Температурный график отопления
Опубликовано 26 Мар 2014
Рубрика: Теплотехника | 82 комментария
Компьютеры уже давно и успешно работают не только на столах офисных работников, но и в системах управления производственными и технологическими процессами. Автоматика успешно управляет параметрами систем теплоснабжения зданий, обеспечивая внутри них…
…заданную необходимую температуру воздуха (иногда для экономии меняющуюся в течение суток).
Но автоматику необходимо грамотно настроить, дать ей исходные данные и алгоритмы для работы! В этой статье рассматривается оптимальный температурный график отопления – зависимость температуры теплоносителя водяной системы отопления при различных температурах наружного воздуха.
Эта тема уже рассматривалась в статье о водяном отоплении. Здесь мы не будем рассчитывать теплопотери объекта, а рассмотрим ситуацию, когда эти теплопотери известны из предшествующих расчетов или из данных фактической эксплуатации действующего объекта. Если объект действующий, то лучше взять значение теплопотерь при расчетной температуре наружного воздуха из статистических фактических данных предыдущих лет эксплуатации.
В упомянутой выше статье для построения зависимостей температуры теплоносителя от температуры наружного воздуха решается численным методом система нелинейных уравнений. В этой статье будут представлены «прямые» формулы для вычисления температур воды на «подаче» и на «обратке», представляющие собой аналитическое решение задачи.
Предложенный далее расчет в Excel можно выполнить также в программе OOo Calc из пакета Open Office.
О цветах ячеек листа Excel, которые применены для форматирования в статьях, можно прочесть на странице «О блоге».
Расчет в Excel температурного графика отопления.
Итак, при настройке работы котла и/или теплового узла от температуры наружного воздуха системе автоматики необходимо задать температурный график.
Возможно, правильнее датчик температуры воздуха разместить внутри здания и настроить работу системы управления температурой теплоносителя от температуры внутреннего воздуха. Но часто бывает сложно выбрать место установки датчика внутри из-за разных температур в различных помещениях объекта или из-за значительной удаленности этого места от теплового узла.
Рассмотрим пример. Допустим, у нас имеется объект – здание или группа зданий, получающие тепловую энергию от одного общего закрытого источника теплоснабжения – котельной и/или теплового узла. Закрытый источник – это источник, из которого запрещен отбор горячей воды на водоснабжение. В нашем примере будем считать, что кроме прямого отбора горячей воды отсутствует и отбор тепла на нагрев воды для горячего водоснабжения.
Для сравнения и проверки правильности расчетов возьмем исходные данные из вышеупомянутой статьи «Расчет водяного отопления за 5 минут!» и составим в Excel небольшую программу расчета температурного графика отопления.
Исходные данные:
1. Расчетные (или фактические) теплопотери объекта (здания) Qр в Гкал/час при расчетной температуре наружного воздуха tнр записываем
в ячейку D3: 0,004790
2. Расчетную температуру воздуха внутри объекта (здания) tвр в °C вводим
в ячейку D4: 20
3. Расчетную температуру наружного воздуха tнр в °C заносим
в ячейку D5: -37
4. Расчетную температуру воды на «подаче» tпр в °C вписываем
в ячейку D6: 90
5. Расчетную температуру воды на «обратке» tор в °C вводим
в ячейку D7: 70
6. Показатель нелинейности теплоотдачи примененных приборов отопления n записываем
в ячейку D8: 0,30
7. Текущую (интересующую нас) температуру наружного воздуха tн в °C заносим
в ячейку D9: -10
Значения в ячейках D3 – D8 для конкретного объекта записываются один раз и далее не меняются. Значение в ячейке D8 можно (и нужно) изменять, определяя параметры теплоносителя для различной погоды.
Результаты расчетов:
8. Расчетный расход воды в системе Gр в т/час вычисляем
в ячейке D11: =D3*1000/(D6-D7) =0,239
Gр=Qр*1000/(tпр— tор)
9. Относительный тепловой поток q определяем
в ячейке D12: =(D4-D9)/(D4-D5) =0,53
q=(tвр— tн)/(tвр— tнр)
10. Температуру воды на «подаче» tп в °C рассчитываем
в ячейке D13: =D4+0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =61,9
tп=tвр+0,5*(tпр–tор)*q+0,5*(tпр+tор-2*tвр)*q(1/(1+n))
11. Температуру воды на «обратке» tо в °C вычисляем
в ячейке D14: =D4-0,5*(D6-D7)*D12+0,5*(D6+D7-2*D4)*D12^(1/(1+D8)) =51,4
tо=tвр-0,5*(tпр–tор)*q+0,5*(tпр+tор-2*tвр)*q(1/(1+n))
Расчет в Excel температуры воды на «подаче» tп и на «обратке» tо для выбранной температуры наружного воздуха tн выполнен.
Сделаем аналогичный расчет для нескольких различных наружных температур и построим температурный график отопления. (О том, как строить графики в Excel можно прочитать здесь.)
Произведем сверку полученных значений температурного графика отопления с результатами, полученными в статье «Расчет водяного отопления за 5 минут!» — значения совпадают!
Итоги.
Практическая ценность представленного расчета температурного графика отопления заключается в том, что он учитывает тип установленных приборов и направление движения теплоносителя в этих приборах. Коэффициент нелинейности теплоотдачи n, оказывающий заметное влияние на температурный график отопления у разных приборов различный:
у чугунных радиаторов n=0,15…0,30 (зависит от способа подключения);
у конвекторов n=0,30…0,35 (зависит от марки прибора).
Для любых приборов отопления коэффициент нелинейности теплоотдачи n можно найти в технической документации заводов-изготовителей.
По величине относительного теплового потока q можно понять, что, например, при температуре наружного воздуха tн=-8 °С в нашем примере котел или система должны работать на 50% номинальной мощности для поддержания в помещении температуры внутреннего воздуха tвр=+20 °С.
Используя температурный график отопления, можно быстро выполнить экспресс-аудит системы и понять есть недогрев «подачи» или перегрев «обратки», а так же оценить величину расхода теплоносителя.
Конечно, теплопотери здания зависят от переменных в течение суток и месяцев силы ветра, влажности воздуха, инсоляции, однако главнейшим влияющим фактором все-таки на 90…95% является температура наружного воздуха.
Ссылка на скачивание файла: temperaturnyy-grafik-otopleniya (xls 26,0KB).
Другие статьи автора блога
На главную
Статьи с близкой тематикой
Отзывы
The Thermometer chart in Excel can be used to depict specific data based on the actual value and the target value. It can be used in a wide range of scenarios such as representing the past performance of horses in horse racing or the global temperature and it’s variation throughout decades etc.
In this article, we will look into how we can create a Thermometer chart in Excel.
Thermometer Chart
Steps for creating a Thermometer Chart in Excel
Follow the below steps to create a thermometer chart in Excel:
Note: This article is written using Microsoft Excel 2010, but all the steps shown below are valid for all later versions.
Step 1: Creating your Data Table. First, you must create your data table for the chart. For this article, we’ll see the sales data of a fictional retail store.
This table must contain TOTAL and TARGET rows as well. Now, add two more rows below this table viz. Achieved % and Total %:
Note that the Total % will always be 100%
Step 2: Form the Bar Chart. Now, select the last two rows that you added and go to Insert. Select the 2D Clustered Column from the Column Charts section.
Now, select the chart, and click on Switch Row/Column under the Design Tab.
The final result will look like the following:
Step 3: Final adjustments. Right-click on the Red Bar and select Format Data Series and set the Plot Series On values to Secondary Axis as shown below.
The final result will look like this
Now, select the Vertical Axis on the left-hand side and right-click on it. Then click on Format Axis and set the Minimum and Maximum values as shown below then hit Close.
Delete the Vertical Axis on the Right-Hand side.
Right-click on the Red Bar and select Format Data Series, and make the following changes.
The final result will look like this after deleting the Axis lines and the legend.
Now, resize the chart to look like a Thermometer and delete the bottom Axis. Then, add an oval shape from the Design tab under the Chart to make it look like an actual thermometer.
Температурный график теплосети показывает рассчитанные определенным образом параметры теплоносителя отопительных систем для текущих температур наружного воздуха. Параметры теплоносителя показывают температуру сетевой воды в подающем и обратном трубопроводе, а температура наружного воздуха вычисляется как ее среднесуточное значение.
Практическое значение температурного графика магистральной или местной теплосети заключается в том, что он учитывает не только среднесуточные температуры наружного воздуха, но и теплопотери зданий, тип установленных приборов отопления и направление потока теплоносителя в этих приборах.
Что такое температурный график
Температурный график представляет собой зависимость степени нагрева воды в системе от температуры холодного наружного воздуха. После необходимых вычислений результат представляют в виде двух чисел. Первое означает температуру воды на входе в систему теплоснабжения, а вторая на выходе.
Например, запись 90-70ᵒС означает, что при заданных климатических условиях для отопления определенного здания понадобится, чтобы на входе в трубы теплоноситель имел температуру 90ᵒС, а на выходе 70ᵒС.
Все значения представляются для температуры воздуха снаружи по наиболее холодной пятидневке. Данная расчетная температура принимается по СП «Тепловая защита зданий». Внутренняя температура для жилых помещений по нормам принимается 20ᵒС. График обеспечит правильную подачу теплоносителя в трубы отопления. Это позволит избежать переохлаждения помещений и нерационального расхода ресурсов.
От чего зависит?
Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.
Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.
Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.
Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.
График температуры 95-70:
Необходимость выполнения построений и расчетов
Температурный график необходимо разрабатывать для каждого населенного пункта. Он позволяет обеспечиться наиболее грамотную работу системы отопления, а именно:
- Привести в соответствие тепловые потери во время подачи горячей воды в дома со среднесуточной температурой наружного воздуха.
- Предотвратить недостаточный нагрев помещений.
- Обязать тепловые станции поставлять потребителям услуги, соответствующие технологическим условиям.
Такие вычисления необходимы, как для крупных отопительных станций, так и для котельных в небольших населенных пунктах. В этом случае результат расчетов и построений будет называться график котельной.
Советы по оптимизации работы отопления
Даже у самого точного температурного графика котельной отопления в процессе работы будут наблюдаться отклонения расчетных и фактических данных. Это связано с особенностями эксплуатации системы. Какие факторы могут влиять на текущий температурный режим теплоснабжения?
- Загрязнение трубопроводов и радиаторов. Во избежание этого следует проводить периодическую очистку системы отопления;
- Неправильная работа регулирующей и запорной арматуры. Обязательно выполняется проверка работоспособности всех компонентов;
- Нарушение режима функционирования котла – резкие скачки температуры как следствие – давления.
Поддержание оптимального температурного режима системы возможно только при правильном выборе ее компонентов. Для этого следует учитывать их эксплуатационные и технические свойства.
Регулировку нагрева батареи можно выполнять с помощью термостата, с принципом работы которого можно ознакомиться в видеоматериале:
Способы регулирования температуры в системе отопления
По завершении расчетов необходимо добиться вычисленной степени нагрева теплоносителя. Достигнуть ее можно несколькими способами:
- количественным;
- качественным;
- временным.
В первом случае изменяют расход воды, поступающей в отопительную сеть, во втором регулируют степень нагрева теплоносителя. Временный вариант предполагает дискретную подачу горячей жидкости в тепловую сеть.
Для центральной системы теплоснабжения наиболее характерен качественный, способ при этом объем воды, поступающий в отопительный контур, остается неизменным.
Теплосети — параметры
Эксплуатация, технические параметры оборудования, правила проектирования и монтажа тепловых сетей (ТС) регламентированы в нормах и правилах СНиП 2.04.07-86, его основные положения:
- Нормативы распространяются на теплосети и размещенное на них оборудование, транспортирующие нагретую до температуры максимум +200 °С воду или водяной пар с температурным пределом +440 °С при максимальном давлении Ру в трубах 6,3 МПа (63 бара, 63 атмосферы).
- Нормы действуют на водяные, паровые и конденсаторные теплосети на участке от запорной арматуры на выходе коллекторов или от стен теплового источника до входных задвижек теплопунктов (ТП) зданий.
- Теплосети с водяным носителем положено проектировать двухтрубными с одновременной подачей тепловой энергии на нужды отопления, вентилирования, горячего водоснабжения (ГВС), технологических процессов.
- Системы ГВС присоединяют к двухтрубным теплосетям открытого типа (с расширительным баком на чердаке) через трубы подачи и обратки. В замкнутой отопительной системе с гидроаккумуляторным баком и циркуляционным электронасосом подсоединение магистрали ГВС осуществляется через водонагреватели косвенного теплообмена.
- Системы ГВС могут подключаться к теплосетям через пароводяные водонагреватели.
- При двухтрубной разводке подключение отопительных контуров и вентиляции потребителей производится непосредственно по зависимой схеме.
Рис. 2 Показатели теплопотока (Вт) на обогрев 1 м2 жилых построек по СНиП 2.04.07-86
Виды графиков
В зависимости от назначения тепловой сети способы выполнения отличаются. Первый вариант — нормальный график отопления. Он представляет собой построения для сетей, работающих только на отопление помещений и регулируемых централизованно.
Повышенный график рассчитывается для тепловых сетей, обеспечивающих отопление и снабжение горячей водой. Он строится для закрытых систем и показывает суммарную нагрузку на систему подачи горячей воды.
Скорректированный график также предназначен для сетей, работающих и на отопление, и на нагрев. Здесь учитываются тепловые потери при прохождении теплоносителя по трубам до потребителя.
Составление температурного графика
Построенная прямая линия зависит от следующих значений:
- нормируемая температура воздуха в помещении;
- температура наружного воздуха;
- степень нагрева теплоносителя при поступлении в систему отопления;
- степень нагрева теплоносителя на выходе из сетей здания;
- степень теплоотдачи отопительных приборов;
- теплопроводность наружных стен и общие тепловые потери здания.
Чтобы выполнить грамотный расчет, необходимо вычислить разницу между температурами воды в прямой и обратной трубе Δt. Чем выше значение в прямой трубе, тем лучше теплоотдача системы отопления и выше температура внутри помещений.
Чтобы рационально и экономно расходовать теплоноситель, необходимо добиться минимально возможного значения Δt. Это можно обеспечить, например, проведением работ по дополнительному утеплению наружных конструкций дома (стен, покрытий, перекрытий над холодным подвалом или техническим подпольем).
Регулировка
Автоматический контроль обеспечивается регулятором отопления.
В него входят следующие детали:
- Вычислительная и согласующая панель.
- Исполнительное устройство на отрезке подачи воды.
- Исполнительное устройство, выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
- Повышающий насос и датчик на линии подачи воды.
- Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.
Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.
Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.
Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.
Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.
Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.
Плюсы регулятора:
- Жёстко выдерживается температурная схема.
- Исключение перегрева жидкости.
- Экономичность топлива и энергии.
- Потребитель, независимо от расстояния, равноценно получает тепло.
Тепловые потери здания
Исходными данными в этом случае станут:
- толщина наружных стен;
- теплопроводность материала, из которого изготовлены ограждающие конструкции (в большинстве случаев указывается производителем, обозначается буквой λ);
- площадь поверхности наружной стены;
- климатический район строительства.
В первую очередь находят фактическое сопротивление стены теплопередаче. В упрощенном варианте можно его найти как частное толщины стены и ее теплопроводности. Если наружная конструкция состоит из нескольких слоев, по отдельности находят сопротивление каждого из них и складывают полученные значения.
Тепловые потери стен рассчитываются по формуле:
Q = F*(1/R0)*(tвнутр. воздуха-tнаружн. воздуха)
Здесь Q – это тепловые потери в килокалориях, а F – площадь поверхности наружных стен. Для более точного значения необходимо учесть площадь остекления и его коэффициент теплопередачи.
Расчет температуры теплоносителя
На основе полученных значений подбирается температурный режим отопления и строится прямая теплоотдачи. По одной оси наносятся значения степени нагрева подаваемой в систему отопления воды, а по другой температура наружного воздуха. Все величины принимаются в градусах Цельсия. Результаты расчета сводятся в таблицу, в которой указаны узловые точки трубопровода.
Проводить вычисления по методике достаточно сложно. Для выполнения грамотного расчета лучше всего воспользоваться специальными программами.
Для каждого здания такой расчет выполняется в индивидуальном порядке управляющей компанией. Для примерного определения воды на входе в систему можно воспользоваться существующими таблицами.
- Для крупных поставщиков тепловой энергии используют параметры теплоносителя 150-70ᵒС, 130-70ᵒС, 115-70ᵒС.
- Для небольших систем на несколько многоквартирных домов применяются параметры 90-70ᵒС (до 10 этажей), 105-70ᵒС (свыше 10 этажей). Может также быть принят график 80-60ᵒС.
- При обустройстве автономной системы отопления для индивидуального дома достаточно контроля над степенью нагрева с помощью датчиков, график можно не строить.
Выполненные мероприятия позволяют определять параметры теплоносителя в системе в определенный момент времени. Анализируя совпадение параметров с графиком можно проверять эффективность отопительной системы. В таблице температурного графика указывается также степень нагрузки на систему отопления.
( 1 оценка, среднее 4 из 5 )
Зависимость температуры теплоносителя от погоды
Составляется график в тепловой сети по простому принципу – чем ниже температура на улице, тем выше должна быть она у теплоносителя.
Такое соотношение является важным основанием для работы предприятий, которые обеспечивают город теплом.
Для расчета был применен показатель, в основе которого лежит среднедневная температура пяти наиболее холодных дней в году.
ВНИМАНИЕ! Соблюдение температурного режима является важным не только для поддержания тепла в многоквартирном доме. Он также позволяет сделать расход энергоресурсов в системе отопления экономичным, рациональным.
График, в котором указывается температура теплоносителя в зависимости от наружной температуры, позволяет самым оптимальным образом распределить между потребителями многоквартирного дома не только тепло, но и горячую воду.
Блог об энергетике
Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5, то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 оС.
Как правило, используются следующие температурные графики: 150/70, 130/70, 115/70, 105/70, 95/70. Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.
Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов». Тепловые сети работают по температурному графику 130/70, значит при -10 оС температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 оС при графике 105/70 или 65,3 оС при графике 95/70. Температура воды после системы отопления должны быть 51,7 оС.
Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 оС, а на ТЭЦ или котельной задается 87 градусов.
Температура наружного воздуха Тнв, оС | Температура сетевой воды в подающем трубопроводе Т1, оС | Температура воды в подающем трубопроводе системы отопления Т3, оС | Температура воды после системы отопления Т2, оС | |||
150 | 130 | 115 | 105 | 95 | ||
8 | 53,2 | 50,2 | 46,4 | 43,4 | 41,2 | 35,8 |
7 | 55,7 | 52,3 | 48,2 | 45,0 | 42,7 | 36,8 |
6 | 58,1 | 54,4 | 50,0 | 46,6 | 44,1 | 37,7 |
5 | 60,5 | 56,5 | 51,8 | 48,2 | 45,5 | 38,7 |
4 | 62,9 | 58,5 | 53,5 | 49,8 | 46,9 | 39,6 |
3 | 65,3 | 60,5 | 55,3 | 51,4 | 48,3 | 40,6 |
2 | 67,7 | 62,6 | 57,0 | 52,9 | 49,7 | 41,5 |
1 | 70,0 | 64,5 | 58,8 | 54,5 | 51,0 | 42,4 |
0 | 72,4 | 66,5 | 60,5 | 56,0 | 52,4 | 43,3 |
-1 | 74,7 | 68,5 | 62,2 | 57,5 | 53,7 | 44,2 |
-2 | 77,0 | 70,4 | 63,8 | 59,0 | 55,0 | 45,0 |
-3 | 79,3 | 72,4 | 65,5 | 60,5 | 56,3 | 45,9 |
-4 | 81,6 | 74,3 | 67,2 | 62,0 | 57,6 | 46,7 |
-5 | 83,9 | 76,2 | 68,8 | 63,5 | 58,9 | 47,6 |
-6 | 86,2 | 78,1 | 70,4 | 65,0 | 60,2 | 48,4 |
-7 | 88,5 | 80,0 | 72,1 | 66,4 | 61,5 | 49,2 |
-8 | 90,8 | 81,9 | 73,7 | 67,9 | 62,8 | 50,1 |
-9 | 93,0 | 83,8 | 75,3 | 69,3 | 64,0 | 50,9 |
-10 | 95,3 | 85,6 | 76,9 | 70,8 | 65,3 | 51,7 |
-11 | 97,6 | 87,5 | 78,5 | 72,2 | 66,6 | 52,5 |
-12 | 99,8 | 89,3 | 80,1 | 73,6 | 67,8 | 53,3 |
-13 | 102,0 | 91,2 | 81,7 | 75,0 | 69,0 | 54,0 |
-14 | 104,3 | 93,0 | 83,3 | 76,4 | 70,3 | 54,8 |
-15 | 106,5 | 94,8 | 84,8 | 77,9 | 71,5 | 55,6 |
-16 | 108,7 | 96,6 | 86,4 | 79,3 | 72,7 | 56,3 |
-17 | 110,9 | 98,4 | 87,9 | 80,7 | 73,9 | 57,1 |
-18 | 113,1 | 100,2 | 89,5 | 82,0 | 75,1 | 57,9 |
-19 | 115,3 | 102,0 | 91,0 | 83,4 | 76,3 | 58,6 |
-20 | 117,5 | 103,8 | 92,6 | 84,8 | 77,5 | 59,4 |
-21 | 119,7 | 105,6 | 94,1 | 86,2 | 78,7 | 60,1 |
-22 | 121,9 | 107,4 | 95,6 | 87,6 | 79,9 | 60,8 |
-23 | 124,1 | 109,2 | 97,1 | 88,9 | 81,1 | 61,6 |
-24 | 126,3 | 110,9 | 98,6 | 90,3 | 82,3 | 62,3 |
-25 | 128,5 | 112,7 | 100,2 | 91,6 | 83,5 | 63,0 |
-26 | 130,6 | 114,4 | 101,7 | 93,0 | 84,6 | 63,7 |
-27 | 132,8 | 116,2 | 103,2 | 94,3 | 85,8 | 64,4 |
-28 | 135,0 | 117,9 | 104,7 | 95,7 | 87,0 | 65,1 |
-29 | 137,1 | 119,7 | 106,1 | 97,0 | 88,1 | 65,8 |
-30 | 139,3 | 121,4 | 107,6 | 98,4 | 89,3 | 66,5 |
-31 | 141,4 | 123,1 | 109,1 | 99,7 | 90,4 | 67,2 |
-32 | 143,6 | 124,9 | 110,6 | 101,0 | 94,6 | 67,9 |
-33 | 145,7 | 126,6 | 112,1 | 102,4 | 92,7 | 68,6 |
-34 | 147,9 | 128,3 | 113,5 | 103,7 | 93,9 | 69,3 |
-35 | 150,0 | 130,0 | 115,0 | 105,0 | 95,0 | 70,0 |
Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.
Расчет температурного графика
Методика расчета температурного графика описана в справочнике «Наладка и эксплуатация водяных тепловых сетей» (Глава 4, п. 4.4, с. 153,).
Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т1, Т3, Т2 и т. д.
К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.
Таблица расчета температурного графика в MS Excel
Для того, чтобы Excel расчитал и построил график достаточно ввести несколько исходных значений:
- расчетная температура в подающем трубопроводе тепловой сети Т1
- расчетная температура в обратном трубопроводе тепловой сети Т2
- расчетная температура в подающем трубопроводе системы отопления Т3
- Температура наружного воздуха Тн.в.
- Температура внутри помещения Тв.п.
- коэффициент «n» (он, как правило, не изменен и равен 0,25)
- Минимальный и максимальный срез температурного графика Срез min, Срез max.
Ввод исходных данных в таблицу расчета температурного графика
Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.
Диаграммы также перестроятся под новые значения.
Графическое изображение температурного графика
Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.
Поделись с друзьями
- Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)
- Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
- Нажмите, чтобы поделиться на LinkedIn (Открывается в новом окне)
- Нажмите, чтобы поделиться в Telegram (Открывается в новом окне)
- Нажмите, чтобы поделиться в WhatsApp (Открывается в новом окне)
- Нажмите, чтобы поделиться в Skype (Открывается в новом окне)
- Ещё
- Послать это другу (Открывается в новом окне)
- Нажмите для печати (Открывается в новом окне)
Похожее
Как регулируется тепло в системе отопления
Регулирование тепла в многоквартирном доме в отопительный период может осуществляться двумя методами:
- Изменением расхода воды определенной постоянной температуры. Это количественный метод.
- Изменением температуры теплоносителя при постоянном объеме расхода. Это качественный метод.
Экономным и практичным является второй вариант, при котором соблюдается режим температуры в помещении независимо от погоды. Подача достаточного тепла в многоквартирный дом будет стабильной, даже если отмечается резкий перепад температур на улице.
ВНИМАНИЕ!. Нормой считается температура 20-22 градуса в квартире. Если температурные графики соблюдаются, такая норма поддерживается весь отопительный период, независимо от погодных условий, направления ветра.
При понижении температурного показателя на улице осуществляется передача данных на котельную и автоматически увеличивается градус теплоносителя.
Конкретная таблица соотношения показателей температуры на улице и теплоносителя зависит от таких факторов, как климат, оборудования котельных, технико-экономических показателей.
СНиП
Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.
Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.
Ссылка на скачивание графика
temperaturnyy-grafik-otopleniya (xls 26,0KB).
Причины использования температурного графика
Основой работы каждой котельной, обслуживающей жилые, административные и другие здания, на протяжении отопительного периода является температурный график, в котором указываются нормативы показателей теплоносителя в зависимости от того, какой является фактическая наружная температура.
- Составление графика дает возможность подготовить отопление к понижению температуры на улице.
- Также это экономия энергоресурсов.
ВНИМАНИЕ! Для того, чтобы контролировать температуру теплоносителя и иметь право на перерасчет из-за несоблюдения теплового режима, теплодатчик должен быть установлен в систему централизованного отопления. Приборы учета должны проходить ежегодную проверку.
Современные строительные компании могут увеличивать стоимость жилья за счет использования дорогих энергосберегающих технологий при возведении многоквартирных зданий.
Несмотря на изменение строительных технологий, применение новых материалов для утепления стен и других поверхностей здания, соблюдение в системе отопления нормы температуры теплоносителя – оптимальный способ поддержать комфортные жилищные условия.
Утверждённые графики
Поскольку температура на улице имеет непосредственное влияние на тепло внутри помещений, утверждён специальный температурный график.
Показатели температур снаружи | Вода на входе, °С | Вода в отопительной системе, °С | Вода на выходе, °С |
8 °С | от 51 до 52 | 42-45 | от 34 до 40 |
7 °С | от 51 до 55 | 44-47 | от 35 до 41 |
6 °С | от 53 до 57 | 45-49 | от 36 до 46 |
5 °С | от 55 до 59 | 47-50 | от 37до 44 |
4 °С | от 57 до 61 | 48-52 | от 38 до 45 |
3 °С | от 59 до 64 | 50-54 | от 39 до 47 |
2 °С | от 61 до 66 | 51-56 | от 40 до 48 |
1 °С | от 63 до 69 | 53-57 | от 41 до 50 |
0 °С | от 65 до 71 | 55-59 | от 42 до 51 |
-1 °С | от 67 до 73 | 56-61 | от 43 до 52 |
-2 °С | от 69 до 76 | 58-62 | от 44 до 54 |
-3 °С | от 71 до 78 | 59-64 | от 45до 55 |
-4 °С | от 73 до 80 | 61-66 | от 45 до 56 |
-5 °С | от 75 до 82 | 62-67 | от 46до 57 |
-6 °С | от 77 до 85 | 64-69 | от 47 до 59 |
-7 °С | от 79 до 87 | 65-71 | от 48 до 62 |
-8 °С | от 80 до 89 | 66-72 | от 49 до 61 |
-9 °С | от 82 до 92 | 66-72 | от 49 до 63 |
-10 °С | от 86 до 94 | 69-75 | от 50 до 64 |
-11 °С | от 86 до 96 | 71-77 | от 51 до 65 |
-12 °С | от 88 до 98 | 72-79 | от 59 до 66 |
-13 °С | от 90 до 101 | 74-80 | от 53 до 68 |
-14 °С | от 92 до 103 | 75-82 | от 54 до 69 |
-15 °С | от 93 до 105 | 76-83 | от 54 до 70 |
-16 °С | от 95 до 107 | 79-86 | от 56 до 72 |
-17 °С | от 97 до 109 | 79-86 | от 56 до 72 |
-18 °С | от 99 до 112 | 81-88 | от 56 до 74 |
-19 °С | от 101 до 114 | 82-90 | от 57 до 75 |
-20 °С | от 102 до 116 | 83-91 | от 58 до 76 |
-21 °С | от 104 до 118 | 85-93 | от 59 до 77 |
-22 °С | от 106 до 120 | 88-94 | от 59 до 78 |
-23 °С | от 108 до 123 | 87-96 | от 60 до 80 |
-24 °С | от 109 до 125 | 89-97 | от 61 до 81 |
-25 °С | от 112 до 128 | 90-98 | от 62 до 82 |
-26 °С | от 112 до 128 | 91-99 | от 62 до 83 |
-27 °С | от 114 до 130 | 92-101 | от 63 до 84 |
-28 °С | от 116 до 134 | 94-103 | от 64 до 86 |
-29 °С | от 118 до 136 | 96-105 | от 64 до 87 |
-30 °С | от 120 до 138 | 97-106 | от 67 до 88 |
-31 °С | от 122 до 140 | 98-108 | от 66 до 89 |
-32 °С | от 123 до 142 | 100-109 | от 66 до 93 |
-33 °С | от 125 до 144 | 101-111 | от 67 до 91 |
-34 °С | от 127 до 146 | 102-112 | от 68 до 92 |
-35 °С | от 129 до 149 | 104-114 | от 69 до 94 |
Особенности расчета внутренней температуры в разных помещениях
Правила предусматривают поддержание температуры для жилого помещения на уровне 18˚С, но существуют некоторые нюансы в этом вопросе.
- Для угловой комнаты жилого здания теплоноситель должен обеспечить температуру 20˚С.
- Оптимальный температурный показатель для ванной комнаты — 25˚С.
- Важно знать, сколько градусов должно быть по нормативам в помещениях, предназначенных для детей. Установлен показатель от 18˚С до 23˚С. Если же это детский бассейн, нужно поддерживать температуру на уровне 30˚С.
- Минимальная температура, допустимая в школах — 21˚С.
- В заведениях, где проходят культурно-массовые мероприятия по нормативам поддерживается максимальная температура 21˚С, но показатель не должен опускаться ниже цифры 16˚С.
Для увеличения температуры в помещениях при резких похолоданиях или сильном северном ветре, работники котельной повышают градус отпуска энергии для отопительных сетей.
На теплоотдачу батарей влияет наружная температура, вид отопительной системы, направленность поступления теплоносителя, состояние коммунальных сетей, тип отопительного прибора, роль которого может выполнять как радиатор, так и конвектор.
ВНИМАНИЕ! Дельта температур между подачей на радиатор и обраткой не должна быть значительной. В противном случае будет ощущаться большая разница теплоносителя в разных комнатах и даже квартирах многоэтажного здания.
Главным фактором, все же, является погода, вот почему измерения наружного воздуха для поддержания температурного графика является первоочередной задачей.
Если на улице мороз до 20˚С, теплоноситель в радиаторе должен иметь показатель 67-77˚С, при этом норма для обратки 70˚С.
Если уличная температура нулевая, норма для теплоносителя 40-45˚С, а для обратки – 35-38˚С. Стоит отметить, что разница температур между подачей и обраткой не является большой.
Как влияют климатические пояса на температуру воздуха
Основной фактор, который учитывается при расчете температурного графика, представлен в виде расчетной температуры в зимний период. При расчете отопления температура наружного воздуха берется из специальной таблицы для климатических зон.
Таблицу температурного теплоносителя следует составлять так, чтобы максимальное ее значение удовлетворяло СНиП температуру в жилых помещениях. Для примера используем следующие данные:
- В качестве отопительных приборов используются радиаторы, которые обеспечивают подачу теплоносителя снизу вверх.
- Тип отопления квартир двухтрубный, оснащенный стояночной разводкой труб.
- Расчетные значения температуры наружного воздуха равняются -15 градусов.
При этом получаем следующую информацию:
- Отопление будет запущено, когда среднесуточная температура не будет превышать +10 градусов на протяжении 3-5 дней. Подача теплоносителя будет осуществляться со значением в 30 градусов, а обратка будет равна 25 градусов.
- При снижении температуры до 0 градусов, повышается значение теплоносителя до 57 градусов, а обратка при этом составит 46 градусов.
- При -15 будет осуществляться подача воды температурой 95 градусов, а обратка равна 70 градусов.
Это интересно! При определении среднесуточной температуры берется информация, как с дневных показаний термометра, так и с ночных измерений.
Для чего потребителю нужно знать нормы подачи теплоносителя?
Оплата коммунальных услуг в графе отопление должна зависеть от того, какую температуру в квартире обеспечивает поставщик.
Таблица температурного графика, по которой должна осуществляться оптимальная работа котла, показывает, при какой температуре окружающего мира и на сколько котельная должна повышать градус энергии для источников тепла в доме.
ВАЖНО! Если параметры температурного графика не соблюдаются, потребитель может требовать перерасчет за коммунальные услуги.
Чтобы измерить показатель теплоносителя, необходимо слить немного воды с радиатора и проверить ее градус тепла. Также успешно используются тепловые датчики, приборы учета тепла, которые можно установить дома.
Датчик является обязательным оборудованием и городских котельных, и ИТП (индивидуальных тепловых пунктов).
Без таких приборов невозможно сделать работу отопительной системы экономичной и продуктивной. Измерение теплоносителя осуществляется и в системах Гвс.
Как регулировать температуру
За параметры значения теплотрасс отвечают работники ТЭЦ, а вот контроль сетей внутри жилых домов проводят работники ЖЭКа или управляющих компаний. Зачастую в ЖЭК поступают жалобы от жильцов о том, что в квартирах холодно. Чтобы нормализовать параметры системы, потребуется провести следующие мероприятия:
- Увеличение диаметра сопла или установка элеватора с регулируемым соплом. Если наблюдается заниженное значение температуры жидкости в обратке, то решить такую проблему можно при помощи увеличения диаметра элеваторного сопла. Для этого нужно закрыть задвижки и вентили, после чего извлечь модуль. Увеличение сопла происходит путем его высверливания на 0,5-1 мм. После выполнения процедуры устройство возвращается на свое место, после чего обязательно проводится процедура стравливания воздуха из системы.
- Заглушить подсос. Чтобы избежать возникновения угрозы выполнения подсосом функции перемычки, выполняется его глушение. Для выполнения данной процедуры применяется стальной блин, толщина которого должна быть около 1 мм. Такой способ регулирования температуры принадлежит к категории экстренных вариантов, так как при его проведении не исключено возникновение скачка температуры до +130 градусов.
- Регулирование перепадов. Разрешить проблему можно путем корректирования перепадов элеваторной задвижкой. Суть данного метода корректирования заключается в перенаправлении ГВС на подающую трубу. В трубу обратки ввинчивается манометр, после чего задвижка обратного трубопровода перекрывается. Открывая вентиль, нужно проводить сверку с показаниями манометра.
Если установить обычную задвижку, то это приведет к остановке и заморозке системы. Чтобы снизить разницу, нужно увеличить давление в обратке до значения 0,2 атм/сутки. Какая температура должна быть в батареях можно узнать исходя из температурного графика. Зная ее значение, можно осуществлять проверку, чтобы убедиться в ее соответствии температурному режиму.
В завершении следует отметить, что варианты глушения подсоса и регулирование перепадов применяются исключительно при развитии критических ситуаций. Зная такой минимум информации, можно обращаться в ЖЭК или ТЭЦ с жалобами и пожеланиями о несоответствующим нормам теплоносителя в системе.
Законодательная база о выключении и включении отопления в квартире
Нормативная база по режиму отопления в МКД собрана в ГОСТе 30494 от 2011 года (в последней редакции 2021 г.). В документе отражена требуемая температура воды в системе отопления.
Начало проведения профилактических работ инженерных коммуникаций теплоснабжения закреплено в Федеральном законе №190/ФЗ от 27 июля 2010 года с последними изменениями 2021 г. В законе очерчена зона ответственности коммунальных структур, обслуживающих МКД.
Вопросы по текущим ремонтным работам основных и дополнительных систем водяного отопления раскрыты в ПП РФ №354 (с последними изменениями 2021 г.). Помимо этого, есть четкий список форс-мажорных ситуаций, когда допускается приостановка подачи тепла в жилые помещения.
СНиП
Сбор законодательных актов, которые регламентируют нормы строительства – называется СНиП. Согласно СП 60.13330.2012 СНиП 41-01-2003 и СП 60.13330.2016 СНиП 41-01-2003 следует оборудовать жилые помещения вентиляцией, отоплением и кондиционированием .
В соответствии со СП 131.13330.2012 СНиП 23-01-99 при постройке многоквартирных домов и отдельных жилых помещений, нужно брать во внимание строительную климатологию.
СНиП 41/01/2003 от 2004 года указывает на обязательное соблюдение уровня температур в отопительных радиаторах.
ГОСТ
Для понимания, какая должна быть температура отопления в квартире, нужно ознакомиться с нормативными документами о действующих стандартах.
- ГОСТ 55656/2013 вступил в силу 01 июля 2015 года. Положение указывает на энергетические характеристики для разных помещений. Приведен также пример расчета требуемой энергии для обогрева зданий.
- Приказ Росстандарта №1211 от 25 октября 2013 г. утвердил стандарты общенационального масштаба по метрологии и техническому урегулированию.
Предварительные работы
Зима наступает каждый год, но для коммунальщиков это всегда неожиданность. В соответствии с ПП №354 управляющая компания и РСО должны проводить профилактические работы инженерных сетей до начала отопительного сезона.
Начало и конец отопительного сезона
Начало периода для подачи теплоснабжения в квартиры зависит от субъекта Российской Федерации. Включить ресурс в дома нужно согласно закону с 1 по 15 октября. Завершение отопительных работ приходится на первые числа апреля до середины мая.
Правила
Согласно закону, руководство местного муниципалитета должно согласовать сроки начала и окончания периода подачи тепла с вышестоящими органами. При этом средняя температура, при которой включают отопление, составляет +8°С.
ТЭЦ и коммунальными службами отвечают за поддержание необходимого уровня ресурса в жилых квартирах. В таблице приведены нормативы:
Таблица 2.
Вид отапливаемого помещения | Норма, ниже которой не должна опускаться температура внутри объекта недвижимости. Условие – помещение теплоизолировано. |
Квартира в МКД, частный дом | 18-20 °С. Если на улице ниже -30°С, то показатель увеличивается на 2° |
Помещение, в котором работают люди | 20 °С |
Классные комнаты при школах | 18 °С |
Игровые в детских садах | 22 °С |
Спальни в дошкольных учреждениях | 19 °С |
Подъезды, коридоры, лестничные проемы в МКД | 16 °С |
Особенности регионов
В силу того, что Россия занимает большую территорию и находится в нескольких климатических зонах, она простирается далеко на север. Разумеется, погодные условия разные, поэтому окончательное решение по вопросам тепла в конкретном регионе лежит на местном муниципалитете.
К примеру, в этой году, прекратили подачу тепла:
- в Москве отключили 26.04.2019;
- Туле – 28.04.2019;
- Ярославле – 24.04.2019;
- Твери – 29.04.2019.
Обогрев в межсезонье
Межсезонье в отопительном плане – время между отключением тепла весной и возвратом подачи горячей воды в трубы осенью. Погода вещь непредсказуемая, поэтому резкое похолодание может произойти и в конце весны. В некоторых регионах заморозки продолжаются вплоть до мая.
Государство не имеет возможности открывать и закрывать заслонки ТЭЦ по желанию людей. Поэтому в обычных условиях приходится прибегать к дополнительным средствам обогрева помещений. Чаще всего используют электрические приборы, реже газовые.
В некоторых частных домах при помощи дровяной печи и буржуек происходит дополнительный обогрев.
Альтернатива для многоквартирных строений – калориферы, работающие на жидком топливе, а также:
- Радиаторы и конвекторы на масляной основе. Минусы – высокое потребление электрической энергии. Плюс – обогревает помещение качественно и долго поддерживает заданную температуру после отключения от сети.
- Тепловентилятор – быстро нагреют комнату, но при обесточивании также остывает. Основной недостаток – сушит воздух в квартире.
- Система кондиционирования – дорого, но надежно и надолго. Установив «сплит», собственник решает две проблемы. Летом можно задать оптимальную прохладу в доме, а зимой греться (но только при температуре на улице до -5°С). Эксперты рекомендуют выбирать энергосберегающие модели для снижения затрат на электричество.
К сведению: установка теплых полов в квартирах и домах также может решить проблему с отоплением в межсезонье.
В этой статье:
- 1 Дополнительно влияющие факторы
- 1.1 Температура в радиаторе
- 1.2 Что влияет на температуру батарей?
- 1.3 Утверждённые графики
- 1.4 Что также важно знать?
- 1.5 Нормы в жилых помещениях
- 2 Температурный график подачи теплоносителя в систему отопления
- 2.1 Что такое температурный график
- 2.2 Как составить температурный график
- 2.3 Таблица температуры теплоносителя от температуры наружного воздуха
- 2.4 График подачи горячей воды в квартиру
- 3 Температурный график отопления в жилом доме — СНиП и таблица системы
- 3.1 От чего зависит?
- 3.2 Как рассчитывается?
- 3.3 Регулировка
- 3.4 СНиП
- 4 Зависимость температуры отопления от наружной температуры
- 4.1 Назначение температурного графика
- 4.2 Как рассчитывается?
- 4.3 Термины и обозначения
- 4.4 План расчета
- 4.5 Температурный график
- 5 Отопительный график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха
- 5.1 Расчет температурного графика
Сегодня наиболее распространёнными отопительными системами на территории Федерации являются работающие на воде.
Температура воды в батареях непосредственно зависит показателей температуры воздуха снаружи, то есть на улице, в определённый период времени.
Законодательно утверждён и соответствующий график, согласно которому ответственные специалисты рассчитывают температуры, беря во внимание местные погодные условия и источник теплового снабжения.
Графики температуры теплоносителя в зависимости от наружной температуры разработаны с учётом поддержки обязательных температурных режимов в помещении, таких, которые считаются для среднестатистического человека оптимальными и комфортными.
Благодаря таким расчетам есть возможность подготовиться к низким температурам зимой, встречающимся как минимум раз в несколько лет. В свою очередь, это позволяет существенно экономить при создании отопительной системы.
Дополнительно влияющие факторы
На сами же температуры теплоносителя непосредственное влияние имеют также такие не менее весомые факторы, как:
- Понижение температур на улице, которое влечёт аналогичное внутри помещения;
- Скорость движения ветра – чем она выше, тем больше тепловая потеря через входную дверь, окна;
- Герметичность стен и стыков (установка металлопластиковых окон и утепление фасадов значимо влияет на сохранение тепла).
Со своей стороны строительные компании понимают, что понесённые ими расходы на утепление объектов буду полностью и в скором времени окуплены. Для собственников это также выгодно, поскольку коммунальные платежи весьма высоки, и если платить, то действительно за полученное и сохранённое тепло, а не за его утерю из-за недостаточной изоляции помещений.
Температура в радиаторе
Тем не менее, несмотря на то, какие погодные условия вне помещения и насколько оно утеплено, наиболее важную роль играет всё же теплоотдача радиатора. Обычно в центральных отопительных системах температуры колеблются в пределах от 70 до 90 градусов.
Однако важно учитывать и то, что этот критерий не является единственным для того, чтобы иметь нужный температурный режим, особенно в жилых помещениях, где в каждой отдельной комнате температуры должны быть не одинаковы, зависимо от целевого назначения.
Те помещения, которые предназначены для детей, должны иметь температурный предел от 18 до 23 градусов, в зависимости от того, для чего они предназначены. Так в бассейне не может быть менее 30 градусов, а на веранде должно быть не меньше 12 градусов.
Говоря о школьном образовательном учреждении, там не должно быть ниже 21 градуса, а в спальне интерната – минимум 16 градусов. Для культурного массового заведения нормы от 16 градусов до 21, а для библиотеки – не более 18 градусов.
Что влияет на температуру батарей?
Помимо тепловой отдачи теплоносителя и температур снаружи, тепло в помещении зависит и от активности людей внутри. Чем больше движений совершается человеком, тем ниже может быть температурный режим и наоборот.
Это также обязательно учитывается при распределении тепла. В качестве примера можно взять любое спортивное учреждение, где люди априори находятся в активном движении. Здесь не является целесообразным поддержание высоких температур, так как это будет доставлять дискомфорт.
Соответственно, показатель в 18 градусов – оптимальный.
Можно отметить, что на тепловые показатели батарей внутри любых помещений влияет не только наружная температура воздуха и скорость ветра, но также:
Разновидность отопительных систем – для однотрубных норма 105 градусов, для двухтрубных – 95 градусов. При этом не допустимо, чтобы разница в системах отвода и подачи тепла превышала 105-700 и 95-700 градусов соответственно;
- Направление поступлений теплоносителей на радиаторных батареях – при верхней разводке разница может быть в 20 градусов, а при нижней – 30;
- Разновидность отопительных приборов – радиаторы и конвекторы имеют разную тепловую отдачу, соответственно, и температурные режимы у них разные (теплоотдача конвектора ниже, чем у радиатора).
Утверждённые графики
Поскольку температура на улице имеет непосредственное влияние на тепло внутри помещений, утверждён специальный температурный график.
Показатели температур снаружиВода на входе, °СВода в отопительной системе, °СВода на выходе, °С
8 °С | от 51 до 52 | 42-45 | от 34 до 40 |
7 °С | от 51 до 55 | 44-47 | от 35 до 41 |
6 °С | от 53 до 57 | 45-49 | от 36 до 46 |
5 °С | от 55 до 59 | 47-50 | от 37до 44 |
4 °С | от 57 до 61 | 48-52 | от 38 до 45 |
3 °С | от 59 до 64 | 50-54 | от 39 до 47 |
2 °С | от 61 до 66 | 51-56 | от 40 до 48 |
1 °С | от 63 до 69 | 53-57 | от 41 до 50 |
0 °С | от 65 до 71 | 55-59 | от 42 до 51 |
-1 °С | от 67 до 73 | 56-61 | от 43 до 52 |
-2 °С | от 69 до 76 | 58-62 | от 44 до 54 |
-3 °С | от 71 до 78 | 59-64 | от 45до 55 |
-4 °С | от 73 до 80 | 61-66 | от 45 до 56 |
-5 °С | от 75 до 82 | 62-67 | от 46до 57 |
-6 °С | от 77 до 85 | 64-69 | от 47 до 59 |
-7 °С | от 79 до 87 | 65-71 | от 48 до 62 |
-8 °С | от 80 до 89 | 66-72 | от 49 до 61 |
-9 °С | от 82 до 92 | 66-72 | от 49 до 63 |
-10 °С | от 86 до 94 | 69-75 | от 50 до 64 |
-11 °С | от 86 до 96 | 71-77 | от 51 до 65 |
-12 °С | от 88 до 98 | 72-79 | от 59 до 66 |
-13 °С | от 90 до 101 | 74-80 | от 53 до 68 |
-14 °С | от 92 до 103 | 75-82 | от 54 до 69 |
-15 °С | от 93 до 105 | 76-83 | от 54 до 70 |
-16 °С | от 95 до 107 | 79-86 | от 56 до 72 |
-17 °С | от 97 до 109 | 79-86 | от 56 до 72 |
-18 °С | от 99 до 112 | 81-88 | от 56 до 74 |
-19 °С | от 101 до 114 | 82-90 | от 57 до 75 |
-20 °С | от 102 до 116 | 83-91 | от 58 до 76 |
-21 °С | от 104 до 118 | 85-93 | от 59 до 77 |
-22 °С | от 106 до 120 | 88-94 | от 59 до 78 |
-23 °С | от 108 до 123 | 87-96 | от 60 до 80 |
-24 °С | от 109 до 125 | 89-97 | от 61 до 81 |
-25 °С | от 112 до 128 | 90-98 | от 62 до 82 |
-26 °С | от 112 до 128 | 91-99 | от 62 до 83 |
-27 °С | от 114 до 130 | 92-101 | от 63 до 84 |
-28 °С | от 116 до 134 | 94-103 | от 64 до 86 |
-29 °С | от 118 до 136 | 96-105 | от 64 до 87 |
-30 °С | от 120 до 138 | 97-106 | от 67 до 88 |
-31 °С | от 122 до 140 | 98-108 | от 66 до 89 |
-32 °С | от 123 до 142 | 100-109 | от 66 до 93 |
-33 °С | от 125 до 144 | 101-111 | от 67 до 91 |
-34 °С | от 127 до 146 | 102-112 | от 68 до 92 |
-35 °С | от 129 до 149 | 104-114 | от 69 до 94 |
Что также важно знать?
Ответственность за температуру воды, которая нагревается в теплотрассе, несёт местная ТЭЦ или же котельная. Транспортировка тепловых носителей и минимальные потери возложены на организацию, обслуживающую тепловую сеть. Обслуживает и настраивает элеваторный узел ЖЭУ или управляющая компания.
Важно знать, что диаметр самого сопла элеватора обязательно должен быть согласован с коммунальной тепловой сетью. Все вопросы, касающиеся низкой температуры в помещении, нужно решать с управляющим органом многоквартирного дома или иного недвижимого объекта, о котором идёт речь. Обязанность данных органов – обеспечить граждан минимальными санитарными нормами температур.
Нормы в жилых помещениях
Чтобы понимать, когда действительно актуально подавать на перерасчет оплаты за коммунальную услугу и требовать принятия какие-либо мер по обеспечению тепла, необходимо знать нормы тепла в жилых помещениях. Эти нормы полностью урегулированы российским законодательством.
Так в тёплое время года жилые помещения не отапливаются и нормами для них являются 22-25 градусов тепла.
В холодное же время применимы следующие показатели:
- Жилые комнаты – 20-22;
- Жилые комнаты в северном регионе – 21-23;
- Кухня – 19-21;
- Совмещённый санитарный узел, ванная – 24-26;
- Туалет – 19-21;
- Межквартирные коридоры – 18-20;
- Детская комната – 23-24.
Тем не менее, не стоит забывать и о здравом смысле. Например, спальни должны обязательно проветриваться, в них не должно быть слишком жарко, но и холодно быть также не может. Температурный режим в детской комнате должен регулироваться соответственно возрасту ребёнка. Для грудничка это верхний предел. По мере взросления планка снижается к нижним границам.
Тепло в ванной зависит также от влажности данной комнаты. Если помещение плохо вентилируется, возникает большое содержание воды в воздухе, а это создаёт ощущение сырости и может быть не безопасно для здоровья жильцов.
Источник: https://PravoNedv.ru/kvartira/zhkh/zavisimost-temperatury-teplonositelya-ot-naruzhnoj.html
Температурный график подачи теплоносителя в систему отопления
Каждая управляющая компания стремиться к достижению экономичных затрат на обогрев многоквартирного дома. К тому же пытаются прийти жильцы частных домов.
Этого можно достичь, если составить температурный график, в котором будет отражена зависимость выдаваемого носителями тепла от погодных условий на улице.
Правильное использование этих данных позволяют оптимально распределять горячую воду и отопление потребителям.
Что такое температурный график
В теплоносителе не должна поддерживаться один и тот же режим работы, ведь за пределами квартиры температура меняется. Именно ею нужно руководствоваться и в зависимости от нее менять температуру воды в объектах отопления. Зависимость температуры теплоносителя от наружной температуры воздуха составляется специалистами-технологами.
Для его составления учитываются значения, имеющиеся у теплоносителя и у температуры воздуха снаружи.
Во время проектирования любого здания должны учитываться размер поставленного в нем обеспечивающего тепло оборудования, размеры самого здания и сечения, имеющиеся у труб. В высотном здании жильцы не могут самостоятельно увеличить или уменьшить температуру, так как она подается из котельной. Наладка режима работы выполняется всегда с учетом температурного графика теплоносителя. Учитывается и сама температурная схема — если обратная труба дает воду с температурой выше 70°C, то расход теплоносителя будет избыточным, если же значительно ниже — имеет место дефицит.
Важно! Температурный график составляется таким образом, чтобы при любой температуре воздуха на улице в квартирах поддерживался стабильный оптимальный уровень отопления на уровне 22 °C.
Благодаря ему даже самые суровые морозы становятся не страшны, потому что системы отопления окажутся к ним готовы. Если на улице -15 °C, то достаточно отследить значение показателя, чтобы узнать, какой будет температура воды в системе отопления в этот момент.
Чем уличная погода будет суровее, тем горячее должна оказаться вода внутри системы.
Но уровень отопления, поддерживающийся внутри помещений, зависит не только от теплоносителя:
- Температура на улице;
- Наличие и сила ветра — сильные его порывы значительно отражаются на теплопотерях;
- Теплоизоляция — качественно обработанные конструктивные части здания помогают сохранить тепло в здании. Это выполняется не только во время строительства дома, но и отдельно по желанию собственников.
Температурный график теплоснабжения относится к графикам несущих отопление трубопроводов, которые регулируются при помощи централизованной системы и разделяют нагрузку отопления. Система может быть как замкнутой, так и открытой. В случае, когда система замкнутая, то идет только к подключенным к тепловой сети объектам отопления. Когда система открытая, то расходуется и на подачу горячей воды потребителям. В случае применения открытой системы необходимо корректировать температурный график отопления ввиду постоянного расхода тепла.
Как составить температурный график
В соответствии со СНИП, отопление в помещении должно поддерживаться на уровне от 18 до 25 °C.
СНИП дошкольных и школьных учебных заведений обычно жестче, так как температура должна быть постоянной и не снижаться ниже 22°C .
В образовательных учреждениях строго следят и за исполнением санитарных норм — трубы не могут быть покрыты плесенью. Чтобы произвести расчет температурного графика, необходимо знать значения нескольких показателей:
- Наружное значение температуры воздуха;
- В жилых комнатах;
- В подающей части трубопровода;
- В обратной части трубопровода;
- В трубопроводе на месте выхода из здания.
Помимо этих данных, нужно знать, какая тепловая нагрузка является номинальной. Для жилых домов подобный график отопления составляет 105/70 и 95/70. Первый из показателей отражает температуру, которая должна быть на подаче воды в отопительную систему, второй — на выходе из нее или обратной трубе.
Результаты, которые получились при замерах, нужно внести в таблицу. Основным показателем для составления таблицы является наружная температура. Составлять ее нужно таким образом, чтобы максимальные данные отопительных приборов — 95/70, обеспечивали нагрев помещений.
Температурный режим, который должен поддерживаться в квартирах, закреплен в статье ЖК РФ и Постановлении Госстандарта.
Важно знать! Принимая полученные данные, строится график, в котором по одной оси координат поднимающуюся температуру подаваемой в систему воды, по иной оси координат — температура воздуха снаружи. Все данные вносятся в график в градусах Цельсия. А результаты оформляются в виде таблицы с данными нормы при разных значениях температур.
Подобный расчет температур, поддерживаемых в жилом помещении, производится управляющей компанией для каждого высотного или двухэтажного дома отдельно. Учитываются все показатели, теплоизоляция внешних частей отопления и иные значительные моменты.
Построенный по всем правилам график отопления поможет не только определять рабочие параметры системы в каждый момент времени, но и оценивать эффективность работы теплоносителя. Построение подобного графика позволяет также определять количество нагрузки на отопительную систему.
Таблица температуры теплоносителя от температуры наружного воздуха
Для того, чтобы рассчитать оптимальный температурный режим, нужно учесть и характеристики, имеющиеся у отопительных приборов — батарей и радиаторов.
Важнее всего необходимо посчитать их удельную мощность, она будет выражаться в Вт/см2. Это будет сказываться самым прямым образом на отдаче тепла от нагретой воды к нагреваемому воздуху в помещении.
Важно учесть их поверхностную мощность и коэффициент сопротивления, имеющийся у оконных проемов и наружных стен.
После того, как будут учтены все значения, нужно рассчитать разницу между температурой в двух трубах — на вводе в дом и на выходе из него. Чем выше будет значение в трубе входа, тем выше — в обратной. Соответственно, отопление внутри помещения будет расти под этими значениями.
Погода на улице, С | на вводе в здание, С | Обратная труба, С |
+10 | 30 | 25 |
+5 | 44 | 37 |
57 | 46 | |
-5 | 70 | 54 |
-10 | 83 | 62 |
-15 | 95 | 70 |
Грамотное использование теплоносителя подразумевает попытки жителей дома уменьшить разницу температур между трубой входа и выхода. Это может быть строительная работа по утеплению стены снаружи или теплоизоляция внешних теплоснабжающих труб, утепление перекрытий над холодным гаражом или подвалом, утепление внутренней части дома или несколько выполняемых одновременно работ.
Отопление в радиаторе также должна соответствовать нормам. В центральных отопительных системах обычно варьируется от 70 С до 90 С в зависимости от температуры воздуха на улице. Важно учитывать, что в угловых комнатах не может быть менее 20 С, хотя в иных комнатах квартиры допускается снижение до 18 С.
Если на улице температура снижается до -30 С, то в комнатах отопление должно подняться на 2 С. В остальных комнатах тоже должна вырасти температура при условии, что в комнатах разного назначения она может быть разной. Если в помещении находится ребенок, то она может колебаться от 18 С до 23 С.
В кладовых и коридорах отопление может варьироваться от 12 С до 18 С.
Важно отметить! Учитывается среднесуточная температура — если ночью держится температура примерно -15 С, а днем — -5 С, то считаться будет по значению -10 С. Если в ночное время держалось около -5 С, а в дневное время она поднялась до +5 С, то отопление учитывается по значению 0 С.
График подачи горячей воды в квартиру
Для того, чтобы доставить потребителю оптимальное ГВС, ТЭЦ должны отправлять ее максимально горячей. Теплотрассы всегда настолько длинные, что их протяженность можно измерять в километрах, а протяженность по квартирам измеряется и вовсе в тысячах квадратных метров.
Какой бы ни была теплоизоляция труб, тепло теряется по пути к пользователю. Поэтому необходимо нагреть воду максимально.
Однако, вода не может быть нагрета больше, чем до точки кипения. Поэтому был найден выход — увеличить давление.
Важно знать! При его повышении смещается в сторону увеличения температура кипения воды. Как следствие — до потребителя она доходит действительно горячей. При увеличении давления не страдают стояки, смесители и краны, а все квартиры до 16 этажа можно обеспечить ГВС без дополнительных насосов. В теплотрассе обычно вода содержит 7—8 атмосфер, верхняя граница обычно имеет 150 с запасом.
Выглядит это так:
Температура кипения | Давление |
100 | 1 |
110 | 1,5 |
119 | 2 |
127 | 2,5 |
132 | 3 |
142 | 4 |
151 | 5 |
158 | 6 |
164 | 7 |
169 | 8 |
Подача горячей воды в зимнее время года должна быть непрерывной. Исключения из этого правила составляют аварии на теплоснабжения. Отключить горячее водоснабжение могут только в летний период для профилактических работ. Такие работы проводятся как в системах теплоснабжения закрытого типа, так и в системах открытого типа.
Источник: https://okommunalke.ru/voprosy/temperaturnyj-grafik
Температурный график отопления в жилом доме — СНиП и таблица системы
Экономичный расход энергоресурсов в отопительной системе, может быть достигнут, если выполнять некоторые требования. Одним из вариантов, является наличие температурной диаграммы, где отражается отношение температуры, исходящей от источника отопления к внешней среде. Значение величин дают возможность оптимально распределять тепло и горячую воду потребителю.
Высотные дома подключены в основном к центральному отоплению. Источники, которые передают тепловую энергию, являются котельные или ТЭЦ. В качестве теплоносителя используется вода. Её нагревают до заданной температуры.
Пройдя полный цикл по системе, теплоноситель, уже охлаждённый, возвращается к источнику и наступает повторный нагрев. Соединяются источники с потребителем тепловыми сетями. Так как окружающая среда меняет температурный режим, следует регулировать тепловую энергию, чтобы потребитель получал необходимый объём.
Регулирование тепла от центральной системы можно производить двумя вариантами:
- Количественный. В этом виде изменяется расход воды, но температуру она имеет постоянную.
- Качественный. Меняется температура жидкости, а расход её не изменяется.
В наших системах применяется второй вариант регулирования, то есть качественный. Здесь есть прямая зависимость двух температур: теплоносителя и окружающей среды. И расчёт ведётся таким образом, чтобы обеспечить тепло в помещении 18 градусов и выше.
Отсюда, можно сказать, что температурный график источника представляет собой ломанную кривую. Изменение её направлений зависит от разниц температур (теплоносителя и наружного воздуха).
График зависимости может быть различный.
Конкретная диаграмма имеет зависимость от:
- Технико-экономических показателей.
- Оборудования ТЭЦ или котельной.
- Климата.
Высокие показатели теплоносителя обеспечивают потребителя большой тепловой энергией.
Ниже показан пример схемы, где Т1 – температура теплоносителя, Тнв – наружного воздуха:
Применяется также, диаграмма возвращённого теплоносителя. Котельная или ТЭЦ по такой схеме может оценить КПД источника. Он считается высоким, когда возвращённая жидкость поступает охлаждённая.
Стабильность схемы зависит от проектных значений расхода жидкости высотными домами. Если увеличивается расход через отопительный контур, вода будет возвращаться не охлаждённой, так как возрастёт скорость поступления. И наоборот, при минимальном расходе, обратная вода будет достаточно охлаждена.
Заинтересованность поставщика, конечно, в поступлении обратной воды в охлаждённом состоянии. Но для уменьшения расхода существуют определённые пределы, так как уменьшение ведёт к потерям количества тепла. У потребителя начнётся опускаться внутренний градус в квартире, который приведёт к нарушению строительных норм и дискомфорту обывателей.
От чего зависит?
Температурная кривая зависит от двух величин: наружного воздуха и теплоносителя. Морозная погода ведёт за собой увеличение градуса теплоносителя. При проектировании центрального источника учитывается размер оборудования, здания и сечение труб.
Величина температуры, выходящей из котельной, составляет 90 градусов, для того, чтобы при минусе 23°C, в квартирах было тепло и имело величину в 22°C. Тогда обратная вода возвращается на 70 градусов. Такие нормы соответствуют нормальному и комфортному проживанию в доме.
Анализ и наладка режимов работы производится при помощи температурной схемы. Например, возвращение жидкости с завышенной температурой, будет говорить о высоких расходах теплоносителя. Дефицитом расхода будут считаться заниженные данные.
Раньше, на 10 ти этажные постройки, вводилась схема с расчётными данными 95-70°C. Здания выше имели свою диаграмму 105-70°C. Современные новостройки могут иметь другую схему, на усмотрение проектировщика. Чаще, встречаются диаграммы 90-70°C, а могут быть и 80-60°C.
График температуры 95-70:
Температурный график 95-70
Как рассчитывается?
Выбирается метод регулирования, затем делается расчёт. Во внимание берётся расчётно-зимний и обратный порядок поступления воды, величина наружного воздуха, порядок в точке излома диаграммы. Существуют две диаграммы, когда в одной из них рассматривается только отопление, во второй отопление с потреблением горячей воды.
Для примера расчёта, воспользуемся методической разработкой «Роскоммунэнерго».
Исходными данными на теплогенерирующую станцию будут:
- Тнв – величина наружного воздуха.
- Твн – воздух в помещении.
- Т1 – теплоноситель от источника.
- Т2 – обратное поступление воды.
- Т3 – вход в здание.
Мы рассмотрим несколько вариантов подачи тепла с величиной 150, 130 и 115 градусов.
При этом, на выходе они будут иметь 70°C.
Полученные результаты сносятся в единую таблицу, для последующего построения кривой.
Итак, мы получили три различные схемы, которые можно взять за основу. Диаграмму правильней будет рассчитывать индивидуально на каждую систему. Здесь мы рассмотрели рекомендованные значения, без учёта климатических особенностей региона и характеристик здания.
Если в доме автономное отопление, то здесь расчёт диаграммы не требуется. Наличие уличных и комнатных датчиков, дают возможность передавать информацию на программное управление котла.
Чтобы уменьшить расход электроэнергии, достаточно выбрать низкотемпературный порядок в 70 градусов и будет обеспечиваться равномерное распределение тепла по отопительному контуру. Котёл следует брать с запасом мощности, чтобы нагрузка системы не влияла на качественную работу агрегата.
Регулировка
Регулятор отопления
Автоматический контроль обеспечивается регулятором отопления.
В него входят следующие детали:
- Вычислительная и согласующая панель.
- Исполнительное устройство на отрезке подачи воды.
- Исполнительное устройство, выполняющее функцию подмеса жидкости из возвращённой жидкости (обратки).
- Повышающий насос и датчик на линии подачи воды.
- Три датчика (на обратке, на улице, внутри здания). В помещении их может быть несколько.
Регулятором прикрывается подача жидкости, тем самым, увеличивается значение между обраткой и подачей до величины, предусмотренной датчиками.
Для увеличения подачи присутствует повышающий насос, и соответствующая команда от регулятора. Входящий поток регулируется «холодным перепуском». То есть происходит понижение температуры. На подачу отправляется некоторая часть жидкости, поциркулировавшая по контуру.
Датчиками снимается информация и передаётся на управляющие блоки, в результате чего, происходит перераспределение потоков, которые обеспечивают жёсткую температурную схему системы отопления.
Иногда, применяют вычислительное устройство, где совмещены регуляторы ГВС и отопления.
Регулятор на горячую воду имеет более простую схему управления. Датчик на горячем водоснабжении производит регулировку прохождения воды со стабильной величиной 50°C.
Плюсы регулятора:
- Жёстко выдерживается температурная схема.
- Исключение перегрева жидкости.
- Экономичность топлива и энергии.
- Потребитель, независимо от расстояния, равноценно получает тепло.
Режим работы котлов зависит от погоды окружающей среды.
Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.
В таблице мы покажем температурную схему зависимости жилых домов от наружного воздуха:
Температура наружного воздуха | Температура сетевой воды в подающем трубопроводе | Температура сетевой воды в обратном трубопроводе |
+10 | 70 | 55 |
+9 | 70 | 54 |
+8 | 70 | 53 |
+7 | 70 | 52 |
+6 | 70 | 51 |
+5 | 70 | 50 |
+4 | 70 | 49 |
+3 | 70 | 48 |
+2 | 70 | 47 |
+1 | 70 | 46 |
70 | 45 | |
-1 | 72 | 46 |
-2 | 74 | 47 |
-3 | 76 | 48 |
-4 | 79 | 49 |
-5 | 81 | 50 |
-6 | 84 | 51 |
-7 | 86 | 52 |
-8 | 89 | 53 |
-9 | 91 | 54 |
-10 | 93 | 55 |
-11 | 96 | 56 |
-12 | 98 | 57 |
-13 | 100 | 58 |
-14 | 103 | 59 |
-15 | 105 | 60 |
-16 | 107 | 61 |
-17 | 110 | 62 |
-18 | 112 | 63 |
-19 | 114 | 64 |
-20 | 116 | 65 |
-21 | 119 | 66 |
-22 | 121 | 66 |
-23 | 123 | 67 |
-24 | 126 | 68 |
-25 | 128 | 69 |
-26 | 130 | 70 |
СНиП
Существуют определённы нормы, которые должны быть соблюдены в создании проектов на тепловые сети и транспортировку горячей воды потребителю, где подача водяного пара должна осуществляться в 400°C, при давлении 6,3 Бар. Подачу тепла от источника рекомендуется выпускать потребителю с величинами 90/70 °C или 115/70 °C.
- Нормативные требования следует выполнять на соблюдение утверждённой документации с обязательным согласованием с Минстроем страны.
- Ссылка на скачивание графика
- temperaturnyy-grafik-otopleniya (xls 26,0KB).
Источник: https://househill.ru/kommunikacii/otoplenie/element/temperaturnyj-grafik-otoplenia.html
Зависимость температуры отопления от наружной температуры
В наше время самой распространенной обогревательной системой на территории Российской Федерации является водяная схема отопления. Данный способ подразумевает, что температура воды в батареях напрямую зависит от показателей воздуха на улице в рассматриваемое время года. В российском законодательстве предусмотрен специальный график расчета температуры, за основу которого берутся погодные условия места жительства, а также источник теплового снабжения.
Назначение температурного графика
Система центрального отопления и значение графика работы тепловых сетей определяются температурным графиком. Он показывает зависимость показателей величин теплоносителя в системе отопления (например, воды) от наружной температуры воздуха.
Специалисты вычисляют величины нагретости подающей и обратной воды-теплоносителя с помощью абонентского ввода на основе информации о температуре окружающей среды.
Собственники каждого многоквартирного дома наравне с владельцами частных домов всегда подходят с ответственностью к составлению плана расчета температурного графика.
Грамотные подсчеты помогают достигнуть значительного снижения расходов на отопление помещения.
Достичь оптимальных цифр на счетах не так уж сложно — главное составить температурный график, в значениях которого будет отражена зависимость степени нагревания теплоносителей от погодных условий на улице. Для каждого населенного пункта составляется индивидуальная отопительная диаграмма.
Ее значение состоит в определении наиболее оптимальной для данного конкретного случая работы системы отопления. Любой хозяин может добиться предпочтительного распределения горячей воды-теплоносителя.
Для этого нужно руководствоваться основным принципом составления температурного графика, суть которого в том, что чем холоднее на улице, тем выше уровень потери тепла.
Преимущества индивидуального температурного графика:
- Нормализация тепловых потерь во время подачи горячей воды в здания со среднесуточной температурой наружного воздуха;
- Предотвращение недостаточного уровня нагрева помещений;
- Тепловые станции обязуются поставлять потребителям услуги, которые соответствуют установленным технологическим условиям.
Все показатели утверждаются соответствующими нормативными документами. За основу берется информация о пяти самых холодных днях в году. Также рассматриваются данные последних пятидесяти лет, из которых выбираются восемь зим с наиболее низкими температурами.
Система отопления подобного рода позволяет заранее подготовиться к морозам. Согласно статистике, их можно ждать как минимум раз в несколько лет.
Именно по этим причинам температурный график позволяет значительно сэкономить средства во время разработки отопительной системы.
Ниже представлен файл с примерами температурных графиков и диаграмм для котельных:
Как рассчитывается?
При рассмотрении температурного графика используют две цифры. К примеру, 90-70°C. Подобные показатели означают следующее. В данном примере рассматриваются данные города Калуги.
При расчетной температуре воздуха окружающей среды -22°C необходимо добиться наиболее оптимальной температуры внутри квартиры, которая равняется 20°C.
Для этой цели в систему отопления внедряется специальный теплоноситель (в нашем случае — это вода), температура которого при входе соответствует 90°C, а при выходе — 70°C.
Стоит иметь в виду, что системы отопления многоквартирных помещений до десяти этажей, которые были построены на территории России в прошлом веке, были рассчитаны под отопительный график 95-70°C.
Если количество этажей превышало данные показатели, температурная диаграмма строилась из расчета 105-70°C. В наши дни за назначение данных показателей отвечает проектировщик новостройки. В подобающем большинстве случаев показатели составляют 80-60°C или 90-70°C.
Данные нередко варьируются и зависят от особенностей окружающей среды рассматриваемого населенного пункта.
В водяных системах отопления количество поступающего тепла можно изменять путем изменения расхода жидкости-теплоносителя G (количественное регулирование), а также температуры жидкости Т (качественное регулирование) или изменением G и Т одновременно (качественно-количественное регулирование).
Используется следующая формула:
Q = G(T1-T2) ккал/ч.
Вычисления подобного рода необходимы для помещений любой площади. Это могут быть как крупные многоэтажки, так и скромные дома в небольших населенных пунктах.
При расчете температурной диаграммы берется во внимание расчетно-зимний и обратный порядок поступления жидкости-теплоносителя, порядок в точке излома диаграммы и величина наружного воздуха. Могут иметь место два вида диаграмм. Первая предназначена только для системы отопления, а вторая для отопления с потреблением горячей воды.
Термины и обозначения
В качестве примера будет рассматриваться методическая разработка «Роскоммунэнерго».
Термины и обозначения, которые будут использованы во время вычислений:
- Т1 – теплоноситель от источника;
- Т2 – обратное поступление воды;
- Т3 – вход в здание;
- Тнв – величина наружного воздуха;
- Твн – воздух в помещении.
Стоит иметь в виду, что составление температурной диаграммы системы отопления следует начинать с выбора метода регулирования. Для этого необходимо знать отношение:
Qср.гвс/Qот
Согласно данной формуле:
- Qср.гвс – это среднее значение расхода тепла на ГВС (горячее водоснабжение) всех потребителей;
- Qот – суммарная расчетная нагрузка на отопление потребителей теплоэнергии населенного пункта, для которого рассчитываем температурный график.
Qср.гвс рассчитывается из формулы:
Qср.гвс = Qmax.гвс/Кч.
В этой формуле Qmax.гвс – это суммарная расчетная нагрузка на ГВС населенного пункта. Кч – это коэффициент часовой неравномерности, вообще правильно рассчитывать его на основе фактических данных. Если отношение Qср.
гвс/Qот меньше чем 0,15, то следует применять центральное качественное регулирование по отопительной нагрузке. То есть применяется температурная диаграмма центрального качественного регулирования по отопительной нагрузке.
В подавляющем большинстве случаев для пользователей центральной отопительной системы применяется именно такой график.
План расчета
В качестве примера расчета температурного графика будут использованы показатели 130-70°C. Величины температур прямой и обратной сетевой жидкости-теплоносителя в расчетно-зимнем режиме составляют: 130°C и 70°С, температура жидкости на ГВС tг = 65°С.
Для построения диаграммы температур прямой и обратной сетевой воды-теплоносителя принято рассматривать значения следующих характерных схем: расчетно-зимняя система, система при значениях температуры обратной воды-теплоносителя равной 65°С, система при расчетной температуре наружного воздуха на вентиляцию, схема в точке излома температурного графика, а также режим при значении температуры окружающей среды, которая равна 8°С.
Для расчета Т1 и Т2 используем следующие формулы:
- Т1 = tвн + Δtр x Õˆ0,8 + ( δtр – 0,5 x υр ) x Õ;
- Т2 = tвн + Δtр x Õˆ0,8 — 0,5 x υр x Õ.
Значение данных, используемых в формулах выше:
- tвн – значение расчетной температуры воздуха в помещении, tвн = 20 ˚С;
- Õ – относительная отопительная нагрузка;
- Õ = tвн – tн/ tвн – t р.о;
- tн – значение температуры воздуха окружающей среды;
- Δtр — расчетно–температурный напор при передаче тепла от отопительных приборов (Δtр = (95+70)/2 – 20 = 62,5 ˚С);
- δtр – разность температур прямой и обратной воды-теплоносителя в расчетно–зимнем режиме (δtр = 130 — 70 = 60 °С);
- υр – разность температур жидкости в отопительном приборе на входе и выходе в расчетно – зимнем режиме (υр = 95 – 70 = 25 °С).
План расчета:
Рассматриваются известные данные для расчетно-зимней схемы. В нашем случае — это tро = -43 °С, T1 = 130 °С, T2 = 70 °С;
Значение величин при температуре обратной воды-теплоносителя равно 65°С. Подставляем известные величины в вышеуказанные формулы и делаем следующие вычисления:
Т1 = 20 + 62,5 x Õˆ0,8 + (60 – 0,5 x 25) x Õ = 20 + 62,5 x Õˆ0,8 + 47,5 x Õ,
T2 = 20 + 62,5 x Õˆ0,8 – 12,5 x Õ;
Величина температуры в обратке Т2 для этого режима равна 65°С. Отсюда: 65 = 20 + 62,5 x Õˆ0,8 – 12,5 x Õ, методом последовательных приближений определяем Õ. Õ = 0,869. Тогда Т1 = 65 + 60 х 0,869 = 117,14 °С;
Значение температуры воздуха окружающей среды в этом случае будет равно: tн = tвн — Õ х (tвн – tро) = 20 – 0,869 х (20- (-43)) = — 34, 75 °С;
Схема, когда tн = tрвент = -30 °С:
Õот = (20- (-30))/(20- (-43)) = 50/63 = 0,794
Т1 = 20 + 62,5 x 0,794 ˆ0,8 + 47,05 х 0,794 = 109,67°С
T2 = Т1 – 60 х Õ = 109,67 – 60 х 0,794 = 62,03°С;
Схема, когда Т1 = 65 °С (излом температурной диаграммы):
65 = 20 + 62,5 x Õˆ0,8 + 47,5 x Õ, методом последовательных приближений определяем Õ. Õ = 0,3628.
Т2 = 65 – 60 х 0,3628 = 43,23°С
В этом случае температура наружного воздуха tн = 20 – 0,3628 х (20- (-43)) = -2,86°С;
Схема, когда tн = 8 °С
Õот = (20-8)/(20- (-43)) = 0,1905. С учетом срезки температурного графика на горячее водоснабжение принимаем Т1 = 65 °С. Температуру Т2 в обратном трубопроводе в диапазоне от +8 °С до точки излома графика рассчитываем по формуле: t2 = t1 – (t1 – tн)/(t1’ — tн) x (t1’ — t2’),
где t1’ , t2’ — температуры прямой и обратной воды-теплоносителя без учета срезки на ГВС.
T2 = 65 – (65 – 8)/(45,64 – х (45,63 – 34,21) = 47,7°С.
На этом расчет температурного графика для характерных режимов считается законченным. Остальные температуры прямой и обратной воды-теплоносителя для диапазона температур наружного воздуха рассчитываются по аналогичной системе.
Температурный график
Режим работы котлов напрямую зависит от погоды окружающей среды. Если брать различные объекты, например, заводское помещение, многоэтажный и частный дом, все будут иметь индивидуальную тепловую диаграмму.
В таблице ниже представлена схема зависимости температуры отопления помещения от температуры наружного воздуха:
Если у Вас есть вопросы, проконсультируйтесь у юриста
Задать свой вопрос можно в форму ниже, в окошко онлайн-консультанта справа внизу экрана или позвоните по номерам (круглосуточно и без выходных).
Источник: https://ahrfn.com/kvartplata/zavisimost-temperatury-otopleniya-ot-naruzhnoj-temperatury.html
Отопительный график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха
Просматривая статистику посещения нашего блога я заметил, что очень часто фигурируют такие поисковые фразы как, например, «какая должна быть температура теплоносителя при минус 5 на улице?». Решил выложить старый график качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха. Хочу предупредить тех, кто на основании этих цифр попытается выяснить отношения с ЖЭУ или тепловыми сетями: отопительные графики для каждого отдельного населенного пункта разные (я писал об этом в статье регулирование температуры теплоносителя). По данному графику работают тепловые сети в Уфе (Башкирия).
Так же хочу обратить внимание на то, что регулирование происходит по среднесуточной температуре наружного воздуха, так что, если, например, на улице ночью минус 15 градусов, а днем минус 5, то температура теплоносителя будет поддерживаться в соответствии с графиком по минус 10 оС.
Как правило, используются следующие температурные графики: 150/70, 130/70, 115/70, 105/70, 95/70. Выбирается график в зависимости от конкретных местных условий. Домовые системы отопления работают по графикам 105/70 и 95/70. По графикам 150, 130 и 115/70 работают магистральные тепловые сети.
Рассмотрим пример как пользоваться графиком. Предположим, на улице температура «минус 10 градусов».
Тепловые сети работают по температурному графику 130/70, значит при -10 оС температура теплоносителя в подающем трубопроводе тепловой сети должна быть 85,6 градусов, в подающем трубопроводе системы отопления — 70,8 оС при графике 105/70 или 65,3 оС при графике 95/70. Температура воды после системы отопления должны быть 51,7 оС.
Как правило, значения температуры в подающем трубопроводе тепловых сетей при задании на теплоисточник округляются. Например, по графику должно быть 85,6 оС, а на ТЭЦ или котельной задается 87 градусов.
Температура наружного воздуха Тнв, оС |
Температура сетевой воды в подающем трубопроводе Т1, оС |
Температура воды в подающем трубопроводе системы отопления Т3, оС |
Температура воды после системы отопления Т2, оС |
|||
---|---|---|---|---|---|---|
150 | 130 | 115 | 105 | 95 | ||
8 | 53,2 | 50,2 | 46,4 | 43,4 | 41,2 | 35,8 |
7 | 55,7 | 52,3 | 48,2 | 45,0 | 42,7 | 36,8 |
6 | 58,1 | 54,4 | 50,0 | 46,6 | 44,1 | 37,7 |
5 | 60,5 | 56,5 | 51,8 | 48,2 | 45,5 | 38,7 |
4 | 62,9 | 58,5 | 53,5 | 49,8 | 46,9 | 39,6 |
3 | 65,3 | 60,5 | 55,3 | 51,4 | 48,3 | 40,6 |
2 | 67,7 | 62,6 | 57,0 | 52,9 | 49,7 | 41,5 |
1 | 70,0 | 64,5 | 58,8 | 54,5 | 51,0 | 42,4 |
0 | 72,4 | 66,5 | 60,5 | 56,0 | 52,4 | 43,3 |
-1 | 74,7 | 68,5 | 62,2 | 57,5 | 53,7 | 44,2 |
-2 | 77,0 | 70,4 | 63,8 | 59,0 | 55,0 | 45,0 |
-3 | 79,3 | 72,4 | 65,5 | 60,5 | 56,3 | 45,9 |
-4 | 81,6 | 74,3 | 67,2 | 62,0 | 57,6 | 46,7 |
-5 | 83,9 | 76,2 | 68,8 | 63,5 | 58,9 | 47,6 |
-6 | 86,2 | 78,1 | 70,4 | 65,0 | 60,2 | 48,4 |
-7 | 88,5 | 80,0 | 72,1 | 66,4 | 61,5 | 49,2 |
-8 | 90,8 | 81,9 | 73,7 | 67,9 | 62,8 | 50,1 |
-9 | 93,0 | 83,8 | 75,3 | 69,3 | 64,0 | 50,9 |
-10 | 95,3 | 85,6 | 76,9 | 70,8 | 65,3 | 51,7 |
-11 | 97,6 | 87,5 | 78,5 | 72,2 | 66,6 | 52,5 |
-12 | 99,8 | 89,3 | 80,1 | 73,6 | 67,8 | 53,3 |
-13 | 102,0 | 91,2 | 81,7 | 75,0 | 69,0 | 54,0 |
-14 | 104,3 | 93,0 | 83,3 | 76,4 | 70,3 | 54,8 |
-15 | 106,5 | 94,8 | 84,8 | 77,9 | 71,5 | 55,6 |
-16 | 108,7 | 96,6 | 86,4 | 79,3 | 72,7 | 56,3 |
-17 | 110,9 | 98,4 | 87,9 | 80,7 | 73,9 | 57,1 |
-18 | 113,1 | 100,2 | 89,5 | 82,0 | 75,1 | 57,9 |
-19 | 115,3 | 102,0 | 91,0 | 83,4 | 76,3 | 58,6 |
-20 | 117,5 | 103,8 | 92,6 | 84,8 | 77,5 | 59,4 |
-21 | 119,7 | 105,6 | 94,1 | 86,2 | 78,7 | 60,1 |
-22 | 121,9 | 107,4 | 95,6 | 87,6 | 79,9 | 60,8 |
-23 | 124,1 | 109,2 | 97,1 | 88,9 | 81,1 | 61,6 |
-24 | 126,3 | 110,9 | 98,6 | 90,3 | 82,3 | 62,3 |
-25 | 128,5 | 112,7 | 100,2 | 91,6 | 83,5 | 63,0 |
-26 | 130,6 | 114,4 | 101,7 | 93,0 | 84,6 | 63,7 |
-27 | 132,8 | 116,2 | 103,2 | 94,3 | 85,8 | 64,4 |
-28 | 135,0 | 117,9 | 104,7 | 95,7 | 87,0 | 65,1 |
-29 | 137,1 | 119,7 | 106,1 | 97,0 | 88,1 | 65,8 |
-30 | 139,3 | 121,4 | 107,6 | 98,4 | 89,3 | 66,5 |
-31 | 141,4 | 123,1 | 109,1 | 99,7 | 90,4 | 67,2 |
-32 | 143,6 | 124,9 | 110,6 | 101,0 | 94,6 | 67,9 |
-33 | 145,7 | 126,6 | 112,1 | 102,4 | 92,7 | 68,6 |
-34 | 147,9 | 128,3 | 113,5 | 103,7 | 93,9 | 69,3 |
-35 | 150,0 | 130,0 | 115,0 | 105,0 | 95,0 | 70,0 |
Прошу не ориентироваться на диаграмму в начале поста — она не соответствует данным из таблицы.
Расчет температурного графика
Методика расчета температурного графика описана в справочнике «Наладка и эксплуатация водяных тепловых сетей» (Глава 4, п. 4.4, с. 153,).
Это довольно трудоемкий и долгий процесс, так как для каждой температуры наружного воздуха нужно считать несколько значений: Т1, Т3, Т2 и т. д.
К нашей радости у нас есть компьютер и табличный процессор MS Excel. Коллега по работе поделился со мной готовой таблицей для расчета температурного графика. Её в свое время сделала его жена, которая трудилась инженером группы режимов в тепловых сетях.
Таблица расчета температурного графика в MS Excel
Для того, чтобы Excel рассчитал и построил график достаточно ввести несколько исходных значений:
- расчетная температура в подающем трубопроводе тепловой сети Т1
- расчетная температура в обратном трубопроводе тепловой сети Т2
- расчетная температура в подающем трубопроводе системы отопления Т3
- Температура наружного воздуха Тн.в.
- Температура внутри помещения Тв.п.
- коэффициент «n» (он, как правило, не изменен и равен 0,25)
- Минимальный и максимальный срез температурного графика Срез min, Срез max.
Ввод исходных данных в таблицу расчета температурного графика
Все. больше ничего от вас не требуется. Результаты вычислений будут в первой таблице листа. Она выделена жирной рамкой.
Диаграммы также перестроятся под новые значения.
Также таблица считает температуру прямой сетевой воды с учетом скорости ветра.
Источник: https://energoworld.ru/blog/otopitelnyj-grafik-kachestvennogo-regulirovaniya-otpuska-tepla-po-srednesutochnoj-temperature-naruzhnogo-vozduxa/
Состав теплотехнических расчетов включает теплотехнический расчет теплозащитных свойств ограждающих конструкции, определение потребностей в теплоте каждого помещения (теплопотери), определение типоразмеров и количества нагревательных приборов, потребных для размещения в каждом помещении. Количество помещений обусловливается назначением здания, этажностью, место расположения здания в городе, архитектурно-строительным его решением, пожеланиями заказчика и т.п. Кроме того, теплопотери помещения зависят от расположения помещения в здании: подвал, цокольный, первый, последний этажи, с экерами и без, и мансардные.
Что касается применения нагревательных приборов, то это, помимо назначения помещения и проходящих в нем технологических процессов, в значительной степени зависит от эстетических предпочтений заказчиков. Такое количество факторов, влияющих на выбор нагревательных приборов, существенно увеличивает объемы расчетных работ, а уровень добросовестности их выполнения сказывается на качестве проекта.
Ранее теплотехнические и гидравлические расчеты делались при помощи логарифмической линейки, а в учебных целях проводились с использованием шаблонных таблиц, которые, несколько облегчая расчетный процесс, обеспечивали возможность подробного анализа поэтапных результатов расчетов и позволяли осуществлять соответствующую корректировку как планировочных, так и инженерных решений.
В наше время, при широком внедрении персональных компьютеров, процесс расчетов значительно формализовался и ускорился, что практически полностью исключило фактор инженерного творчества и влияния проектировщика в расчетном процессе с целью поиска альтернативных инженерных решений. Затрудняется дифференцированное изменение типоразмеров и количеств нагревательных приборов, учет корректировок в процессе проектирования ограждающих конструкций, температурного режима и т.п.
Использование Excel-таблиц позволяет обеспечить автоматизацию вычислительных процессов, сократив трудоемкость работы, и вернуть разумные элементы инженерного творчества, свойственные таблично-шаблонному процессу. Электронные таблицы Microsoſt Excel, при заблаговременной подготовке и установлении требуемых функциональных связей между отдельными листами, ячейками и т.п., можно продуктивно использовать вместо распространяемых в настоящее время специализированных программных продуктов.
Несомненно только одно, что составленные расчетные таблицы как шаблоны должны быть тщательно продуманы и защищены от несанкционированного вмешательства и специально копироваться для каждого конкретного случая применения. Такое обращение с таблицами-шаблонами дает возможность проводить детальный анализ результатов расчета и вносить желаемые изменения в ручном режиме.
Гидравлический расчет — серьезный фактор, гарантирующий работоспособность системы отопления и качество обогрева помещений. Именно им обеспечивается количественный и скоростной режимы распределения теплоносителя по нагревательным приборам, определяется напор побудителя движения теплоносителя, подбираются гидравлические характеристики регулирующих устройств, диаметры трубопроводов и т.п.
Основные понятия и определения
Анализ систем водяного отопления позволил установить, что любую систему отопления можно представить в общем случае как сочетание формализованных самостоятельных конструктивных элементов:
- разводящих магистралей — подающих и обратных трубопроводов, соединяющих тепловые пункты с отопительными кольцами;
- отопительных колец, т.е. систем подающих и обратных трубопроводов, обеспечивающих подачу теплоносителя непосредственно к потребителям и состоящих из следующих отопительных конструктивных элементов — магистралей (подающих и обратных трубопроводов, соединяющих стояки), стояков и подводок к нагревательным приборам.
В качестве формализованных конструктивных элементов для составления в дальнейшем расчетных таблиц принимаем: разводящие магистрали, магистрали, стояки и подводки к нагревательным приборам. Конкретизация каждого элемента осуществляем следующим образом. Разводящие магистрали — все участки трубопроводов между тепловым пунктом и отопительными кольцами. Общие участки обозначаются «ПАД» и «ОБР», участки после первого разветвления «П-1-2», «П-3-4», «О-1-2», «О-3-4», где цифры обозначают номера отопительных колец, для которых предназначено данное ответвление.
Последующие разветвления, которые, как правило, осуществляются для присоединения к магистралям отопительных колец, именуются «П-1», «П-2», «П-3», «П-4», «О-1», «О-2», «О-3», «О-4». Четная цифра в данном обозначении указывает только на то, что ответвление по ходу подающего теплоносителя направлено вправо. Технологически на каждом таком ответвлении необходимо устанавливать запорную арматуру, а также балансировочный клапан или дроссельную шайбу.
После них трубопроводы отопительных колец классифицируются как магистрали. Укажем также, что на участках разводящих магистралей «П-1-2», «П-3-4», «О-1-2» и «О-3-4» следует монтировать, по крайней мере, балансировочные краны или дроссельные шайбы — для гидравлической согласованности различных разветвлений. Далее формализуем магистрали отопительных колец. После запорной арматуры участков «П-1», «П-2», «П-3», «П-4», «О-1», «О-2», «О-3» и «О-4» идут магистрали, к которым присоединены стояки.
Расчетными гидравлическими участками являются участки между точками присоединения стоков к магистрали. Обозначение участков по магистрали осуществляем по номерам стояков, причем против движения теплоносителя по подающей магистрали. Первый участок — это трубопровод, подсоединенный к первому стояку, и отвод. Стояки — это трубопроводы транспортирующие теплоноситель между магистралями по этажам через нагревательные приборы.
Стояки, с точки зрения формализации гидравлического расчета, представляют собой системы трубопроводов, расположенных между подводками к нагревательным приборам смежных этажей. Расчетные гидравлические участки обозначаются по порядковому номеру этажа с индексами «П» и «О». Подводки к нагревательным приборам — это система трубопроводов через нагревательный прибор от подающего стояка до обратного трубопровода. На каждой подводке между прибором и стояком установлены краны.
Терморегулирующие вентиля подлежат определению при гидравлическом расчете. Нагревательные приборы могут располагаться как с двух сторон стояка, так и с одной. Для создания Excel-таблицы выбран принцип двухстороннего присоединения нагревательных приборов, причем при взгляде на стояк подводки подразделяются на левую и правую. Для наглядности на рис. 1–4 дана графическая интерпретация. Из рисунков видно, что все разнообразие конструктивного исполнения рассмотренных выше элементов может быть отмечено типом разводки и стояков.
Они по характеру транспортировки по ним теплоносителя различаются на элементы с попутным (П) и тупиковым (Т) движением теплоносителя. В связи с этим, в общем случае системы отопления по гидравлическим особенностям движения теплоносителя по трубопроводам можно подразделить на системы: с попутным движением в магистралях и стояках («П-П»); с попутным движением в магистралях и тупиковым в стояках («П-Т»); с тупиковым движением в магистралях и стояках («Т-Т»); с тупиковым движением в магистралях и попутным в стояках («Т-П»). Разводящие магистрали по характеру движения теплоносителя для всех систем отопления практически одинаковы.
Местные сопротивления
Анализ конструктивного выполнения элементов системы отопления с точки зрения наличия местных сопротивлений показывает, что местные сопротивления складываются из сопротивлений двух видов: типовых элементарных сопротивлений, присущих в любом случае, и характеристических, свойственных конкретному исполнению системы (например, какие либо повороты, нестандартное размещение задвижек, различные обходы конструкций зданий).
Учет местных сопротивлений производится на специальных листах, дифференцировано, по каждому гидравлическому участку для упомянутых выше конструктивных элементов системы. Первый вид местных сопротивлений (КМС) может быть учтен сразу и занесен в расчетные Excel-таблицы. Второй вид местных сопротивлений (КМС) подлежит учету индивидуально на конкретном участке, где они возникают.
При желании использовать Excel-таблицы с учетом ранее занесенных значений типовых КМС возникает некоторая особенность в использовании этой таблицы. Так, необходимо при любой системе отопления первым этажом считать этаж, принятый в Excel-таблице подвальным («п»), а последним этажом считать 30 этаж. Обязательно при расчетах магистралей должны быть использованы стояки 1 и 50.
Персональное определение КМС позволяет отказаться от перечисленных ограничений. Но в этом случае увеличивается объем работ по определению количеств КМС, хотя, используя указанную классификацию КМС, можно значительно облегчить эту работу. Итак, Excel-таблицы составлены:
- для зданий до 30 этажей, подвалом и цокольным этажом (последние можно также считать этажами, тогда здание 32-этажное);
- для систем отопления до четырех сочетаний движений теплоносителя: «П-П», «П-Т», «Т-Т», «Т-П»;
- четырьмя отопительными кольцами;
- с отопительным кольцом, содержащим до 50 стояков;
- с двухсторонним присоединением нагревательных приборов.
Excel-таблицы включают листы (рис. 5): исходных данных; результатов расчета; гидравлического расчета разводящих магистралей; гидравлического расчета магистралей; гидравлического расчета стояков; гидравлического расчета подводок к нагревательным приборам; соответственно листам гидравлических расчетов — листы подсчета КМС; на подающих и обратных участках трубопроводов. В лист «Исходные данные…» заносятся:
- температурные параметры теплоносителя, на которые рассчитывается система отопления, допустимые скорости теплоносителя в магистралях и в трубопроводах стояков, превышение которых нежелательно;
- тепловая нагрузка нагревательных приборов, привязанная к стоякам рассчитываемой системы отопления, Вт;
- длина трубопроводных подводок [м] от подающего стояка через нагревательный прибор до обратного стояка;
- длины гидравлических участков подающих и обратных стояков, м;
- длины гидравлических участков подающих и обратных трубопроводов магистралей, м;
- длины гидравлических участков подающих и обратных трубопроводов раздающих магистралей, м;
- отсутствие этажа, нагревательного прибора, гидравлического участка отмечается «0».
Если в дальнейшем предполагается воспользоваться типовыми КМС, и количество этажей и стояков отлично от табличных, то необходимо заполнение таблиц исходных данных осуществлять с учетом оговоренных выше указаний. Тогда на этом ввод данных считается законченным, и пользователь может перейти на лист «Результаты расчета…», получив окончательные данные. При наличии местных сопротивлений, не подпадающих под типовые, необходимо внести соответствующие коррективы в таблицы КСМ соответствующих элементов системы отопления, и только после этого обратиться к листу «Результаты расчета…». Лист «Результаты расчета…» представляет собой итоги гидравлического расчета и содержит:
- диаметры трубопроводов гидравлических участков, их длину, скорость теплоносителя, гидравлическое сопротивление, гидравлические характеристики устанавливаемых вентилей или диаметров дросселирующих шайб;
- гидравлическое сопротивление всей системы отопления.
Листы гидравлических расчетов в общем случае могут быть скрыты, т.к. они, выполнив свои функции, не нужны, однако для проектировщиков они могут представлять определенный интерес. Этот интерес обусловливается профессиональной квалификацией проектировщика и позволяет проводить детальный анализ, проводя ручную корректировку: направленного местного изменения скоростного режима, диаметров трубопроводов, местных сопротивлений, подбор желаемого гидравлического сопротивления системы отопления и т.п.
Так, например, используя свойства, предоставляемые Excel, можно установить, что сопротивления стояков для нагревательных приборов разных этажей сильно различаются между собой и могут составлять величину, соизмеримую с общим сопротивлением всей системы отопления. Анализируя скоростной режим теплоносителя по участкам, нетрудно правильно решить вопросы обезвоздушивания стояка и системы в целом.
Кроме того, возможность практически одновременно получить результаты расчетов четырех систем отопления позволяет проектировщику дать оценку энергетической эффективности каждой системы, и позволяет применить наиболее целесообразную. В процессе проектирования систем отопления составляются поэтажные планы с размещением нагревательных приборов, стояков, прокладки трубопроводов. Неотъемлемой частью проектной части является схема системы отопления.
Расчеты в Excel предоставляют возможность значительно повысить информационную насыщенность проектной документации. Для этого поэтажные планы следует снабдить таблицами подбора нагревательных приборов, которые содержат экспликацию помещений с указанием типов и количеств устанавливаемых нагревательных приборов и их тепловой нагрузки.
Аксонометрические схемы следует обогатить представлением на чертежах таблиц из «Результатов расчета…», которые содержат необходимые при наладке расчетные значения скоростного режима теплоносителя, диаметров трубопровод на каждом участке, требуемые гидравлические характеристики регулирующих гидравлический режим устройств. Как раз это, в ряде случаев, позволяет отказаться от графической интерпретации схемы отопления.
Кроме того, как для монтажа и наладки систем отопления, так и при ее эксплуатации, должное значение имело бы наличие портативного носителя информации (например, «флэшки») с расчетами, в особенности гидравлического расчета.
Теплотехнический расчет
Пример таких таблиц, составленных авторами, приведен выше, на второй страницы данной статьи. Таблицы составлены для условного здания, состоящего из 100 помещений. Таблицы состоят из листов: экспликация помещений и конструкции ограждающих конструкций; теплотехнический расчет ограждающих конструкций; расчет теплопотерь помещениями; подбор нагревательных приборов по помещениям.
На листе «Экспликация помещений и конструкции…» производится перенос экспликации помещений из архитектурных чертежей в систему таблиц, также в этот лист в определенные графы заносятся ограждающие конструкции, в зависимости от предъявляемых к расчету требованиям, т.е. либо расчет величин коэффициентов теплопередачи определенной конструкции ограждения, или определение толщины слоя теплоутеплителя в ограждении с последующим установлением коэффициента теплопередачи, или простое использование нормативных значений коэффициентов теплопередачи.
На листе «Теплотехнический расчет ограждающих конструкций…» осуществляется подбор теплотехнических характеристик материалов, образующих ограждающие конструкции, определяются коэффициенты теплопередачи, которые следует использовать в дальнейшей работе. Лист «Расчет теплопотерь помещениями…» содержит электронную таблицу-шаблон, рассчитанную для обсчета 100 помещений, каждое из которых может включать: четыре зоны потери теплоты через полы на грунте, на лагах, утепленных и неутепленных; два перекрытия; два наружных ограждения; два световых проемов.
Для пользования этими таблицами необходимо дополнить их расчетными климатическими параметрами наружного и внутреннего воздуха, выбрать коэффициенты теплопередачи, ориентацию, геометрические размеры элементов ограждений и т.п. Результаты автоматически переносятся в лист «Подбор нагревательных приборов по помещениям…». Здесь имеются данные по теплотехническим характеристикам различных нагревательных приборов.
Используя эти данные, и определившись с количеством приборов, которое желательно разместить в помещении, и их типом, находим номенклатурный размер и тепловую нагрузку. Данный лист можно поместить как информацию в рабочие чертежи.