of heredity seemed incompatible with the inheritance of random variation.[33]

Wallace, following on earlier work by de Candolle, Humbolt and Darwin, made major contributions to zoogeography. Because of his interest in the transmutation hypothosis, he paid particular attention to the geographical distribution of closely allied species during his field work first in South America and then in the Malay archipelago. While in the archipelago he identified the Wallace line, which runs through the spice islands dividing the fauna of the archipelago between an Asian zone and a New Guinea/Australian zone. His key question, as to why the fauna of islands with such similar climates should be so different, could only be answered by considering their origin. In 1876 he wrote The geographical distribution of animals, which was the standard reference work for over half a century, and a sequel, Island Life, in 1880 that focused on island biogeography. He extended the 6 zone system developed by Philip Sclater for describing the geographical distribution of birds to animals of all kinds. His method of tabulating data on animal groups in geographic zones highlighted the discontinuities; and his appreciation of evolution allowed him to propose rational explanations, which had not been done before.[34][35]

The scientific study of heredity grew rapidly in the wake of Darwin’s Origin of Species with the work of Francis Galton and the biometricians. The origin of genetics is usually traced to the 1866 work of the monk Gregor Mendel, who would later be credited with the laws of inheritance. However, his work was not recognized as significant until 35 years afterward. In the meantime, a variety of theories of inheritance (based on pangenesis, orthogenesis, or other mechanisms) were debated and investigated vigorously.[36] Embryology and ecology also became central biological fields, especially as linked to evolution and popularized in the work of Ernst Haeckel. Most of the 19th century work on heredity, however, was not in the realm of natural history, but that of experimental physiology.

Physiology

Over the course of the 19th century, the scope of physiology expanded greatly, from a primarily medically-oriented field to a wide-ranging investigation of the physical and chemical processes of life—including plants, animals, and even microorganisms in addition to man. Living things as machines became a dominant metaphor in biological (and social) thinking.[37]

Cell theory, embryology and germ theory

Advances in microscopy also had a profound impact on biological thinking. In the early 19th century, a number of biologists pointed to the central importance of the cell. In 1838 and 1839, Schleiden and Schwann began promoting the ideas that (1) the basic unit of organisms is the cell and (2) that individual cells have all the characteristics of life, though they opposed the idea that (3) all cells come from the division of other cells. Thanks to the work of Robert Remak and Rudolf Virchow, however, by the 1860s most biologists accepted all three tenets of what came to be known as cell theory.[38]

Cell theory led biologists to re-envision individual organisms as interdependent assemblages of individual cells. Scientists in the rising field of cytology, armed with increasingly powerful microscopes and new staining methods, soon found that even single cells were far more complex than the homogeneous fluid-filled chambers of described by earlier microscopists. Robert Brown had described the nucleus in 1831, and by the end of the 19th century cytologists identified many of the key cell components: chromosomes, centrosomes mitochondria, chloroplasts, and other structures made visible through staining. Between 1874 and 1884 Walther Flemming described the discrete stages of mitosis, showing that they were not artifacts of staining but occurred in living cells, and moreover, that chromosomes doubled in number just before the cell divided and a daughter cell was produced. Much of the research on cell reproduction came together in August Weismann’s theory of heredity: he identified the nucleus (in particular chromosomes) as the hereditary material, proposed the distinction between somatic cells and germ cells (arguing that chromosome number must be halved for germ cells, a precursor to the concept of meiosis), and adopted Hugo de Vries’s theory of pangenes. Weismannism was extremely influential, especially in the new field of experimental embryology.[39]

By the mid 1850s the miasma theory of disease was largely superseded by the germ theory of disease, creating extensive interest in microorganisms and their interactions with other forms of life. By the 1880s, bacteriology was becoming a coherent discipline, especially through the work of Robert Koch, who introduced methods for growing pure cultures on agar gels containing specific nutrients in Petri dishes. The long-held idea that living organisms could easily originate from nonliving matter (spontaneous generation) was attacked in a series of experiments carried out by Louis Pasteur, while debates over vitalism vs. mechanism (a perennial issue since the time of Aristotle and the Greek atomists) continued apace.[40]

Rise of organic chemistry and experimental physiology

In chemistry, one central issue was the distinction between organic and inorganic substances, especially in the context of organic transformations such as fermentation and putrefaction. Since Aristotle these had been considered essentially biological (vital) processes. However, Friedrich Wöhler, Justus Liebig and other pioneers of the rising field of organic chemistry—building on the work of Lavoisier—showed that the organic world could often be analyzed by physical and chemical methods. In 1828 Wöhler showed that the organic substance urea could be created by chemical means that do not involve life, providing a powerful argument against vitalism. Cell extracts («ferments») that could effect chemical transformations were discovered, beginning with diastase in 1833, and by the end of the 19th century the concept of enzymes was well established, though equations of chemical kinetics would not be applied to enzymatic reactions until the early 20th century.[41]

Physiologists such as Claude Bernard explored (through vivisection and other experimental methods) the chemical and physical functions of living bodies to an unprecedented degree, laying the groundwork for endocrinology (a field that developed quickly after the discovery of the first hormone, secretin, in 1902), biomechanics, and the study of nutrition and digestion. The importance and diversity of experimental physiology methods, within both medicine and biology, grew dramatically over the second half of the 19th century. The control and manipulation of life processes became a central concern, and experiment was placed at the center of biological education.[42]

Twentieth century biological sciences

At the beginning of the 20th century, biological research was largely a professional endeavour. However, most work was still done in the natural history mode, which emphasized morhphological and phylogenetic analysis over experiment-based causal explanations. However, anti-vitalist experimental physiologists and embryologists, especially in Europe, were increasingly influential. The tremendous success of experimental approaches to development, heredity, and metabolism in the 1900s and 1910s demonstrated the power of experimentation in biology. In the following decades, experimental work replaced natural history as the dominant mode of research.[43]

Ecology and environmental science

See also: History of ecology

In the early 20th century, naturalists were faced with increasing pressure to add rigor and preferably experimentation to their methods, as the newly prominent laboratory-based biological disciplines had done. Ecology had emerged as a combination of biogeography with the biogeochemical cycle concept pioneered by chemists; field biologists developed quantitative methods such as the quadrat and adapted laboratory instruments and cameras for the field to further set their work apart from traditional natural history. Zoologists and botanists did what they could to mitigate the unpredictability of the living world, performing laboratory experiments and studying semi-controlled natural environments such as gardens; new institutions like the Carnegie Station for Experimental Evolution and the Marine Biological Laboratory provided more controlled environments for studying organisms through their entire life cycles.[44]

The ecological succession concept, pioneered in the 1900s and 1910s by Henry Chandler Cowles and Frederic Clements, was important in early plant ecology. Alfred Lotka’s predator-prey equations, G. Evelyn Hutchinson’s studies of the biogeography and biogeochemical structure of lakes and rivers (limnology) and Charles Elton’s studies of animal food chains were pioneers among the succession of quantitative methods that colonized the developing ecological specialties. Ecology became an independent discipline in the 1940s and 1950s after Eugene P. Odum synthesized many of the concepts of ecosystem ecology, placing relationships between groups of organisms (especially material and energy relationships) at the center of the field.[45]

In the 1960s, as evolutionary theorists explored the possibility of multiple units of selection, ecologists turned to evolutionary approaches. In population ecology, debate over group selection was brief but vigorous; by 1970, most biologists agreed that natural selection was rarely effective above the level of individual organisms. The evolution of ecosystems, however, became a lasting research focus. Ecology expanded rapidly with the rise of the environmental movement; the International Biological Program attempted to apply the methods of big science (which had been so successful in the physical sciences) to ecosystem ecology and pressing environmental issues, while smaller-scale independent efforts such as island biogeography and the Hubbard Brook Experimental Forest helped redefine the scope of an increasingly diverse discipline.[46]

Classical genetics, the modern synthesis, and evolutionary theory

See also: History of genetics, History of model organisms, and Modern evolutionary synthesis

 
1900 marked the so-called rediscovery of Mendel: Hugo de Vries, Carl Correns, and Erich von Tschermak independently arrived at Mendel’s laws (which were not actually present in Mendel’s work).[47] Soon after, cytologists (cell biologists) proposed that chromosomes were the hereditary material. Between 1910 and 1915, Thomas Hunt Morgan and the «Drosophilists» in his fly lab forged these two ideas—both controversial—into the «Mendelian-chromosome theory» of heredity.[48] They quantified the phenomenon of genetic linkage and postulated that genes reside on chromosomes like beads on string; they hypothesized crossing over to explain linkage and constructed genetic maps of the fruit fly Drosophila melanogaster, which became a widely used model organism.[49]

Hugo de Vries tried to link the new genetics with evolution; building on his work with heredity and hybridization, he proposed a theory of mutationism, which was widely accepted in the early 20th century. Lamarckism also had many adherents. Darwinism was seen as incompatible with the continuously variable traits studied by biometricians, which seemed only partially heritable. In the 1920s and 1930s—following the acceptance of the Mendelian-chromosome theory— the emergence of the discipline of population genetics, with the work of R.A. Fisher, J.B.S. Haldane and Sewall Wright, unified the idea of evolution by natural selection with Mendelian genetics, producing the modern synthesis. The inheritance of acquired characters was rejected, while mutationism gave way as genetic theories matured.[50]

In the second half of the century the ideas of population genetics began to be applied in the new discipline of the genetics of behavior, sociobiology, and, especially in humans, evolutionary psychology. In the 1960s W.D. Hamilton and others developed game theory approaches to explain altruism from an evolutionary perspective through kin selection. The possible origin of higher organisms through endosymbiosis, and contrasting approaches to molecular evolution in the gene-centered view (which held selection as the predominant cause of evolution) and the neutral theory (which made genetic drift a key factor) spawned perennial debates over the proper balance of adaptationism and contingency in evolutionary theory.[51]

In the 1970s Stephen Jay Gould and Niles Eldredge proposed the theory of punctuated equilibrium which holds that stasis is the most prominent feature of the fossil record, and that most evolutionary changes occur rapidly over relatively short periods of time.[52] In 1980 Luis Alvarez and Walter Alvarez proposed the hypothesis that an impact event was responsible for the Cretaceous-Tertiary extinction event.[53] Also in the early 1980s, statistical analysis of the fossil record of marine organisms published by Jack Sepkoski and David M. Raup lead to a better appreciation of the importance of mass extinction events to the history of life on earth.[54]

Biochemistry, microbiology, and molecular biology

See also: History of biochemistry and History of molecular biology

By the end of the 19th century all of the major pathways of drug metabolism had been discovered, along with the outlines of protein and fatty acid metabolism and urea synthesis.[55] In the early decades of the twentieth century, the minor components of foods in human nutrition, the vitamins, began to be isolated and synthesized. Improved laboratory techniques such as chromatography and electrophoresis led to rapid advances in physiological chemistry, which—as biochemistry—began to achieve independence from its medical origins. In the 1920s and 1930s, biochemists—led by Hans Krebs and Carl and Gerty Cori—began to work out many of the central metabolic pathways of life: the citric acid cycle, glycogenesis and glycolysis, and the synthesis of steroids and porphyrins. Between the 1930s and 1950s, Fritz Lipmann and others established the role of ATP as the universal carrier of energy in the cell, and mitochondria as the powerhouse of the cell. Such traditionally biochemical work continued to be very actively pursued throughout the 20th century and into the 21st.[56]

Origins of molecular biology

Following the rise of classical genetics, many biologists—including a new wave of physical scientists in biology—pursued the question of the gene and its physical nature. Warren Weaver—head of the science division of the Rockefeller Foundation—issued grants to promote research that applied the methods of physics and chemistry to basic biological problems, coining the term molecular biology for this approach in 1938; many of the significant biological breakthroughs of the 1930s and 1940s were funded by the Rockefeller Foundation.[57]

Like biochemistry, the overlapping disciplines of bacteriology and virology (later combined as microbiology), situated between science and medicine, developed rapidly in the early 20th century. Félix d’Herelle’s isolation of bacteriophage during World War I initiated a long line of research focused of phage viruses and the bacteria they infect.[58]

The development of standard, genetically uniform organisms that could produce repeatable experimental results was essential for the development of molecular genetics. After early work with Drosophila and maize, the adoption of simpler model systems like the bread mold Neurospora crassa made it possible to connect genetics to biochemistry, most importantly with Beadle and Tatum’s «one gene, one enzyme» hypothesis in 1941. Genetics experiments on even simpler systems like tobacco mosaic virus and bacteriophage, aided by the new technologies of electron microscopy and ultracentrifugation, forced scientists to re-evaluate the literal meaning of life; virus heredity and reproducing nucleoprotein cell structures outside the nucleus («plasmagenes») complicated the accepted Mendelian-chromosome theory.[59]

Oswald Avery showed in 1943 that DNA was likely the genetic material of the chromosome, not its protein; the issue was settled decisively with the 1952 Hershey-Chase experiment—one of many contribution from the so-called phage group centered around physicist-turned-biologist Max Delbrück. In 1953 James D. Watson and Francis Crick, building on the work of Maurice Wilkins and Rosalind Franklin, suggested that the structure of DNA was a double helix. In their famous paper «Molecular structure of Nucleic Acids», Watson and Crick noted coyly, «It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.»[61] After the 1958 Meselson-Stahl experiment confirmed the semiconservative replication of DNA, it was clear to most biologists that nucleic acid sequence must somehow determine amino acid sequence in proteins; physicist George Gamow proposed that a fixed genetic code connected proteins and DNA. Between 1953 and 1961, there were few known biological sequences—either DNA or protein—but an abundance of proposed code systems, a situation made even more complicated by expanding knowledge of the intermediate role of RNA. To actually decipher the code, it took an extensive series of experiments in biochemistry and bacterial genetics, between 1961 and 1966—most importantly the work of Nirenberg and Khorana.[62]

Expansion of molecular biology

In addition to the Division of Biology at Caltech, the Laboratory of Molecular Biology (and its precursors) at Cambridge, and a handful of other institutions, the Pasteur Institute became a major center for molecular biology research in the late 1950s.[63] Scientists at Cambridge, led by Max Perutz and John Kendrew, focused on the rapidly developing field of structural biology, combining X-ray crystallography with molecular modelling and the new computational possibilities of digital computing (benefiting both directly and indirectly from the military funding of science). A number of biochemists led by Fred Sanger later joined the Cambridge lab, bringing together the study of macromolecular structure and function.[64] At the Pasteur Institute, François Jacob and Jacques Monod followed the 1959 PaJaMo experiment with a series of publications regarding the lac operon that established the concept of gene regulation and identified what came to be known as messenger RNA.[65] By the mid-1960s, the intellectual core of molecular biology—a model for the molecular basis of metabolism and reproduction— was largely complete.[66]

The late 1950s to the early 1970s was a period of intense research and institutional expansion for molecular biology, which had only recently become a somewhat coherent discipline. In what organismic biologist E. O. Wilson called «The Molecular Wars», the methods and practitioners of molecular biology spread rapidly, often coming to dominate departments and even entire disciplines.[67] Molecularization was particularly important in genetics, immunology, embryology, and neurobiology, while the idea that life is controlled by a «genetic program»—a metaphor Jacob and Monod introduced from the emerging fields of cybernetics and computer science—became an influential perspective throughout biology.[68] Immunology in particular became linked with molecular biology, with innovation flowing both ways: the clonal selection theory developed by Niels Jerne and Frank Macfarlane Burnet in the mid 1950s helped shed light on the general mechanisms of protein synthesis.[69]

Resistance to the growing influence molecular biology was especially evident in evolutionary biology. Protein sequencing had great potential for the quantitative study of evolution (through the molecular clock hypothesis), but leading evolutionary biologists questioned the relevance of molecular biology for answering the big questions of evolutionary causation. Departments and disciplines fractured as organismic biologists asserted their importance and independence: Theodosius Dobzhansky made the famous statement that «nothing in biology makes sense except in the light of evolution» as a response to the molecular challenge. The issue became even more critical after 1968; Motoo Kimura’s neutral theory of molecular evolution suggested that natural selection was not the ubiquitous cause of evolution, at least at the molecular level, and that molecular evolution might be a fundamentally different process from morphological evolution. (Resolving this «molecular/morphological paradox» has been a central focus of molecular evolution research since the 1960s.)[70]

Biotechnology, genetic engineering, and genomics

See also: History of biotechnology

Biotechnology in the general sense has been an important part of biology since the late 19th century. With the industrialization of brewing and agriculture, chemists and biologists became aware of the great potential of human-controlled biological processes. In particular, fermentation proved a great boon to chemical industries. By the early 1970s, a wide range of biotechnologies were being developed, from drugs like penicillin and steroids to foods like Chlorella and single-cell protein to gasohol—as well as a wide range of hybrid high-yield crops and agricultural technologies, the basis for the Green Revolution.[71]

Recombinant DNA

Biotechnology in the modern sense of genetic engineering began in the 1970s, with the invention of recombinant DNA techniques. Restriction enzymes were discovered and characterized in the late 1960s, following on the heels of the isolation, then duplication, then synthesis of viral genes. Beginning with the lab of Paul Berg in 1972 (aided by EcoRI from Herbert Boyer’s lab, building on work with ligase by Arthur Kornberg’s lab), molecular biologists put these pieces together to produce the first transgenic organisms. Soon after, others began using plasmid vectors and adding genes for antibiotic resistance, greatly increasing the reach of the recombinant techniques.[72]

Wary of the potential dangers (particularly the possibility of a prolific bacteria with a viral cancer-causing gene), the scientific community as well as a wide range of scientific outsiders reacted to these developments with both enthusiasm and fearful restraint. Prominent molecular biologists led by Berg suggested a temporary moratorium on recombinant DNA research until the dangers could be assessed and policies could be created. This moratorium was largely respected, until the participants in the 1975 Asilomar Conference on Recombinant DNA created policy recommendations and concluded that the technology could be used safely.[73]

Following Asilomar, new genetic engineering techniques and applications developed rapidly. DNA sequencing methods improved greatly (pioneered by Fred Sanger and Walter Gilbert), as did oligonucleotide synthesis and transfection techniques.[74] Researchers learned to control the expression of transgenes, and were soon racing—in both academic and industrial contexts—to create organisms capable of expressing human genes for the production of human hormones. However, this was a more daunting task than molecular biologists had expected; developments between 1977 and 1980 showed that, due to the phenomena of split genes and splicing, higher organisms had a much more complex system of gene expression than the bacteria models of earlier studies.[75] The first such race, for synthesizing human insulin, was won by Genentech. This marked the beginning of the biotech boom (and with it, the era of gene patents), with an unprecedented level of overlap between biology, industry, and law.[76]

Molecular systematics and genomics

See also: History of molecular evolution

By the 1980s, protein sequencing had already transformed methods of scientific classification of organisms (especially cladistics) but biologists soon began to use RNA and DNA sequences as characters; this expanded the significance of molecular evolution within evolutionary biology, as the results of molecular systematics could be compared with traditional evolutionary trees based on morphology. Following the pioneering ideas of Lynn Margulis on endosymbiotic theory, which holds that some of the organelles of eukaryotic cells originated from free living prokaryotic organisms through symbiotic relationships, even the overall division of the tree of life was revised. Into the 1990s, the five domains (Plants, Animals, Fungi, Protists, and Monerans) became three (the Archaea, the Bacteria, and the Eukarya) based on Carl Woese’s pioneering molecular systematics work with 16S rRNA sequencing.[77]

The development and popularization of the polymerase chain reaction (PCR) in mid 1980s (by Kary Mullis and others at Cetus Corp.) marked another watershed in the history of modern biotechnology, greatly increasing the ease and speed of genetic analysis. Coupled with the use of expressed sequence tags, PCR led to the discovery of many more genes than could be found through traditional biochemical or genetic methods and opened the possibility of sequencing entire genomes.[78]

The unity of much of the morphogenesis of organisms from fertilized egg to adult began to be unraveled after the discovery of the homeobox genes, first in fruit flies, then in other insects and animals, including humans. These developments led to advances in the field of evolutionary developmental biology towards understanding how the various body plans of the animal phyla have evolved and how they are related to one another.[79]

The Human Genome Project—the largest, most costly single biological study ever undertaken—began in 1988 under the leadership of James D. Watson, after preliminary work with genetically simpler model organisms such as E. coli, S. cerevisiae and C. elegans. Shotgun sequencing and gene discovery methods pioneered by Craig Venter—and fueled by the financial promise of gene patents with Celera Genomics— led to a public-private sequencing competition that ended in compromise with the first draft of the human DNA sequence announced in 2000.[80]

Notes

  1. ^ Junker Geschichte der Biologie, p8.
  2. ^ Coleman, Biology in the Nineteenth Century, pp 1–2.
  3. ^ Mayr, The Growth of Biological Thought, pp36–37
  4. ^ Coleman, Biology in the Nineteenth Century, pp 1–3.
  5. ^ Magner, A History of the Life Sciences, pp 2–3
  6. ^ Magner, A History of the Life Sciences, pp 3–9
  7. ^ Magner, A History of the Life Sciences, pp 9–27
  8. ^ Mayr, The Growth of Biological Thought, pp 84–90, 135; Mason, A History of the Sciences, p 41–44
  9. ^ Mayr, The Growth of Biological Thought, pp 201–202; see also: Lovejoy, The Great Chain of Being
  10. ^ Mayr, The Growth of Biological Thought, pp 90–91; Mason, A History of the Sciences, p 46
  11. ^ Barnes, Hellenistic Philosophy and Science, p 383–384
  12. ^ Mayr, The Growth of Biological Thought, pp 90–94; quotation from p 91
  13. ^ Annas, Classical Greek Philosophy, p 252
  14. ^ Mayr, The Growth of Biological Thought, pp 91–94
  15. ^ Mayr, The Growth of Biological Thought, pp 94–95, 154–158
  16. ^ Mayr, The Growth of Biological Thought, pp 166–171
  17. ^ Magner, A History of the Life Sciences, pp 80–83
  18. ^ Magner, A History of the Life Sciences, pp 90–97
  19. ^ Merchant, The Death of Nature, chapters 1, 4, and 8
  20. ^ Magner, A History of the Life Sciences, pp 103–113
  21. ^ Magner, A History of the Life Sciences, pp 133–144
  22. ^ Mayr, The Growth of Biological Thought, pp 162–166
  23. ^ Rudwick, The Meaning of Fossils, pp 41–93
  24. ^ Mayr, The Growth of Biological Thought, chapter 4
  25. ^ Mayr, The Growth of Biological Thought, chapter 7
  26. ^ See Raby, Bright Paradise
  27. ^ Bowler, The Earth Encompassed, pp 204–211
  28. ^ Rudwick, The Meaning of Fossils, pp 112–113
  29. ^ Bowler, The Earth Encompassed, pp 211–220
  30. ^ Bowler, The Earth Encompassed, pp 237–247
  31. ^ Mayr, The Growth of Biological Thought, pp 343–357
  32. ^ Mayr, The Growth of Biological Thought, chapter 10: «Darwin’s evidence for evolution and common descent»; and chapter 11: «The causation of evolution: natural selection»; Larson, Evolution, chapter 3
  33. ^ Larson, Evolution, chapter 5: «Ascent of Evolutionism»; see also: Bowler, The Eclipse of Darwinism; Secord, Victorian Sensation
  34. ^ Larson, Evolution, pp 72-73, 116–117; see also: Browne, The Secular Ark.
  35. ^ Bowler Evolution: The History of an Idea p. 174
  36. ^ Mayr, The Growth of Biological Thought, pp 693–710
  37. ^ Coleman, Biology in the Nineteenth Century, chapter 6; on the machine metaphor, see also: Rabinbach, The Human Motor
  38. ^ Sapp, Genesis, chapter 7; Coleman, Biology in the Nineteenth Century, chapters 2
  39. ^ Sapp, Genesis, chapter 8; Coleman, Biology in the Nineteenth Century, chapter 3
  40. ^ Magner, A History of the Life Sciences, pp 254–276
  41. ^ Fruton, Proteins, Enzymes, Genes, chapter 4; Coleman, Biology in the Nineteenth Century, chapter 6
  42. ^ Rothman and Rothman, The Pursuit of Perfection, chapter 1; Coleman, Biology in the Nineteenth Century, chapter 7
  43. ^ See: Coleman, Biology in the Nineteenth Century; Kohler, Landscapes and Labscapes; Allen, Life Science in the Twentieth Century
  44. ^ Kohler, Landscapes and Labscapes, chapters 2, 3, 4
  45. ^ Hagen, An Entangled Bank, chapters 2–5
  46. ^ Hagen, An Entangled Bank, chapters 8–9
  47. ^ Randy Moore, «The ‘Rediscovery’ of Mendel’s Work», Bioscene, Volume 27(2), May 2001.
  48. ^ T. H. Morgan, A. H. Sturtevant, H. J. Muller, C. B. Bridges (1915) The Mechanism of Mendelian Heredity Henry Holt and Company.
  49. ^ Garland Allen, Thomas Hunt Morgan: The Man and His Science (1978), chapter 5; see also: Kohler, Lords of the Fly and Sturtevant, A History of Genetics
  50. ^ Smocovitis, Unifying Biology, chapter 5; see also: Mayr and Provine (eds.), The Evolutionary Synthesis
  51. ^ Gould, The Structure of Evolutionary Theory, chapter 8; Larson, Evolution, chapter 12
  52. ^ Larson, Evolution, pp 271–283
  53. ^ Zimmer, Evolution, pp 188–195
  54. ^ Zimmer, Evolution, pp 169–172
  55. ^ Caldwell, «Drug metabolism and pharmacogenetics»; Fruton, Proteins, Enzymes, Genes, chapter 7
  56. ^ Fruton, Proteins, Enzymes, Genes, chapters 6 and 7
  57. ^ Morange, A History of Molecular Biology, chapter 8; Kay, The Molecular Vision of Life, Introduction, Interlude I, and Interlude II
  58. ^ See: Summers, Félix d’Herelle and the Origins of Molecular Biology
  59. ^ Creager, The Life of a Virus, chapters 3 and 6; Morange, A History of Molecular Biology, chapter 2
  60. ^ Crick, Francis. «Central Dogma of Molecular Biology», Nature, vol. 227, pp. 561–563 (August 8, 1970)
  61. ^ Watson, James D. and Francis Crick. «Molecular structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid», Nature, vol. 171, , no. 4356, pp 737–738
  62. ^ Morange, A History of Molecular Biology, chapters 3, 4, 11, and 12; Fruton, Proteins, Enzymes, Genes, chapter 8; on the Meselson-Stahl experiment, see: Holmes, Meselson, Stahl, and the Replication of DNA
  63. ^ On Caltech molecular biology, see Kay, The Molecular Vision of Life, chapters 4–8; on the Cambridge lab, see de Chadarevian, Designs for Life; on comparisons with the Pasteur Institute, see Creager, «Building Biology across the Atlantic»
  64. ^ de Chadarevian, Designs for Life, chapters 4 and 7
  65. ^ Pardee A (2002). «PaJaMas in Paris». Trends Genet. 18 (11): 585-7. PMID 12414189.
  66. ^ Morange, A History of Molecular Biology, chapter 14
  67. ^ Wilson, Naturalist, chapter 12; Morange, A History of Molecular Biology, chapter 15
  68. ^ Morange, A History of Molecular Biology, chapter 15; Keller, The Century of the Gene, chapter 5
  69. ^ Morange, A History of Molecular Biology, pp 126–132, 213–214
  70. ^ Dietrich, «Paradox and Persuasion», pp 100–111
  71. ^ Bud, The Uses of Life, chapters 2 and 6
  72. ^ Morange, A History of Molecular Biology, chapters 15 and 16
  73. ^ Bud, The Uses of Life, chapter 8; Gottweis, Governing Molecules, chapter 3; Morange, A History of Molecular Biology, chapter 16
  74. ^ Morange, A History of Molecular Biology, chapter 16
  75. ^ Morange, A History of Molecular Biology, chapter 17
  76. ^ Krimsky, Biotechnics and Society, chapter 2; on the race for insulin, see: Hall, Invisible Frontiers; see also: Thackray (ed.), Private Science
  77. ^ Sapp, Genesis, chapters 18 and 19
  78. ^ Morange, A History of Molecular Biology, chapter 20; see also: Rabinow, Making PCR
  79. ^ Gould, The Structure of Evolutionary Theory, chapter 10
  80. ^ Davies, Cracking the Genome, Introduction; see also: Sulston, The Common Thread

References

  • Allen, Garland E. Thomas Hunt Morgan: The Man and His Science. Princeton University Press: Princeton, 1978. ISBN 0-691-08200-6
  • Allen, Garland E. Life Science in the Twentieth Century. Cambridge University Press, 1975.
  • Annas, Julia Classical Greek Philosophy. In Boardman, John; Griffin, Jasper; Murray, Oswyn (ed.) The Oxford History of the Classical World. Oxford University Press: New York, 1986. ISBN 0-19-872112-9
  • Barnes, Jonathan Hellenistic Philosophy and Science. In Boardman, John; Griffin, Jasper; Murray, Oswyn (ed.) The Oxford History of the Classical World. Oxford University Press: New York, 1986. ISBN 0-19-872112-9
  • Bowler, Peter J. The Earth Encompassed: A History of the Environmental Sciences. W. W. Norton & Company: New York, 1992. ISBN 0-393-32080-4
  • Bowler, Peter J. The Eclipse of Darwinism: Anti-Darwinian Evolution Theories in the Decades around 1900. The Johns Hopkins University Press: Baltimore, 1983. ISBN 0-8018-2932-1
  • Bowler, Peter J. Evolution:The History of an Idea. University of California Press, 2003. ISBN 0-52023693-9.
  • Browne, Janet. The Secular Ark: Studies in the History of Biogeography. Yale University Press: New Have, 1983. ISBN 0300024606
  • Bud, Robert. The Uses of Life: A History of Biotechnology. Cambridge University Press: London, 1993. ISBN 0521382408
  • Caldwell, John. «Drug metabolism and pharmacogenetics: the British contribution to fields of international significance.» British Journal of Pharmacology, Vol. 147, Issue S1 (January 2006), pp S89–S99.
  • Coleman, William Biology in the Nineteenth Century: Problems of Form, Function, and Transformation. Cambridge University Press: New York, 1977. ISBN 0-521-29293-X
  • Creager, Angela N. H. The Life of a Virus: Tobacco Mosaic Virus as an Experimental Model, 1930–1965. University of Chicago Press: Chicago, 2002. ISBN 0-226-12025-2
  • Creager, Angela N. H. «Building Biology across the Atlantic,» essay review in Journal of the History of Biology, Vol. 36, No. 3 (September 2003), pp. 579–589.
  • de Chadarevian, Soraya. Designs for Life: Molecular Biology after World War II. Cambridge University Press: Cambridge, 2002. ISBN 0521570786
  • Dietrich, Michael R. «Paradox and Persuasion: Negotiating the Place of Molecular Evolution within Evolutionary Biology,» in Journal of the History of Biology, Vol. 31 (1998), pp. 85–111.
  • Davies, Kevin. Cracking the Genome: Inside the Race to Unlock Human DNA. The Free Press: New York, 2001. ISBN 0-7432-0479-4
  • Fruton, Joseph S. Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. Yale University Press: New Haven, 1999. ISBN 0-300-07608-8
  • Gottweis, Herbert. Governing Molecules: The Discursive Politics of Genetic Engineering in Europe and the United States. MIT Press: Cambridge, MA, 1998. ISBN 0-262-07189-4
  • Gould, Stephen Jay. The Structure of Evolutionary Theory. The Belknap Press of Harvard University Press: Cambridge, 2002. ISBN 0-674-00613-5
  • Hagen, Joel B. An Entangled Bank: The Origins of Ecosystem Ecology. Rutgers University Press: New Brunswick, 1992. ISBN 0-8135-1824-5
  • Hall, Stephen S. Invisible Frontiers: The Race to Synthesize a Human Gene. Atlantic Monthly Press: New York, 1987. ISBN 0-87113-147-1
  • Holmes, Frederic Lawrence. Meselson, Stahl, and the Replication of DNA: A History of «The Most Beautiful Experiment in Biology». Yale University Press: New Haven, 2001. ISBN 0300085400
  • Junker, Thomas. Geschichte der Biologie. C. H. Beck: München, 2004.
  • Kay, Lily E. The Molecular Vision of Life: Caltech, The Rockefeller Foundation, and the Rise of the New Biology. Oxford University Press: New York, 1993. ISBN 0-19-511143-5
  • Kohler, Robert E. Lords of the Fly: Drosophila Genetics and the Experimental Life. Chicago University Press: Chicago, 1994. ISBN 0-226-45063-5
  • Kohler, Robert E. Landscapes and Labscapes: Exploring the Lab-Field Border in Biology. University of Chicago Press: Chicago, 2002. ISBN 0-226-45009-0
  • Krimsky, Sheldon. Biotechnics and Society: The Rise of Industrial Genetics. Praeger Publishers: New York, 1991. ISBN 0-275-93860-3
  • Larson, Edward J. Evolution: The Remarkable History of a Scientific Theory. The Modern Library: New York, 2004. ISBN 0-679-64288-9
  • Lennox, James (2006-02-15). Aristotle’s Biology. Stanford Encyclopedia of Philosophy.
  • Lovejoy, Arthur O. The Great Chain of Being: A Study of the History of an Idea. Harvard University Press, 1936. Reprinted by Harper & Row, ISBN 0-674-36150-4, 2005 paperback: ISBN 0-674-36153-9.
  • Magner, Lois N. A History of the Life Sciences, third edition. Marcel Dekker, Inc.: New York, 2002. ISBN 0-8247-0824-5
  • Mason, Stephen F. A History of the Sciences. Collier Books: New York, 1956.
  • Mayr, Ernst. The Growth of Biological Thought: Diversity, Evolution, and Inheritance. The Belknap Press of Harvard University Press: Cambridge, Massachusetts, 1982. ISBN 0-674-36445-7
  • Mayr, Ernst and William B. Provine, eds. The Evolutionary Synthesis: Perspectives on the Unification of Biology. Harvard University Press: Cambridge, 1998. ISBN 0-674-27226-9
  • Morange, Michel. A History of Molecular Biology, translated by Matthew Cobb. Harvard University Press: Cambridge, 1998. ISBN 0-674-39855-6
  • Rabinbach, Anson. The Human Motor: Energy, Fatigue, and the Origins of Modernity. University of California Press, 1992. ISBN 0520078276
  • Rabinow, Paul. Making PCR: A Story of Biotechnology. University of Chicago Press: Chicago, 1996. ISBN 0-226-70146-8
  • Rudwick, Martin J.S. The Meaning of Fossils. The University of Chicago Press: Chicago, 1972. ISBN 0-226-73103-0
  • Raby, Peter. Bright Paradise: Victorian Scientific Travellers. Princeton University Press: Princeton, 1997. ISBN 0-691-04843-6
  • Rothman, Sheila M. and David J. Rothman. The Pursuit of Perfection: The Promise and Perils of Medical Enhancement. Vintage Books: New York, 2003. ISBN 0-679-75835-6
  • Sapp, Jan. Genesis: The Evolution of Biology. Oxford University Press: New York, 2003. ISBN 0-19-515618-8
  • Secord, James A. Victorian Sensation: The Extraordinary Publication, Reception, and Secret Authorship of Vestiges of the Natural History of Creation. University of Chicago Press: Chicago, 2000. ISBN 0-226-74410-8
  • Sulston, John. The Common Thread: A Story of Science, Politics, Ethics and the Human Genome. National Academy Press, 2002. ISBN 0309084091
  • Smocovitis, Vassiliki Betty. Unifying Biology: The Evolutionary Synthesis and Evolutionary Biology. Princeton University Press: Princeton, 1996. ISBN 0-691-03343-9
  • Summers, William C. Félix d’Herelle and the Origins of Molecular Biology, Yale University Press: New Haven, 1999. ISBN 0-300-07127-2
  • Sturtevant, A. H. A History of Genetics. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 2001. ISBN 0879696079
  • Thackray, Arnold, ed. Private Science: Biotechnology and the Rise of the Molecular Sciences. University of Pennsylvania Press: Philadelphia, 1998. ISBN 0812234286
  • Wilson, Edward O. Naturalist. Island Press, 1994.
  • Zimmer, Carl. Evolution: the triumph of an idea. HarperCollins: New York, 2001. ISBN 0-06-113840-1

Like this post? Please share to your friends:
  • The word biology means the study of
  • The word as a fundamental unit of language
  • The word bad means good
  • The word biology is derived the greek word bios life and logos study
  • The word artist in graffiti