Скорректированный коэффициент детерминации excel

Содержание

  • Вычисление коэффициента детерминации
    • Способ 1: вычисление коэффициента детерминации при линейной функции
    • Способ 2: вычисление коэффициента детерминации в нелинейных функциях
    • Способ 3: коэффициент детерминации для линии тренда
  • Вопросы и ответы

Коэффициент детерминации в Microsoft Excel

Одним из показателей, описывающих качество построенной модели в статистике, является коэффициент детерминации (R^2), который ещё называют величиной достоверности аппроксимации. С его помощью можно определить уровень точности прогноза. Давайте узнаем, как можно произвести расчет данного показателя с помощью различных инструментов программы Excel.

Вычисление коэффициента детерминации

В зависимости от уровня коэффициента детерминации, принято разделять модели на три группы:

  • 0,8 – 1 — модель хорошего качества;
  • 0,5 – 0,8 — модель приемлемого качества;
  • 0 – 0,5 — модель плохого качества.

В последнем случае качество модели говорит о невозможности её использования для прогноза.

Выбор способа вычисления указанного значения в Excel зависит от того, является ли регрессия линейной или нет. В первом случае можно использовать функцию КВПИРСОН, а во втором придется воспользоваться специальным инструментом из пакета анализа.

Способ 1: вычисление коэффициента детерминации при линейной функции

Прежде всего, выясним, как найти коэффициент детерминации при линейной функции. В этом случае данный показатель будет равняться квадрату коэффициента корреляции. Произведем его расчет с помощью встроенной функции Excel на примере конкретной таблицы, которая приведена ниже.

Таблица с данными в Microsoft Excel

  1. Выделяем ячейку, где будет произведен вывод коэффициента детерминации после его расчета, и щелкаем по пиктограмме «Вставить функцию».
  2. Переход в Мастер функций в Microsoft Excel

  3. Запускается Мастер функций. Перемещаемся в его категорию «Статистические» и отмечаем наименование «КВПИРСОН». Далее клацаем по кнопке «OK».
  4. Переход в окно аргументов функции КВПИРСОН в Microsoft Excel

  5. Происходит запуск окна аргументов функции КВПИРСОН. Данный оператор из статистической группы предназначен для вычисления квадрата коэффициента корреляции функции Пирсона, то есть, линейной функции. А как мы помним, при линейной функции коэффициент детерминации как раз равен квадрату коэффициента корреляции.

    Синтаксис этого оператора такой:

    =КВПИРСОН(известные_значения_y;известные_значения_x)

    Таким образом, функция имеет два оператора, один из которых представляет собой перечень значений функции, а второй – аргументов. Операторы могут быть представлены, как непосредственно в виде значений, перечисленных через точку с запятой (;), так и в виде ссылок на диапазоны, где они расположены. Именно последний вариант и будет использован нами в данном примере.

    Устанавливаем курсор в поле «Известные значения y». Выполняем зажим левой кнопки мышки и производим выделение содержимого столбца «Y» таблицы. Как видим, адрес указанного массива данных тут же отображается в окне.

    Аналогичным образом заполняем поле «Известные значения x». Ставим курсор в данное поле, но на этот раз выделяем значения столбца «X».

    После того, как все данные были отображены в окне аргументов КВПИРСОН, клацаем по кнопке «OK», расположенной в самом его низу.

  6. Окно аргументов функции КВПИРСОН в Microsoft Excel

    Lumpics.ru

  7. Как видим, вслед за этим программа производит расчет коэффициента детерминации и выдает результат в ту ячейку, которая была выделена ещё перед вызовом Мастера функций. В нашем примере значение вычисляемого показателя получилось равным 1. Это значит, что представленная модель абсолютно достоверная, то есть, исключает погрешность.

Результат расчета функции КВПИРСОН в Microsoft Excel

Урок: Мастер функций в Microsoft Excel

Способ 2: вычисление коэффициента детерминации в нелинейных функциях

Но указанный выше вариант расчета искомого значения можно применять только к линейным функциям. Что же делать, чтобы произвести его расчет в нелинейной функции? В Экселе имеется и такая возможность. Её можно осуществить с помощью инструмента «Регрессия», который является составной частью пакета «Анализ данных».

  1. Но прежде, чем воспользоваться указанным инструментом, следует активировать сам «Пакет анализа», который по умолчанию в Экселе отключен. Перемещаемся во вкладку «Файл», а затем переходим по пункту «Параметры».
  2. Переход в окно параметров в Microsoft Excel

  3. В открывшемся окне производим перемещение в раздел «Надстройки» при помощи навигации по левому вертикальному меню. В нижней части правой области окна располагается поле «Управление». Из списка доступных там подразделов выбираем наименование «Надстройки Excel…», а затем щелкаем по кнопке «Перейти…», расположенной справа от поля.
  4. Переход в окно надстроек в Microsoft Excel

  5. Производится запуск окна надстроек. В центральной его части расположен список доступных надстроек. Устанавливаем флажок около позиции «Пакет анализа». Вслед за этим требуется щелкнуть по кнопке «OK» в правой части интерфейса окна.
  6. Окно надстроек в Microsoft Excel

  7. Пакет инструментов «Анализ данных» в текущем экземпляре Excel будет активирован. Доступ к нему располагается на ленте во вкладке «Данные». Перемещаемся в указанную вкладку и клацаем по кнопке «Анализ данных» в группе настроек «Анализ».
  8. Запуск пакета анализ данных в Microsoft Excel

  9. Активируется окошко «Анализ данных» со списком профильных инструментов обработки информации. Выделяем из этого перечня пункт «Регрессия» и клацаем по кнопке «OK».
  10. Запуск инструмента Регрессия в окне Анализ данных в Microsoft Excel

  11. Затем открывается окно инструмента «Регрессия». Первый блок настроек – «Входные данные». Тут в двух полях нужно указать адреса диапазонов, где находятся значения аргумента и функции. Ставим курсор в поле «Входной интервал Y» и выделяем на листе содержимое колонки «Y». После того, как адрес массива отобразился в окне «Регрессия», ставим курсор в поле «Входной интервал Y» и точно таким же образом выделяем ячейки столбца «X».

    Около параметров «Метка» и «Константа-ноль» флажки не ставим. Флажок можно установить около параметра «Уровень надежности» и в поле напротив указать желаемую величину соответствующего показателя (по умолчанию 95%).

    В группе «Параметры вывода» нужно указать, в какой области будет отображаться результат вычисления. Существует три варианта:

    • Область на текущем листе;
    • Другой лист;
    • Другая книга (новый файл).

    Остановим свой выбор на первом варианте, чтобы исходные данные и результат размещались на одном рабочем листе. Ставим переключатель около параметра «Выходной интервал». В поле напротив данного пункта ставим курсор. Щелкаем левой кнопкой мыши по пустому элементу на листе, который призван стать левой верхней ячейкой таблицы вывода итогов расчета. Адрес данного элемента должен высветиться в поле окна «Регрессия».

    Группы параметров «Остатки» и «Нормальная вероятность» игнорируем, так как для решения поставленной задачи они не важны. После этого клацаем по кнопке «OK», которая размещена в правом верхнем углу окна «Регрессия».

  12. Окно инструмента Регрессия Пакета анализа в Microsoft Excel

  13. Программа производит расчет на основе ранее введенных данных и выводит результат в указанный диапазон. Как видим, данный инструмент выводит на лист довольно большое количество результатов по различным параметрам. Но в контексте текущего урока нас интересует показатель «R-квадрат». В данном случае он равен 0,947664, что характеризует выбранную модель, как модель хорошего качества.

Результат расчета коэффициента детерминации с помощью инструмента Регрессия в окне Анализ данных в Microsoft Excel

Способ 3: коэффициент детерминации для линии тренда

Кроме указанных выше вариантов, коэффициент детерминации можно отобразить непосредственно для линии тренда в графике, построенном на листе Excel. Выясним, как это можно сделать на конкретном примере.

  1. Мы имеем график, построенный на основе таблицы аргументов и значений функции, которая была использована для предыдущего примера. Произведем построение к нему линии тренда. Кликаем по любому месту области построения, на которой размещен график, левой кнопкой мыши. При этом на ленте появляется дополнительный набор вкладок – «Работа с диаграммами». Переходим во вкладку «Макет». Клацаем по кнопке «Линия тренда», которая размещена в блоке инструментов «Анализ». Появляется меню с выбором типа линии тренда. Останавливаем выбор на том типе, который соответствует конкретной задаче. Давайте для нашего примера выберем вариант «Экспоненциальное приближение».
  2. Создание линии тренда в Microsoft Excel

  3. Эксель строит прямо на плоскости построения графика линию тренда в виде дополнительной черной кривой.
  4. Линия тренда в Microsoft Excel

  5. Теперь нашей задачей является отобразить собственно коэффициент детерминации. Кликаем правой кнопкой мыши по линии тренда. Активируется контекстное меню. Останавливаем выбор в нем на пункте «Формат линии тренда…».
    Переход в окно формата линии тренда в Microsoft Excel

    Для выполнения перехода в окно формата линии тренда можно выполнить альтернативное действие. Выделяем линию тренда кликом по ней левой кнопки мыши. Перемещаемся во вкладку «Макет». Клацаем по кнопке «Линия тренда» в блоке «Анализ». В открывшемся списке клацаем по самому последнему пункту перечня действий – «Дополнительные параметры линии тренда…».

  6. Переход в окно дополнительных параметров линии тренда через кнопку на ленте в Microsoft Excel

  7. После любого из двух вышеуказанных действий запускается окошко формата, в котором можно произвести дополнительные настройки. В частности, для выполнения нашей задачи необходимо установить флажок напротив пункта «Поместить на диаграмму величину достоверности аппроксимации (R^2)». Он размещен в самом низу окна. То есть, таким образом мы включаем отображение коэффициента детерминации на области построения. Затем не забываем нажать на кнопку «Закрыть» внизу текущего окна.
  8. Окно формата линии тренда в Microsoft Excel

  9. Значение достоверности аппроксимации, то есть, величина коэффициента детерминации, будет отображено на листе в области построения. В данном случае эта величина, как видим, равна 0,9242, что характеризует аппроксимацию, как модель хорошего качества.
  10. Коэффициент детерминации линии тренда в Microsoft Excel

  11. Абсолютно точно таким образом можно устанавливать показ коэффициента детерминации для любого другого типа линии тренда. Можно менять тип линии тренда, произведя переход через кнопку на ленте или контекстное меню в окно её параметров, как было показано выше. Затем уже в самом окне в группе «Построение линии тренда» можно переключиться на другой тип. Не забываем при этом контролировать, чтобы около пункта «Поместить на диаграмму величину достоверности аппроксимации» был установлен флажок. Завершив вышеуказанные действия, щелкаем по кнопке «Закрыть» в нижнем правом углу окна.
  12. Смена типа линии тренда в окне формат линии тренда в Microsoft Excel

  13. При линейном типе линия тренда уже имеет значение достоверности аппроксимации равное 0,9477, что характеризует эту модель, как ещё более достоверную, чем рассматриваемую нами ранее линию тренда экспоненциального типа.
  14. Величина достоверности аппроксимации для линейного типа линии тренда в Microsoft Excel

  15. Таким образом, переключаясь между разными типами линии тренда и сравнивая их значения достоверности аппроксимации (коэффициент детерминации), можно найти тот вариант, модель которого наиболее точно описывает представленный график. Вариант с самым высоким показателем коэффициента детерминации будет наиболее достоверным. На его основе можно строить самый точный прогноз.

    Например, для нашего случая опытным путем удалось установить, что самый высокий уровень достоверности имеет полиномиальный тип линии тренда второй степени. Коэффициент детерминации в данном случае равен 1. Это говорит о том, что указанная модель абсолютно достоверная, что означает полное исключение погрешностей.

    Величина достоверности аппроксимации для полиномиального типа линии тренда в Microsoft Excel

    Но, в то же время, это совсем не значит, что для другого графика тоже наиболее достоверным окажется именно этот тип линии тренда. Оптимальный выбор типа линии тренда зависит от типа функции, на основании которой был построен график. Если пользователь не обладает достаточным объемом знаний, чтобы «на глаз» прикинуть наиболее качественный вариант, то единственным выходом определения лучшего прогноза является как раз сравнение коэффициентов детерминации, как было показано на примере выше.

Читайте также:
Построение линии тренда в Excel
Аппроксимация в Excel

В Экселе существуют два основных варианта вычисления коэффициента детерминации: использование оператора КВПИРСОН и применение инструмента «Регрессия» из пакета инструментов «Анализ данных». При этом первый из этих вариантов предназначен для использования только в процессе обработки линейной функции, а другой вариант можно использовать практически во всех ситуациях. Кроме того, существует возможность отображения коэффициента детерминации для линии трендов графиков в качестве величины достоверности аппроксимации. С помощью данного показателя имеется возможность определить тип линии тренда, который располагает самым высоким уровнем достоверности для конкретной функции.

Еще статьи по данной теме:

Помогла ли Вам статья?

Множественная регрессия в EXCEL

history 26 января 2019 г.
    Группы статей

  • Статистический анализ

Рассмотрим использование MS EXCEL для прогнозирования переменной Y на основании нескольких переменных Х, т.е. множественную регрессию.

Перед прочтением этой статьи рекомендуется освежить в памяти простую линейную регрессию – прогнозирование на основе значений только одного фактора.

Disclaimer : Данную статью не стоит рассматривать, как пересказ главы из учебника по статистике. Статья не обладает ни полнотой, ни строгостью изложения положений статистической науки. Эта статья – о применении MS EXCEL для целей Множественного регрессионного анализа. Теоретические отступления приведены лишь из соображения логики изложения. Использование данной статьи для изучения Регрессии – плохая идея.

Статья про Множественный регрессионный анализ получилась большая, поэтому ниже для удобства приведены ее разделы:

Прогнозирование единственной переменной Y на основании значений 2-х или более переменных Х называется множественной регрессией .

Множественная линейная регрессионная модель (Multiple Linear Regression Model) имеет вид Y=β 01 *X 12 *X 2 +…+β k *X k +ε. В этом случае переменная Y зависит от k поясняющих переменных Х, т.е. регрессоров . ε — случайная ошибка . Модель является линейной относительно неизвестных параметров β.

Оценка неизвестных параметров

В этой статье рассмотрим модель с 2-мя регрессорами. Сначала введем необходимые обозначения и понятия множественной регрессии.

Для описания зависимости Y от 2-х переменных линейная модель имеет вид:

Параметры этой модели β i нам неизвестны, но их можно оценить, используя случайную выборку (измеренные значения переменной Y от заданных Х). Оценки параметров модели (β 0 , β 1 , β 2 ) обычно вычисляются методом наименьших квадратов (МНК) , который минимизирует сумму квадратов ошибок прогнозирования (критерий минимизации в англоязычной литературе обозначают как SSE – Sum of Squared Errors).

Ошибка ε имеет случайную природу и имеет свою функцию распределения со средним значением =0 и дисперсией σ 2 .

Оценки b 1 и b 2 называются коэффициентами регрессии , они определяют влияние соответствующей переменной X, когда все остальные независимые переменные остаются неизменными .

Сдвиг (intercept) или постоянный член b 0 , определяет прогнозируемое значение Y, когда все поясняющие переменные Х равны 0 (часто сдвиг не имеет физического смысла в рамках модели и обусловлен лишь математическими вычислениями МНК ).

Вычислив оценки, полученные методом МНК, позволяют прогнозировать значения переменной Y:

Примечание : Для случая 2-х регрессоров, все спрогнозированные значения переменной Y будут лежать в плоскости (в плоскости регрессии ).

В качестве примера рассмотрим технологический процесс изготовления нити:

Инженер, на основе имеющегося опыта, предположил, что прочность нити Y зависит от концентрации исходного раствора1 ) и температуры реакции2 ), и соответствует модели линейной регрессии. Для нахождения комбинации переменных Х, при которых Y принимает максимальное значение, необходимо определить коэффициенты регрессии, сделав выборку.

В MS EXCEL коэффициенты множественной регрессии удобнее всего вычислить с помощью функции ЛИНЕЙН() . Это сделано в файле примера на листе Коэффициенты . Чтобы вычислить оценки:

  • выделите 3 ячейки в одной строке (т.к. мы рассматриваем случай 2-х регрессоров, то будут вычислены 2 коэффициента регрессии + величина сдвига = 3 значения, для вывода которых понадобится 3 ячейки). Пусть это будет диапазон С8:Е8 ;
  • в Строке формул введите = ЛИНЕЙН(D20:D50;B20:C50) . Предполагается, что в столбце В содержатся прогнозируемые значения Y (в нашей модели это Прочность нити), в столбцах С и D содержатся значения контролируемых параметров Х (Х1 – Концентрация в столбце С и Х2 – Температура в столбце D).
  • нажмите CTRL+SHIFT+ENTER (т.к. это формула массива ).

В левой ячейке будет рассчитано значение коэффициента регрессии b 2 для переменной Х2, в средней ячейке — значение коэффициента регрессии b 1 для переменной Х1, в правой – сдвиг . Обратите внимание, что порядок вывода коэффициентов регрессии обратный по отношению к расположению столбцов с данными соответствующих переменных Х (вычисленный коэффициент b 2 располагается левее по отношению к b 1 , тогда как значения переменной Х2 располагаются правее значений переменной Х1). Это может привести к путанице, поэтому лучше разместить коэффициенты над соответствующими столбцами с данными, как это сделано в строке 17 файла примера .

Примечание : В принципе без функции ЛИНЕЙН() можно обойтись, записав альтернативные формулы. Для этого в файле примера на листе Коэффициенты в столбцах I : K вычислены отклонения значений переменных Х 1i , Х 2i , Y i от их средних значений , т.е.:

Далее коэффициенты регрессии рассчитываются по следующим формулам (эти формулы справедливы только при прогнозировании по 2-м независимым переменным Х):

При прогнозировании по 3-м и более независимым переменным Х формулы для вычисления коэффициентов регрессии значительно усложняются, поэтому следует использовать матричный подход.

В файле примера на листе Матричная форма выполнены расчеты коэффициентов регрессии с помощью матричного подхода.

Расчет можно произвести как пошагово, так и одной формулой массива :

Коэффициенты регрессии (вектор b ) в этом случае вычисляются по формуле b =(X T X) -1 (X T Y) или в другом виде записи b =(X ’ X) -1 (X ’ Y)

Под Х подразумевается матрица, состоящая из столбцов значений переменной Х с дополнительным столбцом единиц, а под Y – вектор-столбец значений Y.

Диаграмма рассеяния

В случае простой линейной регрессии (один регрессор, т.е. одна переменная Х) для визуализации связи между прогнозируемым значением Y и переменной Х строят диаграмму рассеяния (двумерную).

В случае множественной линейной регрессии двумерную диаграмму рассеяния можно построить только для анализа влияния каждого отдельного регрессора на Y (при этом остальные Х не меняются), т.е. так называемую Матричную диаграмму рассеивания (См. файл примера лист Диагр расс (матричная) ).

К сожалению, такую диаграмму трудно интерпретировать.

Более того, матричная диаграмма может вводить в заблуждение (см. Introduction to linear regression analysis / D . C . Montgomery , E . A . Peck , G . G . Vining , раздел 3.2.5 ), демонстрируя наличие или отсутствие линейной взаимосвязи между отдельным регрессором X i и Y.

Для случая с 2-мя регрессорами можно предложить альтернативный вид матричной диаграммы рассеяния . В стандартной диаграмме рассеяния строятся проекции на координатные плоскости Х1;Х2, Y;X1 и Y;X2. Однако, если взглянуть на точки относительно плоскости регрессии , то картину, на мой взгляд, будет проще интерпретировать.

Сравним две матричные диаграммы рассеяния (см. файл примера на листе «Диагр расс (в плоск регрессии)» , построенные для одних и тех же наблюдений. Первая – стандартная,

вторая представляет собой вид сверху на плоскость регрессии и 2 вида вдоль плоскости.

На второй диаграмме становится очевидно, что разброс точек относительно плоскости регрессии совсем не большой и поэтому, скорее всего, построенная модель является полезной, а выбранные 2 переменные Х позволяют прогнозировать Y (конечно, для подтверждения этой гипотезы нужно провести процедуру F-теста ).

Несколько слов о построении альтернативной матричной диаграммы рассеяния:

  • Перед построением необходимо нормировать значения наблюдений (для каждой переменной вычесть среднее и разделить на стандартное отклонение ). В этом случае практически все точки на диаграммах будут находится в диапазоне +/-3 (по аналогии со стандартным нормальным распределением , 99% значений которого лежат в пределах +/-3 сигма). В этом случае, на диаграмме можно фиксировать мин/макс значений осей, чтобы EXCEL автоматически не модифицировал масштаб осей при изменении данных (это не всегда удобно);
  • Теперь координаты точек необходимо рассчитать в системе отсчета относительно плоскости регрессии (в которой плоскость Оху’ совпадает с плоскостью регрессии). Для этого необходимо найти матрицу вращения , например, через вращение приводящее к совмещению нормали к плоскости регрессии и вектора оси Z (0;0;1);
  • Новые координаты позволяют построить альтернативную матричную диаграмму. Кроме того, для удобства можно вращать систему координат вокруг новой оси Z, чтобы нагляднее представить себе распределение точек относительно плоскости регрессии (для этого использована Полоса прокрутки в ячейках Q31:S31 ).

Вычисление прогнозных значений Y (отдельное наблюдение и среднее значение) и построение доверительных интервалов

После того, как нами были найдены тем или иным способом коэффициенты регрессии можно приступать к вычислению прогнозных значений Y на основе заданных значений переменных Х.

Уравнение прогнозирования или уравнение регрессии в случае 2-х независимых переменных (регрессоров) записывается в виде:

Примечание: В MS EXCEL прогнозное значение Y для заданных Х 1 и Х 2 можно также предсказать с помощью функции ТЕНДЕНЦИЯ() . При этом 2-й аргумент будет ссылкой на столбцы, содержащие все значения переменных Х 1 и Х 2 , а 3-й аргумент функции должен быть ссылкой на диапазон ячеек, содержащий 2 значения Х (Х 1i и Х 2i ) для выбранного наблюдения i (см. файл примера, лист Коэффициенты, столбец G ). Функция ПРЕДСКАЗ() , использованная нами в простой регрессии, не работает в случае множественной регрессии .

Найдя прогнозное значение Y, мы, таким образом, вычислим его точечную оценку. Понятно, что фактическое значение Y, полученное при наблюдении, будет, скорее всего, отличаться от этой оценки. Чтобы ответить на вопрос о том, на сколько хорошо мы можем предсказывать новые значения Y, нам потребуется построить доверительный интервал этой оценки, т.е. диапазон в котором с определенной заданной вероятностью, скажем 95%, мы ожидаем новое значение Y.

Доверительные интервалы построим при фиксированном Х для:

  • нового наблюдения Y;
  • среднего значения Y (интервал будет уже, чем для отдельного нового наблюдения)

Как и в случае простой линейной регрессии , для построения доверительных интервалов нам потребуется сначала вычислить стандартную ошибку модели (standard error of the model) , которая приблизительно показывает насколько велика ошибка предсказания значений переменной Y на основании значений переменных Х.

Для вычисления стандартной ошибки оценивают дисперсию ошибки ε, т.е. сигма^2 (ее часто обозначают как MS Е либо MSres ) . Затем, вычислив из полученной оценки квадратный корень, получим Стандартную ошибку регрессии (часто обозначают как SEy или sey ).

где SSE – сумма квадратов значений ошибок модели ei=yi — ŷi ( Sum of Squared Errors ). MSE означает Mean Square of Errors (среднее квадратов ошибок, точнее остатков).

Величина n-p – это количество степеней свободы ( df degrees of freedom ), т.е. число параметров системы, которые могут изменяться независимо (вспомним, что у нас в этом примере есть n независимых наблюдений переменной Y, р – количество оцениваемых параметров модели). В случае простой множественной регрессии с 2-мя регрессорами число степеней свободы равно n-3, т.к. при построении плоскости регрессии было оценено 3 параметра модели b (т.е. на это было «потрачено» 3 степени свободы ).

В MS EXCEL стандартную ошибку SEy можно вычислить формулы (см. файл примера, лист Статистика ):

Стандартная ошибка нового наблюдения Y при заданных значениях Х (вектор Хi) вычисляется по формуле:

x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.

Соответствующий доверительный интервал вычисляется по формуле:

где α (альфа) – уровень значимости (обычно принимают равным 0,05=5%)

р – количество оцениваемых параметров модели (в нашем случае = 3)

n-p – число степеней свободы

– квантиль распределения Стьюдента (задает количество стандартных ошибок , в +/- диапазоне которых вероятность обнаружить новое наблюдение равно 1-альфа). Т.е. если квантиль равен 2, то диапазон шириной +/- 2 стандартных ошибок относительно прогнозного значения Y будет с вероятностью 95% содержать новое наблюдение Y (для каждого заданного Хi). В MS EXCEL вычисления квантиля производят по формуле = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) , подробнее см. в статье про распределение Стьюдента .

– прогнозное значение Yi вычисляемое по формуле Yi= b 0+ b 1* Х1i+ b 2* Х2i (точечная оценка).

Стандартная ошибка среднего значения Y при заданных значениях Х (вектор Хi) будет меньше, чем стандартная ошибка отдельного наблюдения. Вычисления производятся по формуле:

x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.

Соответствующий доверительный интервал вычисляется по формуле:

Прогнозное значение Yi (точечная оценка) используется тоже, что и для отдельного наблюдения.

Стандартные ошибки и доверительные интервалы для коэффициентов регрессии

В разделе Оценка неизвестных параметров мы получили точечные оценки коэффициентов регрессии . Так как эти оценки получены на основе случайных величин (значений переменных Х и Y), то эти оценки сами являются случайными величинами и соответственно имеют функцию распределения со средним значением и дисперсией . Но, чтобы перейти от точечных оценок к интервальным , необходимо вычислить соответствующие стандартные ошибки (т.е. стандартные отклонения ) коэффициентов регрессии .

Стандартная ошибка коэффициента регрессии b j (обозначается se ( b j ) ) вычисляется на основании стандартной ошибки по следующей формуле:

где C jj является диагональным элементом матрицы (X ’ X) -1 . Для коэффициента сдвига b 0 индекс j=1 (верхний левый элемент), для b 1 индекс j=2, b 2 индекс j=3 (нижний правый элемент).

SEy – стандартная ошибка регрессии (см. выше ).

В MS EXCEL стандартные ошибки коэффициентов регрессии можно вычислить с помощью функции ЛИНЕЙН() :

Примечание : Подробнее о функции ЛИНЕЙН() см. статью Функция MS EXCEL ЛИНЕЙН() .

Применяя матричный подход стандартные ошибки можно вычислить и через обычные формулы (точнее через формулу массива , см. файл примера лист Статистика ):

= КОРЕНЬ(СУММКВРАЗН(E13:E43;F13:F43) /(n-p)) *КОРЕНЬ (ИНДЕКС (МОБР (МУМНОЖ(ТРАНСП(B13:D43);(B13:D43)));j;j))

При построении двухстороннего доверительного интервала для коэффициента регрессии его границы определяются следующим образом:

где t – это t-значение , которое можно вычислить с помощью формулы = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) для уровня значимости 0,05.

В результате получим, что найденный доверительный интервал с вероятностью 95% (1-0,05) накроет истинное значение коэффициента регрессии b j . Здесь мы считаем, что коэффициент регрессии b j имеет распределение Стьюдента с n-p степенями свободы (n – количество наблюдений, т.е. пар Х и Y).

Проверка гипотез

Когда мы строим модель, мы предполагаем, что между Y и переменными X существует линейная взаимосвязь. Однако, как это иногда бывает в статистике, можно вычислять параметры связи даже тогда, когда в действительности она не существует, и обусловлена лишь случайностью.

Единственный вариант, когда Y не зависит X, возможен, когда все коэффициенты регрессии β равны 0.

Чтобы убедиться, что вычисленная нами оценка коэффициентов регрессии не обусловлена лишь случайностью (они не случайно отличны от 0), используют проверку гипотез . В качестве нулевой гипотезы Н 0 принимают, что линейной связи нет, т.е. ВСЕ β=0. В качестве альтернативной гипотезы Н 1 принимают, что ХОТЯ БЫ ОДИН коэффициент β <>0.

Процедура проверки значимости множественной регрессии, приведенная ниже, является обобщением дисперсионного анализа , использованного нами в случае простой линейной регрессии (F-тест) .

Если нулевая гипотеза справедлива, то тестовая F -статистика имеет F-распределение со степенями свободы k и n k -1 , т.е. F k, n-k-1 :

Проверку значимости регрессии можно также осуществить через вычисление p -значения . В этом случае вычисляют вероятность того, что случайная величина F примет значение F 0 (это и есть p-значение ), затем сравнивают p-значение с заданным уровнем значимости α (альфа) . Если p-значение больше уровня значимости , то нулевую гипотезу нет оснований отклонить, и регрессия незначима.

В MS EXCEL значение F 0 можно вычислить на основании значений выборки по вышеуказанной формуле или с помощью функции ЛИНЕЙН() :

В MS EXCEL для проверки гипотезы через p -значение используйте формулу =F.РАСП.ПХ(F 0 ;k;n-k-1) файл примера лист Статистика , где показано эквивалентность обоих подходов проверки значимости регрессии).

В MS EXCEL критическое значение для заданного уровня значимости F 1-альфа, k, n-k-1 можно вычислить по формуле = F.ОБР(1- альфа;k;n-k-1) или = F.ОБР.ПХ(альфа;k; n-k-1) . Другими словами требуется вычислить верхний альфа- квантиль F -распределения с соответствующими степенями свободы .

Таким образом, при значении статистики F 0 > F 1-альфа, k, n-k-1 мы имеем основание для отклонения нулевой гипотезы.

В программах статистики результаты процедуры F -теста выводят с помощью стандартной таблицы дисперсионного анализа . В файле примера такая таблица приведена на листе Надстройка , которая построена на основе результатов, возвращаемых инструментом Регрессия надстройки Пакета анализа MS EXCEL .

Генерация данных для множественной регрессии с помощью заданного тренда

Иногда, бывает удобно сгенерировать значения наблюдений, имея заданный тренд.

Для решения этой задачи нам потребуется:

  • задать значения регрессоров в нужном диапазоне (значения переменных Х);
  • задать коэффициенты регрессии ( b );
  • задать тренд (вычислить значения Y= b0 +b1 * Х 1 + b2 * Х 2 );
  • задать величину разброса Y вокруг тренда (варианты: случайный разброс в заданных границах или заданная фигура, например, круг)

Все вычисления выполнены в файле примера, лист Тренд для случая 2-х регрессоров. Там же построены диаграммы рассеяния .

Коэффициент детерминации

Коэффициент детерминации R 2 показывает насколько полезна построенная нами линейная регрессионная модель .

По определению коэффициент детерминации R 2 равен:

R 2 = Изменчивость объясненная моделью ( SSR ) / Общая изменчивость ( SST ).

Этот показатель можно вычислить с помощью функции ЛИНЕЙН() :

При добавлении в модель новой объясняющей переменной Х, коэффициент детерминации будет всегда расти. Поэтому, рост коэффициента детерминации не может служить основанием для вывода о том, что новая модель (с дополнительным регрессором) лучше прежней.

Более подходящей статистикой, которая лишена указанного недостатка, является нормированный коэффициент детерминации (Adjusted R-squared):

где p – число независимых регрессоров (вычисления см. файл примера лист Статистика ).

Пример решения эконометрической задачи в Excel

Ниже приведено условие задачи и текстовая часть решения. Закачка полного решения, файлы word+Excel в архиве rar, начнется автоматически через 10 секунд. Если закачка не началась, кликните по этой ссылке.

Видеоурок по решению этой задачи в Excel вы можете посмотреть здесь.

По предложенным вам экспериментальным данным, представляющим собою макроэкономические показатели или показатели финансовой (денежно-кредитной) системы некоторой страны, т.е. случайной выборке объема n – построить математическую модель зависимости случайной величины Y от случайных величин X1 и X2. Построение и оценку качества экономико-математической (эконометрической) модели вести в следующей последовательности:
•Построить корреляционную матрицу для случайных величин и оценить статистическую значимость корреляции между ними.
•Исходя из наличия между эндогенной переменной и экзогенными переменными, линейной зависимости, оценить параметры регрессионной модели по методу наименьших квадратов. Вычислите вектора регрессионных значений эндогенной переменной и случайных отклонений.
•Найдите средние квадратические ошибки коэффициентов регрессии. Используя критерий Стьюдента проверьте статистическую значимость параметров модели. Здесь и далее принять уровень значимости 0,05(т. е. надежность 95%).
•Вычислите эмпирический коэффициент детерминации и скорректированный коэффициент детерминации. Проверьте, используя критерий Фишера, адекватность линейной модели.
•Установите наличие (отсутствие) автокорреляции случайных отклонений модели. Используйте для этого метод графического анализа, статистику Дарбина-Уотсона и критерий Бреуша-Годфри.
•Установите наличие (отсутствие) гетероскедастичности случайных отклонений модели. Используйте для этого графический анализ, тест Вайта и тест Парка для вариантов с добавочным индексом А (графический метод, тест Глейзера и тест Бреуша-Пагана для вариантов с добавочным индексом В).
•Обобщите результаты оценивания параметров модели и результаты проверки модели на адекватность.

В таблице 1.1. приведены е же квартальные данные о валовом внутреннем продукте (млн. евро) ; экспорта товаров и услуг (млн. евро ) ; эффективный обменный курс евро к национальной волюте для Испании на период с 2000 по 2007 годы.

Еж еквартальные данные о валовом внутреннем продукте, экспорте товаров и услуг , эффективном обменном курсе евро к национальной валюте для И сландии на период с 2000 по 2007 годы

Задачи с решениями в Excel по эконометрике

В этом разделе вы найдете решенные задач по разным разделам эконометрики, выполненные с применением пакета электронных таблиц MS Excel. Большая часть работ снабжена подробным текстовым отчетом.

Если вам нужна помощь в выполнении контрольных работ по эконометрике в Excel, обращайтесь: эконометрика на заказ

Решение эконометрики в Экселе

Задача 1. Парная регрессия.
Для исходных данных, приведенных ниже, рассчитайте

  • коэффициенты линейного регрессионного уравнения
  • рассчитайте остаточную дисперсию
  • вычислите значения коэффициентов корреляции и детерминации
  • рассчитайте коэффициент эластичности
  • рассчитайте доверительные границы уравнения регрессии (по уровню 0,95, t=2,44)
  • в одной системе координат постройте: уравнение регрессии, экспериментальные точки, доверительные границы уравнения регрессии

Задача 2. Построить требуемое уравнение регрессии. Вычислить коэффициент детерминации, коэффициент эластичности, бета коэффициент и дать их смысловую нагрузку в терминах задачи. Проверить адекватность уравнения с помощью F теста. Найти дисперсии оценок и 95% доверительные интервалы для параметров регрессии. Данные взять из таблицы. Найти прогнозируемое значение объясняемой переменной для некоторого значения объясняющей переменной, не заданной в таблице.
Построить уравнение линейной регрессии объема валового выпуска (в млн. руб.) от стоимости основных производственных фондов (млн. руб.).

Задача 3. Множественная регрессия.
Построить требуемое уравнение регрессии. Вычислить коэффициент детерминации, частные коэффициенты эластичности, частные бета коэффициенты и дать их смысловую нагрузку в терминах задачи. Проверить адекватность уравнения с помощью F теста. Найти оценку матрицы ковариаций оценок параметров регрессии и 95% доверительные интервалы для параметров регрессии. Проверить наличие мультиколлинеарности в модели. Данные взять из таблицы.
Построить уравнение линейной регрессии себестоимости единицы товара (в сотнях руб.) от величины энерговооруженности (кВт) и производительности труда (тов/час).

Задача 4. Трендовые модели
Проверить ряд на наличие тренда. Сгладить ряд методом простой скользящей средней $(m = 3)$, экспоненциальным сглаживанием $(alpha = 0,3; alpha = 0,8)$. Построить исходный и сглаженные ряды. На основании построенных рядов определить вид трендовой модели. Построить трендовую модель.
Сделать прогноз изучаемого признака на два шага вперед.
87; 77; 75; 74; 69; 66; 62; 61; 59; 57; 57; 52; 50; 48; 46; 43; 43; 41; 38; 35

Задача 5. По заданным статистическим данным постройте линейную модель множественной регрессии и исследуйте её.

  • Постройте линейную модель множественной регрессии.
  • Запишите стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
  • Найдите коэффициенты парной, частной и множественной корреляции. Проанализируйте их.
  • Найдите скорректированный коэффициент множественной детерминации. Сравните его с нескорректированным (общим) коэффициентом детерминации.
  • С помощью F-критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации $R^2_$.
  • С помощью частных F-критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора $x_1$ после $x_2$ и фактора $x_2$ после $x_1$.
  • Составьте уравнение линейной парной регрессии, оставив лишь один значащий фактор.

Задача 6. По данным опроса 15 женщин, находящихся в роддоме, исследовать зависимость веса новорожденного (у) от среднего числа сигарет (х), выкуриваемых матерью в день, с учетом числа уже имеющихся у матери детей (z).

источники:

http://easyhelp.su/subjects/ekonometrika_reshenie_zadach/primer_resheniya_ekonometricheskoj_zadachi_v_excel/

http://www.matburo.ru/ex_ec.php?p1=ecexcel


Множественная линейная регрессия является одним из наиболее часто используемых методов во всей статистике.

В этом руководстве объясняется, как интерпретировать каждое значение в выходных данных модели множественной линейной регрессии в Excel.

Пример: интерпретация выходных данных регрессии в Excel

Предположим, мы хотим знать, влияет ли количество часов, потраченных на учебу, и количество сданных подготовительных экзаменов на балл, который студент получает на определенном вступительном экзамене в колледж.

Чтобы исследовать эту взаимосвязь, мы можем выполнить множественную линейную регрессию, используя часы обучения и подготовительные экзамены, взятые в качестве переменных-предикторов, и экзаменационный балл в качестве переменной ответа.

На следующем снимке экрана показаны выходные данные регрессии этой модели в Excel:

Вывод множественной линейной регрессии в Excel

Вот как интерпретировать наиболее важные значения в выводе:

Несколько R: 0,857.Это представляет собой множественную корреляцию между переменной ответа и двумя переменными-предикторами.

R-квадрат: 0,734.Это известно как коэффициент детерминации. Это доля дисперсии переменной отклика, которая может быть объяснена объясняющими переменными. В этом примере 73,4% вариаций в экзаменационных баллах можно объяснить количеством часов обучения и количеством сданных подготовительных экзаменов.

Скорректированный квадрат R: 0,703.Это представляет собой значение R-квадрата, скорректированное с учетом количества переменных-предикторов в модели.Это значение также будет меньше, чем значение для R Square, и наказывает модели, которые используют в модели слишком много переменных-предикторов.

Стандартная ошибка: 5,366.Это среднее расстояние, на которое наблюдаемые значения отходят от линии регрессии. В этом примере наблюдаемые значения отклоняются от линии регрессии в среднем на 5,366 единицы.

Наблюдения: 20.Общий размер выборки набора данных, используемого для создания регрессионной модели.

Ф: 23,46.Это общая F-статистика для регрессионной модели, рассчитанная как MS регрессии / остаточная MS.

Значение F: 0,0000.Это p-значение, связанное с общей статистикой F. Он говорит нам, является ли регрессионная модель в целом статистически значимой.

В этом случае p-значение меньше 0,05, что указывает на то, что независимые переменные количество часов обучения и количество сданных подготовительных экзаменов вместе имеют статистически значимую связь с экзаменационным баллом .

Коэффициенты: коэффициенты для каждой независимой переменной говорят нам о среднем ожидаемом изменении переменной отклика при условии, что другая независимая переменная остается постоянной.

Например, ожидается, что за каждый дополнительный час, потраченный на учебу, средний экзаменационный балл увеличится на 5,56 при условии, что количество сданных подготовительных экзаменов останется неизменным.

Мы интерпретируем коэффициент для перехвата как означающий, что ожидаемая оценка экзамена для студента, который учится ноль часов и сдает нулевые подготовительные экзамены, составляет 67,67 .

P-значения. Отдельные p-значения говорят нам, является ли каждая независимая переменная статистически значимой. Мы можем видеть, что изученные часы статистически значимы (p = 0,00), в то время как пройденные подготовительные экзамены (p = 0,52) не являются статистически значимыми при α = 0,05.

Как написать оценочное уравнение регрессии

Мы можем использовать коэффициенты из выходных данных модели, чтобы создать следующее оценочное уравнение регрессии:

Экзаменационный балл = 67,67 + 5,56*(часы) – 0,60*(подготовительные экзамены)

Мы можем использовать это оценочное уравнение регрессии, чтобы рассчитать ожидаемый балл экзамена для учащегося на основе количества часов, которые он изучает, и количества подготовительных экзаменов, которые он сдает.

Например, студент, который занимается три часа и сдает один подготовительный экзамен, должен получить 83,75 балла:

Экзаменационный балл = 67,67 + 5,56*(3) – 0,60*(1) = 83,75

Имейте в виду, что, поскольку пройденные подготовительные экзамены не были статистически значимыми (p = 0,52), мы можем решить удалить их, поскольку они не улучшают общую модель.

В этом случае мы могли бы выполнить простую линейную регрессию, используя только часы изучения в качестве независимой переменной.

Дополнительные ресурсы

Введение в простую линейную регрессию
Введение в множественную линейную регрессию

Здравствуйте на этой странице я собрала теорию и практику с примерами решения задач по предмету эконометрика в программе Microsoft Excel с решением по каждой теме, чтобы вы смогли освежить знания!

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Эконометрика

Становление эконометрики как научной дисциплины представляет значительный интерес с точки зрения как определения объектов исследования, так и формирования набора методов. Сам термин «эконометрика» сформировался из двух частей: «эконо-» – от «экономика» и «-метрика» – от «измерение». Поэтому статистический анализ экономических данных называется эконометрикой, что буквально означает «наука об экономических измерениях».

Эконометрика – это наука, связанная с эмпирическим выводом экономических законов.

Статистические ряды данных

Методы систематизации, обработки и использования статистических данных, выявление закономерностей являются основой эконометрических исследований. Пусть требуется исследовать какой-нибудь признак, свойственный большой группе однородных объектов. Напомним основные понятия и характеристики статистических данных.

Возможно эта страница вам будет полезна:

Генеральной совокупностью (генеральной выборкой) называется совокупность значений признака всех объектов данного типа, а их число Решение задач по эконометрике в Excel объемом совокупности. При этом предполагается, что число Решение задач по эконометрике в Excel большое, такое, что исследование физически невозможно. Тогда из всей совокупности выбирают ограниченное число объектов и подвергают их изучению.

Выборочной совокупностью (выборкой) называется совокупность случайно отобранных объектов, а её объем обозначается Решение задач по эконометрике в Excel.

Статистические исследования позволяют распространить выводы, сделанные на основе случайной выборки, на всю генеральную совокупность исследуемых случайных величин. Это является основой выборочного метода.

Графическое представление статистических данных

Пусть из генеральной совокупности извлекается выборка объема Решение задач по эконометрике в Excel, причем значение признака Решение задач по эконометрике в Excelнаблюдается Решение задач по эконометрике в Excel раз, где сумма Решение задач по эконометрике в Excel равна объему выборки Решение задач по эконометрике в Excel.

Статистическим распределением выборки называется перечень наблюдаемых значений и соответствующих им частот Решение задач по эконометрике в Excel или относительных частот (частостей)

Решение задач по эконометрике в Excel

Упорядоченный в порядке возрастания или убывания ряд значений признака с соответствующими ему частотами называют вариационным рядом.

В целях наглядности строятся различные графики статистического распределения.

Полигоном частот (относительных частот) называется ломаная линия, которая соединяет точки с координатами Решение задач по эконометрике в Excel или Решение задач по эконометрике в Excel.

Для построения гистограммы частот (относительных частот) необходимо найти границы интервалов признаков. Если данные наблюдений представляют в виде рядов с равными интервалами, то их величина находится по формуле Стэрд-жесса:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — объем выборки;

Решение задач по эконометрике в Excel — наибольшее и наименьшее значения вариантов выборки. Гистограмма представляет собой столбчатую диаграмму.

По оси абсцисс откладываются границы интервалов так, чтобы они покрыли все значения вариационного ряда, а по оси ординат откладываются абсолютная плотность распределения Решение задач по эконометрике в Excel или относительную плотность Решение задач по эконометрике в Excel.

Аналогом функции распределения Решение задач по эконометрике в Excel для вариационного ряда является функция накопленных частот, её обозначают Решение задач по эконометрике в Excel а график строят по следующему правилу:

по оси абсцисс откладывают значения признака, а по оси ординат — накопленные частоты или частости. Такую кривую иногда называют кумулятой: по данным интервального ряда на оси абсцисс откладывают точки, являющиеся верхними границами интервалов, а на оси ординат накопленные частоты (частости) соответствующих интервалов. Часто добавляют ещё одну точку, абсцисса которой соответствует левой границе первого интервала, а ордината равна нулю.

Числовые характеристики статистических распределений

Для описания статистических распределений обычно используют три вида характеристик:

  1. средние, или характеристики центральной тенденции;
  2. характеристики изменения вариант (рассеяния);
  3. характеристики, отражающие дополнительные особенности распределений, в частности их форму.

Все эти характеристики вычисляются по результатам наблюдений и построенных вариационных рядов.

Основным видом средних характеристик является средняя арифметическая (среднее выборочное значение), определяемая по формуле:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — значение признака в вариационном ряде (дискретном или интервальном); Решение задач по эконометрике в Excel — соответствующая ему частота;

Довольно часто в статистическом анализе применяют структурные или порядковые средние:

Решение задач по эконометрике в Excel

1) медиана Решение задач по эконометрике в Excel — значение признака, разделяющее вариационный ряд на две численно равные группы, такие, что элементы первой группы строго меньше медианы, второй строго больше её значения. Можно определить графически с помощью кумуляты, так как Решение задач по эконометрике в Excel;

2) мода Решение задач по эконометрике в Excel — значение признака, которому соответствует большая частота.

Величины моды и медианы определяются по интерполяционным формулам, непосредственно из их определения, которые можно найти в дополнительной литературе.

Средние характеристики должны быть дополнены изменением вариации признака (рассеянием). Для этого рассчитываются квадраты отклонений вариант от среднего арифметического значения. Средний квадрат отклонений по данной выборке называется дисперсией и вычисляется по формуле:

Решение задач по эконометрике в Excel

На базе дисперсии вводятся две характеристики:

1) среднее квадратическое отклонение Решение задач по эконометрике в Excel;

2) коэффициент вариации, равный процентному отношению среднего квадратического отклонения к значению средней арифметической исследуемой случайной величины, помогает решить вопрос об однородности выборки:

Решение задач по эконометрике в Excel

Величина о является чаще всего применяемой характеристикой рассеяния. Для характеристики формы распределения вводятся моменты к-того порядка, впервые предложенные Чебышсвым П. Л.:

Решение задач по эконометрике в Excel

которые называются центральными моментами к-того порядка. Чем больше моментов для данного признака вычислено, тем точнее можно описать свойства распределения. Однако с ростом К растет влияние случайных погрешностей, поэтому на практике используются моменты до четвертого порядка.

Центральный момент третьего порядка называется асимметрией Решение задач по эконометрике в Excel распределения, а четвертого — эксцесс Решение задач по эконометрике в Excel.

Инструмент анализа описательная статистика и гистограмма в Excel

Наиболее полный анализ статистических данных позволяет выполнить пакет Анализ данных из меню Сервис. Если команда Анализ данных отсутствует в меню Сервис, выберите Надстройки и в появившемся списке отметьте Analysis ToolPak (Пакет анализа). В случае отсутствия этого пункта в Надстройках, вам придется установить его вручную с помощью Microsoft Excel Setup (меню Сервис > Надстройки > подключите Пакет Анализа).

При выполнении этой лабораторной работы будут использоваться инструменты Описательная статистика и Гистограмма из Анализа данных. Надо сказать, что в Excel есть набор встроенных статистических функций, которыми можно пользоваться, если нет необходимости во всех характеристиках исследуемых данных. Для вызова нужной функции необходимо выполнить действия: из меню Вставка и выбрать команду Функция и перейти к категории Статистические.

Возможно эта страница вам будет полезна:

Пример с решением №1.1.

При обследовании 50 семей получены данные о количестве детей, которые имеют БИНОМРАСЩ) с числом испытаний равным 10 и вероятностью успеха 0,3 (сгенерировать с помощью пакета Анализа данных). Определите средний размер семьи. Охарактеризуйте колеблемость размера семьи с помощью показателя вариации. Постройте гистограмму и функцию распределения.

Данные для решения примера задают изначально в виде таблиц и их надо поместить на лист Excel; или можно воспользоваться инструментом Анализа данных Генерация случайных чисел.

Генерация случайных чисел позволяет быстро получить нужное количество значений одной или нескольких вариант, имеющих одно из распределений: Равномерное, Нормальное, Бернулли, Биномиальное, Пуассона и другие. Надо помнить, что каждое распределение имеет свои параметры, которые задаются пользователем. Достоверность полученных выводов в этом случае мала.

  1. В меню Сервис выберите Анализ данных, а затем выделите инструмент анализа Генерация случайных чисел (найти его можно с помощью линейки прокрутки). Выделите в диалоговом окне нужный инструмент и нажмите ОК (рис. 1.1).
  2. Заполните поля диалогового окна так же как на рис. 1.2 и нажмите ОК. Результатом является набор из пятидесяти чисел, которые располагаются в столбце В рис 1.3.
  3. Примените инструмент Описательная статистика для поиска числовых характеристик выборочных данных, расположенных в диапазоне В2:В51. Для этого выберите инструмент анализа Описательная статистика в диалоговом окне Анализ данных рис. 1.1. В одноименном диалоговом окне надо указать: входной интервал (В2:В51), ячейку левого верхнего угла для вывода итогов D1, обязательно включите опцию Итоговая Статистика. Результат применения инструмента Описательная статистика показан на рис. 1.3. в диапазоне D1:Е18.

Значения в диапазоне Е2: Е18 не обновляются в случае изменения исходных данных В2:В51.

Решение задач по эконометрике в Excel

В столбце Решение задач по эконометрике в Excel рис. 1.3. приводятся встроенные функции Excel, которые позволяют получить те же результаты, что и при использовании инструмента Описательная статистика. Функции листа следует использовать, если необходим автоматический перерасчет значений числовых характеристик выборки или нет необходимости во всех значениях Описательной статистики.

Решение задач по эконометрике в Excel

Построение гистограммы и функции распределения можно выполнить, выбрав инструмент, Гистограмма (рис. 1.1). Перед использованием этого инструмента надо решить вопрос об интервале разбиения (Решение задач по эконометрике в Excel — Excel называет это значение карманом, а список всех границ интервалов — интервал карманов). Вы можете найти его сами по формуле Стэрджесса или разрешить Excel разбить на равные интервалы (тогда заполнять поле Интервал карманов не надо). Включите опцию вывод графика.

Решение задач по эконометрике в Excel

Описание результатов.

Описательная статистика содержит три результата средней характеристики исследования числа детей в пятидесяти семьях: Среднее (3,34), Моду (3) и Медиану (3). Найдем значение коэффициента вариации по формуле (1.4):

Решение задач по эконометрике в Excel

Так как 43% > 35%, можно сделать вывод, что изучаемая совокупность семей является неоднородной, чем и объясняется высокая колеблемость количества детей в семьях. В виду неоднородности семей, попавших в выборку, можно в качестве среднего использовать моду или медиану

Стандартное отклонение (1,44) — наиболее широко используемая характеристика изменения данных — измеряется в тех же единицах, что и исходные данные.

Стандартная ошибка является характеристикой достоверности среднего выборочного значения и используется в статистических исследованиях (0,20).

Эксцесс и Асснметрнн позволяют сделать вывод о незначительных отклонениях гистограммы частостей от нормально распределенной случайной величины, характеризующей количество детей в семьях с средним равным 3,34 и средним квад-ратическим отклонением 1,44.

Напомним, что эталоном этих величин являются нормальное распределение (рис. 1.5), для которого Ассиметрия равна нулю, а центральный момент четвертого порядка (1.5) равен трем.

Ассиметрия имеет отрицательное значение. Это означает, что гистограмма не симметрична по отношению к среднему значению выборки и имеет скос вправо, то есть количество семей имеющих менее трех детей больше, чем семей количество детей в которых больше трех.

Эксцесс тоже имеет отрицательное значение. То есть значение гистограммы в точке Решение задач по эконометрике в Excel ниже аналогичного нормального распределения.

Математическая статистика статистические оценки

Имеется случайная величина Решение задач по эконометрике в Excel, закон распределения которой известен и зависит от параметров Решение задач по эконометрике в Excel. Требуется на основании наблюдаемых данных оценить значения этих параметров.

Числовые характеристики генеральной совокупности, как правило, неизвестны. Их называют параметрами генеральной совокупности (среднее, дисперсия, среднее квадратическое отклонение, доля признака генеральной совокупности объема Решение задач по эконометрике в Excel).

Из генеральной совокупности извлекается выборка объёма Решение задач по эконометрике в Excel. По данным выборки рассчитывают числовые характеристики, которые называют статистиками (выборочное среднее, выборочная дисперсия и выборочное среднее квадратическое отклонение). Статистики, полученные по различным выборкам, могут отличаться друг от друга, поэтому они являются только оценками неизвестных параметров генеральной совокупности и обозначают Решение задач по эконометрике в Excel.

Обозначим через Решение задач по эконометрике в Excel выбранные значения наблюдаемой случайной величины (СВ) Решение задач по эконометрике в Excel. Пусть на основе данных выборки получена статистика Решение задач по эконометрике в Excel, которая является оценкой параметра Решение задач по эконометрике в Excel. Наблюдаемые значения Решение задач по эконометрике в Excel случайные величины, каждая из которых распределена по тому же закону, что и случайная величина Решение задач по эконометрике в Excel. Поэтому Решение задач по эконометрике в Excel тоже является величиной случайной, закон распределения которой зависит от распределения СВ Решение задач по эконометрике в Excel и объема выборки Решение задач по эконометрике в Excel. Для того, чтобы Решение задач по эконометрике в Excel имела практическую ценность, она должна обладать свойствами несмещенности, состоятельности и эффективности.

Несмещенной называют оценку, для которой выполняется условие:

Решение задач по эконометрике в Excel

Состоятельной называется оценка, удовлетворяющая условию:

Решение задач по эконометрике в Excel

Для выполнения условия 2.2 достаточно, чтобы:

Решение задач по эконометрике в Excel

Эффективной считается оценка, которая при заданном объеме выборки имеет наименьшую возможную дисперсию.

Выборочная средняя является несмещенной и состоятельной оценкой генеральной средней и вычисляется по формуле (1.1).

Выборочная дисперсия найденная по формуле (1.2) является смещенной оценкой для дисперсии генеральной совокупности.

Вводится понятие исправленной выборочной дисперсии, которая является несмещенной оценкой генеральной дисперсии и вычисляется по формуле:

Решение задач по эконометрике в Excel

Исправленное выборочное средне квадратическое отклонение будет равно:

Решение задач по эконометрике в Excel

Теоретическое обоснование использования этих выборочных оценок для определения характеристик генеральной совокупности дают закон больших чисел и предельные теоремы.

Основные виды распределения и функции excel, позволяющие проводить статистическое оценивание

Чтобы построить модели статистических закономерностей возникает необходимость использовать известные виды распределения. Каждое распределение характеризует некоторую случайную величину — результат определенного вида испытаний. С функциями, задающими эти распределения, а также их параметрами можно познакомиться в любом учебнике по теории вероятностей. Выбранное распределение может рассматриваться только как теоретическое (генеральное), а результат опыта — как статистическое (выборочное) распределение. Последнее, в силу ограниченности числа наблюдений, будет лишь приближенно характеризовать теоретическое распределение.

По виду гистограммы и полученным числовым характеристикам выборки делается предположение о теоретическом виде распределения исследуемого признака. Если это удается, то можно найти оценки числовых характеристик и сделать выводы о параметрах генеральной совокупности. Если закон распределения не возможно установить, то подбирается кривая, наилучшим образом сглаживающая данные статистического ряда. Распределения делятся на дискретные и непрерывные.

Дискретные распределения описываются конечные набором чисел и соответствующими им частотами. Например, оценки, которые может получить студент на экзамене, описываются множеством (2, 3, 4, 5). Поэтому случайная величина Решение задач по эконометрике в Excel -получить определенную оценку на экзамене будет иметь дискретное распределение

Непрерывные распределения описывают случайные величины с непрерывной областью значений. Для непрерывных распределений вероятность сопоставляется не с отдельным значением, а интервалом чисел. Непрерывные распределения в теории вероятностей задаются функцией плотности распределения Решение задач по эконометрике в Excel, которую называют плотность вероятности или функцией распределения Решение задач по эконометрике в Excel.

Площадь фигуры, ограниченной Решение задач по эконометрике в Excel и прямыми Решение задач по эконометрике в Excel, осью Решение задач по эконометрике в Excel определяет вероятность попадания случайной величины Решение задач по эконометрике в Excel в интервал Решение задач по эконометрике в Excel, которую обозначим Решение задач по эконометрике в Excel. Так как вероятность в точке для непрерывного распределения равна нулю, то имеет место равенство:

Решение задач по эконометрике в Excel

Нормальное распределение

Чаще других в статистических исследованиях применяется нормальное распределение. Теоретическим основанием к его применению служит центральная предельная теорема Ляпунова. Оно имеет два параметра: среднее (а) и стандартное отклонение Решение задач по эконометрике в Excel. В дальнейшем будем использовать сокращенную запись для обозначения этого распределения Решение задач по эконометрике в Excel.

Синтаксис функции:

Решение задач по эконометрике в Excel

Значение функции распределения случайной величины Решение задач по эконометрике в Excel, распределенной по нормальному закону распределения, получится, если аргумент интегральная равен ИСТИНА (1). Если аргумент интегральная имеет значение ЛОЖЬ (0), то получите значение плотности вероятности нормального распределения Решение задач по эконометрике в Excel.

Графики плотности распределения и функции распределения случайной величины Решение задач по эконометрике в Excel построенные в Excel изображены на рис. 2.1.

Вероятность попадания случайной величины Решение задач по эконометрике в Excel в интервал (с, d) определяется по формуле:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Если случайная величина нормально распределена и имеет среднее арифметическое равное нулю и среднее квадратическое отклонение равное единицы, то её называют стандартизованной а для вычисления вероятности попадания в интервал таких случайных величин в Excel существует функция:

Решение задач по эконометрике в Excel

которая возвращает интегральное стандартное распределение.

Решение задач по эконометрике в Excel называют интегральной функцией Лапласа. Для ее вычисления созданы специальные таблицы.

При статистических исследованиях оценок довольно часто приходится решать обратную задачу: находить значение варианты Решение задач по эконометрике в Excel по заданной вероятности. Для этого в Excel имеются обратные функции, позволяющие её решить: НОРМОБР (вероятность;Решение задач по эконометрике в Excel) и НОРМСТОБР (вероятность).

Распределения, связанные с нормальным распределением

Несмотря на широкое распространение нормального распределения, в некоторых случаях при построении статистических моделей возникает необходимость в использовании других распределений. Приведем примеры некоторых функций в Excel.

Логнормальное распределение

Свидетельством близости распределения к логнормальному является значительная ассиметрия, обусловленная ограничением Решение задач по эконометрике в Excel. Например, может использоваться для описания распределения доходов банковских вкладов, месячной заработной платы, посевных площадей и т.д.

Функция ЛОГНОРМРАСП(Решение задач по эконометрике в Excel; среднее; стандартное откл) используется для анализа данных, которые были логарифмически преобразованы. Возвращает интегральное логарифмическое нормальное распределение для Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excel является нормально распределенным с параметрами среднее и стандартное откл.

Хи-квадрат распределение

Чаще всего это распределение используется для определения критического значения статистики с заданным уровнем значимости Решение задач по эконометрике в Excel, для которого выполняется равенство Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel — значение, для которого требуется вычислить распределение, степени свободы — число слагаемых минус число линейных связей между элементами совокупности.

Если задано значение вероятности, то функция ХИ20БР позволяет найти значение Решение задач по эконометрике в Excel, для которого справедливо равенство

Решение задач по эконометрике в Excel

В функции ХИ20БР для поиска применяется метод итераций. Если поиск не закончится после 100 итераций, функция возвращает сообщение об ошибке #Н/Д.

Распределение стьюдента t

Это распределение имеет важное значение для статистических выводов. Функция СТЬЮДРАСП возвращает вероятностную меру «хвостов» распределения. Её синтаксис:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel — численное значение, для которого требуется вычислить распределение; степени свободы — целое, указывающее число степеней свободы; хвосты — число возвращаемых хвостов распределения.

Если «хвосты» = 1, то функция СТЬЮДРАСП возвращает одностороннее распределение (вероятность правого хвоста).

Если «хвосты» = 2, то функция СТЬЮДРАСП возвращает двухстороннее распределение.

При этом значение Решение задач по эконометрике в Excel не должно быть отрицательным.

Так как функция симметричная относительно нуля, то справедливо следующие равенства:

Решение задач по эконометрике в Excel

Функция СТЬЮДРАСПОБР(вероятность; степени свободы) является обратной для распределения Стьюдента и соответствует положительному значению Решение задач по эконометрике в Excel для которого задана вероятность суммы двух «хвостов».

РАСПРЕДЕЛЕНИЕ ФИШЕРА Эту функцию можно использовать, чтобы определить, имеют ли два множества данных различные степени разброса результатов. Например, можно проанализировать результаты тестирования старшеклассников и определить, различается ли разброс результатов для мальчиков и девочек.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel— значение, для которого вычисляется функция; степени свободы1— число степеней свободы числителя; степенисвободы2—число степеней свободы знаменателя.

Обратное значение для Решение задач по эконометрике в Excel-распределения вероятностей возвращает функция

Решение задач по эконометрике в Excel

Распределения дискретной случайной величины в excel биномиальное распределение

Распределение используется для моделирования случайной величины с конечным числом испытанной. В каждом испытании случайная величина может принимать только два значения: успех или неуспех (0 или 1). Вероятность успеха постоянна и не зависит от результатов других испытаний. Биномиальное распределение описывает общее число успехов при указанном числе испытаний. Данное распределение требует указать два параметра: число испытаний Решение задач по эконометрике в Excel и вероятность успеха Решение задач по эконометрике в Excel.

Пример с решением №2.1.

Группа из 20 студентов сдает экзамен. Вероятность сдать экзамен по данным прошлых лет равна 0,3. Отобрано 5 человек составьте закон распределения случайной величины Решение задач по эконометрике в Excel — числа студентов, сдавших экзамен.

В ячейку В7 помещена функция БИНОМРАСЩА7; SBS1; $В$2; 0) (рис 2.3.). Скопируйте формулу для остальных ячеек столбца В, как показано на рис. 2.2. Чтобы получить данные столбца С надо в качестве аргумента интегральная поставить единицу.

С помощью функции БИНОМРАСП можно получить только вероятности равные числу успеха к (интегральная равна нулю) или не большие к (интегральная равна единицы). Для вычисления других вероятностей надо воспользуйтесь значениями столбцов Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. Значения в столбцах Решение задач по эконометрике в Excel находятся по формулам:

Решение задач по эконометрике в Excel

Для построение диаграммы биномиального распределения выделите ячейки В7:В12 и нажмите кнопку мастер диаграмм на стандартной панели инструментов. Отформатируйте её как показано на рис. 2.2.

В качестве обратной функции к БИНОМРАСП в Exccl рассматривается функция КРИТБИНОМ. Её синтаксис:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Гипергеометрическое распределение

Распределение возвращает вероятность заданного количества успехов в выборке, если заданы: размер выборки Решение задач по эконометрике в Excel, количество успехов в генеральной совокупности Решение задач по эконометрике в Excel и размер генеральной совокупности Решение задач по эконометрике в Excel. Функция ГИПЕРГЕОМЕТ используется для задач с конечным числом элементов генеральной совокупностью, где каждое наблюдение — это успех или неудача, а каждое подмножество заданного размера (Решение задач по эконометрике в Excel) выбирается с вероятностью равной

Решение задач по эконометрике в Excel

Синтаксис:

ГИПЕРГЕОМЕТ (числоуспеховввыборке; размер выборки; числоуспеховвсовокупности; размерсовокумности)

Распределение Пуассона

Обычное применение распределения Пуассона состоит в предсказании количества событий, происходящих за определенное время, например: количество машин, появляющихся за 1 минуту на станции техобслуживания.

Синтаксис: ПУАССОН(Решение задач по эконометрике в Excel; среднее; интегральная)

Решение задач по эконометрике в Excel — количество событий.

среднее — ожидаемое численное значение.

интегральная — логическое значение, определяющее форму возвращаемого распределения вероятностей.

Если аргумент «интегральная» имеет значение ИСТИНА, то функция ПУАССОН возвращает интегральное распределение Пуассона, то есть вероятность того, что число случайных событий будет от 0 до Решение задач по эконометрике в Excel включительно.

Если этот аргумент имеет значение ЛОЖЬ, то вычисляется значение функции плотности распределения Пуассона, то есть вероятность того, что событий появится равно Решение задач по эконометрике в Excel раз.

Интервальные оценки

Величина оценки Решение задач по эконометрике в Excel, найденная по выборке, является лишь приближенным значением неизвестного параметра Решение задач по эконометрике в Excel. Вопрос о точности оценки в математической статистике устанавливается с помощью соотношения:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — доверительная вероятность или надежность интервальной оценки (принимает значения 90%, 91%,…99%, 99,9%);

Решение задач по эконометрике в Excel — предельная ошибка (точность) оценки. Для случайной величины, имеющей нормальное распределенние

Решение задач по эконометрике в Excel

Значение Решение задач по эконометрике в Excel вычисляется с помощью функции Лапласа, если Решение задач по эконометрике в Excel задано в условии по формуле Решение задач по эконометрике в Excel.

Если стандартное отклонение находится по выборке, то рассматривают два случая:

1) Решение задач по эконометрике в Excel используется функция Стьюдента:

Решение задач по эконометрике в Excel

2) Решение задач по эконометрике в Excel используется функция Лапласа Решение задач по эконометрике в Excel

Если раскрыть модуль в уравнении (2.7), то получим неравенство:

Решение задач по эконометрике в Excel

Числа Решение задач по эконометрике в Excel называют доверительными границами, а интервал Решение задач по эконометрике в Excel — доверительным интервалом или интервальной оценкой параметра Решение задач по эконометрике в Excel.

Границы доверительного интервала симметричны относительно точечной оценки Решение задач по эконометрике в Excel. Поэтому точность оценки Решение задач по эконометрике в Excel. иногда называют половиной длины доверительного интервала.

Так как Решение задач по эконометрике в Excel величина случайная, то границы доверительного интервала могут меняться, кроме того, они будут меняться с изменением доверительной вероятности, поэтому соотношение (2.7) следует читать так: «со статистической надежностью Решение задач по эконометрике в Excel-100% доверительный интервал Решение задач по эконометрике в Excel содержит параметр генеральной совокупности Решение задач по эконометрике в Excel».

Рассмотрим на примерах, как строятся доверительные интервалы для математического ожидания, дисперсии и среднего квадратического отклонения нормально распределенного количественного признака Решение задач по эконометрике в Excel.

Доверительный интервал для математического ожидания с известной дисперсией

При построении доверительного интервала используется функция НОРМОБР для Решение задач по эконометрике в Excel. Границы доверительного интервала можно определить из уравнений:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel называют уровнем значимости.

Пример с решением №2.2.

Спонсоры телевизионных программ хотят знать, сколько времени дети проводят за экраном телевизора. После опроса 100 человек оказалось, что среднее число часов в неделю соответствует 27,5 часов, а средне квадратическое отклонение равно 8,0 часов. Найдите 95% доверительный интервал для оценки среднего количества часов в неделю, которое дети проводят за просмотром телепередач

На основании исследований с 95% вероятностью можно утверждать, что за просмотром телевизора дети проводят от 25,93 до 28,65 часов. Формулы для вычисления приведены на рис 2.4.

Решение задач по эконометрике в Excel

Доверительный интервал для математического ожидания с неизвестной дисперсией

Как правило, дисперсия оцениваемого параметра является величиной неизвестной. Тогда находят исправленную выборочную дисперсию, а доверительный интервал строится с помощью Решение задач по эконометрике в Excel-распределения (Стьюдента).

Функция СТЬЮДРАСПОБРО возвращает значение Решение задач по эконометрике в Excel, для которого:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — это случайная величина, соответствующая распределению Стьюдента и

Решение задач по эконометрике в Excel

Пример с решением №2.3.

Владелец таксопарка хочет спрогнозировать свои расходы на следующий год. Основной статьей расходов является покупка топлива. Так как бензин стоит дорого, владелец стал использовать газ. Были выбраны восемь такси, и оказалось, что число миль на галлон соответственно равно 28,1, 33,6, 41,1, 37,5, 27,6,36,8, 39,0 и 29,4. Оцените с доверительной вероятностью 95% средний пробег на один галлон газа для всех такси в парке, предполагая, что он распределен нормально.

Решение задач по эконометрике в Excel

После исследования оказалось, что средний пробег на один галлон для всех такси в парке находится между 29,71 и 38,81 миль на галлон. Формулы для вычисления приведены на рис.2.5.

Доверительный интервал для дисперсии и среднего квадратического отклонения

Рассмотрим нормально распределенную случайную величину, дисперсия Решение задач по эконометрике в Excel которой неизвестна. По результатам Решение задач по эконометрике в Excel наблюдений: Решение задач по эконометрике в Excel можно определить среднее значение Решение задач по эконометрике в Excel (1.1) и исправленную выборочную дисперсию Решение задач по эконометрике в Excel (2.4).

Теперь с доверительной вероятностью Решение задач по эконометрике в Excel определим половину длины доверительного интервала Решение задач по эконометрике в Excel для которого выполняется условие:

Решение задач по эконометрике в Excel

Доверительный интервал для дисперсии запишется в виде неравенства:

Решение задач по эконометрике в Excel

Выборочня исправленная дисперсия несмещенная оценка генеральной дисперсии равна:

Решение задач по эконометрике в Excel

Так как Решение задач по эконометрике в Excel — результаты независимых наблюдений нормально распределенной СВ, значит сумма квадратов

Решение задач по эконометрике в Excel

имеет Решение задач по эконометрике в Excel распределение с Решение задач по эконометрике в Excel степенью свободы. Выразив Решение задач по эконометрике в Excel через Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel, получим:

Решение задач по эконометрике в Excel

Тогда уравнение 2.9 примет вид:

Решение задач по эконометрике в Excel

из которого доверительный интервал для Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

С помощью функции ХИ20БР можно найти верхнюю и нижнюю границы Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel для Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Подставив найденные значения в уравнения:

Решение задач по эконометрике в Excel

получим верхнюю и нижнюю границы доверительного интервала для дисперсии:

Решение задач по эконометрике в Excel

Доверительный интервал для среднего выборочного значения а получится, если извлечь корень из каждой части предыдущего неравенства.

Доверительный интервал для доли признака генеральной совокупности

Проводится серия из Решение задач по эконометрике в Excel испытаний, в каждом из которых наблюдается событие Решение задач по эконометрике в Excel (событие может произойти или нет). Пусть событие произошло Решение задач по эконометрике в Excel раз, тогда Решение задач по эконометрике в Excel называют частотой появления события Решение задач по эконометрике в Excel или выборочной долей признака.

Если Решение задач по эконометрике в Excel вероятность с которой событие может произойти (называют генеральной долей распределения количественного признака) в каждом из испытаний, то частота Решение задач по эконометрике в Excel является точечной несмещенной оценкой вероятности Решение задач по эконометрике в Excel.

Зададим доверительную вероятность Решение задач по эконометрике в Excel и найдем такие числа Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel для которых выполняется соотношение

Решение задач по эконометрике в Excel

Интервал Решение задач по эконометрике в Excel является доверительным интервалом для Решение задач по эконометрике в Excel, отвечающий надежности Решение задач по эконометрике в Excel.

При большом числе испытаний Бернулли Решение задач по эконометрике в Excel выборочная доля является нормально распределенной случайной величиной

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel является дисперсией выборочной доли признака,

a Решение задач по эконометрике в Excel её математическим ожиданием.

Тогда доверительный интервал генеральной доли признака можно найти, используя функцию Лапласа:

Решение задач по эконометрике в Excel

Откуда

Решение задач по эконометрике в Excel

Рассматривают два случая: большое количество проведенных испытаний и малое. В случае малого объема выборки найти Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel можно с помощью специальных таблиц распределения Бернулли.

Проверка статистических гипотез о числовых значениях параметров нормального распределения

Данные выборочных обследований часто являются основой для принятия одного из нескольких решений. При этом любое суждение о генеральной совокупности будет сопровождаться случайной погрешностью и поэтому может рассматриваться лишь как предположительное.

Под статистической гипотезой понимается всякое высказывание о виде неизвестного распределения, или параметрах генеральной совокупности известных распределений, или о равенстве параметров двух распределений, или о независимости выборок, которое можно проверить статистически, то есть опираясь на результаты случайных наблюдений.

Наиболее часто формулируются и проверяются гипотезы о числовых значениях параметров генеральной совокупности, подчиняющихся одному из известных законов распределения: нормальному, Стьюдента, Фишера и др.

Основные понятия статистической гипотезы

Подлежащая проверке гипотеза называется основной (нулевой) обозначают её Решение задач по эконометрике в Excel. Содержание гипотезы записывается после двоеточия Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

Каждой основной гипотезе противопоставляется альтернативная (конкурирующая) гипотеза Решение задач по эконометрике в Excel. Как правило, основной гипотезе можно противопоставить несколько альтернативных гипотез. Если выборочные данные противоречат гипотезе Решение задач по эконометрике в Excel, то гипотеза отклоняется, в противном случае принимается.

Статистическая проверка гипотез, основанная на результатах выборки, связана с риском, принять ложное решение. Если по выборочным данным основная гипотеза отвергнута, в то время как для генеральной совокупности она справедлива, то говорят об ошибке первого рода. Вероятность допустить такую ошибку принято называть уровнем значимости и обозначать а (10%, 9%,… 1%).

Рассматривается и ошибка второго рода, когда основная гипотеза принимается, в действительности же верной оказывается альтернативная гипотеза. В таком случае говорят об ошибке второго рода, а вероятность допустить эту ошибку обозначают Решение задач по эконометрике в Excel, величину 1- Решение задач по эконометрике в Excel называют мощностью критерия.

Поскольку ошибки первого и второго рода исключить невозможно, то в каждом конкретном случае пытаются минимизировать потери от этих ошибок. Увеличение объема выборки является одним из таких путей.

Критерии проверки. Критическая область

Вывод о соответствии выборочных данных с проверяемой гипотезой делается на основе некоторого критерия. Критерий проверки гипотезы реализуют с помощью некоторой статистики Решение задач по эконометрике в Excel (статистической характеристики определяемой по выборочным данным). Эту величину принято обозначать: Решение задач по эконометрике в Excel — если она нормально распределена с Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel — если она нормально распределена с Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel — если она распределена по закону Стьюдента, Решение задач по эконометрике в Excel — если она распределена по закону Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel — если она имеет распределение Фишера.

После выбора критерия множество всех его возможных значений разбивают на два непересекающихся подмножества. Одно содержит значения критерия, при которых нулевая гипотеза отклоняется, это множество значений называют критической областью. Другое, называют областью принятия гипотезы — содержит совокупность значений, при которых нулевая гипотеза принимается.

Вычисленное по выборке значение критерия (Решение задач по эконометрике в Excel) может принадлежать одному из этих множеств и в зависимости от этого нулевая гипотеза принимается, если Решение задач по эконометрике в Excel принадлежит области принятия гипотезы и отвергается в противном случае. Точки, разделяющие эти две области, называют критическими и обозначают Решение задач по эконометрике в Excel. Различают три вида критических областей: левосторонняя Решение задач по эконометрике в Excel правосторонняя Решение задач по эконометрике в Excel и двухсторонняя Решение задач по эконометрике в Excel

Если Решение задач по эконометрике в Excel попадает в критическую область, то надо говорят, что основная гипотеза отвергается в пользу альтернативной при заданном уровне значимости.

Общая схема проверки гипотезы

Проверка гипотезы с помощью уровня значимости.

  1. Формулируется нулевая гипотеза и альтернативная ей.
  2. Выбирается уровень значимости.
  3. Определяется критическая область и область принятия гипотезы.
  4. Выбирают критерий, и находят его расчетное значение по выборочным данным.
  5. Вычисляют критические точки.
  6. Принимается решение.

Другим способом проверки гипотезы является вывод р-значения (значения вероятности). В этом случае не указывается уровень значимости и не принимается решения об отбрасывании нулевой гипотезы. Вместо этого проверяем насколько правдоподобно, что полученная оценка соответствует значению генеральной совокупности. При левостороннем или правостороннем критерии рассчитываются вероятности попадания статистики 0 в критическую область. Если применяется двухсторонний критерий, то оценивается разность между выборочным средним и предполагаемым средним совокупности по модулю. Если р-значснис мало, то выборочное среднее значительно отличается от среднего совокупности.

Проверка гипотезы о математическом ожидании нормально распределенной (m0) случайной величины при известной дисперсии

Пусть генеральная совокупность имеет нормальное распределение, причем её математическое ожидание равно Решение задач по эконометрике в Excel, а дисперсия равна Решение задач по эконометрике в Excel. По выборочным данным найдено Решение задач по эконометрике в Excel. Есть основания утверждать, что Решение задач по эконометрике в Excel?

Решение задач по эконометрике в Excel

На рис. 2.6. приведены возможные варианты проверки нулевой гипотезы. Результаты проверки включают в себя решение о принятии нулевой или альтернативной гипотез, основанные на уровне значимости альфа и р-значении.

Пример с решением №2.4.

Клиенты банка в среднем снимают со своего счета 100$ при среднем квадратическом отклонении Решение задач по эконометрике в Excel = 50$. Если выплаты отдельным клиентам независимы, то, сколько денег должно быть зарезервировано в банке на выплаты клиентам, чтобы их хватило на 100 человек с вероятностью 0,95? Каков при этом будет остаток денег, гарантированный с той же надежностью, если для выплат зарезервировано 16000$?

На каждого клиента банк резервирует сумму в 160$. По выборочным данным эта сумма составляет 100$.

Проверим гипотезу, может ли банк снизить свои резервы, то есть основная гипотеза может быть записана

Решение задач по эконометрике в Excel

В качестве альтернативной гипотезы рассмотрим ситуацию: «банк сможет обеспечить клиентов, если расчетная сумма выплат для каждого клиента будет снижена до 100$», тогда

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Принимается гипотеза Решение задач по эконометрике в Excel (рис2.7)., что означает: банк может снизить сумму резервов до 10000$. Используя р-значения можно сделать вывод, если альтернативная гипотеза верна (в среднем клиент берет 100S и меньше), то с вероятностью 100%, случайная величина Решение задач по эконометрике в Excel( 100$, 50$).

С надежностью 95% можно гарантировать, что у банка имеется остаток более 6000$.

Проверка гипотезы о математическом ожидании при неизвестной дисперсии

Пусть генеральная совокупность имеет нормальное распределение, причем её дисперсия неизвестна. Данная ситуация более реалистична, чем предыдущая. Пусть есть основания утверждать, что Решение задач по эконометрике в Excel.

По результатам выборки найдем Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel.Сформулируем основную гипотезу:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — нормативное значение. Введем статистику:

Решение задач по эконометрике в Excel

которая имеет распределение Стьюдента с Решение задач по эконометрике в Excel степенью свободы. Зададим уровень значимости альфа и найдем критическую область. На рис. 2.8 приведены формулы левостороннего, правостороннего или двухстороннего критериев проверки среднего выборки с использованием распределения Стьюдента.

Решение задач по эконометрике в Excel

Пример с решением №2.5.

Производитель выпускает стальные стержни. Для улучшения качества планируется внедрить новую технологию, которая получить стержни по средней прочности лучшие на излом. Текущий стандарт прочности на излом составлял 500 фунтов.

Характеристики прочности стержней, произведенных по новой технологии, представлены в D3:D14 рис. 2.9. сформулируем гипотезу об увеличении прочности стержней.

Если

Решение задач по эконометрике в Excel

Возьмем выборочное среднее Решение задач по эконометрике в Excel и проверим правосторонний критерий. Результаты приведены на рис. 2.9.

Новая технология позволит улучшить среднюю прочность стержней. Так как Решение задач по эконометрике в Excel, то можно с уверенностью сказать, что новая технология дает статистически существенные изменения показателя прочности на излом.

Решение задач по эконометрике в Excel

Построим сравнительные графики новой технологии и стандарта (рис2.10).

Решение задач по эконометрике в Excel

Большинство наблюдений превышает стандартную прочность излома стержней. Такая ситуация практически невозможна, если случайная величина имеет нормальное распределение со средним значением 500 фунтов следовательно по данным выборки можно предположить, что новая технология дает увеличение прочности.

Проверка гипотезы относительно доли признака

Рассматривается два основных типа задач:

1) сравнение выборочной доли признака Решение задач по эконометрике в Excel с генеральной долей Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Для проверки этой гипотезы используют статистику :

Решение задач по эконометрике в Excel

которая имеет нормальное распределение Решение задач по эконометрике в Excel.

Критическое значение этой статистики можно найти по заданному уровню значимости Решение задач по эконометрике в Excel с помощью функции НОРМСТОБР см. рис.2.6.

2) для сравнения долей признака двух выборок Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel выдвигается гипотеза: что две выборки из одной совокупности с долей признака Решение задач по эконометрике в Excel, а полученное расхождение есть результат случайностей, сопровождаемых отбором.

Решение задач по эконометрике в Excel

Для больших выборок вводится статистика Решение задач по эконометрике в Excel имеющая

Решение задач по эконометрике в Excel

Используют функцию НОРМРАСПОБР для поиска критического значения по уровню значимости альфа, и сравнивают с расчетным значением

Решение задач по эконометрике в Excel

Малые выборки (Решение задач по эконометрике в Excel — малые числа) не могут быть исследованы с помощью нормального распределения.

Оценка среднего по двум выборкам

При анализе экономических показателей довольно часто приходится сравнивать две генеральные совокупности. Например, можно сравнить два варианта инвестирования по размерам средних дивидендов, качество знаний студентов двух университетов — по среднему баллу на комплексном тестовом экзамене. Если дисперсии известны, то можно использовать Двухвыборочный z-тест для средних. Кроме этого существуют три варианта Двухвыборочный t-тестов. Эти три средства допускают следующие условия: равные дисперсии генерального распределения, дисперсии выборок не равны, а также представление двух выборок до и после наблюдения по одному и тому же субъекту.

Для запуска этих инструментов анализа данных надо выполнить действия меню Сервис/Анализ данных выберите из списка нужный вам пункт.

Для выполнения таких проверок инструментами анализа Excel требуется наличие двух выборок, оценка полагаемой разницы между средними значениями выборок и альфа — уровень значимости. Все перечисленные критерии предполагают, что рассматриваемые совокупности нормально распределены, и выборки получены случайно.

Случай равных дисперсий

Рассмотрим данный критерий на примере.

Пример с решением №4.1.

На заводе проводится эксперимент по оценке новой технологии сборки устройств. Рабочие делятся на две группы; одна обучается новой технологии, другая — стандартной. В конце обучения измеряется время (в минутах), необходимое рабочему для сборки устройства. Результаты приведены в диапазоне A L:В10 рис 4.1. Можно ли сделать вывод, исходя из данных выборок, что время сборки по новой технологии меньше, чем по стандартной.

На листе Exccl постройте графики для выборок Стандартная и Новая. Разброс (дисперсии равны) данных практически одинаковый, этот вывод можно сделать, изучив амплитуды колебания графиков (рис. 4.1). Маркеры графика Новая расположены ниже, поэтому можно предположить, что среднее время сбора устройств по новой технологии меньше.

Выдвигаем гипотезу: «Среднее время сборки по новой технологии не изменилось», . эту гипотезу можно записать в виде:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel альтернативная гипотеза, утверждающая «Новая технология сокращает время сборки». Необходимо проверить левосторонний критерий для основной гипотезы.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

В диалоговом окне Анализ данных и выберите Двухвыборочный t-тест с одинаковыми дисперсиями. Заполните поля, как показано на рис.3.2. и нажмите кнопку ОК. результат появится на листе Excel в диапазоне D4: F16, как на рис 3.3.

Решение задач по эконометрике в Excel

Описание полученных результатов сравнения средних двух выборок (рис.3.3).

Объединенная дисперсия — это взвешенное среднее выборочных дисперсий, со степенями свободы каждой дисперсии в качестве весов (8). Она является оценкой общей дисперсии двух выборок и используется для определения стандартной ошибки разности средних.

Решение задач по эконометрике в Excel— число степеней свободы критерия (18-2).

Решение задач по эконометрике в Excel-статистика вычисляется как отношение разности средних к стандартной ошибке.

Решение задач по эконометрике в Excel одностороннее является односторонним Решение задач по эконометрике в Excel-значением, если Решение задач по эконометрике в Excel если Решение задач по эконометрике в Excel то Решение задач по эконометрике в Excel. Двухстороннее Решение задач по эконометрике в Excel-значение равно удвоенному одностороннему Решение задач по эконометрике в Excel-значению.

Найденное расчетное значение Решение задач по эконометрике в Excel-статистика= 1,649 и Решение задач по эконометрике в Excel-критическое равное 1,746 сравниваем с учетом, что рассматривалась правосторонняя критическая область, делаем вывод: «Решение задач по эконометрике в Excel принимается». С 5% уровнем значимости мы не можем отвергнуть предположение о равенстве средних значений выборки.

Если бы рассматривалась левосторонняя гипотеза, то:

Решение задач по эконометрике в Excel

Можно построить доверительный интервал для разности средних значений выборок (результат в диапазоне Н3:18 рис. 3.4).

Среднее разности находится как разность ЕЗ — F3,

Решение задач по эконометрике в Excel — статистика для разности равна Решение задач по эконометрике в Excel критическому двухстороннему (Е14), стандартная ошибка найдена делением (13 -Е8)/ ЕЮ.

Половина длины равна произведению Решение задач по эконометрике в Excel на стандартную ошибку.

Решение задач по эконометрике в Excel

Доверительный интервал для разности средних значений равен (-1,046; 8,379) с вероятностью 95%.

Случай разных дисперсий

В данном случае не предполагается равенство дисперсий выборок, но сохраняется требование их нормальности и независимости.

Для принятия решения в таких случаях надо использовать Двухвыборочный t-тест с различными дисперсиями.

Пример с решением №3.2.

Для производства нового продукта предлагается две схемы размещения рабочих. Шесть случайно отобранных рабочих собирают изделие по схеме А, а другие восемь — по схеме В. Время сборки записывается соответственно в столбец А и В рис 3.5. Можно ли сделать вывод с 5% уровнем значимости, что время сборки различаются в схемах, при условии, что они нормальные.

Построим диаграммы данных выборок и сравним среднее время сборки и разброс.

Решение задач по эконометрике в Excel

Сравнивая графики для схем Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel можно сделать вывод, что разброс данных в схеме Решение задач по эконометрике в Excel больше, однако среднее время сборки меньше.

Выдвинем гипотезу: «Размещение рабочих не влияет на время сборки изделий:

Решение задач по эконометрике в Excel

В качестве альтернативной гипотезы выдвинем предположение: «время сборки изделий по схеме Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel не равны».

Для проверки этой гипотезы следует применить двухсторонний критерий. Инструкции по использованию Решение задач по эконометрике в Excel-теста те же, что и в примере 4.1. Результаты применения критерия приведены на рис.3.6.

Сравнивая расчетное значение Решение задач по эконометрике в Excel-статистики и Решение задач по эконометрике в Excel-критическое двухстороннее можно сделать вывод, что принимается гипотеза Решение задач по эконометрике в Excel, то есть размещение рабочих не влияет на время сборки изделий.

Используя Решение задач по эконометрике в Excel-значение 0,180 (18%) можно сделать вывод, что с вероятностью 18% можно получить выборку со средним отличающимся на 1,6 мин в любом направлении. Доверительный интервал для разности средних составил (-4,138; 0,938).

Решение задач по эконометрике в Excel

Парный выборочный критерий

Критерий используется в случае, когда одна и та же группа наблюдается дважды. Обычно это происходит при измерении характеристик до и после эксперимента. Например, студенты могут тестироваться дважды до и после курса по некоторой дисциплине. Можно использовать критерий и для других естественных пар наблюдений.

Пример с решением №3.3.

Исследователь хочет определить, имеется ли разница в успешности автомобильных сделок при их проведении продавцами женского и мужского пола. Для этого были выбраны восемь продавщиц и определена комиссия, заработанная каждой в прошедшем году. Так как опытность влияет на размер комиссии, то исследователь записала и стаж работы для каждой из восьми женщин. Данные приведены в столбцах Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel рис. 3.7. Для проверки предположения были взяты продавцы с тем же стажем работы, что и женщины; значения комиссий мужчин приведены в столбце С рис.4.7. Можем ли мы с уровнем значимости 5% утверждать, что женщины имеют существенно другие показатели, по сравнению с продавцами мужчинами?

Решение задач по эконометрике в Excel

Нулевая гипотеза состоит в том, что разность средних совокупностей равна нулю. Однако по результатам выборок получено среднее значение разности и она равна 2,25 тыс. рублей. Тогда в качестве альтернативной гипотезы рассмотрим утверждение, что продавцы различных полов имеют различные показатели. Для проверки гипотез применим Двухвыборочных парный t-тест для средних. После его запуска в диапазоне F1 :Н 14 будут помещены результаты применения этого критерия. Они практически ничем не отличаются от предыдущих результатов (пример 4.1, пример 4.2), только в ячейке G7 содержится коэффициент корреляции.

Принимая решение, для данного теста мы вынуждены принять гипотезу о равенстве средних значений комиссии у продавцов мужчин и женщин. Об этом говорят значения Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel: -2,365<1,895<2,365.

В случае проверки с гипотезы с помощью Решение задач по эконометрике в Excel-значения (Решение задач по эконометрике в Excel=14%) можно с вероятностью 14% получить выборку с разностью меньшей чем -2,25 тыс. рублей или большей, чем 2,25 тыс. рублей.

В диапазоне J1:K7 представлены вычисления 95% доверительного интервала для разности средних выборок.

Анализ дисперсий

Решение задач по эконометрике в Excel-распределение может быть использовано для проверки нулевой гипотезы о равенстве дисперсий двух выборок. Критерий предполагает, что выборки из генеральной совокупности независимы и нормально распределены.

Двухсторонний критерий применяется в случае, если альтернативная гипотеза состоит в том, что дисперсии выборок различны. Для этого составляется отношение дисперсий, которое сравнивается с единицей.

Если альтернативная гипотеза проверяет утверждение о том, что дисперсия одной выборки строго больше дисперсии другой выборки, применяется односторонний критерий.

Напомним, что заданный уровень значимости альфа для двухстороннего критерия делится пополам.

В примере 3.2. проверялась гипотеза о равенстве средних значений выборок, представляющих две схемы размещения рабочих мест. При этом предполагалось, что дисперсии этих выборок не равны. Воспользуемся данными этого примера и проверим гипотезу о равенстве дисперсий. Применим двухсторонний Решение задач по эконометрике в Excel тест для 10% уровня значимости (5% на каждый хвост распределения) для проверки нулевой гипотезы о равенстве дисперсий. В качестве альтернативной гипотезы рассматривается утверждение, что дисперсии не равны. На рис. 4.1. приведены данные Решение задач по эконометрике в Excel-теста. Значение Решение задач по эконометрике в Excel-статистики записано в ячейке Е8 и равно 3,060. в ячейке Е9 приведены данные р-значения, которое является правосторонней вероятностью получить значение большее или равное Решение задач по эконометрике в Excel-статистики. Критическое значение для правосторонней области находится в ячейке ЕЮ и равно 3,972. такое же значение будет иметь правая граница двухсторонней области с уровнем значимости 10%. На рис. 4.1. в столбце I найдено критическое значение для левой границы. Так как Решение задач по эконометрике в Excel=3,060 меньше Решение задач по эконометрике в Excel=3,972, мы не можем отвергнуть нулевую гипотезу равенства дисперсий.

Решение задач по эконометрике в Excel

Можно не использовать двухвыборочный Решение задач по эконометрике в Excel-тест для проверки гипотезы о равенстве дисперсий, а воспользоваться функцией FPACTIOBP, которая имеет синтаксис РРАСПОБР(всроятность;степенисвоб1; степенисвоб2), т.е.

Решение задач по эконометрике в Excel

Значение статистики Решение задач по эконометрике в Excel тоже легко находится с использованием встроенных функций Excel.

Критерий хи-квадрат (критерий согласия)

Этот критерий используют для проверки гипотезы о виде распределения выборки. Её проверка состоит в том, чтобы на основе сравнения фактических и теоретических частот сделать вывод о соответствии фактического распределения аредполагаемому. В критерии используется статистика:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — число групп, на которое разбито распределение;

Решение задач по эконометрике в Excel — теоретическая частота, рассчитанная по предполагаемому распределению;

Решение задач по эконометрике в Excel — наблюдаемая (фактическая) частота признака в Решение задач по эконометрике в Excel-той группе.

Статистика 6.1 подчиняется ХИ-квадрат распределению с Решение задач по эконометрике в Excel степенями свободы, где Решение задач по эконометрике в Excel — число параметров генерального распределения, вычисляемых по выборочным данным. В таблице 6.1. указывается значение Решение задач по эконометрике в Excel для основных видов распределения.

Решение задач по эконометрике в Excel

В некоторых случаях сравнение может проводиться с заранее данным распределением, или с распределением у которого часть параметров указана (а не рассчитывается по выборочным данным). В этом случае число к (параметров генерального распределения) уменьшается.

Для применения критерия ХИ-квадрат требуется выполнение условий:

  1. экспериментальные данные должны быть независимыми;
  2. объем выборки должен быть достаточно большим (не менее 50);
  3. частота в каждой группе должна быть не менее 5. Если это условие не выполняется, то проводят объединение малочисленных интервалов, при этом частоты объединенных интервалов суммируются.

При полном совпадении теоретического и фактического распределений Решение задач по эконометрике в Excel, в противном случае Решение задач по эконометрике в Excel. Проверка гипотезы о равенстве распределений Решение задач по эконометрике в Excel осуществляется с помощью

Решение задач по эконометрике в Excel

которое находится по заданному уровню значимости. Гипотеза Решение задач по эконометрике в Excel принимается, если Решение задач по эконометрике в Excel, в противном случае отвергается

Основанием для выдвижения гипотезы о виде распределения генеральной совокупности могут служить:

  1. формальные свойства числовых характеристик выборочных данных:

a. равенство нулю ассиметрии и эксцесса является признаком нормального распределения;

b. дисперсия и среднее значение выборки равны является признаком распределения Пуассона и т.д;

  1. графический анализ выборочных данных: полигон, гистограмма, функция накопленных частот их сравнение с теоретическими функциями известных распределений.

Если статистический ряд не является интервальным, то его данные подвергаются группировке и представляются в виде q интервалов равной длины. Далее находят количество вариант, попавших в каждый частичный интервал. Если значения статистического ряда являются равноотстоящими вариантами с заданными частотами, то данные можно и не группировать.

Проверка гипотезы о нормальном распределении генеральной совокупности

В предыдущих примерах мы пользовались тем, что значения выборки распределены по нормальному закону распределения. Рассмотрим применение критерия согласия, проверяющего справедливость гипотезы о наличии нормального распределения в совокупности на примере.

Пример с решением №5.1.

Чтобы установить гарантийный срок на товар, производитель хочет проверить является ли срок службы выпускаемого товара нормально распределенным. Случайным образом отобранные 200 единиц товара при проверке распределились следующим образом по количеству отработанных часов:

Решение задач по эконометрике в Excel

Запишем нулевую и альтернативную гипотезы:

Решение задач по эконометрике в Excel: Совокупность сроков службы нормально распределена.

Решение задач по эконометрике в Excel: Совокупность сроков службы имеет другое распределение.

Проверку будем проводить с помощью встроенных функций Excel. Для этого внесем данные, как показано на рис. 5.1 в ячейки А7:В11.

Решение задач по эконометрике в Excel

ШАГ 1. Найдите среднее значение и дисперсию интервального ряда по формулам 1.1 и 1.2. Для этого в ячейки D15:D19 занесите середины интервалов. Середина первого интервала определяется по формуле:

Решение задач по эконометрике в Excel

где пять половина длины следующего интервала. Аналогично вычисляется середина последнего интервала, только учитывается половина длины предшествующего интервала. В диапазон Е15:Е19 скопируйте фактические частоты. В ячейку Е20 запишите формулу: =СУММ(Е15:Е19).

В ячейку F15 поместите произведениех^ =D15*E15 и скопируйте в остальные ячейки диапазона F15:F 19. Теперь можете воспользоваться формулой 1.1 для определения среднего, значение которого поместите в ячейку В4.

Дисперсию найдите самостоятельно, для этого лучше воспользоваться формулой:

Решение задач по эконометрике в Excel

Сначала выполните следующие действия в ячейках G 15:G19 найдите Решение задач по эконометрике в Excel, а в Н15:Н 19 — Решение задач по эконометрике в Excel. Результаты оформите как показано в таблице 6.2: В ячейке С4 (рис.6.1) находится среднее квадратическое отклонение, которое определяется по формуле 1.3

Решение задач по эконометрике в Excel

ШАГ 2. В столбце «Вероятность» (рис.5.1) находится вероятность попадания случайной величины в соответствующий интервал. Для вычисления этих значений использовалась функция НОРМРАСП. Для первого интервала левым концом является минус бесконечность, поэтому в ячейку С8 запишите формулу:

Решение задач по эконометрике в Excel

Для последнего интервала находим

Решение задач по эконометрике в Excel

поэтому вычисление проводится по формуле:

Решение задач по эконометрике в Excel

Для вычисления вероятности попадания в интервал Решение задач по эконометрике в Excel воспользуйтесь формулой 2.6:

Решение задач по эконометрике в Excel

ШАГ 3. Диапазон «Ожидаемая частота» вычисляется как произведение соответствующих значений столбца «Вероятность» на объем выборки (200). ШАГ 4. Столбец Решение задач по эконометрике в Excel представляет собой слагаемые формулы 6.1, вычисляемые по формуле:

Решение задач по эконометрике в Excel

В примере рассматривается пять интервалов, а количество параметров предполагаемого распределения два (среднее и стандартное отклонение) рассчитывается по выборке, поэтому число степеней свободы (СС) равно двум (5-2-1=2). В ячейки А14:В19 введите формулы согласно рис. 5.2.

Решение задач по эконометрике в Excel

В ячейке В19 делается вывод, что распределение часов работы, выпускаемого товара нормальное, это же подтверждает и р-значение.

Проверка гипотезы о распределении генеральной совокупности но закону Пуассона

Параметром этого распределения является Решение задач по эконометрике в Excel -среднее значение. Поэтому по выборочным данным надо найти Решение задач по эконометрике в Excel и взять его в качестве оценки параметра Решение задач по эконометрике в Excel. Напомним, что дискретная случайная величина, имеющая распределение Пуассона, может принимать неотрицательные целые значения. Рассмотрим использование критерия Хи-квадрат для проверки гипотезы о распределении случайной величины по закону Пуассона на примере.

Пример с решением №5.2.

Проведено наблюдение за числом вызовов такси в праздничные дни. Для этого анализировалось 100 случайно выбранных одно минутных интервалов времени. Число вызовов такси в минуту распределилось следующим образом:

Решение задач по эконометрике в Excel

Проверить, используя критерий Хи-квадрат, гипотезу о том, что число вызовов согласуется с законом Пуассона с уровнем значимости Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

ШАГ 1. Внесите данные на лист Excel и найдите теоретические частоты (диапазон D2:D7), как показано на рис 5.3.

ШАГ2. Найдите слагаемые формулы 5.1. Для этого скопируйте значения фактических и теоретических частот, как показано на рис. 5.4, в ячейку С12 запишите формулу:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Можно сделать вывод о том, что число вызовов такси в праздничные дни имеет распределение Пуассона.

Проверка гипотезы о распределении генеральной совокупности но равномерному закону

Пусть случайная величина Решение задач по эконометрике в Excel распределена равномерно на отрезке Решение задач по эконометрике в Excel выборочные данные сгруппируйте по частичным интервалам одинаковой длины и найдите соответствующие частоты. Для каждого интервала вычислите вероятность попадания Решение задач по эконометрике в Excel, а затем теоретические частоты по формуле пр,.

Пример с решением №6.3.

На рис.6.5 приведена частота появление на остановке автобусов определенного маршрута, имеющих интервал движения, пять минут Решение задач по эконометрике в Excel. Проверьте гипотезу о равномерном законе распределения.

Решение задач по эконометрике в Excel

При проверке гипотезы, так же как и в случае нормального распределения найдено критическое значение (рис. 5.2) и р-значение, которое характеризует вероятность выполнения гипотезы Решение задач по эконометрике в Excel: можно утверждать, что она выполняется для 90% выборочных данных. В ячейке В15 сделан вывод о том, что гипотеза о равномерном распределении движения автобусов принимается.

Проверка гипотезы о распределении генеральной совокупности но показательному закону

Как и в предыдущих проверках, выборочные данные сгруппируйте и запишите в виде последовательности частичных интервалов и соответствующих им частот. Найдите выборочное среднее значение Решение задач по эконометрике в Excel. Параметр показательного распределения Решение задач по эконометрике в Excel (таблица 6.1) замените оценкой:

Решение задач по эконометрике в Excel

Вероятности попадания случайной величины в интервалы определите с помощью функции ЭКСПРАСП.

Выполните расчеты как показано на рис. 5.6. Столбцы Е, F заполните как в примере 5.1. В столбце вероятность:

В ячейку D4 запишите =ЭКСПРАСП(В4;$Р$19;1);

В ячейку D5 поместите =ЭКСПРАСП(В5;$Р$ 19; 1 )-ЭКСГ1РАСП(A5;$F$ 19; 1), скопируйте её в остальные ячейки столбца D.

Сравнивая критическое и расчетное значение статистики ХИ-квадрат при 5% уровне значимости, можно сделать вывод, что нет оснований отвергать гипотезу Решение задач по эконометрике в Excel можно считать данные выборки (рис 5.6) распределены по показательному (экспоненциальному) закону распределения.

Решение задач по эконометрике в Excel

Проверка гипотезы о распределении генеральной совокупности но биномиальному закону распределения

Пример с решением №5.4.

В библиотеке отобрано 200 партий по пять книг для обучения студентов в семестре. Каждому студенту было предложено заполнить опросный лист числа повреждений в книге. В итоге был получен вариационный ряд:

Решение задач по эконометрике в Excel

При уровне значимости 5% проверьте гипотезу о биномиальном распределении числа повреждений в книгах.

Биномиальное распределение имеет один неизвестный параметр — Решение задач по эконометрике в Excel, который надо оценить Решение задач по эконометрике в Excel по выборочным данным. Проведем все расчеты в Excel (рис. 5.7).

Решение задач по эконометрике в Excel

Выделенные ячейки следует объединить в одну группу, тогда количество рассматриваемых интервалов равно четырем.

Относительная частота находится по формуле

Решение задач по эконометрике в Excel

Прежде чем перейти к столбцу вероятность найдите оценку Решение задач по эконометрике в Excel параметра Решение задач по эконометрике в Excel, используя формулы рис. 5.8.

Решение задач по эконометрике в Excel

Столбец вероятность заполните с помощью формул :

Решение задач по эконометрике в Excel

Остальные ячейки заполняем, копируя полученную формулу.

Вывод: можно считать число повреждений в книге подчиняется биномиальному закону распределения.

Использование статистики ХИ-квадрат для изучения зависимостей двух переменных

Одним из приложений критерия Решение задач по эконометрике в Excel является его использование при анализе таблиц сопряженности двух переменных для установления факта наличия и уровня значимости их взаимосвязи. Для этого выдвигается нулевая гипотеза: связи между рассматриваемыми переменными нет, в противном случае связь между переменными существует с уровнем значимости альфа.

Пример с решением №5.5.

Компания продает четыре сорта колы в Москве. Чтобы определить, будет ли успешным тот же способ распространения в Ростове и Краснодаре, фирма анализирует связь между предпочтениями и городом потребителя. Аналитик распределяет покупателей на четыре класса по предпочтениям сортов колы: обычная, без кофеина и сахара, только без кофеина, только без сахара. Опрашивают 250 случайно выбранных потребителей колы из трех городов и записывают их предпочтения. В результате получается таблица частот.

Решение задач по эконометрике в Excel

Так как аналитик определяет связь между городом и предпочтением определенного вида колы, то нулевая и альтернативная гипотезы следующие: Решение задач по эконометрике в Excel: Классификации статистически независимы.

Решение задач по эконометрике в Excel Классификации зависимы.

На лист Excel поместим данные о распространении сортов кофе в диапазон В5:Е7 (рис 6.8). Расчет ожидаемых частот проводится в предположении, что нулевая гипотеза выполняется, то есть переменные независимые, а значит вероятность их произведения равна произведению вероятностей каждой их них. Поэтому таблица ожидаемых частот строится по формуле:

Решение задач по эконометрике в Excel

Ожидаемые частоты поместите в диапазон В12:Е 14. Для их вычисления, воспользуйтесь смешанной и абсолютной ссылками на ячейки сумма по строке, сумма по столбцу, общая сумма. Результаты вычисления приведены на рис. 6.9.

Для сравнения ожидаемых и фактических частот воспользуемся ХИ2ТЕСТОМ (рис. 5.8). В ячейку В17 внесите формулу:

Решение задач по эконометрике в Excel

Получите р-значение равное 0,00000013, которое определяет вероятность выполнения нулевой гипотезы. Можно сделать вывод, что нулевая гипотеза отвергается, то есть люди из разных городов предпочитают различные сорта колы.

Проверим эту же гипотезу с помощью статистики ХИ-квадрат. Слагаемые формулы 6.1 найдем с помощью Фактических и Ожидаемых частот. Для этого в ячейку В21 введите формулу:

Решение задач по эконометрике в Excel

и скопируйте её для всего диапазона B21:F23 (рис.5.9).

Решение задач по эконометрике в Excel
  • Сумму слагаемых ХИ-квадрат поместите в ячейку В25 (рис.5.9).
  • В ячейке В27 задайте уровень значимости (альфа равно 0,01).
  • Число степеней свободы (СС) найдите по формуле:
Решение задач по эконометрике в Excel
  • Критическое значение (В29) найдем с помощью
Решение задач по эконометрике в Excel
  • В ячейку ВЗО помести функцию:
Решение задач по эконометрике в Excel

Так как ХИ-квадрат больше критического значения, то принимается гипотеза Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Критерии Колмогорова-Смирнова

Этот критерий является альтернативой критерию ХИ-квадрат. Его применение не требует вычисления ожидаемых частот и может использоваться для малых выборок. Данные должны представлять случайную выборку и обязательно должна быть сформулирована гипотеза о распределении генеральной совокупности. Нулевая гипотеза утверждает, что генеральная совокупность имеет выбранное распределение с определенным уровнем значимости.

Применение критерия Колмогорова-Смирнова основано на оценке разности функции накопленных частот Решение задач по эконометрике в Excel и функции распределения Решение задач по эконометрике в Excel, найденной в предположении, что нулевая гипотеза верна. Статистика критерия вычисляется по формуле:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — функция накопленных частот для Решение задач по эконометрике в Excel-того значения или интервала; Решение задач по эконометрике в Excel — функция распределения в точке Решение задач по эконометрике в Excel.

Если D больше критического значения, взятого из таблицы соответствующего критерия для объема выборки п и уровня значимости Решение задач по эконометрике в Excel, то нулевая гипотеза отклоняется. В противном случае нулевая гипотеза принимается. Для большого объема выборки используется предельное распределение критерия.

Если необходимо проверить нулевую гипотезу о принадлежности двух выборок (объема Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel) одной и той же генеральной совокупности, то строится статистика:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — функции накопленных частот, построенные по первой и второй выборкам соответственно;

Решение задач по эконометрике в Excel

Статистика сравнивается с критическим значением Решение задач по эконометрике в Excel значения которой находятся по таблице критических точек распределения Колмогорова:

Решение задач по эконометрике в Excel

Пример с решением №6.1.

Получена случайная выборка о среднем дневном заработке, руб/день, для пяти работников: 288, 231, 249, 146, 291. можно ли считать на 10% уровне значимости, что выборка проведена из нормально распределенной генеральной совокупности со средним значением

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel: выборка взята из нормально распределенной генеральной совокупности с Решение задач по эконометрике в Excel Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel нет оснований утверждать, что выборка взята из нормально распределенной генеральной совокупности с Решение задач по эконометрике в Excel. Вычисления проведем в Excel, как показано на рис.6.1.

Решение задач по эконометрике в Excel

ШАГ 1. Заполните диапазон А5:А9 выборочными данными и отсортируйте их по возрастанию.

ШАГ 2. Найдите относительные частоты для перечисленных вариант и поместите их в столбец В.

ШАГ 3. Для определения значений функции накопленных частот в ячейку С5 внесите формулу: = В5, в ячейку С6 запишите: =С5+В6 и скопируйте её для ячеек диапазона С7:С9.

ШАГ 3. Для заполнения столбца D, внесите в ячейку D5 формулу:

Решение задач по эконометрике в Excel

и скопируйте её на остальные ячейки диапазона D6: D9.

ШАГ 4. В ячейку Е5 внесите формулу: =ABS(C5-D5) и скопируйте для остальных ячеек диапазона Е5:Е9

ШАГ 5. Найдите максимальное значение статистики D и сравните с критическим, взятым из таблицы при уровне значимости 10% и числе степеней свободы равном пяти. Сравнивая эти можно сделать вывод, что выборка взята из нормально распределенной генеральной совокупности с

Решение задач по эконометрике в Excel

Линейная регрессия и корреляция

Регрессия и корреляция широко используется при анализе связей между явлениями. Прежде всего, в экономике — исследование зависимости объемов производства от целого ряда факторов: размера основных фондов, обеспеченности предприятия квалифицированным персоналом и других; зависимости спроса или потребления населения от уровня дохода, цен на товары и т.д. Экономические показатели являются многомерными случайными величинами.

В большинстве случаев между переменными, характеризующими экономические величины, существуют зависимости, отличающиеся от функциональных. Она возникает, когда один из факторов зависит не только от другого, но и от ряда случайных условий, оказывающих влияние на один или оба фактора. В этом случае ее называют стохастической (корреляционной) и говорят, что переменные коррелируют. Виды стохастических связей между факторами могут быть линейными и нелинейными, положительными или отрицательными. Возможна такая ситуация, когда между факторами невозможно установить какую-либо зависимость.

Однако при изучении влияния одного явления на другое удобно работать именно с функциями, связывающими эти явления. Задачи построения функциональной зависимости между факторами, анализа полученных результатов и прогнозирования решаются с помощью регрессионного анализа.

В пособии приводятся решения задач содержащих небольшое количество данных, для того чтобы пользователь мог быстро ввести значения в таблицу Excel. Каждое решение содержит подробную инструкцию. Сначала рассмотрите пример и проверьте результаты. Затем примените пошаговые инструкции к собственному множеству данных.

Корреляционная зависимость

Для изучения зависимости между двумя числовыми переменными (Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel) сначала строят графики рассеяния. В Excel данный вид графиков называется точечной диаграммой. Используя графическое представление, можно сделать вывод о корреляционной зависимости или независимости рассматриваемых данных. Если в массиве данных присутствуют «выбросы», то их следует исключить из рассмотрения, если это возможно сделать, или усреднить, используя соседние элементы.

Теперь можно выдвинуть предположение о существовании линейной или нелинейной зависимости между переменными. Для этого найдите коэффициент корреляции и проверьте его значимость.

Тесноту линейной зависимости изучаемых явлений оценивает линейный коэффициент парной корреляции Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel обозначают смешенный момент второго порядка (1.5), который называется ковариацией.

Ковариация является мерой взаимосвязи случайных величин и может служить для определения направления их изменения:

если Решение задач по эконометрике в Excel, то случайные величины изменяются в одном направлении;

если Решение задач по эконометрике в Excel, то случайные величины изменяются в разных направлениях.

Очевидными свойствами ковариации являются:

Коэффициент корреляции (1.1) является величиной безразмерной. Случайные величины Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel называют некоррелированными, если Решение задач по эконометрике в Excel (отсутствует линейная зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel), в противном случаем можно говорить о линейной зависимости между величинами Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel, а величины называю коррелированными. Свойства коэффициента корреляции:

Решение задач по эконометрике в Excel

В пакете Анализ данных есть инструменты Ковариации и Корреляция, позволяющие сделать вывод о линейной зависимости случайных величин.

Пример с решением №7.1.

Для анализа зависимости объема потребления Решение задач по эконометрике в Excel (у.е.) хозяйств от располагаемого ежемесячного дохода Решение задач по эконометрике в Excel (у.е.) отобрана выборка Решение задач по эконометрике в Excel, представленная таблицей.

Решение задач по эконометрике в Excel

Постройте график рассеяния и сделайте вывод о виде функциональной зависимости между объемом потребления и ежемесячным доходом в семье.
Инструкции по выполнению задания

  1. Расположите данные в столбцах таблицы так, чтобы значения х были слева, а у справа (рис. 1.1).
  2. Выделите диапазон ячеек.
  3. Щелкните мышью по кнопке Мастер диаграмм и выберите тип Точечная. Для форматирования диаграммы удобно использовать контекстное меню, которое вызывается щелчком правой кнопки мыши на форматируемом объекте.
  4. Дайте название диаграмме Корреляционное поле.
  5. Расположите диаграмму на листе, содержащем данные, как показано на рис.

Применим встроенную функцию КОРРЕЛ(диапазон Решение задач по эконометрике в Excel; диапазонРешение задач по эконометрике в Excel) для установления линейной зависимости между переменными (рис. 1.1). Найденный коэффициент корреляции 0,99 свидетельствует о сильной линейной зависимости между объёмом потребления и уровнем доходов в семье.

Проверим значимость коэффициента корреляции. Для этого сформулируем основную и альтернативную гипотезы:

Решение задач по эконометрике в Excel: Решение задач по эконометрике в Excel, коэффициент незначимый;

Решение задач по эконометрике в Excel, коэффициент значимый.

Для проверки гипотезы воспользуемся Решение задач по эконометрике в Excel-критерием и уровнем значимости 5%,

Решение задач по эконометрике в Excel

Сравнивая эти значения, сделаем вывод о том, что основная гипотеза отклоняется в пользу альтернативной, т.е. коэффициент корреляции значим. По расположению точек на рис. 1.1 можно предположить, что между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel существует линейная зависимость:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Корреляционный анализ данных

При выполнении многомерного анализа данных изучают корреляцию между каждой парой переменных. Эти результаты представляют в виде корреляционной матрицы. Инструмент анализа Корреляция позволяет определить парные корреляции для многих переменных. После его запуска получится нижняя треугольная часть матрицы, на диагонали которой будут стоять единицы Решение задач по эконометрике в Excel. Верхняя часть матрицы является зеркальным отражением нижней ее части, поскольку Решение задач по эконометрике в Excel.

Если надо изучить зависимость между переменными при условии управления одной или несколькими переменными, то находят коэффициенты частной корреляции. Частные коэффициенты корреляции могут оказаться полезными при определении ложных связей.

Например, изучается зависимость Решение задач по эконометрике в Excel. Коэффициенты парной корреляции между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel высокие, однако зависимость будет считаться ложной, если Решение задач по эконометрике в Excel линейно зависит от Решение задач по эконометрике в Excel. Если исключить влияние переменной Решение задач по эконометрике в Excel, то корреляционная зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel может исчезнуть,

Надо найти частные коэффициенты корреляции, т.е. элиминировать один из факторов (устранить его влияние). В случае трех факторов корреляцию между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel при элиминированном факторе Решение задач по эконометрике в Excel можно найти по формуле:

Решение задач по эконометрике в Excel

Подобным образом находят и остальные коэффициенты частной корреляции.

Пример с решением №7.2.

Формируется три портфеля из десяти акций. Первый состоит из 10 акций вида Решение задач по эконометрике в Excel, второй содержит по 5 акций Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel; а третий включает 5 акций вида Решение задач по эконометрике в Excel, 3 вида Решение задач по эконометрике в Excel и 2 вида Решение задач по эконометрике в Excel. Данные о прибыли по каждому виду акций за десять месяцев представлены на рис 1.3.

Имеется ли зависимость между акциями Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel? Отличаются ли данные портфели по доходности и риску?

Инструкции по выполнению задания

  1. Введите данные в ячейки A1: C11, как показано на рис. 1.2.
  2. В меню сервис выберите Анализ данных / инструмент Корреляция. Заполните поля диалогового окна, как показано на рис. 1.3. и нажмите ОК.
  3. Аналогично найдите матрицу парных ковариаций.

Решение задач по эконометрике в Excel

Описание результатов

Коэффициенты корреляции не очень высокие:

Решение задач по эконометрике в Excel

Акции плохо коррелируют между собой, то есть между дивидендами по акциям существует слабая линейная зависимость.

Так как коэффициент ковариации для дивидендов по акциям Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel отрицательный, то прибыль по ним будет изменяться в разных направлениях (при увеличении дивидендов по акциям Решение задач по эконометрике в Excel дивиденды по акциям Решение задач по эконометрике в Excel будут уменьшаться). Правда, эти изменения не очень велики, около 10%.

Решение задач по эконометрике в Excel

Если рынок ценных бумаг устойчивый, то желательно исключить акции вида Решение задач по эконометрике в Excel из портфеля, так как Решение задач по эконометрике в Excel наибольшая, а значит риск в их вложение высокий.

Акции Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel коррелируют слабо Решение задач по эконометрике в Excel, поэтому есть основания считать, что вложение капитала в равных долях в эти акции будет наименее рискованным. Для более правильного вывода надо вычислить дисперсии для каждого портфеля и сравнить их.

Дисперсии для первого портфеля :

Решение задач по эконометрике в Excel

Для второго:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Третий портфель имеет дисперсию:

Решение задач по эконометрике в Excel

Вывод: наименьший риск получается при покупке акций Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel в равных долях.

Чтобы принять окончательное решение надо построить множество Парето, характеризующее зависимость доходности портфеля от его риска, т.е. математического ожидания и дисперсии:

Решение задач по эконометрике в Excel

Построение тренда для двух рядов данных

Задача построения функциональной зависимости может быть выполнена с помощью команды Добавить линию тренда. В этом случае необходимо визуально исследовать зависимость между х и у и выбрать график элементарной функции, который даст лучшее приближение к экспериментальным данным. Форматирование графиков выполняется с помощью меню Диаграмма. Напомним, что форматируемый объект должен быть выделен.

Существуют и другие способы форматирования: контекстное меню — вызывается для объекта с помощью правой клавиши мыши.

Прежде всего, надо исследовать корреляционное поле и сделать вывод о характере зависимости между переменными. Затем выполните действия (тренд построен для данных примера 1.1):

  1. На диаграмме (рис. 1.1) выделите маркеры, щелкнув по любой из точек данных.
  2. В меню диаграмма выберите Добавить линию тренда (можно воспользоваться контекстным меню).
  3. Перейдите на вкладку Тип диалогового окна Линия тренда, как показано на рис. 1.5 и выделите пиктограмму Линейный.
  4. Откройте вкладку Параметры (рис. 1.6) включите опции Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации Решение задач по эконометрике в Excel.
Решение задач по эконометрике в Excel

На вкладке параметры имеются и другие типы функциональных зависимостей. Предлагается самостоятельно построить остальные виды тренда и записать их уравнения. Не забывайте включать опции из пункт 4, приведенной выше инструкции.

Инструмент анализа регрессия

Дает возможность провести более полный анализ, полученного уравнения линейного тренда с использованием методов математической статистики.

Коэффициенты уравнения линейной регрессии находятся по выборочным данным и являются величинами случайными, поэтому надо провести анализ их значимости (значимости). Надо определить значимость всего уравнения регрессии и самое главное построить прогноз по построенному уравнению, а затем провести его оценку значимости.

При построении линейного тренда предполагается, что линейная модель наилучшим образом характеризует зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel параметры модели; Решение задач по эконометрике в Excel — случайная величина (возмущение), характеризующая влияние неучтенных факторов.

Уравнение прямой (1.2), коэффициенты которого находят по выборочным данным, называют уравнением регрессии и обозначают Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Коэффициенты регрессии Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel находят по методу наименьших квадратов. Они являются только оценками параметров модели (соответственно Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel). Для получения наилучших оценок необходимо, чтобы выполнялся ряд предпосылок относительно случайного отклонения

Решение задач по эконометрике в Excel

индекс Решение задач по эконометрике в Excel означает значение факторов в одноименном испытании. Это условия Гаусса-Маркова (Приложение 1), а так же предположения:

• случайные отклонения имеют нормальный закон распределения;

• отсутствуют ошибки спецификации;

• число наблюдений достаточно большое: как минимум в шесть раз превышает число объясняющих факторов и другие.

Оценку Решение задач по эконометрике в Excel называют коэффициентом регрессии. Ее значение показывает среднее изменение результата у с изменением фактора х на одну единицу.

Можно установить зависимость между коэффициентом регрессии и коэффициентом корреляции:

Решение задач по эконометрике в Excel

В качестве меры рассеивания фактического значения у относительно теоретического значения Решение задач по эконометрике в Excel (находится по уравнению регрессии) используется стандартная ошибка уравнения регрессии, которая определяется по формуле:

Решение задач по эконометрике в Excel

Оценка качества полученного уравнения регрессии содержит следующие пункты:

  • Оценка значимости коэффициентов регрессии;
  • Построение доверительных интервалов для каждого коэффициента;
  • Оценка значимости всего уравнения регрессии;
  • Построение прогнозного значения и доверительного интервала к ним. Для определения статистической значимости коэффициентов регрессии и корреляции необходимо рассчитать Решение задач по эконометрике в Excel-статистики Стьюдента лучше всего это сделать с помощью встроенной функции СТЬДРАСПОБР [1].

Оценка значимости коэффициентов регрессии и корреляции

Устанавливает надежность полученных результатов. Случайные ошибки коэффициента корреляции и оценок параметров линейной модели вычисляются по формулам:

Решение задач по эконометрике в Excel

стандартное отклонение коэффициента Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

стандартное отклонение коэффициента Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

стандартное отклонение коэффициента корреляции.

Любое стандартное отклонение иногда называют стандартной ошибкой соответствующего коэффициента.

Рассматривается основная гипотеза о равенстве параметров регрессии нулю.

Решение задач по эконометрике в Excel — коэффициент незначим; Решение задач по эконометрике в Excel — коэффициент значимый По выборке находятРешение задач по эконометрике в Excel-статистики Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Критическое значение Решение задач по эконометрике в Excel для Решение задач по эконометрике в Excel-статистик находят с помощью распределения Стьюдента. Для этого надо знать объем выборки и задать уровень значимости Решение задач по эконометрике в Excel. Например, для

Решение задач по эконометрике в Excel

Выдвинутая гипотеза:

Часто при проверке качества коэффициентов используют «грубое правило»:

• если Решение задач по эконометрике в Excel то коэффициент статистически незначим;

• если Решение задач по эконометрике в Excel, то коэффициент относительно слабо значим, рекомендуется воспользоваться таблицей критических точек распределения Стьюдента;

• если Решение задач по эконометрике в Excel, то коэффициент значим (это утверждение считается гарантированным при Решение задач по эконометрике в Excel);

• если Решение задач по эконометрике в Excel, то коэффициент считается сильно значимым (вероятность ошибки при достаточном числе наблюдений не превосходит 0,001).

Каждая оценка дополняется доверительным интервалом. Для этого определяют предельную ошибку [1] для каждого коэффициента:

Решение задач по эконометрике в Excel

откуда границы доверительных интервалов находятся по формуле:

Решение задач по эконометрике в Excel

Коэффициент детерминации для парной регрессии совпадает с квадратом коэффициента корреляции Решение задач по эконометрике в Excel и характеризует долю дисперсии результативного признака Решение задач по эконометрике в Excel, объясняемую регрессией в общей дисперсии результативного при-знака. Соответственно величина Решение задач по эконометрике в Excel характеризует долю дисперсии у, вызванную влиянием неучтенных факторов в общей дисперсии признака Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Разделив обе части уравнения на общую сумму квадратов отклонений, получим:

Решение задач по эконометрике в Excel

Таким образом, коэффициент детерминации Решение задач по эконометрике в Excel является мерой, позволяющей определить, в какой степени найденная прямая регрессии дает лучший результат для объяснения поведения зависимой переменной Решение задач по эконометрике в Excel, чем горизонтальная прямая Решение задач по эконометрике в Excel. Очевидно, что Решение задач по эконометрике в Excel. Откуда следует, что чем ближе он к единице, тем больше уравнение регрессии объясняет поведение фактических значений Решение задач по эконометрике в Excel. Поэтому хотелось бы стремятся построить регрессию с наибольшим значением Решение задач по эконометрике в Excel.

Корень квадратный из коэффициента детерминации называется индексом корреляции и обозначают Решение задач по эконометрике в Excel.

Для проверки общего качества уравнения регрессии выдвигается предположение, что коэффициенты Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel одновременно равны нулю, тогда уравнение считают незначимым, в противном случае значимым. Данная гипотеза проверяется на основе дисперсионного анализа, при этом сравниваются объясненная и остаточная дисперсии:

Решение задач по эконометрике в Excel — уравнение незначимо,

Решение задач по эконометрике в Excel — уравнение значимо. Строится Решение задач по эконометрике в Excel-статистика:

Решение задач по эконометрике в Excel

При выполнении условий МНК статистика имеет распределение Фишера с числом степеней свободы Решение задач по эконометрике в Excel. При уровне значимости Решение задач по эконометрике в Excel находят критичекую точку Решение задач по эконометрике в Excel с помощью функции FHOBP и сравнивают его с наблюдаемым значением Решение задач по эконометрике в Excel. Так как рассматриваемая гипотеза правосторонняя [1], то:

■ если Решение задач по эконометрике в Excel то гипотеза Решение задач по эконометрике в Excel отклоняется в пользу Решение задач по эконометрике в Excel что означает объясненная дисперсия существенно больше остаточной, следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной от объясняющей.

■ если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excel принимается, т.е. объясненная дисперсия соизмерима с остаточной дисперсией, вызванной случайными факторами. Это позволяет считать влияние объясняющих переменных модели несущественным, а следовательно, общее качество уравнения регрессии невысоким.

В случае линейной регрессии проверка нулевой гипотезы для Решение задач по эконометрике в Excel-статистики равносильна проверке нулевой гипотезы для Решение задач по эконометрике в Excel-статистики для коэффициента корреляции:

Решение задач по эконометрике в Excel

Можно доказать равенство:

Решение задач по эконометрике в Excel

Самостоятельную значимость коэффициент Решение задач по эконометрике в Excel приобретает в случае множественной регрессии.

Поиск прогнозного значения и его оценка

Прогнозное значение Решение задач по эконометрике в Excel определяется, если в уравнение регрессии подставить значение Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Границы доверительного интервала для параметра Решение задач по эконометрике в Excel будут равны:

Решение задач по эконометрике в Excel

Чтобы найти стандартную ошибку Решение задач по эконометрике в Excel прогнозного значения Решение задач по эконометрике в Excel можно использовать два подхода: либо рассматривать параметр Решение задач по эконометрике в Excel как отдельное значение переменной Решение задач по эконометрике в Excel; или разброс Решение задач по эконометрике в Excel найти как условное среднее значение при известном значении Решение задач по эконометрике в Excel.

Доверительный интервал для отдельного значения Решение задач по эконометрике в Excel учитывает источники рассеяния: для коэффициентов регрессии (1.5, 1.6) и всего уравнения регрессии (1.4). В этом случае стандартная ошибка прогноза Решение задач по эконометрике в Excel вычисляется по формуле:

Решение задач по эконометрике в Excel

Доверительный интервал для условного среднего не учитывает дисперсию для всего уравнения регрессии (1.4), поэтому формула для вычисления ошибки прогноза имеет вид:

Решение задач по эконометрике в Excel

Пример с решением №7.3.

Воспользуемся данными примера 1.1 для выполнения следующих заданий:

  1. по данным выборок постройте линейную модель Решение задач по эконометрике в Excel;

a. оценить параметры уравнения регрессии Решение задач по эконометрике в Excel;

b. оценить статистическую значимость коэффициентов регрессии;

c. оценить силу линейной зависимости между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel;

d. спрогнозируйте потребление при доходе Решение задач по эконометрике в Excel.

  1. постройте модель, не содержащую свободный член Решение задач по эконометрике в Excel.

a. найдите коэффициент регрессии Решение задач по эконометрике в Excel,

b. оценить статистическую значимость коэффициента Решение задач по эконометрике в Excel;

c. оценить силу общее качество уравнения регрессии;

  1. значимо или нет различаются коэффициенты Решение задач по эконометрике в Excel на?
  2. какую модель вы выбираете?

Инструкции для выполнения примера с помощью инструмента Регрессия пакета анализ.

Для задания 1.

  1. Наберите исходные данные на лист Excel, как и раньше по столбцам (рис 1.1).
  2. Найдите инструмент Регрессия в пакете Анализ данных и нажмите ОК. появится диалоговое окно (рис. 1.8)
  3. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной Решение задач по эконометрике в Excel, включая метки диапазона.
  4. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной Решение задач по эконометрике в Excel, включая метки диапазона.
  5. Включите опцию Метки.
  6. Включите опцию Уровень надежности и введите в поле значение 98.
  7. Установите параметр вывода результатов, имя ячейки.
  8. Включите опцию вывод остатков для получения теоретических значений Решение задач по эконометрике в Excel.
  9. Нажмите ОК.
  10. Появятся итоговые результаты (рис 1.9).
  11. Выделите диапазон Вывод остатков и перенесите его, как показано на рис. 1.9.

Все оценки по умолчанию проводятся в excel с уровнем значимости Решение задач по эконометрике в Excel

Описание результатов поданным примера 1.1

Рисунок 1.9. состоит из четырех блоков: Регрессионная статистика, Дисперсионный анализ, данных для коэффициентов регрессии и их оценок, вывод остатков. Опишем более подробно полученные результаты.

Регрессионная статистика содержит строки, характеризующие построенное уравнение регрессии:

Для парной регрессии Множественный Решение задач по эконометрике в Excel равен коэффициенту корреляции Решение задач по эконометрике в Excel. По его значению 0,9952 можно сказать, что между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel существует сильная линейная зависимость.

Строка Решение задач по эконометрике в Excel-квадрат равна коэффициенту корреляции в квадрате. Нормированный Решение задач по эконометрике в Excel-квадрат рассчитывается с учетом степеней свободы числителя Решение задач по эконометрике в Excel и знаменателя Решение задач по эконометрике в Excel по формуле 1.11. Более подробно свойства этого коэффициента будут рассмотрены в разделе множественная линейная регрессия. Стандартная ошибка Решение задач по эконометрике в Excel регрессии вычисляется по формуле 1.4. Последняя строка содержит количество выборочных данных Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Дисперсионный анализ

Он позволяет исследовать общую дисперсию у (строка ИТОГО), дисперсию для теоретических данных (строка Регрессия) и остаточную дисперсию (строка Остаток).

Второй столбец Решение задач по эконометрике в Excel содержит число степеней свободы для каждой из сумм формулы 1.11*.

В третьем столбе Решение задач по эконометрике в Excel находятся суммы квадратов (1.11*).

Четвертый столбец Решение задач по эконометрике в Excel содержит средние значения Решение задач по эконометрике в Excel для регрессии и остатков.

В пятом столбце вычисляется по выборочным данным значение статистика Решение задач по эконометрике в Excel (1.12). Последний столбец, содержит Решение задач по эконометрике в Excel-значение равное

Решение задач по эконометрике в Excel

с уровнем значимости 0,05. С его помощью можно оценить значимость всего уравнения регрессии. Это значение можно считать вероятностью выполнения гипотезы Решение задач по эконометрике в Excel. В нашем случае она практически равна нулю, следовательно, построенное уравнение дает хорошее приближение к исходным данным.

Построение уравнения регрессии и оценка значимости ее коэффициентов

Этот блок состоит из трех строк:

названия столбцов — первая строка

Решение задач по эконометрике в Excel — пересечение — содержит все характеристики для коэффициента Решение задач по эконометрике в Excel; третья строка Решение задач по эконометрике в Excel содержит все характеристики для коэффициента Решение задач по эконометрике в Excel. В столбце коэффициенты находятся их значения

Решение задач по эконометрике в Excel

используя их можно записать уравнение линейной регрессии:

Решение задач по эконометрике в Excel

Столбец Стандартная ошибка содержит значения

Решение задач по эконометрике в Excel

В столбце Решение задач по эконометрике в Excel-статистики находятся значения, вычисленные по выборочным данным:

Решение задач по эконометрике в Excel

По «грубому правилу» можно сделать вывод, что Решение задач по эконометрике в Excel сильно значимый коэффициент, а Решение задач по эконометрике в Excel незначим.

Подтвердить эти выводы можно с помощью данных столбца Решение задач по эконометрике в Excel-значение. В этом столбе вычисляются вероятности

Решение задач по эконометрике в Excel

которое можно считать вероятностью выполнения гипотезы Решение задач по эконометрике в Excel. Эта вероятность для Решение задач по эконометрике в Excel равна нулю, что подтверждает вывод, сделанный по грубому правилу. Для коэффициента Решение задач по эконометрике в Excel с надежностью 43% случаев можно говорить о его незначимости.

Доверительные интервалы строятся для коэффициентов по умолчанию с доверительной вероятностью 95%. Границы интервалов находятся в столбцах Нижнее 95%, Верхнее 95%:

Решение задач по эконометрике в Excel

Так как нами была включена опция уровень надежности 98%, то получены доверительные интервалы и для этого значения Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Описания, приведенные выше, практически позволили ответить на все вопросы задания 1, кроме построения прогнозного значения и доверительного интервала для него. Выполнить это задание можно с помощью блока вывод остатков и функции ТЕНДЕЦИЯ() или непосредственно по формулам (1.14-1.18).

Прогнозируемое потребление при доходе Решение задач по эконометрике в Excel составит для данной модели:

Решение задач по эконометрике в Excel

Границы доверительного интервала условного среднего значения Решение задач по эконометрике в Excel (1.17):

Решение задач по эконометрике в Excel

Таким образом, среднее потребление при доходе 160 у.е. с надежностью 95% будет находиться в интервале (152,8993; 15464624).

Для определения границ интервала, в котором сосредоточено не менее 95% возможных объемов потребления при неограниченно большом числе наблюдений и уровне дохода Решение задач по эконометрике в Excel=160, воспользуемся формулой (1.16):

Решение задач по эконометрике в Excel

Получим границы интервала для прогнозного значения (151,4791; 155,61409). Нетрудно заметить, что он включает в себя интервал для среднего потребления.

Коэффициент Решение задач по эконометрике в Excel может трактоваться как предельная склонность к потреблению. Фактически он показывает, на какую величину изменится объем потребления, если предполагаемый доход возрастет на единицу.

Свободный член Решение задач по эконометрике в Excel уравнения регрессии определяет прогнозируемое значение Решение задач по эконометрике в Excel при величине располагаемого дохода Решение задач по эконометрике в Excel, равной нулю (т.е. автономное потребление). В нашем примере Решение задач по эконометрике в Excel=2,9992 говорит о том, что при нулевом располагаемом доходе расходы на потребление составят 2,99992 у.е. Это можно объяснить для отдельных хозяйств (каждое может тратить накопленные или одолженные деньги), но для совокупности хозяйств коэффициент теряет смысл.

Следует помнить, что полученное уравнение регрессии отражает лишь общую тенденцию в поведении рассматриваемых переменных. Индивидуальные значения могут отклоняться от модельных.

Решение задач по эконометрике в Excel

Задание2.

Рассмотрим модельное уравнение, не содержащее свободного члена:

Решение задач по эконометрике в Excel

тогда соответствующее ему уравнение регрессии:

Решение задач по эконометрике в Excel

Проведем исследование этого уравнения, так же как и в задании 1. Запустим инструмент Регрессия. Для заполнения полей диалогового окна (рис. 1.8) повторите действия 3 — 6 из задания 1; обязательно включите опцию Константа ноль и измените параметры выходного интервала так, чтобы вывод итогов задания 1 и задания 2 не пересекались.

Вывод итогов в этом случае представлен на рис 1.12. Строка, соответствующая свободному члену уравнения, содержит запись #Н/Д, так как он отсутствует в уравнении.

Проведите описание результатов самостоятельно для полученного уравнения регрессии Решение задач по эконометрике в Excel также как в задании 1.

Обратите внимание, что столбцы Верхнее 95% и Нижнее 95% повторяются, так как опция уровень надежности отключена.

Задание 3.

Проверим значимо или нет, различаются коэффициенты Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. Для этого сформулируем гипотезу о равенстве математических ожиданий:

Решение задач по эконометрике в Excel — коэффициенты совпадают, значимого различия нет; Решение задач по эконометрике в Excel — коэффициенты различаются значимо.

Для проверки гипотезы построим статистику

Решение задач по эконометрике в Excel

Сравним наблюдаемое значение с критическим при уровне значимости Решение задач по эконометрике в Excel и числом степеней свободы Решение задач по эконометрике в Excel.

Найдем критическое значение с помощью встроенной функции Стьюдента Решение задач по эконометрике в Excel. Поскольку Решение задач по эконометрике в Excel, то нет оснований для отклонения нулевой гипотезы. Это дает основания утверждать, что различия в коэффициентах незначимо.

Задание 4.

Необходимо сравнить коэффициенты детерминации двух уравнений, значения которых возьмите из отчетов Вывод Итогов (рис. 1.9, рис. 1.10):

для первого уравнения

Решение задач по эконометрике в Excel

для второго уравнения

Решение задач по эконометрике в Excel

Так как для первого уравнения это значение больше, чем для второго, то можно предположить, что первое уравнение

Решение задач по эконометрике в Excel

описывает поведение зависимой переменной лучше, чем второе

Решение задач по эконометрике в Excel

так как её коэффициент детерминации больше. Сравнение двух уравнений регрессии с помощью Решение задач по эконометрике в Excel-статистики будет рассмотрено в разделе множественная линейная регрессия.

Решение задач по эконометрике в Excel

Множественная линейная регрессия

Как правило, на изучаемый фактор Решение задач по эконометрике в Excel оказывает влияние не один, а несколько факторов Решение задач по эконометрике в Excel. Например, спрос зависит не только от цены товара, но и от доходов потребителей, а также от цены на замещающие его товары и других факторов.

Пусть зависимая переменная Решение задач по эконометрике в Excel в Решение задач по эконометрике в Excel наблюдениях определяется m объясняющими факторами Решение задач по эконометрике в Excel, а функциональная зависимость между ними имеет вид линейной модели:

Решение задач по эконометрике в Excel

или для индивидуальных наблюдений Решение задач по эконометрике в Excel,где Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Уравнение регрессии для индивидуальных наблюдений:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel— вектор неизвестных параметров,

Решение задач по эконометрике в Excel — вектор оценочных параметров,

Решение задач по эконометрике в Excel вектор значений зависимой переменной,

Решение задач по эконометрике в Excel — матрица значений независимых переменных, где Решение задач по эконометрике в Excel — значение переменной

Решение задач по эконометрике в Excel в Решение задач по эконометрике в Excel-том наблюдении, Решение задач по эконометрике в Excel — случайные возмущения,

Решение задач по эконометрике в Excel случайный вектор отклонений теоретических значений Решение задач по эконометрике в Excel от фактических Решение задач по эконометрике в Excel.

Тогда уравнение (1.18) можно записать в матричном виде:

Решение задач по эконометрике в Excel

а так же уравнение (1.20):

Решение задач по эконометрике в Excel

Чтобы найти коэффициенты линейной регрессии (1.20), надо решить уравнение (1.22) относительно матрицы В. Для этого умножают обе части матричного уравнения (1.22) на транспонированную матрицу Решение задач по эконометрике в Excel и из полученного уравнения:

Решение задач по эконометрике в Excel

Полученное решение справедливо для уравнений регрессии с произвольным количеством объясняющих факторов Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excel обратная матрица к матрице Решение задач по эконометрике в Excel.

Решение (1.23) уравнения регрессии (1.22) можно найти:

  1. с использованием методов матричной алгебры;
  2. с помощью встроенных функций Excel для работы с массивами: МОБР(), ТРАНСП(), МУМНОЖ();
  3. применить инструмент анализа Регрессия.

Первый способ изучается в курсе Математика и для его реализации необходимо записать все матрицы, характеризующие уравнение 1.23.

Для реализации второго способа коэффициенты этих матриц надо занести на лист Excel, а затем применить правила работы с массивами данных. Необходимо помнить, что матрицы для этих методов имеют вид:

Решение задач по эконометрике в Excel

Матрица Решение задач по эконометрике в Excel в первом столбце содержит единицы, которые являются коэффициентом при неизвестном Решение задач по эконометрике в Excel линейной регрессии 1.20.

Наиболее простым является последний способ поиска коэффициентов регрессии 1.20. Рассмотрим его применение на примере.

Пример с решением №7.4.

Анализируется объем сбережений Решение задач по эконометрике в Excel населения за 10 лет. Предполагается, что его размер Решение задач по эконометрике в Excel в текущем году зависит от величины Решение задач по эконометрике в Excel располагаемого дохода Решение задач по эконометрике в Excel в предыдущем году и от величины Решение задач по эконометрике в Excel реальной процентной ставки Решение задач по эконометрике в Excel в рассматриваемом году. Статистические данные приведены в таблице:

Решение задач по эконометрике в Excel

Задание:

1) найдите коэффициенты линейной регрессии Решение задач по эконометрике в Excel

2) оцените статистическую значимость найденных коэффициентов регрессии Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

3) оцените силу влияния факторов на объем сбережений населения;

4) постройте 95% -е доверительные интервалы для найденных коэффициентов;

5) вычислите коэффициент детерминации Решение задач по эконометрике в Excel и оценить его статистическую значимость при Решение задач по эконометрике в Excel;

6) рассчитайте коэффициенты частной корреляции;

7) определите, какой процент разброса зависимой переменной объясняется данной регрессией;

8) найдите скорректированным коэффициент детерминации Решение задач по эконометрике в Excel и сравните его с коэффициент детерминации Решение задач по эконометрике в Excel.

9) оцените предельную склонность граждан к сбережению. Существенно ли отличается она от 0,5?

10) определите, увеличивается или уменьшается объем сбережений с ростом процентной ставки; будет ли ответ статистически обоснованным;

11) спрогнозируйте средний объем сбережений в 2011 году, если предполагаемый доход составит 270 тыс. руб., а процентная ставка будет равна 5,5%.

12) выводы по качеству построенной модели;

Все расчеты выполним с помощью ППП Excel.

Инструкции для выполнения

  1. Наберите исходные данные на лист Excel, как и раньше по столбцам (рис 1.13).
  2. Найдите инструмент Регрессия в пакете Анализ данных и нажмите Решение задач по эконометрике в Excel, появится диалоговое окно (рис. 1.8)
  3. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной в столбце Решение задач по эконометрике в Excel, включая метки диапазона.
  4. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной в столбцах Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel, включая метки диапазона.
  5. Включите опцию Метки.
  6. Включите опцию Уровень надежности и введите в поле значение 99.
  7. Установите параметр вывода результатов, имя ячейки.
  8. Включите опцию вывод остатков для получения теоретических значений Решение задач по эконометрике в Excel.
  9. Нажмите Решение задач по эконометрике в Excel.
  10. Появятся итоговые результаты (рис 1.14).
Решение задач по эконометрике в Excel

Описание результатов уравнение линейной регрессии

Используя столбец Коэффициенты, запишем уравнение регрессии:

Решение задач по эконометрике в Excel

При изменении доходов в предшествующем году на одну тысячу рублей сбережения увеличатся на 120 рублей, если экономическая ситуация будет стабильной. При увеличении процентной ставки на 1% сбережения могут увеличиться на 350 рублей.

Решение задач по эконометрике в Excel

Значимость коэффициентов регрессии

Значение Решение задач по эконометрике в Excel— статистик находятся в столбце с одноименным названием:

Решение задач по эконометрике в Excel

Используя «грубое правило», можно сделать вывод, что коэффициенты Решение задач по эконометрике в Excel значимы, так как они превышают значение три. Коэффициент Решение задач по эконометрике в Excel относительно слабо значим. Убедится в этих выводах можно используя СТЬЮДРАСПОБР(), с помощью которой найдите критические точки и постройте двухстороннюю критическую область. Для различных уровней значимости:

Решение задач по эконометрике в Excel

Этот же вывод получите, если исследуете показания столбца Решение задач по эконометрике в Excel-значение. Коэффициент Решение задач по эконометрике в Excel существенного влияния на переменную Решение задач по эконометрике в Excel не оказывает, т.е. может быть исключен из модели. Однако, учитывая, что в экономике, свободный член отражает экзогенную среду, лучше его оставить в уравнении регрессии, так как наличие свободного члена в линейном уравнении может только уточнить вид зависимости.

Значение Решение задач по эконометрике в Excel-статистики для коэффициента Решение задач по эконометрике в Excel-пересечение обычно не используется.

Сравнение коэффициентов регрессии

Простое сопоставление коэффициентов регрессии по модулю не может оценить силу влияния факторов на признак у: такое сопоставление лишено смысла. Однако их можно нормировать (стандартизировать), используя формулу:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — коэффициент регрессии после нормирования, Решение задач по эконометрике в Excel— стандартная ошибка переменной Решение задач по эконометрике в Excel; Решение задач по эконометрике в Excel — стандартная ошибка переменной Решение задач по эконометрике в Excel.

Нормированные коэффициенты можно сравнивать и делать вывод о влиянии факторов на переменную Решение задач по эконометрике в Excel. Факторы с наименьшим по модулю значением Решение задач по эконометрике в Excel оказывают на Решение задач по эконометрике в Excel наименьшее влияние.

Уравнение регрессии в стандартизованном масштабе имеет вид:

Решение задач по эконометрике в Excel

это означает, что влияние процентной ставки Решение задач по эконометрике в Excel на объем вкладов Решение задач по эконометрике в Excel меньше, чем влияние уровня доходов за предшествующий период Решение задач по эконометрике в Excel.

Доверительные интервалы для коэффициентов

Находятся в столбцах нижнее/верхнее 95%:

Решение задач по эконометрике в Excel

Можно построить доверительные интервалы с уровнем надежности 97% (Рис. 1.14).

Коэффициент детерминации

Коэффициент детерминации находится по формуле (1.11):

Решение задач по эконометрике в Excel

Он характеризует долю разброса значений зависимой переменной Решение задач по эконометрике в Excel, объясненной уравнением регрессии. В нашем примере, 98% разброса переменной Решение задач по эконометрике в Excel объясняется построенным уравнением регрессии.

Скорректированный коэффициент детерминации

В случае множественной регрессии коэффициент детерминации является неубывающей функцией числа объясняющих переменных, т.е. добавление новой переменной увеличивает значение Решение задач по эконометрике в Excel. Поэтому при расчете коэффициента детерминации для получения несмещенных оценок в числителе и знаменателе формулы 1.11 делается поправка на число степеней свободы. Найденное значение называется скорректированным коэффициентом детерминации:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel — является несмещенной оценкой остаточной дисперсии, т.е. дисперсией случайных отклонений точек наблюдений от линии регрессии. Ее число степеней свободы равно Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excel степень свободы связана с необходимостью решения системы Решение задач по эконометрике в Excel линейного уравнения;

Решение задач по эконометрике в Excel — является несмещенной оценкой общей дисперсии, т.е. дисперсией отклонения Решение задач по эконометрике в Excel от Решение задач по эконометрике в Excel, где одна степень теряется при вычислении Решение задач по эконометрике в Excel.

Заметим, что несмещенная оценка объясненной дисперсии Решение задач по эконометрике в Excel, т.е. дисперсии отклонения точек Решение задач по эконометрике в Excel от Решение задач по эконометрике в Excel, имеет Решение задач по эконометрике в Excel степеней свободы.

Все суммы можно найти в столбце Решение задач по эконометрике в Excel дисперсионного анализа, их средние значения в столбце Решение задач по эконометрике в Excel, а число степеней свободы в столбце Решение задач по эконометрике в Excel этого же блока.

Для нашего примера Решение задач по эконометрике в Excel находится в блоке регрессионная статистика в строке нормированный.

Можно получить формулу, устанавливающую связь между скорректированным коэффициентом детерминации и коэффициентом детерминации:

Решение задач по эконометрике в Excel

Очевидно, что:

Решение задач по эконометрике в Excel для Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel только при Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel может принимать отрицательные значения (например, если Решение задач по эконометрике в Excel)

Коэффициент корректируется с ростом числа объясняющих переменных. Доказано, что скорректированный коэффициент корреляции увеличивается при добавлении новой переменной тогда и только тогда, когда Решение задач по эконометрике в Excel— статистика этой переменной по модулю больше единицы. Поэтому добавление в модель новых переменных осуществляется до тех пор, пока он растет.

В пакете Анализ данных приводятся значения Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. Значимость коэффициента детерминации и скорректированного коэффициента при исследовании уравнения регрессии большая, однако, не абсолютная. При неправильной спецификации модели можно получить очень высокие значения этих коэффициентов, поэтому Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel рассматриваются как один из ряда показателей, которые нужно проанализировать, чтобы уточнить строящуюся модель.

Индекс множественной корреляции

Теснота линейной взаимосвязи в линейной регрессии выполняется с помощью индекса корреляции:

Решение задач по эконометрике в Excel

Если Решение задач по эконометрике в Excel — неслучайная величина, то Решение задач по эконометрике в Excel характеризует качество подбора уравнения регрессии. Если же Решение задач по эконометрике в Excel — случайная переменная, то индекс корреляции является мерой тесноты линейной взаимосвязи между Решение задач по эконометрике в Excel и набором факторов Решение задач по эконометрике в Excel.

Для нашего примера Решение задач по эконометрике в Excel находим в строке Множественный рис 1.18.

Коэффициенты частной корреляции

Используются для выделения определяющего фактора и второстепенных. Необходимо определить частные зависимости между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel, при условии, что воздействие остальных факторов исключено (элиминировано). В случае трех переменных Решение задач по эконометрике в Excel можно получить коэффициенты парной корреляции Решение задач по эконометрике в Excel по формулам:

Решение задач по эконометрике в Excel

Воспользуйтесь инструкциями примера 1.2. и найдите коэффициенты парной корреляции для вычисления коэффициентов частной корреляции.

Решение задач по эконометрике в Excel

Анализируя, полученные данные можно сказать, что факторы Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel дублируют друг друга Решение задач по эконометрике в Excel. Сравнивая их влияние на фактор Решение задач по эконометрике в Excel можно сделать вывод об исключении переменной Решение задач по эконометрике в Excel из уравнения регрессии, так как Решение задач по эконометрике в Excel. Постройте уравнение регрессии, не содержащее фактор Решение задач по эконометрике в Excel. Сравните коэффициенты детерминации двух уравнений и сделайте вывод: следует исключать фактор Решение задач по эконометрике в Excel или оставить его при построении уравнения регрессии.

Доверительный интервал прогноза

Если уравнение регрессии имеет вид:

Решение задач по эконометрике в Excel

то прогнозное значение вычисляется так же как в случае парной регрессии. Необходимо подставить заданные значения прогноза

Решение задач по эконометрике в Excel

в уравнение регрессии.

Найдем средний объем сбережений в 2011 году, если предполагаемый доход в 2010 году составит 270 тыс. рублей, а процентная ставка вырастет до 5,5%. Подставив эти значения в уравнение регрессии, получим средний объем сбережений в 2011 году: Решение задач по эконометрике в Excel

Точечная оценка объема сбережений в 2011 году может быть дополнена интервальной оценкой, полученной по формуле 1.15:

Решение задач по эконометрике в Excel

где

Решение задач по эконометрике в Excel

Используя встроенные функции Excel, найдем матричное произведение:

Решение задач по эконометрике в Excel

Подставив все значения в 1.28, найдем интервальные оценки среднего сбережения населения в 2011 году:

Решение задач по эконометрике в Excel

Склонность населения к сбережению в данной модели отражается через коэффициент Решение задач по эконометрике в Excel, определяющий на какую величину вырастет объем сбережений Решение задач по эконометрике в Excel при росте располагаемого дохода на одну единицу.

Для анализа, существенно или нет коэффициент Решение задач по эконометрике в Excel отличается от 0,5, проверим гипотезу:

Решение задач по эконометрике в Excel

Построим Решение задач по эконометрике в Excel статистику, которая имеет распределение Стьюдента. Зададим уровень значимости Решение задач по эконометрике в Excel, число степеней свободы Решение задач по эконометрике в Excel тогда:

Решение задач по эконометрике в Excel

Так как

Решение задач по эконометрике в Excel

то Решение задач по эконометрике в Excel должна быть отклонена. Действительно 50% склонность населения к сбережениям явно завышена по сравнению с модельным значением в 12,4%.

Рост процентной ставки увеличивает объем сбережений

Эта зависимость характеризуется коэффициентом Решение задач по эконометрике в Excel. Так как коэффициент статистически значим, то ответ будет статистически обоснованным.

Анализ качества уравнения регрессии

Первое построенное по выборке уравнение редко является удовлетворительным по тем или иным характеристикам. Поэтому следующей задачей эконометрического анализа является проверка качества уравнения регрессии. Эта проверка проводится по следующим этапам:

■ проверка статистической значимости коэффициентов регрессии;

■ проверка общего качества уравнения регрессии;

■ проверка свойств данных: проверка выполнимости МНК.

По всем показателям нашего примера 1.3 модель может быть признана удовлетворительной:

■ высокие Решение задач по эконометрике в Excel-статистики;

■ коэффициент детерминации близок к единице;

Это означает, что модель может быть использована для целей анализа и прогнозирования. Мы не проверили выполнимость МНК и значимость коэффициента детерминации.

Анализ значимости Решение задач по эконометрике в Excel

Проверяется гипотеза об одновременном равенстве нулю всех объясняющих переменных — уравнение считается незначимым:

Решение задач по эконометрике в Excel

Если данная гипотеза не отклоняется, то делается вывод, что совокупное влияние всех m объясняющих переменных на зависимую переменную Решение задач по эконометрике в Excel можно считать статистически незначимым, а общее качество уравнения регрессии невысоким.

Проверка данной гипотезы проводится на основе дисперсионного анализа, при этом сравниваются объясненная и остаточная дисперсии.

Решение задач по эконометрике в Excel

Для проверки гипотезы строится Решение задач по эконометрике в Excel-статистика:

Решение задач по эконометрике в Excel

которая при выполнении МНК имеет распределение Фишера с числом степеней свободы

Решение задач по эконометрике в Excel

Критическое значение находится с помощью:

Решение задач по эконометрике в Excel

при уровне значимости Решение задач по эконометрике в Excel.

■ Если Решение задач по эконометрике в Excel то гипотеза Решение задач по эконометрике в Excel отклоняется в пользу Решение задач по эконометрике в Excel что означает объясненная дисперсия существенно больше остаточной, следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной от объясняющей.

■ Если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excel принимается, т.е. объясненная дисперсия соизмерима с остаточной дисперсией, вызванной случайными факторами. Это позволяет считать влияние объясняющих переменных модели несущественным, а следовательно, общее качество уравнения регрессии невысоким.

На практике вместо указанной гипотезы проверяется, связанная с ней гипотеза о статистической значимости коэффициента детерминации Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Очевидно, что если Решение задач по эконометрике в Excel, а линия регрессии Решение задач по эконометрике в Excel является наилучшей по МНК, т.е. величина Решение задач по эконометрике в Excel линейно не зависит от Решение задач по эконометрике в Excel. Анализ статистики Решение задач по эконометрике в Excel позволяет сделать вывод о том, что для принятия гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии коэффициент детерминации Решение задач по эконометрике в Excel не должен существенно отличаться от нуля. Его критическое значение уменьшается при росте числа наблюдений и может стать сколь угодно малым.

Для проверки этой гипотезы числитель и знаменатель формулы 1.29 поделим на общую сумму квадратов отклонений Решение задач по эконометрике в Excel и получим:

Решение задач по эконометрике в Excel

Вернемся к результатам нашего примера 1.3. (рис. 1.14).Найдем по таблице распределения Фишера критическую точку для уровня значимости Решение задач по эконометрике в Excel. Сравнивая критическое и наблюдаемое значения Решение задач по эконометрике в Excel, можно сделать вывод, что коэффициент детерминации статистически значим. Это означает, что совокупное влияние переменных Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel на переменную Решение задач по эконометрике в Excel существенно. Этот же вывод можно сделать по столбцу значимость Решение задач по эконометрике в Excel, который характеризует вероятность выполнения гипотезы Решение задач по эконометрике в Excel.

Проверка качества двух коэффициентов детерминации

Статистику Решение задач по эконометрике в Excel можно использовать и для обоснования случая исключения или добавления в уравнение регрессии Решение задач по эконометрике в Excel объясняющих переменных. Добавлять (исключать) переменные надо по одному.

Использовать лучше Решение задач по эконометрике в Excel так как Решение задач по эконометрике в Excel всегда растет при добавлении новой объясняющей переменной. Зависимая переменная должна быть представлена в том же виде, что и уже существующие в исследуемом уравнении регрессии. Число наблюдений для обеих моделей должно быть одинаковым.

Пусть первоначально построенное по п наблюдениям уравнение регрессии имело вид:

Решение задач по эконометрике в Excel

и скорректированный коэффициент детерминации равен Решение задач по эконометрике в Excel.

Исключим из уравнения Решение задач по эконометрике в Excel переменных, оказывающих наименьшее влияние на Решение задач по эконометрике в Excel По Решение задач по эконометрике в Excel наблюдениям построим новое уравнение регрессии:

Решение задач по эконометрике в Excel

скорректированный коэффициент детерминации, для которого равен Решение задач по эконометрике в Excel.

Необходимо определить существенно ли ухудшилось качество описания зависимой переменной Решение задач по эконометрике в Excel. Для этого выдвинем гипотезы:

Решение задач по эконометрике в Excel — ничего не изменилось

Решение задач по эконометрике в Excel — уравнение ухудшилось, если разность больше нуля. По выборочным данным найдите статистику:

Решение задач по эконометрике в Excel

которая имеет распределения Фишера с числом степеней свободы

Решение задач по эконометрике в Excel

где

Решение задач по эконометрике в Excel — потеря качества уравнения в результате того, что Решение задач по эконометрике в Excel переменных было отброшено. В результате появляется Решение задач по эконометрике в Excel дополнительных степеней свободы; Решение задач по эконометрике в Excel — остаточная дисперсия первоначального уравнения.

Сравним критическое значение Решение задач по эконометрике в Excel и с наблюдаемым при уровне значимости Решение задач по эконометрике в Excel:

■ Если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excel отклоняется в пользу Решение задач по эконометрике в Excel, что означает, одновременное исключение Решение задач по эконометрике в Excel объясняющих переменных существенно повлияет на качество первоначального уравнения.

■ Если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excel принимается, т.е. разность Решение задач по эконометрике в Excel; незначительная. Это позволяет считать, что исключение Решение задач по эконометрике в Excel объясняющих переменных модели допустимым, так как общее качество уравнения регрессии изменится несущественно.

Аналогично проверяется гипотеза о добавлении к объясняющих переменных в уравнение регрессии. В этом случае составляется статистика:

Решение задач по эконометрике в Excel

Исключим фактор Решение задач по эконометрике в Excel из уравнения регрессии примера 1.3. построим зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. с помощью инструмента Регрессия получим уравнение:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Коэффициенты и все остальные характеристики для этого уравнения регрессии можно посмотреть на рис 1.16. Сравним новое уравнений с уравнением полученным ранее.

Решение задач по эконометрике в Excel

В ячейке N18 находится значение Решение задач по эконометрике в Excel-статистики вычисленное по формуле 1.31. Критическое значение (ячейка N19) находится с помощью встроенной функции Excel при уровне значимости 0,05:

Решение задач по эконометрике в Excel

Сравнивая эти два значения делаем вывод, что гипотеза Решение задач по эконометрике в Excel отклоняется в пользу гипотезы Решение задач по эконометрике в Excel то есть новое уравнение ухудшило качество приближения к выборочным данным.

Проверка качества двух коэффициентов детерминации

Необходимо сравнить два уравнения регрессии для отдельных групп наблюдений, т.е. будет одним и тем же уравнение регрессии для этих выборок. Для проверки этой гипотезы используется тест Чоу.

Пусть имеются две выборки объемом Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. Для каждой из этих выборок получено уравнение регрессии:

Решение задач по эконометрике в Excel

Суммы квадратов отклонений Решение задач по эконометрике в Excel от линий регрессии обозначим Решение задач по эконометрике в Excel для первого и Решение задач по эконометрике в Excel для второго уравнения регрессии.

Выдвинем гипотезу о равенстве соответствующих коэффициентов регрессии

Решение задач по эконометрике в Excel

Объединим обе выборки в одну. Для выборки объема Решение задач по эконометрике в Excel найдем еще одно уравнение регрессии, сумму квадратов отклонений которой обозначим Решение задач по эконометрике в Excel. Тогда для проверки гипотезы Решение задач по эконометрике в Excel строится статистика:

Решение задач по эконометрике в Excel

которая имеет распределение Фишера с числом степеней свободы Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

Если Решение задач по эконометрике в Excel, то значение Решение задач по эконометрике в Excel-статистики приближается к нулю, а это значит, что уравнения регрессии обеих выборок практически одинаковые. А дальше сравним наблюдаемое и критическое значения Решение задач по эконометрике в Excel и делаете вывод принимается или отклоняется гипотеза Решение задач по эконометрике в Excel.

Данные исследования отвечают на вопрос, можно ли за рассматриваемый период времени построить единое уравнение регрессии или же нужно разбить его на части и для каждого временного интервала построить свое уравнение регрессии.

Проверка выполнимости мнк. Автокорреляция остатков. Статистика дарбина-уотсона

Все предыдущие рассуждения основаны на том, что выполняются предпосылки МНК: мы предполагали, что случайные отклонения являются независимыми случайными величинами со средней, равной нулю. При работе с фактическими данными, такое допущение не всегда выполняется. Например, если вид функции выбран неудачно, то отклонения от регрессии вряд ли будут независимыми. В этом случае замечается концентрация положительных или отрицательных отклонений от регрессии и можно сомневаться в их случайном характере.

Если последовательные значения Решение задач по эконометрике в Excel коррелируют (зависят) между собой, то говорят, что имеет место автокорреляция остатков.

МНК в случае автокорреляции дает несмещенные и состоятельные оценки, однако полученные в этом случае доверительные интервалы имеют мало смысла в силу своей ненадежности. Значительная автокорреляция говорит о том, что спецификация модели неправильная. Проверка остатков на автокорреляцию должна выполняться обязательно. Наиболее простым приемом обнаружения автокорреляции является метод Дарбина-Уотсона (Решение задач по эконометрике в Excel). Идея, которого состоит в том, что проверяются на коррелированность не любые, а только соседние величины Решение задач по эконометрике в Excel. Соседними обычно считаются соседние по возрастанию объясняющей переменной Решение задач по эконометрике в Excel ( в случае перекрестной выборки) или по времени (в случае временных рядов) значения Решение задач по эконометрике в Excel.

Статистика Решение задач по эконометрике в Excel рассчитывается по формуле:

Решение задач по эконометрике в Excel

При условии что Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel большое число можно предположить

Решение задач по эконометрике в Excel

тогда после преобразования получим:

Решение задач по эконометрике в Excel

Очевидно, что Решение задач по эконометрике в Excel так как коэффициент корреляции

Решение задач по эконометрике в Excel, если Решение задач по эконометрике в Excel — автокорреляция отсутствует;

Решение задач по эконометрике в Excel -полная положительная автокорреляция;

Решение задач по эконометрике в Excel -полная отрицательная автокорреляция.

Решение задач по эконометрике в Excel

Возникает вопрос, какие значения Решение задач по эконометрике в Excel можно считать близкими к 2? Для обнаружения границ наблюдений статистики Решение задач по эконометрике в Excel существуют специальные таблицы. Для заданных Решение задач по эконометрике в Excel— уровня значимости; Решение задач по эконометрике в Excel— числа наблюдений и Решение задач по эконометрике в Excel -числа объясняющих переменных указывается два числа: Решение задач по эконометрике в Excel— нижняя граница и Решение задач по эконометрике в Excel— верхняя граница. Не обращаясь к таблице критических точек DW можно воспользоваться правилом, если l,5<Решение задач по эконометрике в Excel<2,5, автокорреляция отсутствует. Изобразим на рисунке числовой отрезок , используемый для проверки гипотезы об отсутствии автокорреляции.

Статистику Решение задач по эконометрике в Excel для примера 1.3 находим по формуле (1.35):

Решение задач по эконометрике в Excel

Для вычисления этой статистики запустите инструмент Регрессия, включив опции Остатки и График остатков, как показано на рис. 1.18. В результате получите значение случайных отклонений е, и их графики, которые Excel строит для каждой независимой переменной, как показано на рис. 1.20 и 1.21. Чтобы найти Решение задач по эконометрике в Excel, можно использовать функции СУММКВРАЗН и СУММКВ.

Если зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel линейная, то график остатков должен иметь случайный вид. На рис. 1.21 видим систематический рисунок, поэтому скорее всего между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel существует нелинейная зависимость, а значит надо изменить модель, включая в нее нелинейную зависимость.

Решение задач по эконометрике в Excel

Для проверки статистической значимости Решение задач по эконометрике в Excel надо воспользоваться таблицей критических точек Дарбина-Уотсона, например, при уровне значимости Решение задач по эконометрике в Excel и числе наблюдений

Решение задач по эконометрике в Excel

Можно считать, что автокорреляция отсутствует, так как найденная статистика попадает в критический интервал: 1,604<Решение задач по эконометрике в Excel<2,396, что является подтверждением высокого качества модели.

Решение задач по эконометрике в Excel

Мультиколлинеарность

Увеличение числа переменных в уравнении множественной регрессии повышает точность описания взаимосвязи, однако при этом должно выполняться условие, что Решение задач по эконометрике в Excel — объясняющие переменные, линейно независимые величины.

Под мулыиколлинеарностью понимают взаимосвязь объясняющих переменных регрессии. Если между переменными Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel существует функциональная зависимость Решение задач по эконометрике в Excel, то говорят о строгой мультиколлинеарности. Чаще всего между переменными существует довольно сильная корреляционная зависимость — в этом случае мультиколлинеарность называют нестрогой.

При строгой мультиколлинеарности решение матричного уравнения 1.22 становится невозможным, так как матрица Решение задач по эконометрике в Excel вырожденная — её определитель равен нулю.

Если же мультиколлинеарность нестрогая, то решение матричного уравнения формально можно найти, однако все оценки мало надежны.

Чтобы обнаружить мультиколлинеарность надо найти определитель матрицы Решение задач по эконометрике в Excel. Вместо этого проверяется определитель матрицы межфакторной корреляции, которую получают с помощью инструмента КОРРЕЛ.

Устранение мультиколлинеарности заключается в исключении одной из двух, находящихся во взаимосвязи переменных, либо путем пересмотра структуры уравнения регрессии. Для оценки влияния факторов на результирующий фактор Решение задач по эконометрике в Excel в случае используются показатели частной корреляции (1.26). Если число переменных больше трех, то для их определения удобно пользоваться формулой:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel коэффициенты матрицы обратной к матрице парных коэффициентов корреляции.

Гомоскедастичность (постоянство дисперсии случайных отклонений)

Для применения МНК требуется, чтобы дисперсия остатков была величиной постоянной. Невыполнимость этого условия называется гетероскедастичностью и влечёт смещенность дисперсий оценок, так как стандартная ошибка регрессии (1.4) становится смещенной.

Обнаружение гетероскедастичности является сложной задачей потому что необходимо знать распределение Решение задач по эконометрике в Excel, соответствующее выбранному значению переменной Решение задач по эконометрике в Excel. В тесте Голфелда-Квандта предполагается, что стандартное отклонение пропорционально значению Решение задач по эконометрике в Excel переменной Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel нормально распределены, автокорреляция остатков отсутствует. Проверка на гомоскедастичность по этому тесту содержит следующие шаги:

  1. Все Решение задач по эконометрике в Excel наблюдений упорядочивают по величине.
  2. Упорядоченная выборка разбивается на три подвыборки размерностью Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel соответственно.
  3. Центральные наблюдения исключаются из дальнейшего рассмотрения.
  4. Строят регрессии для первой и последней групп и находят остаточные суммы квадратов Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel соответственно. Если условие гомоскедастичности выполняется, то Решение задач по эконометрике в Excel , в противном случае Решение задач по эконометрике в Excel.
  5. Построенная Решение задач по эконометрике в Excel-статистика, имеет распределение Фишера с Решение задач по эконометрике в Excel степенями свободы, где Решение задач по эконометрике в Excel число объясняющих переменных в уравнении регрессии.
  6. Чем больше Решение задач по эконометрике в Excel превышает значение Решение задач по эконометрике в Excel, тем более нарушена предпосылка о равенстве остаточных дисперсий.
  7. НЕЛИНЕЙНАЯ РЕГРЕССИЯ

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих функций:

Решение задач по эконометрике в Excel

a) квадратичная функция (полином любой степени);

b) равносторонняя гипербола;

c) степенная;

d) показательная и др.

Кроме указанных функций для описания связи двух переменных можно использовать и другие типы кривых:

Решение задач по эконометрике в Excel

Различают два класса нелинейных уравнений:

1) регрессии, нелинейные относительно включенных объясняющих переменных,

но линейные по оцениваемым параметрам;

2) регрессии, нелинейные по оцениваемым параметрам.

К первому классу — нелинейные по переменным — относятся кривые а и b (рис 2.1). Нелинейными по параметрам (второй класс) являются зависимости c и d на рис. 2.1.

Линейные по параметру

Такие модели легко приводятся к линейному виду — линеаризуются. Для линейных но параметру моделей вводят новую переменную (таблица 2.1) и переходят к построению линейной регрессии по преобразованным данным. Применяя инструмент Регрессия, к преобразованным данным можно найти все оценки параметров преобразованных моделей и оценить их качество.

Качество исходной модели можно оценить, используя индекс корреляции (1.26). Оценка статистической значимости индекса корреляции проводится с помощью Решение задач по эконометрике в Excel— статистики, так же как и коэффициента детерминации (1.29). Довольно часто в экономических исследованиях для оценки качества построенного уравнения используют среднюю ошибку аппроксимации, которая вычисляется по формуле:

Решение задач по эконометрике в Excel

и оценивает по модулю величину отклонений расчетных значений от фактических. Допустимый предел значений средней ошибки аппроксимации не более 8-10%.

Приведем примеры использования нелинейных моделей, перечисленных в таблице 2.1.

Полиномиальная модель (1) может отражать зависимость между объемом выпуска Решение задач по эконометрике в Excel и издержками производства Решение задач по эконометрике в Excel; или расходами на рекламу Решение задач по эконометрике в Excel и прибылью Решение задач по эконометрике в Excel и т.д. В экономике наиболее часто используют многочлен второй степени реже третьей степени. Ограничения в применении многочленов более высоких степеней связано с требованием однородности исследуемой совокупности: чем выше степень многочлена, тем больше изгибов имеет кривая и соответственно меньше однородность по результативному признаку. Надо помнить, что графики многочленов имеют промежутки монотонности и точки экстремумов, поэтому параметры применения этих моделей не всегда могут быть логически истолкованы. Поэтому, если такая зависимость четко не определена графически (параболическая), то её лучше заменить другой нелинейной функцией.

Гиперболическая модель (2) — классическим примером этой модели является кривая Филлипса Решение задач по эконометрике в Excel, характеризующая соотношение между уровнем безработицы Решение задач по эконометрике в Excel и процентом прироста заработной платы Решение задач по эконометрике в Excel. При Решение задач по эконометрике в Excel кривая характеризуется нижней асимптотой Решение задач по эконометрике в Excel. Соответственно можно определить уровень безработицы, при котором заработная плата стабильна и темп её прироста равен нулю. При Решение задач по эконометрике в Excel гиперболическая функция будет медленно расти для Решение задач по эконометрике в Excel и имеет горизонтальную асимптоту Решение задач по эконометрике в Excel. Такие кривые называют кривыми Энгеля, который сформулировал закономерность: с ростом доходов Решение задач по эконометрике в Excel доля доходов, расходуемых на продовольствие Решение задач по эконометрике в Excel уменьшается.

Решение задач по эконометрике в Excel

Полулогарифмические модели (3) используются, когда необходимо определить темп роста или прироста экономических показателей. Например, при анализе банковского вклада по процентной ставке, при исследовании зависимости прироста объема выпуска продукции от процентного увеличения затрат на расходы, бюджетного дефицита от темпа роста ВВП, темп роста инфляции от объема денежной массы и т.д.

Нелинейные по параметру

Уравнения нелинейные по параметру можно разделить на:

  1. внутренне линейные — можно привести к линейному виду путем преобразований;
  2. внутренне нелинейные, которые не могут быть сведены к линейной модели.

Степенная модель:

Решение задач по эконометрике в Excel

Если прологарифмировать обе части уравнения 2.2, получится модель, легко приводящаяся к линейному виду:

Решение задач по эконометрике в Excel

Надо сделать замену:

Решение задач по эконометрике в Excel

получим линейную модель (1.1).

Коэффициент модели Решение задач по эконометрике в Excel определяет эластичность переменной Решение задач по эконометрике в Excel по переменной Решение задач по эконометрике в Excel, то есть процентное изменение Решение задач по эконометрике в Excel при изменении Решение задач по эконометрике в Excel на 1%. Степенная модель имеет постоянную эластичность, это легко увидеть, если продифференцировать обе части уравнения (2.3):

Решение задач по эконометрике в Excel

Так как Решение задач по эконометрике в Excel константа, то модель 2.3 называют моделью постоянной эластичности.

В случае парной регрессии использование обоснование использования степенной модели достаточно просто. Надо построить корреляционное поле для точек Решение задач по эконометрике в Excel, если их расположение соответствует прямой линии, то произведенная замена хорошая и можно использовать степенную модель.

Данная модель легко обобщается на большее число переменных. Наиболее известная — производственная функция Кобба-Дугласа: Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excel — объем выпуска; Решение задач по эконометрике в Excel — затраты капитала; Решение задач по эконометрике в Excel — затраты труда.

Лог-линейные модели широко используются в банковском и финансовом анализе:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — первоначальный банковский вклад, Решение задач по эконометрике в Excel — процентная ставка, Решение задач по эконометрике в Excel — размер вклада на момент Решение задач по эконометрике в Excel.

Прологарифмируем обе части этой модели

Решение задач по эконометрике в Excel

Введя замену

Решение задач по эконометрике в Excel

получим полулогарифмическую модель:

Решение задач по эконометрике в Excel

Коэффициент Решение задач по эконометрике в Excel в уравнении 2.6 имеет смысл темпа прироста переменной Решение задач по эконометрике в Excel по переменной Решение задач по эконометрике в Excel, то есть характеризует относительное изменение Решение задач по эконометрике в Excel к абсолютному изменению Решение задач по эконометрике в Excel. Продифференцируем 2.6 по Решение задач по эконометрике в Excel, получим:

Решение задач по эконометрике в Excel

Умножив Решение задач по эконометрике в Excel на 100%, получим темп прироста Решение задач по эконометрике в Excel. Надо сказать, что коэффициент

Решение задач по эконометрике в Excel

определяет мгновенный темп прироста, а

Решение задач по эконометрике в Excel

характеризует темп прироста сложного процента.

Показательные модели используются, когда анализируется изменение переменной Решение задач по эконометрике в Excel с постоянным темпом прироста во времени Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Если провести логарифмирование, то получится уравнение аналогичное 2.5 В общем виде показательная модель имеет вид:

Решение задач по эконометрике в Excel

но в силу равенства

Решение задач по эконометрике в Excel

сводится к уравнению 2.8.

Коэффициент эластичности

Рассматривая степенную модель, мы ввели понятие эластичности функции: предел отношения относительных приращений независимой переменной и зависимой называется эластичностью функции

Решение задач по эконометрике в Excel

показывает на сколько процентов изменится в среднем результат, если фактор х изменится на 1%.

Для других форм связи Э зависит от значения фактора Решение задач по эконометрике в Excel и не является величиной постоянной, поэтому рассчитывается средний коэффициент эластичности, который показывает, на сколько процентов в среднем по совокупности изменится результат Решение задач по эконометрике в Excel от своей средней величины, если фактор Решение задач по эконометрике в Excel изменится на 1% от своего среднего значения. Формула для расчета:

Решение задач по эконометрике в Excel

Несмотря на широкое использование в экономике коэффициентов эластичности, возможны случаи, когда они не имеют экономического смысла. Составьте таблицу коэффициентов эластичности для всех рассмотренных нелинейных моделей самостоятельно.

2.4. ПОСТРОЕНИЕ НЕЛИНЕЙНЫХ РЕГРЕССИЙ

Можно воспользоваться командой Добавить линию тренда, так же как в случае линейного тренда (раздел 1.3): необходимо построить корреляционное поле Решение задач по эконометрике в Excel и выбрать одну из зависимостей на вкладке параметры: полиномиальный, логарифмический, показательный и экспоненциальный. Такой способ удобен для случая двух переменных.

Использовать инструмент Регрессия можно только для преобразованных данных. Этот способ дает много не нужной информации.

Пример 3.1. По семи территориям Южного федерального округа за 2001 год известны значения двух признаков:

Решение задач по эконометрике в Excel

Задание

  1. Постройте уравнения регрессии для модели:

a) линейной;

b) степенной;

c) экспоненциальной;

d) логарифмической; гиперболы.

  1. Оцените каждую модель через среднюю ошибку аппроксимации Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel-критерий Фишера.

Решение задач по эконометрике в Excel

Проще всего построить поле корреляции, а затем добавить линии тренда (см. параграф 1.З.). Для полученных уравнений надо найти коэффициент аппроксимации и проверить Решение задач по эконометрике в Excel-критерий.

1а. Уравнение линейной регрессии:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Вариация результата на 12% объясняется вариацией фактора Решение задач по эконометрике в Excel — статистику найдем по формуле 1.13

Решение задач по эконометрике в Excel

Так как

Решение задач по эконометрике в Excel

то параметры линейного уравнения и показатель тесноты связи между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel статистически незначимы и гипотеза о линейности уравнения регрессии отклоняется. Самостоятельно вычислите величину средней ошибки аппроксимации:

Решение задач по эконометрике в Excel

l.b. Степенная модель

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Подставляя в уравнение регрессии фактические значения Решение задач по эконометрике в Excel, получим Решение задач по эконометрике в Excel. По этим значениям, используя формулу для индекса корреляции (1.26), получим

Решение задач по эконометрике в Excel

и среднюю ошибку аппроксимации:

Решение задач по эконометрике в Excel

Характеристики степенной модели указывают, что она не намного лучше линейной функции описывает связь между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel.

1с. Аналогично l.b. для показательной модели

Решение задач по эконометрике в Excel

сначала нужно выполнить линеаризацию

Решение задач по эконометрике в Excel

и после замены переменных

Решение задач по эконометрике в Excel

рассмотрим линейное уравнение:

Решение задач по эконометрике в Excel

Используя столбцы для Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel из предыдущей таблицы, получим коэффициенты:

Решение задач по эконометрике в Excel

и уравнение

Решение задач по эконометрике в Excel

После потенциирования запишем уравнение в обычной форме:

Решение задач по эконометрике в Excel

Все эти расчеты можно не делать, если воспользоваться для вычисления параметров Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel модели Решение задач по эконометрике в Excel встроенной статистической функцией ЛГРФПРИБЛ. Выполните самостоятельно и сравните результаты. Убедитесь, что значения вычисленные по формулам и полученные с помощью функции ЛГРФПРИБЛ() совпадают (рис.2.4)

Решение задач по эконометрике в Excel

Тесноту связи оценим с помощью индекса корреляции

Решение задач по эконометрике в Excel

который вычисляется по формуле (1.26). Связь между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel небольшая. Коэффициент аппроксимации, вычисленный по формуле (3.3) Решение задач по эконометрике в Excel=8% говорит о повышенной ошибке приближения, но в допустимых пределах. Сравнивая, показатели степенной и показательной функций можно сделать вывод, что степенная функция чуть лучше описывает связь между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel чем показательная.

l.d. Аналогичные расчеты надо провести и для равносторонней гиперболы Решение задач по эконометрике в Excel, которая линеаризуется заменой Решение задач по эконометрике в Excel.

Для этого уравнения в таблицу исходных значений надо добавить столбец Решение задач по эконометрике в Excel, а все остальные вычисления проведите, используя один из описанных выше способов:

Решение задач по эконометрике в Excel

Получена наибольшая оценка тесноты связи по сравнению с линейной, степенной и показательной регрессиями, а Решение задач по эконометрике в Excel остается в пределах допустимого значения, это означает, что для описания зависимости расходов на покупку продовольственных товаров в общих расходах (Решение задач по эконометрике в Excel в %) от среднедневной заработной платы одного работающего (Решение задач по эконометрике в Excel в руб.) необходимо из предложенных моделей выбрать гиперболическую.

  • Введем гипотезу Решение задач по эконометрике в Excel: уравнение регрессии статистически незначимо и рассмотрим статистику (1.30):
Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel при уровне значимости Решение задач по эконометрике в Excel смотри в пункте l.a.

Гипотеза Решение задач по эконометрике в Excel о статистической незначимости параметров уравнения принимается. Результат можно объяснить небольшим числом наблюдений и сравнительно невысокой теснотой гиперболической зависимости между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel.

Возможно эти страницы вам будут полезны:

  • Курсовая работа по эконометрике
  • Заказать работу по эконометрике
  • Лабораторная работа по эконометрике
  • Помощь по эконометрике
  • Системы эконометрических уравнений

Содержание

  1. Коэффициент детерминации в Excel (Эксель)
  2. Корреляционно-регрессионный анализ в Excel: инструкция выполнения
  3. Регрессионный анализ в Excel
  4. Корреляционный анализ в Excel
  5. Корреляционно-регрессионный анализ

Коэффициент детерминации в Excel (Эксель)

Для статистических моделей во многих случаях необходимо определить точность прогноза. Это производится с помощью специальных расчётов в Microsoft Excel, а использоваться будет коэффициент детерминации. Он обозначается как R^2.

Статистические модели можно разделить на качественные уровни в зависимости от коэффициента. От 0.8 до 1 относятся модели хорошего качества, модели достаточного качества имеют уровень от 0.5 до 0.8, а плохое качество имеет диапазон от 0 до 0.5.

Способ определения точности с помощью функции КВПИРСОН

В линейной функции коэффициент детерминации будет равен квадрату корреляционного коэффициента. Рассчитать его можно с помощью специальной функции. Для начала создадим таблицу с данными.

Потом нужно выбрать место, где будет показан результат расчёта и нажимаем на кнопку вставки функции.

После этого откроется специальное окно. Категорию нужно выбрать «Статистические» и выбираем КВПИРСОН. Эта функция позволяет определить коэффициент корреляции касательно функции Пирсона, соответственно квадратное значение коэффициента корреляции = коэффициенту детерминации.

После подтверждения действия, появится окно в котором нужно в полях выставить «Известные значения Х» и «Известные значения Y». Нажимаем мышкой поле «Известные значения Y» и в рабочем окне выделяем данные столбца Y. Аналогичное действие делаем и с другим полем выбирая данные уже с таблицы Х.

Как результат этих действий будет показано значение коэффициента детерминации в ячейке, которая ранее была выбрана для отображения результата.

Определение коэффициента детерминации если функция не является линейной.

Если функция нелинейная, то инструментарий Excel также позволяет рассчитать коэффициент с помощью инструмента «Регрессия». Его можно найти в пакете анализа данных. Но для начала нужно активировать этот пакет, перейдя в раздел «Файл» и в списке открыть «Параметры».

После этого можно увидеть новое окно, в котором нужно в меню выбрать «Надстройки», а в специальном поле по управлению надстройками выбираем «Надстройки Excel» и переходим к ним.

После перехода в надстройки Excel появится новое окно. В нём можно увидеть доступные для пользователя надстройки. Ставим галочку возле «Пакет анализа» и подтверждаем действие.

Найти его можно в разделе «Данные», после перехода в который нажимаем на «Анализ данных» в правой части экрана.

После его открытия, в списке выбираем «Регрессия»и подтверждаем действие.

После этого появится новое окно в котором можно производить настройки. Входные данные позволяют настроить значение интервалов Х и Y, достаточно выделить соответствующие ячейки аргументов другого аргумента. В поле уровня надежности можно выставить нужный показатель. Параметры вывода позволяют задать где будет показан результат. Если к примеру выбрать показ на текущем листе, то для начала нужно выбрать пункт «Выходной интервал» — и нажать на области основного окна где будет в будущем отображаться результат и координаты ячейки будут показаны соответствующем поле. В конце подтверждаем действие.

В рабочем окне появится результат. Так как мы вычисляем коэффициент детерминации, то в итогах нам нужен R-коэффициент. Если посмотреть на значение, то можно увидеть что оно относится к наилучшему качеству.

Способ определения коэффициента детерминации для линии тренда

Имея созданную таблицу с соответствующими значение, создаем график. Чтобы провести на нём линию тренда надо нажать на график, а именно на область где строится линия. Сверху в панели инструментов выбрать раздел «Макет», а в нём выбрать «Линия тренда». После этого в контексте данного примера в списке выбираем «Экспоненциальное приближение».

Линия тренда будет отображена на графике как кривая с черным цветом.

Для того чтобы показать коэффициент детерминации, нужно по черной кривой нажать правой кнопкой мыши и выбрать в списке «Формат линии тренда».

После этого появится новое окно. В нём нужно отметить флажком и выбрать нужное действие (показано на скриншоте). Благодаря этому коэффициент будет отображен на графике. После того как это было сделано, закрываем окно.

После закрытия окна формата линии тренда в рабочем окне можно увидеть значение коэффициента детерминации.

Если пользователю нужен другой типаж линии тренда, то в окне «Формат линии тренда» можно выбрать его. Не забыв задать его ранее при создании линии тренда в разделе «Макет» или в контекстном меню. Также не забываем ставить флажок для функции R^2.

Как результат можно увидеть изменение линии тренда и число достоверности.

После просмотра разных вариаций линий тренда, пользователь может определить наиболее подходящую для себя так как показатель достоверности может меняться в зависимости от выбора линии. Максимальный коэффициент это единица, что означает максимальную достоверность, однако не всегда можно достигнуть этого значения.

Так было рассмотрено несколько способов по нахождению коэффициента детерминации. Пользователь может выбрать наиболее оптимальный для своих целей.

Источник

Корреляционно-регрессионный анализ в Excel: инструкция выполнения

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2 );
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

  1. Нажимаем кнопку «Офис» и переходим на вкладку «Параметры Excel». «Надстройки».
  2. Внизу, под выпадающим списком, в поле «Управление» будет надпись «Надстройки Excel» (если ее нет, нажмите на флажок справа и выберите). И кнопка «Перейти». Жмем.
  3. Открывается список доступных надстроек. Выбираем «Пакет анализа» и нажимаем ОК.

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.

  1. Открываем меню инструмента «Анализ данных». Выбираем «Регрессия».
  2. Откроется меню для выбора входных значений и параметров вывода (где отобразить результат). В полях для исходных данных указываем диапазон описываемого параметра (У) и влияющего на него фактора (Х). Остальное можно и не заполнять.
  3. После нажатия ОК, программа отобразит расчеты на новом листе (можно выбрать интервал для отображения на текущем листе или назначить вывод в новую книгу).

В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.

Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» — первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» — второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

  1. Строим корреляционное поле: «Вставка» — «Диаграмма» — «Точечная диаграмма» (дает сравнивать пары). Диапазон значений – все числовые данные таблицы.
  2. Щелкаем левой кнопкой мыши по любой точке на диаграмме. Потом правой. В открывшемся меню выбираем «Добавить линию тренда».
  3. Назначаем параметры для линии. Тип – «Линейная». Внизу – «Показать уравнение на диаграмме».
  4. Жмем «Закрыть».

Теперь стали видны и данные регрессионного анализа.

Источник

Like this post? Please share to your friends:
  • Скопировать значение ячейки excel по условию
  • Скорость продаж формула excel
  • Скопировать содержимое ячейки excel без формул
  • Скомпилированный html файл справки в word
  • Скопировать документ в word можно консультант плюс ответы