Таблицы истинности онлайн excel

Фев 04 2021

Вроде простая вещь — нужно вычислить результат для нескольких булевых переменных

Используем Excel для построения таблицы истинности

Читаем основную статью

Компьютер

Вроде всё просто. Но вот такой пример вида _A ∨ B ∨ C ⊕ D

Переводим на русский язык (с математического языка) — нужно сделать таблицу истинности для выражения

не A или B или C иск.или D

для всех вариантов переменных A,B.C.D, которые могут принимать значения «Истина» / «Ложь»

Или на английском (для программирования) =  not.A.or.B.or.C.xor.D

Задача на булеву алгебру не сложная — но у нас четыре переменных и 16 строк в таблице (да, 24 = 16). А если таких переменных будет 5, то в таблице будет 32 строки.

Но у нас есть Excel (Execute Cell), который прекрасно понимает формулы логики. Достаточно правильно написать формулу для одной строки — и потом мышкой перетащить эту формулу на остальные строки. Готово!

Итак по частям.

Логическая операция это операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых.

Логическая связка это союзы или выражения, которые употребляются в естественном языке для соединения простых высказываний в сложные.

Логические операции

Логическая операция И (Конъюнкция)

Конъюнкция (от лат. conjunctio — «союз, связь») — логическая операция, по смыслу максимально приближенная к союзу «и». Синонимы: логическое «И», логическое умножение, иногда просто «И»

И таблица истинности (AND таблица истинности)

=И(A1;B1)

Используем Excel для построения таблицы истинности

Логическая операция ИЛИ (Дизъюнкция)

Дизъюнкция (от лат. disjunctio — «разобщение») — логическое сложение, логическое ИЛИ, включа́ющее ИЛИ; иногда просто ИЛИ — логическая операция, по своему применению максимально приближённая к союзу «или» в смысле «или то, или это, или оба сразу»

ИЛИ таблица истинности (OR таблица истинности)

=ИЛИ(A1;B1)

Используем Excel для построения таблицы истинности

Логическая операция отрицания (Инверсия)

Инверсия (от лат. inversio «переворачивание; перестановка») — отрицание — переворачивание смысла, замена «белого» «чёрным»

НЕ таблица истинности (NOT таблица истинности)

=НЕ(A1)

Используем Excel для построения таблицы истинности

Логическая операция XOR (исключающее ИЛИ)

XOR таблица истинности

В Excel 2007 её нет.

В более современных версиях она есть. Но мы её можем собрать самостоятельно.

=ИЛИ(И(НЕ(A1);B1);И(A1;НЕ(B1)))

Используем Excel для построения таблицы истинности

Логические связки

Логическая связка Импликация (прямая)

Логическая связка как  AB

используем аналог  _A V B

=ИЛИ(НЕ(A1);B1)

Используем Excel для построения таблицы истинности

Логическая связка Импликация (обратная)

Логическая связка как  AB

используем аналог  A V _B

=ИЛИ(A1;НЕ(B1))

Используем Excel для построения таблицы истинности

Логическая связка ТОЖДЕСТВО

Используем ЕСЛИ, чтобы логическая связка получилась

=ЕСЛИ(A1=B1;1;0)

Используем Excel для построения таблицы истинности

или вывод текстом

=ЕСЛИ(A1=B1;"ИСТИНА";"ЛОЖЬ")

Собираем таблицу истинности

Не обязательно собирать всё в одной ячейке. Можно сделать столбцы для промежуточных вычислений.

Для нашего примера _A ∨ B ∨ C ⊕ D

Используем Excel для построения таблицы истинности

Удобно.

Последние публикации

  • Статьи от: Автор
  • Рубрика: Блог
  • Сортировка: дата публикации по убыванию

Классический вход Windows 7

08.08.2021
Публикация 2 года назад
Как это было в Windows XP Для входа в систему нужно указать: пользователь (login)
пароль В Windows 7 сделали по умолчанию стандартный вход в систему Мышкой выбираем пользователя и вводим только пароль (если он установлен). Как вернуть классический вход в систему Windows 7 и зачем это нужно? Для работы на локальной машине — конечно удобнее стандартный вход. А вот если Вы подключаетесь к удаленной машине через RDP — то ввода только пароля недостаточно. Читаем статью RDP — удаленный рабочий стол Большое количество ботов со всего мира подберет Ваш пароль достаточно быстро (в логах будет по 5-10 попыток в секунду). Читаем статью Включаем шифрование…
(Читать полностью…)

Процессоры AMD FX и их «ядра»

15.12.2020
Публикация 2 года назад
Немного маркетинга в тему — ядра процессоров AMD FX и ядра процессоров Intel AMD FX (AM3+) — хорошие были процессоры. Но есть нюанс. AMD использовала хитрую терминологию — «ядра» и «модули». Это была вершина маркетинга :) Сколько ядер в «восьмиядерном» процессоре AMD FX-8350? Физических ядер в процессоре было 8. Но кэш-память была одна общая на два ядра. Т.е. при полной нагрузке (когда требовались все ресурсы) — все ядра с полной эффективностью работать не могли. Два ядра в одном «модуле» конкурировали за общую кэш-память. Сравним реальное быстродействие с помощью статистики CPU Z Процессор
Одно…
(Читать полностью…)

Загадочная «маска подсети» — это просто

08.12.2020
Публикация 2 года назад
Многие видели в Windows свойства адаптера сети при ручной настройке Многие даже понимают, что IP-адрес 192.168.1.1 — это запись в десятичной форме 32-х бит адреса IP v4 с разбивкой на оксеты (по 8 бит). Что такое «маска подсети»?
Которая 255.255.255.0. И зачем она нужна? Посмотрим в таком же двоичном виде — легко видеть, что это 24 единицы подряд Это просто так айтишники шутят :) Маска — это и есть маска, она «накладывается» на IP-адрес. Буквально. И далее используется логическое «И» 0 и 0 = 0 0 и 1 = 0 1 и 0 = 0 1 и 1  =1 Первые 24 разряда в IP-адресе не меняются, на выходе получаем адрес с обнулёнными битами в позициях…
(Читать полностью…)

Вычисляем большие числа

04.12.2020
Публикация 2 года назад
Самое известное большое число googol — отсюда собственно название Google 10100 = это 1 единица и 100 нулей Хорошо. А например, 2512 — это сколько? Калькулятор Windows говорит, что это 1,3 * 10154 Тоже неплохо, да и больше чем googol на 54 порядка :) А как такое число точно узнать? У нас обычно 64 бита  в ячейке памяти (разрядность 64), 2512 — это очевидно больше. Легко видеть, что в в двоичной системе это 513 разрядов = одна единица и 512 нулей 2512 = 1*2512 + 0*2511 + ….. + 0*21 + 0*20 Читаем статью про разрядность компьютера А в десятичной системе это сколько точно? Есть замечательный сервис, который умеет точно работать с очень большими…
(Читать полностью…)

Как соединить два роутера проводом?

13.10.2020
Публикация 3 года назад
Предположим, у нас есть «Главный роутер», который управляем всеми нашими устройствами PC. И еще есть: у «Главного роутера» второй WAN-порт
бесхозный ADSL роутер Простой вопрос — как сделать резервирование интернета? Что бы при отсутствии основного интернета можно было подключить и использовать «Роутер ADSL»? Основная статья про сеть здесь Варианты в лоб: использовать только «Роутер ADSL» — но это придется к нему переподключать все конечные ПК
и сетку Wi-Fi придется перестраивать для переподключения мобильных устройств Нехорошо :) А как бы нам сделать так, что бы просто провод из LAN-порта «Роутера ADSL» включить в…
(Читать полностью…)

Как не надо устанавливать SSD M.2

17.09.2020
Публикация 3 года назад
Иногда вот такая жесть бывает при установке SSD M.2. Небольшой изгиб, так сказать. Основная статья про M.2 тут Интерфейс NVMe и разъемы M.2 и U.2 Как это получилось? Обычно так бывает при самостоятельной сборке ПК из новых комплектующих. SSD M.2 устанавливается под 45% в разъем на плате и потом прижимается винтиком, которые вкручивается в другой винтик на материнской плате. Но почему этот основной винтик  «пенек» может отсутствовать на материнской плате? Вот тут хорошо видно проблему :) SSD может быть разной длины и производитель материнской платы это предусматривает: или устанавливает «пенек» в одну из позиций
или кладет все…
(Читать полностью…)

Как набрать немецкие умляуты (umlaut) на обычной клавиатуре в России?

31.07.2020
Публикация 3 года назад
Будем разбираться с немецкими умляутами Делаем свой набор горячих клавиш (hotkey) для умляутов
Самый удобный вариант :) Можно использовать левый Alt для заглавной буквы (т.к. клавиша ближе к CapsLock) и правый Alt для прописной буквы. Вот так, например: L Alt
R Alt A
Ä  
ä O
Ö  
ö U
Ü  
ü S

ß Здесь символы A, O, U и S — это не буквы, а кнопки на клавиатуре. Как это сделать? Используем программу QuickTextPaste — в ней можно завязать не только отдельные буквы, и целые части текста. Настройки хранятся в C:UsersNameAppDataRoamingQuickTextPasteQuickTextPaste.ini Использование простое: добавляем комбинацию клавиш

(Читать полностью…)

Построение таблицы истинности. СДНФ. СКНФ. Полином Жегалкина.

Онлайн калькулятор позволяет быстро строить таблицу истинности для произвольной булевой функции или её вектора, рассчитывать совершенную дизъюнктивную и совершенную конъюнктивную нормальные формы, находить представление функции в виде полинома Жегалкина, строить карту Карно и классифицировать функцию по классам Поста.

Калькулятор таблицы истинности, СКНФ, СДНФ, полинома Жегалкина

введите функцию или её вектор

Скрыть клавиатуру

¬

0

1

a

b

c

x

y

z

(

)

X1

X2

X3

X4

X5

X6

Показать настройки

Таблица истинности

СКНФ

СДНФ

Полином Жегалкина

Классификация Поста

Минимизация, карта Карно

Фиктивные переменные

С решением

Построить

Построено таблиц, форм:

Как пользоваться калькулятором

  1. Введите в поле логическую функцию (например, x1 ∨ x2) или её вектор (например, 10110101)
  2. Укажите действия, которые необходимо выполнить с помощью переключателей
  3. Укажите, требуется ли вывод решения переключателем «С решением»
  4. Нажмите на кнопку «Построить»

Видеоинструкция к калькулятору

Используемые символы

В качестве переменных используются буквы латинского и русского алфавитов (большие и маленькие), а также цифры, написанные после буквы (индекс переменной). Таким образом, именами переменных будут: a, x, a1, B, X, X1, Y1, A123 и так далее.

Для записи логических операций можно использовать
как обычные символы клавиатуры (*, +, !, ^, ->, =), так и символы, устоявшиеся в литературе (, , ¬, , , ). Если на вашей клавиатуре отсутствует нужный символ операции, то используйте клавиатуру калькулятора (если она не видна, нажмите «Показать клавиатуру»), в которой доступны как все логические операции, так и набор наиболее часто используемых переменных.

Для смены порядка выполнения операций используются круглые скобки ().

Обозначения логических операций

  • И (AND): & *
  • ИЛИ (OR): +
  • НЕ (NOT): ¬ !
  • Исключающее ИЛИ (XOR): ^
  • Импликация: -> =>
  • Эквивалентность: = ~ <=>
  • Штрих Шеффера: |
  • Стрелка Пирса:

Что умеет калькулятор

  • Строить таблицу истинности по функции
  • Строить таблицу истинности по двоичному вектору
  • Строить совершенную конъюнктивную нормальную форму (СКНФ)
  • Строить совершенную дизъюнктивную нормальную форму (СДНФ)
  • Строить полином Жегалкина (методами Паскаля, треугольника, неопределённых коэффициентов)
  • Определять принадлежность функции к каждому из пяти классов Поста
  • Строить карту Карно
  • Минимизировать ДНФ и КНФ
  • Искать фиктивные переменные

Что такое булева функция

Булева функция f(x1, x2, ... xn) — это любая функция от n переменных x1, x2, … xn, в которой её аргументы принимают одно из двух значений: либо 0, либо 1, и сама функция принимает значения 0 или 1. То есть это правило, по которому произвольному набору нулей и единиц ставится в соответствие значение 0 или 1. Подробнее про булевы функции можно посмотреть на Википедии.

Что такое таблица истинности?

Таблица истинности — это таблица, описывающая логическую функцию, а именно отражающую все значения функции при всех возможных значениях её аргументов. Таблица состоит из n+1 столбцов и 2n строк, где n — число используемых переменных. В первых n столбцах записываются всевозможные значения аргументов (переменных) функции, а в n+1-ом столбце записываются значения функции, которые она принимает на данном наборе аргументов.

Довольно часто встречается вариант таблицы, в которой число столбцов равно n + число используемых логических операций. В такой таблице также первые n столбцов заполнены наборами аргументов, а оставшиеся столбцы заполняются значениями подфункций, входящих в запись функции, что позволяет упростить расчёт конечного значения функции за счёт уже промежуточных вычислений.

Логические операции

Логическая операция — операция над высказываниями, позволяющая составлять новые высказывания путём соединения более простых. В качестве основных операций обычно называют конъюнкцию (∧ или &), дизъюнкцию (∨ или |), импликацию (→), отрицание (¬), эквивалентность (=), исключающее ИЛИ (⊕).

Таблица истинности логических операций

Как задать логическую функцию

Есть множество способов задать булеву функцию:

  • таблица истинности
  • характеристические множества
  • вектор значений
  • матрица Грея
  • формулы

Рассмотрим некоторые из них:

Чтобы задать функцию через вектор значений необходимо записать вектор из 2n нулей и единиц, где n — число аргументов, от которых зависит функция. Например, функцию двух аргументов можно задать так: 0001 (операция И), 0111 (операция ИЛИ).

Чтобы задать функцию в виде формулы, необходимо записать математическое выражение, состоящее из аргументов функции и логических операций. Например, можно задать такую функцию: a∧b ∨ b∧c ∨ a∧c

Способы представления булевой функции

С помощью формул можно получать огромное количество разнообразных функций, причём с помощью разных формул можно получить одну и ту же функцию. Иногда бывает весьма полезно узнать, как построить ту или иную функцию, используя лишь небольшой набор заданных операций или используя как можно меньше произвольных операций. Рассмотрим основные способы задания булевых функций:

  • Совершенная дизъюнктивная нормальная форма (СДНФ)
  • Совершенная конъюнктивная нормальная форма (СКНФ)
  • Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Совершенная дизъюнктивная нормальная форма (ДНФ)

Простая конъюнкция — это конъюнкция некоторого конечного набора переменных, или их отрицаний, причём каждая переменная встречается не более одного раза.
Дизъюнктивная нормальная форма (ДНФ) — это дизъюнкция простых конъюнкций.
Совершенная дизъюнктивная нормальная форма (СДНФ) — ДНФ относительно некоторого заданного конечного набора переменных, в каждую конъюнкцию которой входят все переменные данного набора.

Например, ДНФ является функция ¬abc ∨ ¬a¬bc ∨ ac, но не является СДНФ, так как в последней конъюнкции отсутствует переменная b.

Совершенная конъюнктивная нормальная форма (КНФ)

Простая дизъюнкция — это дизъюнкция одной или нескольких переменных, или их отрицаний, причём каждая переменная входит в неё не более одного раза.
Конъюнктивная нормальная форма (КНФ) — это конъюнкция простых дизъюнкций.
Совершенная конъюнктивная нормальная форма (СКНФ) — КНФ относительно некоторого заданного конечного набора переменных, в каждую дизъюнкцию которой входят все переменные данного набора.

Например, КНФ является функция (a ∨ b) ∧ (a ∨ b ∨ c), но не является СДНФ, так как в первой дизъюнкции отсутствует переменная с.

Алгебраическая нормальная форма (АНФ, полином Жегалкина)

Алгебраическая нормальная форма, полином Жегалкина — это форма представления логической функции в виде полинома с коэффициентами вида 0 и 1, в котором в качестве произведения используется операция конъюнкции, а в качестве сложения — исключающее ИЛИ.

Примеры полиномов Жегалкина: 1, a, a⊕b, ab⊕a⊕b⊕1

Алгоритм построения СДНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 1
  3. Выписать простые конъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 0, то она входит в конъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые конъюнкции с помощью дизъюнкции

Алгоритм построения СКНФ для булевой функции

  1. Построить таблицу истинности для функции
  2. Найти все наборы аргументов, на которых функция принимает значение 0
  3. Выписать простые дизъюнкции для каждого из наборов по следующему правилу: если в наборе переменная принимает значение 1, то она входит в дизъюнкцию с отрицанием, а иначе без отрицания
  4. Объединить все простые дизъюнкции с помощью конъюнкции

Алгоритм построения полинома Жегалкина булевой функции

Есть несколько методов построения полинома Жегалкина, в данной статье рассмотрим наиболее удобный и простой из всех.

  1. Построить таблицу истинности для функции
  2. Добавить новый столбец к таблице истинности и записать в 1, 3, 5… ячейки значения из тех же строк предыдущего столбца таблицы истинности, а к значениям в строках 2, 4, 6… прибавить по модулю два значения из соответственно 1, 3, 5… строк.
  3. Добавить новый столбец к таблице истинности и переписать в новый столбец значения 1, 2, 5, 6, 9, 10… строк, а к 3, 4, 7, 8, 11, 12… строкам аналогично предыдущему пункту прибавить переписанные значения.
  4. Повторить действия каждый раз увеличивая в два раза количество переносимых и складываемых элементов до тех пор, пока длина не станет равна числу строк таблицы.
  5. Выписать булевы наборы, на которых значение последнего столбца равно единице
  6. Записать вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора записать единицу) и объединить их с помощью операции исключающего ИЛИ.

Примеры построения различных представлений логических функций

Построим совершенные дизъюнктивную и дизъюнктивную нормальные формы, а также полином Жегалкина для функции трёх переменных F = ¬ab∨¬bc∨ca

1. Построим таблицу истинности для функции


Построение совершенной дизъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает истинное значение: { 0, 0, 1 } { 0, 1, 0 } { 0, 1, 1 } { 1, 0, 1 } { 1, 1, 1 }

В соответствие найденным наборам поставим элементарные конъюнкции по всем переменным, причём если переменная в наборе принимает значение 0, то она будет записана с отрицанием:

K1: { 0, 0, 1 } — ¬a¬bc
K2: { 0, 1, 0 } — ¬ab¬c
K3: { 0, 1, 1 } — ¬abc
K4: { 1, 0, 1 } — a¬bc
K5: { 1, 1, 1 } — abc

Объединим конъюнкции с помощью дизъюнкции и получим совершенную дизъюнктивную нормальную форму:

K1 ∨ K2 ∨ K3 ∨ K4 ∨ K5 = ¬a¬bc ∨ ¬ab¬c¬abc ∨ a¬bc ∨ abc


Построение совершенной конъюнктивной нормальной формы:

Найдём наборы, на которых функция принимает ложное значение: { 0, 0, 0 } { 1, 0, 0 } { 1, 1, 0 }

В соответствие найденным наборам поставим элементарные дизъюнкции по всем переменным, причём если переменная в наборе принимает значение 1, то она будет записана с отрицанием:

D1: { 0, 0, 0 } — a∨b∨c
D2: { 1, 0, 0 } — ¬a∨b∨c
D3: { 1, 1, 0 } — ¬a¬b∨c

Объединим дизъюнкции с помощью конъюнкции и получим совершенную конъюнктивную нормальную форму:

D1 ∧ D2 ∧ D3 = (a∨b∨c) ∧ (¬a∨b∨c) ∧ (¬a¬b∨c)


Построение полинома Жегалкина:

Добавим новый столбец к таблице истинности и запишем в 1, 3, 5 и 7 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 2, 4, 6 и 8 сложим по модулю два со значениями из соответственно 1, 3, 5 и 7 строк:

Добавим новый столбец к таблице истинности и запишем в 1 и 2, 5 и 6 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 3 и 4, 7 и 8 сложим по модулю два со значениями из соответственно 1 и 2, 5 и 6 строк:

Добавим новый столбец к таблице истинности и запишем в 1 2, 3 и 4 строки значения из тех же строк предыдущего столбца таблицы истинности, а значения в строках 5, 6, 7 и 8 сложим по модулю два со значениями из соответственно 1, 2, 3 и 4 строк:

Окончательно получим такую таблицу:

Выпишем наборы, на которых получившийся вектор принимает единичное значение и запишем вместо единиц в наборах имена переменных, соответствующие набору (для нулевого набора следует записать единицу):

{ 0, 0, 1 } — c, { 0, 1, 0 } — b, { 0, 1, 1 } — bc, { 1, 1, 0 } — ab, { 1, 1, 1 } — abc

Объединяя полученные конъюнкции с помощью операции исключающего или, получим полином Жегалкина: c⊕b⊕bc⊕ab⊕abc

Алгебра высказываний – точная наука, не дающая компромиссов. Чтобы решить примеры с конъюнкцией, дизъюнкцией, импликацией и т. д., можно построить таблицу истинности в прикладной программе Excel. Она оснащена набором логических функций, позволяющих автоматизировать и облегчить процесс нахождения результата.

Математическая логика: основные понятия

Основателем формальной логики считают Аристотеля. В XVII в. Г. Лейбниц предложил вводить символы для определения высказываний. Д. Буль закрепил усвоенные знания и впервые обозначил предложения символами.

Значение выражения "спустить на тормозах"Вам будет интересно:Значение выражения «спустить на тормозах»

Схематически «ИСТИНА» замещается 1, а «ЛОЖЬ» – 0.

Под высказыванием понимают любое повествовательное предложение, дающее какую-либо информацию и способное принимать значение истинности или ложности. В алгебре логики отвлекаются от смысловой нагрузки предложений и рассматривают только логические значения.

Под отрицанием понимают новое выражение, принимающее значение истины в случае его ложности и наоборот.

Конъюнкцией двух переменных называют новое предложение, принимающее значение истинности в случае одновременного обозначения «1» и ложности в остальных ситуациях.

Под дизъюнкцией двух высказываний понимают новое выражение, принимающее значение «ЛОЖЬ» только при одновременном наличии «0» и «ИСТИНА» в остальных вариациях.

построить таблицу истинности

Импликацией двух переменных называют новое предложение, в котором:

  • если посылка истинна, а следствие ложно, то выражение равняется «0»;
  • высказывание равняется «1» в остальных случаях.

Под эквиваленцией двух переменных понимают новое высказывание, принимающее значение истинности только в случае одинаковости элементов. Иначе предложение равняется «0».

построить таблицу истинности

Логические значения выражений принято оформлять в табличном виде. Есть и другое название у такого рода информации. Говорят, для высказывания нужно построить таблицу истинности. В ней указываются первоначальные значения для всех переменных, а потом вычисляется результат всего выражения.

Алгоритм реализации вычислений в логических операциях

Чтобы построить таблицу истинности, необходимо знать, в каком порядке выполняются действия. В выражении, где несколько операндов, вычисление осуществляется в следующем порядке:

  • инверсия (отрицание);
  • конъюнкция (логическая функция в Excel «И»);
  • дизъюнкция (булев оператор в Excel «ИЛИ»);
  • импликация (следствие);
  • эквиваленция.

Существуют еще две операции, но для них приоритет не определен:

  • штрих Шеффера;
  • стрелка Пирса.

Алгоритм вычислений меняется, если выражение заключено в скобки.

Порядок построения табличной формы для логических операндов в Excel

Прежде чем находить значение выражения, нужно изучить понятие формулы алгебры логики. Определение гласит, что это сложное выражение, состоящее из простейших высказываний, соединенных между собой логическими операндами.

Пример 1. Построить таблицу истинности для конъюнкции, дизъюнкции и отрицания.

построить таблицу истинности

Пример 2. Дана формула алгебры логики. Построить таблицу истинности. Примеры в качестве образца даны ниже.

построить таблицу истинности примеры

Пример 3. Как построить таблицу истинности в Excel, если дана формула алгебры логики в словесном описании. Высказывание: «Если треугольник – равносторонний, то все его ребра равны или все его углы равны».

Для начала необходимо разобрать составное предложение на минимальные элементы:

  • Первая часть выражения: А = «треугольник равносторонний».
  • Вторая: В = «все стороны фигуры равны».
  • Третья: С = «все углы треугольника равны».

После этого составляется выражение и решается в программном пакете Excel.

как построить таблицу истинности в excel

При составлении таблиц истинности важно помнить о порядке выполнения операций.

Автор:

Евстигней Брагин

03-12-2018 21:56

Жду ваши вопросы и мнения в комментариях

Мне нужно составить формулу, которая даст вам таблицу истинности для переменного количества столбцов.

Пример

пример 4-битной таблицы истинности

Замените FirstCell статической ссылкой на ячейку, содержащую первое значение 2^1, например, $D$1 для 4-битной таблицы (16 значений) и автозаполнение остальной части сетки (в примере A1:D16)

Логика этого такова:

Если текущая строка модуля 2 столбца силы тока (* -1, так как первое значение находится в последнем столбце и + 1, потому что оно начинается с 0) больше или равно половине 2 столбца силы тока, поместите значение как 1, иначе поставить значение 0.

Текущий рекомендуемый ответ мне не помог. Для более простого метода я бы рекомендовал следующую формулу:

Где TopRight находится верхняя правая ячейка таблицы истинности.

Например, если вы создаете таблицу истинности с 8 элементами, начинающимися с A3 , замените TopRight на $H$3 , а затем перетащите формулу из стороны в сторону и вниз.

Основное объяснение того, что происходит: в таблицах истинности строки чередуются 1 или 0 через каждое 2 ^ n количество строк, где n количество столбцов, на которое данный столбец отстоит от крайнего правого столбца.

Практическая работа на тему «Построение таблиц истинности логических функций с помощью электронной таблицы MS Excel»

Практическая работа на закрепление навыка построения таблиц истинности функций. Позволяет интегрировать изучение алгебры логики и табличного процессора MS Excel.

Ефимова Надежда Александровна , 17.09.2018

Содержимое разработки

бюджетное профессиональное образовательное учреждение

Вологодской области

«Сокольский лесопромышленный политехнический техникум»

Дисциплина — «ИНФОРМАТИКА»

ПРАКТИЧЕСКАЯ РАБОТА ПО ТЕМЕ

«ПОСТРОЕНИЕ ТАБЛИЦ ИСТИННОСТИ ЛОГИЧЕСКИХ ФУНКЦИЙ

С ПОМОЩЬЮ ЭЛЕКТРОННОЙ ТАБЛИЦЫ MS EXCEL »

Преподаватель – Н.А. Ефимова

ПРАКТИЧЕСКАЯ РАБОТА ПО ТЕМЕ

«ПОСТРОЕНИЕ ТАБЛИЦ ИСТИННОСТИ ЛОГИЧЕСКИХ ФУНКЦИЙ

С ПОМОЩЬЮ ЭЛЕКТРОННОЙ ТАБЛИЦЫ MS EXCEL »

Цель работы: знакомство с логическими функциями Excel , закрепление навыков построения таблиц истинности и приобретение навыков построения таблиц истинности в табличном редакторе MS Office Excel .

Запустите MS Office Excel

ПУСК  Программы  Microsoft Office  Microsoft Office Excel.

Microsoft Office Excel – это табличный редактор.

Он представляет собой электронную таблицу, состоящую из столбцов (они обозначаются латинскими буквами A , B , C ….) и строк (они обозначаются арабскими цифрами 1, 2, 3…).

На пересечение столбцов и строк находятся ячейки они именуются Имя_столбца № строки, например A 1, B 4….

Введите с помощью клавиатуры таблицы истинности для базовых логических операций по образцу, пока, не вычисляя их значение (внимательно заносите данные в ячейки, строго как в образце):

3. Вычислите значение логических операций с помощью мастера функций:

Для операции логическое отрицание (НЕ)

Выделите ячейку В2 (щелчком мыши, в ней будет храниться результат функции)  Меню ВСТАВКА  Функция

Появится окно мастера функций

В графе категория выберите – логические,

в списке функций – НЕ  Ок

Затем щелкните по ячейке А2 (ведь функция вычисляется для значения из этой ячейки) и нажмите Ок

Далее для вычисления 2 значения подведите указатель мыши к ячейке В2, чтобы выскочил черный крестик, зажмите левую кнопку мыши и протяните вниз (Это называется автокопированием, т.е. функция остается такой же, а значение по которому она вычисляется, изменяется).

2. Для операции логическое сложение (ИЛИ) алгоритм аналогичен, только начинать нужно с ячейки F 2, а функцию выбирать ИЛИ. И для функции задается два значения – сначала D 2, потом курсор ставиться во второе значение и щелкается E 2.

3. Для операции логическое умножение (И), используется тот же алгоритм, только начинать нужно с ячейки J 2, а функцию выбирать И.

4. Сохраните результаты работы:

ФАЙЛ  Сохранить как  Мой компьютер  Диск J  Своя папка  Сохранить

Сравните полученные таблицы с таблицами в тетради.

5. Построить таблицу истинности функции

Перейдите на лист 2.

2. — переводим на язык связок F = не А или ( В или не С)

3. Переменные 3, значит в таблице будет 8 строк. Вводим шаблон таблицы.

4. Определяемся с порядком действий:

не С, 2. В или (не С) , 3. не А 4. (не А) или (В или не С)

5. Запишем действия в соответствующие столбцы

6. Дальше для каждого действия вставляется своя логическая функция (как для первых таблиц), только нужно внимательно смотреть над значениями из каких столбцов вы производите операции.

Практическая работа «Построение таблиц истинности в MS Excel»
методическая разработка по информатике и икт (11 класс) по теме

Кулешова Татьяна Павловна

Научиться использовать логические функции программы Excel при построении таблиц истинности.

Задание 1. Доказать законы де Моргана с помощью таблиц истинности в ЭТ Excel.

Загрузить Excel .Создать структуру электронной таблицы.

Заполнить электронную таблицу данными. Используя логические функции произвести расчеты.

Использование MS Excel при изучении математической логики

В настоящее время применение информационных технологий становится неотъемлемой частью образовательного процесса. Компьютер наиболее полно удовлетворяет дидактическим требованиям и позволяет адаптировать процесс обучения к индивидуальным особенностям учащихся.

Компьютерные технологии активно внедряются в процесс обучения и диагностики, позволяют упростить процесс отработки навыков и умений и оценки знаний учащихся.

В данной работе рассматривается применение табличного процессора MS Excel при изучении основ логики.

Существует множество задач, в которых исходные и результатные данные должны быть представлены в табличной форме. Электронные таблицы представляют собой удобный инструмент для автоматизации таких вычислений. Решения многих вычислительных задач на ЭВМ, которые раньше можно было осуществить только путем программирования, стало возможно реализовать. Использование математических формул в электронных таблицах позволяет представить взаимосвязь между различными параметрами некоторой реальной системы. Основное свойство электронных таблиц – мгновенный пересчет формул при изменении значений входящих в них операндов. Благодаря этому свойству, таблица представляет собой удобный инструмент для организации численного эксперимента:

  • подбор параметров,
  • прогноз поведения моделируемой системы,
  • анализ зависимостей,
  • планирование.

В электронных таблицах предусмотрен также графический режим работы, который дает возможность графического представления (в виде графиков, диаграмм) числовой информации, содержащейся в таблице.

В процессе изучения алгебры логики учащиеся знакомятся с такими понятиями как: высказывание, таблицы истинности, логические функции и логические операции. Алгебра логики является разделом математической логики, в которой изучаются методы доказательства истинности (1) или ложности (0) сложных логических конструкций, составленных из простых высказываний, на основе истинности или ложности последних. Для закрепления полученных знаний возможно использование табличного процессора MS Excel и его функций.

Для реализации функций булевой алгебры используются логические функции: ЕСЛИ, И, ИЛИ, НЕ, ИСТИНА и ЛОЖЬ. При работе с функциями в MS Excel используется мастер функций (Вставка Функция…), в котором отображается имя функции, ее описание и аргументы.

Рисунок 1. Окно мастера функций

Первоначально следует создать таблицу основных логических операций:

Рисунок 2. Таблица истинности основных логических операций

При составлении таблицы истинности используются следующие формулы:

  1. Инверсия: =ЕСЛИ(A2=1;0;1);
  2. Дизъюнкция: =ЕСЛИ(ИЛИ(A2=1;B2=1);1;0);
  3. Конъюнкция: =ЕСЛИ(И(A2=1;B2=1);1;0);
  4. Импликация: =ЕСЛИ(И(A2=1;B2=0);0;1);
  5. Эквивалентность: =ЕСЛИ(A2=B2;1;0).

В последующей работе данная таблица может использоваться учащимися как основа для выполнения заданий лабораторной работы.

Учащимся может быть предложена следующая работа.

Задание: Построить таблицу истинности для формулы (A B C) A, используя MS Excel.

Алгоритм:

  1. Определить количество наборов входных переменных, по формуле: Q = 2 n , где n – количество переменных. Q = 2 3 = 8.
  2. Внести в таблицу все наборы входных переменных:

Рисунок 3. Исходные данные

  1. Определить количество логических операций и порядок их выполнения:
  1. Заполнить столбцы результатами выполнения логических операций в обозначенной последовательности.

Для этого в ячейку D2 ввести формулу: =ЕСЛИ(B2=1;0;1);

в E2: =ЕСЛИ(И(A2=1;D2=1);1;0);

в F2: =ЕСЛИ(И(E2=1;C2=0);0;1);

в G2: =ЕСЛИ(F2=A2;1;0).

Заполнение остальных строк произвести путем копирования введенной формулы.

Рисунок 4. Результат выполнения работы

Табличный процессор может быть использован для закрепления не только материала математической логики, но и для основ теории вероятностей и математической статистики.

Задачи для самостоятельного решения

Определить с помощью таблиц истинности равносильность формул.

Определить являются ли формулы тавтологиями.

Примеры вычислений с использованием стандартных функций

СУММ(А) – функция суммирования, где: А — список от 1 до 30 аргументов суммирования.

СУММЕСЛИ(диапазон; критерий; диапазон_суммирования) – суммирования ячеек диапазона, удовлетворяющих заданным условиям, где:

· диапазон — диапазон адресов вычисляемых ячеек;

· критерий — критерий в виде числа, выражения или текста, определяющего суммируемые ячейки. Например, критерий может быть выражен как 24, «>22»;

· диапазон_суммирования — фактические ячейки для суммирования.

ЕСЛИ(логическое_выражение; значение_если_истина; значение_если_ложь) – проверяет, выполняется ли логическое выражение, если да, то выводит значение если истина, нет – значение если ложь;

Ошибки в формулах Excel.Если формула построена неправильно, Excel формирует соответствующую ошибку, основными причинами появления которых следующие:

· #ЗНАЧ! — используется недопустимый тип аргумента;

· #ДЕЛ/0! — в формуле выполняется деление на ноль;

· #ИМЯ? — Excel не может определить используемое в формуле имя;

· #ССЫЛКА! — используется недопустимая ссылка на ячейку;

· #Н/Д — неопределенные данные, при некорректном определении аргументов функции;

· #ПУСТО! — задано пересечение двух областей, не имеющих общих ячеек.

2.3 Построение диаграмм и графиков в Excel

Наиболее удобным способом создания диаграммы является использование Мастера диаграмм,вызываемый нажатием кнопки Мастер диаграмм на панели Стандартная, после чего появится диалоговое окно Мастер диаграмм, обеспечивающий построение диаграмм за 4 шага.

1. Выбор типа и вида диаграммы.После вызова Мастера диаграммв диалоговом окне Мастер диаграмм (шаг 1 из 4): тип диаграммы следует выбрать тип и вид диаграммы. Диалоговое окно имеет две вкладки: Стандартные и Нестандартные. Во вкладке Стандартные расположены стандартные типы диаграмм Excel и их разновидности. Для просмотра внешнего вида выбранной диаграммы следует нажать и удерживать кнопку Просмотр результата. Выбранный тип и вид диаграммы можно будет изменить в последующем при редактировании и оформлении диаграммы.

2. Выбор источника данных.В диалоговом окне Мастер диаграмм (шаг 2 из 4): источник данных диаграммы необходимо выбрать источник данных для диаграммы (рис.4.22), диалоговое окно имеет две вкладки: Диапазон данных и Ряд.

Рис. 4.22. Выбор источника данных диаграммы

Если перед началом создания диаграммы на листе были выделены ячейки с данными, то во вкладке Диапазон данных в поле Диапазон указан диапазон ячеек листа, для которого создается диаграмма, а на листе этот диапазон обведен «бегущим» пунктиром. При необходимости можно очистить поле Диапазон и, не закрывая диалогового окна, на листе выделить другой диапазон ячеек.

Как правило, независимо от размещения данных на листе, Excel правильно выбирает вариант построения рядов данных (по строкам или по столбцам выделенного диапазона) и устанавливает соответствующий переключатель (на строках или на столбцах), имена рядов данных показываются в легенде.

Содержание вкладки Ряд зависит от типа выбранной диаграммы, а также от выбора варианта построения рядов данных.

По окончании работы с источниками данных диаграммы в диалоговом окне Мастер диаграмм (шаг 2 из 4): источник данных диаграммы следует нажать кнопку Далее.

3. Выбор параметров диаграммы.Выполняется на 3-емшаге вокне Мастер диаграмм (шаг 3 из 4 ): параметры диаграммы. На данном шаге мастером предлагается определить заголовок создаваемой диаграммы, использовать линии сетки, включить легенду в любом месте диаграммы, дать имена осям Х и У, определить подписи данных и щелкнуть Далее для перехода на последний четвертый шаг.

4. Размещение диаграммы. Выполняется в окне Мастер Диаграмм (шаг 4 из 4): размещение диаграммы.На этом шаге пользователь определяет, где поместить диаграмму: на текущем рабочем листе или на отдельном листе книги. После нажатия кнопки Готово Excel создаст диаграмму. Затем пользователь может внести изменения данных в исходной таблице, что автоматически отразится на построенной диаграмме.

Определим логические функции:

1) Инверсия (отрицание) — это логическое не.

Говорят, что имея суждение А, можно образовать новое суждение, которое читается как «не А» или «неверно, что А»

Для обозначения отрицания суждения употребляется символ или над переменной.

Запись А читается как «не А».

2) Коньюкция — это логическое умножение.

Обозначение: А & В ( АВ, А / В) . Читается так “ А и В “.

3) Дизьюкция — это логическое сложение.

Обозначение: А V В , ( А + В ). Читается так: “ А или В ”.

4) Эквиваленция — это функция тождества.

Она обозначается символами= ,

Выбираем обозначение А = В. («тогда и только тогда»).
Запись А = В читается как «А эквивалентно В».

5) Импликация — это логическое следование.

Импликация двух высказываний А и В соответствует союзу «ЕСЛИ…ТО».
Она обозначается символом->

Читается как «из А следует В»

Обозначение:

Импликация устроена немного сложнее других функций. В импликации существенное значение имеет порядок аргументов. Первый называется посылкой, а второй следствием. Можно сказать, что первое высказывание является как бы причиной второго, а второе как бы вытекает из первого.

Импликация как булева функция ложна лишь тогда, когда посылка истинна, а следствие ложно. Иными словами, импликация — это сокращённая запись для выражения .
Таблицы истинности:
прямая импликация (от a к b) (материальная импликация, материальный кондиционал)

если , то истинно (1),

«Житейский» смысл импликации. Для более лёгкого понимания смысла прямой импликации и запоминания ее таблицы истинности может пригодиться житейская модель: А — начальник. Он может приказать «работай» (1) или сказать «делай что хочешь» (0). В — подчиненный. Он может работать (1) или бездельничать (0). В таком случае импликация — не что иное, как послушание подчиненного начальнику. По таблице истинности легко проверить, что послушания нет только тогда, когда начальник приказывает работать, а подчиненный бездельничает.

Условная функция. Общий вид условной функции следующий:

Условие — это логическое выражение, которое может принимать значениеИСТИНА илиЛОЖЬ. и могут быть числами, формулами или текстом.

Условная функция, записанная в ячейку таблицы, выполняется так: если условие истинно, то значение данной ячейки определит , в противном случае — .

Логические выражения. Логические выражения строятся с помощью операций отношения ( , = (больше или рано), =, <>(не равно)) и логических операций (логическое И, логическоеИЛИ, логическое отрицаниеНЕ).Результатом вычисления логического выражения являются логические величиныИСТИНА илиЛОЖЬ.

Построить таблицу истинности в Excel: основные понятия и примеры

Алгебра высказываний – точная наука, не дающая компромиссов. Чтобы решить примеры с конъюнкцией, дизъюнкцией, импликацией и т. д., можно построить таблицу истинности в прикладной программе Excel. Она оснащена набором логических функций, позволяющих автоматизировать и облегчить процесс нахождения результата.

Математическая логика: основные понятия

Основателем формальной логики считают Аристотеля. В XVII в. Г. Лейбниц предложил вводить символы для определения высказываний. Д. Буль закрепил усвоенные знания и впервые обозначил предложения символами.

Схематически «ИСТИНА» замещается 1, а «ЛОЖЬ» – 0.

Под высказыванием понимают любое повествовательное предложение, дающее какую-либо информацию и способное принимать значение истинности или ложности. В алгебре логики отвлекаются от смысловой нагрузки предложений и рассматривают только логические значения.

Под отрицанием понимают новое выражение, принимающее значение истины в случае его ложности и наоборот.

Конъюнкцией двух переменных называют новое предложение, принимающее значение истинности в случае одновременного обозначения «1» и ложности в остальных ситуациях.

Под дизъюнкцией двух высказываний понимают новое выражение, принимающее значение «ЛОЖЬ» только при одновременном наличии «0» и «ИСТИНА» в остальных вариациях.

Импликацией двух переменных называют новое предложение, в котором:

  • если посылка истинна, а следствие ложно, то выражение равняется «0»;
  • высказывание равняется «1» в остальных случаях.

Под эквиваленцией двух переменных понимают новое высказывание, принимающее значение истинности только в случае одинаковости элементов. Иначе предложение равняется «0».

Логические значения выражений принято оформлять в табличном виде. Есть и другое название у такого рода информации. Говорят, для высказывания нужно построить таблицу истинности. В ней указываются первоначальные значения для всех переменных, а потом вычисляется результат всего выражения.

Алгоритм реализации вычислений в логических операциях

Чтобы построить таблицу истинности, необходимо знать, в каком порядке выполняются действия. В выражении, где несколько операндов, вычисление осуществляется в следующем порядке:

  • инверсия (отрицание);
  • конъюнкция (логическая функция в Excel «И»);
  • дизъюнкция (булев оператор в Excel «ИЛИ»);
  • импликация (следствие);
  • эквиваленция.

Существуют еще две операции, но для них приоритет не определен:

Алгоритм вычислений меняется, если выражение заключено в скобки.

Порядок построения табличной формы для логических операндов в Excel

Прежде чем находить значение выражения, нужно изучить понятие формулы алгебры логики. Определение гласит, что это сложное выражение, состоящее из простейших высказываний, соединенных между собой логическими операндами.

Пример 1. Построить таблицу истинности для конъюнкции, дизъюнкции и отрицания.

Пример 2. Дана формула алгебры логики. Построить таблицу истинности. Примеры в качестве образца даны ниже.

Пример 3. Как построить таблицу истинности в Excel, если дана формула алгебры логики в словесном описании. Высказывание: «Если треугольник – равносторонний, то все его ребра равны или все его углы равны».

Для начала необходимо разобрать составное предложение на минимальные элементы:

  • Первая часть выражения: А = «треугольник равносторонний».
  • Вторая: В = «все стороны фигуры равны».
  • Третья: С = «все углы треугольника равны».

После этого составляется выражение и решается в программном пакете Excel.

При составлении таблиц истинности важно помнить о порядке выполнения операций.

Использование логических функций в Excel

Табличный редактор Эксель – очень гибкий и мощный инструмент для структурированной работы с данными. Среди большого количества его эффективных инструментов стоит отдельно выделить логические операторы, в основе использования которых лежит признание выражения истинным или ложным. Эти функции эффективно встроены в инструментарий формул и позволяют создавать гибкие условия для различных вычислений или заполнения ячеек на основе логических выражений. В данной статье будут описаны основные используемые функции, а также приведен практический пример использования логических операторов в Excel.

Основные логические функции, используемые в Эксель

Перечень наиболее часто используемых логических операторов можно ограничить следующим набором:

В большинстве случаев их достаточно для построения сложных логических конструкций и задания условий.

Для каждого из указанных выше операторов существуют аргументы (за исключением функций ИСТИНА и ЛОЖЬ) – это могут быть как цифровые или текстовые значения, так и ссылки на данные, содержащиеся в других ячейках.

Операторы ИСТИНА и ЛОЖЬ

Функция ИСТИНА не имеет собственных аргументов и практически всегда используется, как структурный компонент для других логических выражений, так как принимает одно конкретно заданное значение.

Функция ЛОЖЬ, напротив, может принимать любые значения, не являющиеся истинными. Как и ИСТИНА, практически всегда используется, как структурный компонент для других сложных выражений.

Операторы И и ИЛИ

Синтаксис оператора И выглядит следующим образом:

=И(лог_значение1; лог_значение2; …), возможное количество используемых аргументов – от 1 до 255.

Оператор И используется в качестве элемента-связки для нескольких условий логического выражения. Важно, чтобы все аргументы оператора имели значение ИСТИНА (если в выражении их несколько), в противном случае вся логическая цепочка будет возвращать значение ЛОЖЬ.

Синтаксис оператора ИЛИ:

=ИЛИ(лог_значение1; лог_значение2; …), возможное количество используемых аргументов – от 1 до 255.

В отличие от И, функция ИЛИ будет возвращать значение ИСТИНА даже в случае, когда хотя бы один из используемых аргументов ему соответствует, а все остальные – ложные.

Оператор НЕ

Синтаксис функции НЕ: =НЕ(лог_значение).

Количество аргументов оператора НЕ – всегда один. Соответственно, результат функции (ИСТИНА/ЛОЖЬ) полностью зависит только от значения аргумента.

Операторы ЕСЛИ и ЕСЛИОШИБКА

Общий синтаксис функции ЕСЛИ представляет собой конструкцию:

=ЕСЛИ(логическое_выражение;значение_если_истина;значение_если-ложь).

Оператор ЕСЛИ используется для построения сложных развернутых логических цепочек. Суть функции – в проверке внесенного в качестве логического выражения условия. Если условие выполняется, и оно истинно, то в качестве результата функции возвращается одно выражение, если же логическое выражение ложно, то в качестве результата функции возвращается другое условие.

Синтаксис оператора ЕСЛИОШИБКА имеет вид:

=ЕСЛИОШИБКА(значение;значение_если_ошибка).

Функция проверяет истинность логического выражения для первого аргумента, и если он соблюдается, то возвращает в качестве результата его значение. Если же выражение ложно, то в качестве результата выдается значение второго аргумента, указанное в функции.

Операторы ЕОШИБКА и ЕПУСТО

Оператор ЕОШИБКА имеет следующую структуру:

=ЕОШИБКА(значение)

Он позволяет осуществить проверку корректности уже заполненных ячеек (одной или диапазона), и, если ячейка некорректно заполнена, возвращает результат ИСТИНА, в противном случае – ЛОЖЬ.

Примеры значений в некорректно заполненных ячейках:

Аргумент функции – адрес конкретной ячейки или ссылка на диапазон ячеек.

Формула функции ЕПУСТО выглядит следующим образом:

=ЕПУСТО(значение)

Функционал оператора проверяет ячейку или диапазон ячеек и возвращает ИСТИНА, если в ячейке/диапазоне ячеек нет данных, и ЛОЖЬ, если в ячейке/диапазоне ячеек присутствуют данные. Аргумент функции – адрес конкретной ячейки или ссылка на диапазон ячеек.

Практический пример использования логических функций

В примере ниже попробуем частично использовать описанные выше функции для решения задачи, приближенной к реальной ситуации с расчетом премии, зависящей от определенных условий.

В качестве исходных данных – таблица со сведениями о работниках, в которой указан их пол и возраст.

Нам необходимо произвести расчет премии. Ключевые условия, от которых зависит размер премии:

  • величина обычной премии, которую получат все сотрудники без исключения – 3 000 руб.;
  • сотрудницам женского пола положена повышенная премия – 7 000 руб.;
  • молодым сотрудникам (младше 1984 г. рождения) положена повышенная премия – 7 000 руб.;

Выполним необходимые расчеты, используя логические функции.

  1. Встаем в первую ячейку столбца, в которой хотим посчитать размеры премий и щелкаем кнопку “Вставить функцию” (слева от сроки формул).
  2. В открывшемся Мастере функций выбираем категорию “Логические”, затем в предложенном перечне операторов кликаем по строке “ЕСЛИ” и жмем OK.
  3. Теперь нам нужно задать аргументы функции. Так как у нас не одно, а два условия получения повышенной премии, причем нужно, чтобы выполнялось хотя бы одно из них, чтобы задать логическое выражение, воспользуемся функцией ИЛИ. Находясь в поле для ввода значения аргумента “Лог_выражение” кликаем в основной рабочей области книги на небольшую стрелку вниз, расположенную в левой верхней части окна программы, где обычно отображается адрес ячейки. В открывшемся списке функций выбираем оператор ИЛИ, если он представлен в перечне (или можно кликнуть на пункт “Другие функции” и выбрать его в новом окне Мастера функций, как мы изначально сделали для выбора оператора ЕСЛИ).
  4. Мы переключимся в окно аргументов функци ИЛИ. Здесь задаем наши условия получения премии в 7000 руб.:
    • год рождения позже 1984 года;
    • пол – женский;
  5. Теперь обращаем внимание на строку формул. Кликаем в ней на название первоначального оператора ЕСЛИ, чтобы переключиться в аргументы этой функции.
  6. Заполняем аргументы функции и щелкаем OK:
    • в значении “Истина” пишем цифру 7000;
    • в значении “Ложь” указываем цифру 3000;
  7. Результат работы логических операторов отобразится в первой ячейке столбца, которую мы выбрали. Как мы можем видеть, окончательный вид формулы выглядит следующим образом:
    =ЕСЛИ(ИЛИ(C2>1984;D2=»жен.»);7000;3000) .
    Кстати, вместо использования Мастера функций можно было вручную составить и прописать данную формулу в требуемой ячейке.
  8. Чтобы рассчитать премию для всех сотрудников, воспользуемся Маркером заполнения. Наведем курсор на правый нижний угол ячейки с формулой. После того, как курсор примет форму черного крестика (это и есть Маркер заполнения), зажимаем левую кнопку мыши и протягиваем выделение вниз, до последней ячейки столбца.
  9. Все готово. Благодаря логическим операторам мы получили заполненные данные для столбца с премиями.

Заключение

Логические операторы используются практически во всех сложных формулах, в которых значение в ячейке зависит от соблюдения одного или нескольких условий и позволяют строить гибкие конструкции, объединяя простые функции и расчеты в одной ячейке. Это дает возможность значительно сократить время на обработку данных и повысить эффективность работы, так как снимает большое количество промежуточных шагов в расчетах и вычислениях.

Понравилась статья? Поделить с друзьями:
  • Таблицы истинности логических функций в таблице excel
  • Таблицы истинности в excel практическая работа 9 класс
  • Таблицы истинности в excel задачи
  • Таблицы друг на друга в word
  • Таблицы документа word могут содержать формулы