Система задач по моделированию excel задачи



Скачать материал

Задачи по моделированию
в среде Excel”



Скачать материал

  • Сейчас обучается 264 человека из 64 регионов

Описание презентации по отдельным слайдам:

  • Задачи по моделированию
в среде Excel”

    1 слайд

    Задачи по моделированию
    в среде Excel”

  • Компьютерный эксперимент

      	Чтобы дать...

    2 слайд

    Компьютерный эксперимент

    Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т.е. на настоящем образце изделия, подвергая его всяческим испытаниям. Это требует больших материальных затрат и времени. В помощь пришли компьютерные исследования моделей. При проведении компьютерного эксперимента проверяют правильность построения моделей. Изучают поведение модели при различных параметрах объекта. Каждый эксперимент сопровождается осмыслением результатов. Если результаты компьютерного эксперимента противоречат смыслу решаемой задачи, то ошибку надо искать в неправильно выбранной модели или в алгоритме и методе ее решения. После выявления и устранения ошибок компьютерный эксперимент повторяется.

  • Под математической моделью понимают систему математических соотношений — форм...

    3 слайд

    Под математической моделью понимают систему математических соотношений — формул, уравнений неравенств и т.д., отражающих существенные свойства объекта или процесса.

  • Задачи по моделированию из различных предметных областей
Экономика
Астрономия...

    4 слайд

    Задачи по моделированию из различных предметных областей
    Экономика
    Астрономия
    Физика
    Экология
    Биология
    География

  • Машиностроительный завод, реализуя продукцию по договорным ценам, полу...

    5 слайд

    Машиностроительный завод, реализуя продукцию по договорным ценам, получил определенную выручку, затратив на производство некоторую сумму денег. Определить отношение чистой прибыли к вложенным средствам.
    Постановка задачи
    Цель моделирования — исследовать процесс производства и реализации продукции с целью получения наибольшей чистой прибыли. Пользуясь экономическими формулами найти отношение чистой прибыли к вложенным средствам.
    Экономика

  • Основными параметрами объекта моделирования являются: выручка, себестоимость,...

    6 слайд

    Основными параметрами объекта моделирования являются: выручка, себестоимость, прибыль, рентабельность, налог с прибыли.
    Исходные данные:
    выручка B;
    затраты (себестоимость) S.
    Другие параметры найдем, используя основные экономические зависимости. Значение прибыли определяется как разность между выручкой и себестоимостью P=B-S.
    Рентабельность r вычисляется по формуле: .
    Прибыль, соответствующая предельному уровню рентабельности 50%, составляет 50% от себестоимости продукции S, т.е. S*50/100=S/2, поэтому налог с прибыли N определяется следующим образом:
    если r<=50, то N=P*32/100 р., иначе N=S/2*32/100+(P-S/2)*75/100.
    Чистая прибыль Рч=Р-N.
    И, наконец, результат решения этой задачи — отношение чистой прибыли к вложенным средствам q= Рч/S.
    Так выглядит электронная таблица в формате отображения формул:

  • Анализ результатов
	Полученная модель позволяет в зависимости от рентабельн...

    9 слайд

    Анализ результатов
    Полученная модель позволяет в зависимости от рентабельности определять налог с прибыли, автоматически пересчитывать размер чистой прибыли, находить отношение чистой прибыли к вложенным средствам.
    Проведенный компьютерный эксперимент показывает, что отношение чистой прибыли к вложенным средствам увеличивается при увеличении выручки и уменьшается при увеличении себестоимости продукции.

  • Задача .
Определите скорость движения планет по орбите. Для этого соста...

    10 слайд

    Задача .
    Определите скорость движения планет по орбите. Для этого составьте компьютерную модель Солнечной системы.
    Постановка задачи
    Цель моделирования — определить скорость движения планет по орбите.
    Объект моделирования — Солнечная система, элементами которой являются планеты. Внутреннее строение планет в расчет не принимается. Будем рассматривать планеты как элементы, обладающие следующими характеристиками:
    название;
    R — удаленность от Солнца (в астрономических единицах;
    астроном. ед. — среднее расстояние от Земли до Солнца);
    t — период обращения вокруг Солнца (в годах);
    V — скорость движения по орбите (астр.ед./год), предполагая, что планеты
    движутся вокруг Солнца по окружностям с постоянной скоростью.

    Астрономия

  • Анализ результатов

1. Проанализируйте результаты расчетов. Можно ли утвержда...

    15 слайд

    Анализ результатов

    1. Проанализируйте результаты расчетов. Можно ли утверждать, что планеты, находящиеся ближе к Солнцу имеют большую скорость движения по орбите?
    2. Представленная модель Солнечной системы является статической. При построении этой модели мы пренебрегали изменениями расстояния от планет до Солнца во время их движения по орбите. Чтобы знать, какая планета дальше и каковы примерные соотношения между расстояниями, этой информации вполне достаточно. Если же мы хотим определить расстояние между Землей и Марсом, то пренебрегать временными изменениями нельзя, и здесь придется использовать уже динамическую модель.

  • Физика

  • Компьютерный эксперимент
Введите в компьютерную модель исходные данные.(Напр...

    18 слайд

    Компьютерный эксперимент
    Введите в компьютерную модель исходные данные.
    (Например: =0,5; =12)
    Найти такой коэффициент трения при котором машина поедет с горы (при данном угле).
    Найти такой угол при котором машина будет стоять на горе (при данном коэффициенте трения).
    Каков будет результат, если силой трения пренебречь.
    Анализ результатов
    Данная компьютерная модель позволяет проводить вычислительный эксперимент, взамен физическому. Меняя значения исходных данных, можно видеть все изменения происходящие в системе.
    Интересно заметить, что в построенной модели результат не зависит ни от массы автомобиля, ни от ускорения свободного падения.

  • Задача .
Представьте себе, что на Земле останется только один ист...

    19 слайд

    Задача .
    Представьте себе, что на Земле останется только один источник пресной воды — озеро Байкал. На сколько лет Байкал обеспечит население всего мира водой?
    Экология

  • Разработка модели
	Для построения математической модели определим исходные да...

    20 слайд

    Разработка модели
    Для построения математической модели определим исходные данные. Обозначим:
    V — объем озера Байкал 23000 км3;
    N — население Земли 6 млрд. чел.;
    p — потребление воды в день на 1 человека (в среднем) 300 л.
    Так как 1л. = 1 дм3 воды, необходимо выполнить перевод V воды озера из км3 в дм3. V (км3) = V * 109 (м3) = V * 1012 (дм3)
    Результат — количество лет, за которое население Земли использует воды Байкала, обозначим g.Итак, g=(V*1000000000000)/(N*p*365)
    Так выглядит электронная таблица в режиме отображения формул:

  • Задача .
Для производства вакцины на заводе планируется выращивать...

    22 слайд

    Задача .
    Для производства вакцины на заводе планируется выращивать культуру бактерий. Известно, что если масса бактерий — x г., то через день она увеличится на (a-bx)x г., где коэффициенты a и b зависят от вида бактерий. Завод ежедневно будет забирать для нужд производства вакцины m г. бактерий. Для составления плана важно знать, как изменяется масса бактерий через 1, 2, 3, …, 30 дней..
    Биология

  • 
    Задача .
Какова будет численность населения России в 2010 году?География

    26 слайд

    Задача .
    Какова будет численность населения России в 2010 году?
    География

  • Постановка задачи
Объектом моделирования является процесс изменения численн...

    27 слайд

    Постановка задачи
    Объектом моделирования является процесс изменения численности населения в зависимости от времени. На этот процесс влияют многие факторы: экология, состояние медицинского обслуживания, экономическая ситуация в стране, международная обстановка и многое другое. Обобщив демографические данные, ученые вывели функцию, выражающую зависимость численности населения от времени:
    f(t)=где коэффициента a и b для каждого государства свои,
    e основание натурального логарифма.
    Эта формула лишь приближенно отражает реальность. Для нахождения значений коэффициентов a и b можно воспользоваться статистическим справочником. Взяв из справочника значения f(t) (численность населения в момент времени t), можно приближенно подобрать a и b так, чтобы теоретические значения f(t), вычисляемые по формуле, не сильно отличались от фактических данных в справочнике.

  • Использование компьютера как инструмента учебной деятельности дает возможност...

    28 слайд

    Использование компьютера как инструмента учебной деятельности дает возможность переосмыслить традиционные подходы к изучению многих вопросов естественнонаучных дисциплин, усилить экспериментальную деятельность учащихся, приблизить процесс обучения к реальному процессу познания, основанному на технологии моделирования.
    Решение задач из различных областей деятельности человека на компьютере базируются не только на знаниях учащимися технологии моделирования, но, естественно, и на знаниях данной предметной области. В связи с этим, предложенные уроки по моделированию целесообразнее проводить после изучения учащимися материала на общеобразовательном предмете, учителю информатики необходимо сотрудничать с учителями разных образовательных областей. Известен опыт проведения бинарных уроков, т.е. уроков, проводимых учителем информатики совместно с учителем-предметником.

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 212 218 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 28.12.2020
  • 808
  • 1
  • 28.12.2020
  • 882
  • 0
  • 28.12.2020
  • 939
  • 1
  • 28.12.2020
  • 2297
  • 0
  • 25.11.2020
  • 2402
  • 1
  • 24.10.2020
  • 2253
  • 0
  • 11.10.2020
  • 2210
  • 0
  • 07.10.2020
  • 2304
  • 0

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Основы туризма и гостеприимства»

  • Курс повышения квалификации «Организация научно-исследовательской работы студентов в соответствии с требованиями ФГОС»

  • Курс профессиональной переподготовки «Клиническая психология: организация реабилитационной работы в социальной сфере»

  • Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС медицинских направлений подготовки»

  • Курс повышения квалификации «Финансы: управление структурой капитала»

  • Курс повышения квалификации «Организация маркетинга в туризме»

  • Курс профессиональной переподготовки «Организация деятельности помощника-референта руководителя со знанием иностранных языков»

  • Курс профессиональной переподготовки «Управление информационной средой на основе инноваций»

  • Курс профессиональной переподготовки «Метрология, стандартизация и сертификация»

  • Курс профессиональной переподготовки «Эксплуатация и обслуживание общего имущества многоквартирного дома»

  • Курс профессиональной переподготовки «Теория и методика музейного дела и охраны исторических памятников»

  • Курс профессиональной переподготовки «Организация маркетинговой деятельности»

  • Курс профессиональной переподготовки «Стандартизация и метрология»

Сборник заданий по разделу:

ОМПЬЮТЕРНОЕ

МОДЕЛИРОВАНИЕ В MS EXCEL

Иванов Иван

Для всех специальностей СПО

Разработала:

преподаватель

Белева Людмила Федоровна

Сыктывкар,2016 год

Пояснительная записка:

Учебно-методическое пособие предназначено для студентов всех специальностей и может быть использовано, в управлении образовательным процессом как одно из дидактических средств обучения.

Изучение содержания данного учебно-методического пособия обеспечит возможность студенту научиться строить и исследовать модели с помощью ЭВМ, применять и использовать электронные таблицы для решения данной категории  задач.

МАТЕМАТИЧЕСКИЙ АППАРАТ ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ

ВЕРОЯТНОСТЬ СЛУЧАЙНОГО СОБЫТИЯ

Событие, которое может произойти, а может и не произойти, называют случайным событием. Например, поражение мишени или промах при выстреле случайные события. Выигрыш команды во встрече с соперником, проигрыш или ничейный результат – это тоже примеры случайных событий.

Вообще, пусть определенное испытание проводится многократно в одних и тех же условиях и при этом каждый раз фиксируется, произошло или нет интересующее нас событие А. Число m называют частотой события А, а отношение m/n – относительной частотой, где n – общее число испытаний.

Задача 1.

Определить относительную частоту выпадения орла.

Для этого: введите формулы в расчетные ячейки.

Формула

Комментарий

Результаты

А1

=ЦЕЛОЕ (СЛЧИС()+0,5)

Выпадение орла или решки

0 или 1

A2

Копируем формулу

А3

до

A4

A5

500

A6

….

строки

А500

включительно

А501

=СЧЕТЕСЛИ(А1:А500;1)

Число выпадений орла

234

А502

=СЧЕТ(А1:А500)

Число бросков

500

А503

= А501/ А502*100

Относительная частота

0,49

Вообще, результаты наблюдений и опытов показывают, что при большом числе испытаний, проводимых в одних и тех же условиях, относительная частота принимает достаточно устойчивое значение.

Такое определение называют статистическим определением вероятности.

Задача 2. Бросание кубика

Найдите статистическую вероятность для каждого значения выпадения очков 1,2,3,4,5,6.

Для этого: введите формулы в расчетные ячейки.

A

B

C

D

1

=ЦЕЛОЕ(СЛЧИС()*6+1

1

{=ЧАСТОТА(A1:A500;B1:B6)}

=С1/500*100

2

Копируем формулу

2

3

до

3

4

500

4

5

строки

5

6

включительно

6

….

500

Дополнение: рассмотрим событие В, которое означает выпадение числа очков, кратного 3. Это событие происходит при двух исходах испытания: когда выпало 3 очка и когда выпало 6 очков. Эти исходы называют благоприятными исходами для события В. При бросании кубика из 6 равновозможных исходов испытания благоприятными для события В являются лишь два исхода. Отношение числа благоприятных исходов к числу всех равновозможных исходов равно 2/6. Это отношение называют вероятностью события В и пишут Р(В)=2/6=1/3.

Вероятностью события называют отношение числа благоприятных для него исходов испытания к числу всех равновозможных исходов.

В рассмотренном примере посмотрим назначения ячеек D3 и D6, их сумма 32,6 колеблется около 33%. Таким образом, классическое и статистическое определение вероятности совпадают с определенной степенью точности.

Задача 3.

Проверить, что вероятность выпадения оба раза решки равна 0,25.

Решение.

Для этого: введите формулы в расчетные ячейки.

A

B

C

D

E

F

1

=ЦЕЛОЕ(СЛЧИС()+0,5)

=ЦЕЛОЕ(СЛЧИС()+0,5)

=A1+B1

0

{=ЧАСТОТА

(C1:C50;D1:B3)}

=E1/50*100

2

Копируем формулу

1

3

до

2

4

50

5

строки

6

включительно

Задача 4.

Из 25 экзаменационных билетов по геометрии ученик успел приготовить 11 первых 8 последних билетов. Какова вероятность того, что на экзамене ему достанется билет, который он не подготовил?

Решение.

Общее число равновозможных исходов при выборе билетов на экзамене 25. Пусть М – событие, заключающееся в том, что ученику достанется на экзамене билет, к которому он не подготовился. Число благоприятных для М исходов (но не для ученика) равно 25-(11+8). Значит Р (М) =6/26=0,24. Проверим это. Для этого: введите формулы в расчетные ячейки.

A

B

C

D

1

=ЦЕЛОЕ (СЛЧИС()*25+1)

=ЕСЛИ(A911;1;0)

=ЕСЛИ(A1

=B1+C1

2

Копируем формулу

Копируем формулу

Копируем формулу

Копируем формулу

3

до

4

49

5

строки

включительно

49

Число неудачных билетов

=СЧЁТЕСЛИ(D1:D49;2)

50

Число всех билетов

=СЧЁТ(D1:D49)

52

Относительная

вероятность в %

=D50/D51*100

Задача 5.

Антон и Игорь бросают белый и черный игральные кубики и подсчитывают сумму выпавших очков. Они договорились, что если при очередной попытке в сумме выпадает 8 очков, то выигрывает Антон, а если в сумме выпадает 7 оков, то выигрывает Игорь. Является ли такая игра справедливой?

Решение.

При бросании кубиков на белом кубике может выпасть 1,2,3,4,5 или 6 очков.

Каждому числу очков, выпавших на белом кубике, соответствует шесть вариантов числа очков, выпавших на черном кубике. Все равновозможные исходы этого испытания приведены в таблице:

(1,1)

(2,1)

(3,1)

(4,1)

(5,1)

(6,1)

(1,2)

(2,2)

(3,2)

(4,2)

(5,2)

(6,2)

(1,3)

(2,3)

(3,3)

(4,3)

(5,3)

(6,3)

(1,4)

(2,4)

(3,4)

(4,4)

(5,4)

(6,4)

(1,5)

(2,5)

(3,5)

(4,5)

(5,5)

(6,5)

(1,6)

(2,6)

(3,6)

(4,6)

(5,6)

(6,6)

В каждой паре на первом месте записано число очков, выпавших на белом кубике, на втором – число очков на черном кубике. Общее число равновозможных исходов равно 36. Пусть событие А означает, что при бросании кубиков в сумме выпало 8 очков, а событие В означает, что в сумме выпало 7 очков. Для события А благоприятными являются следующие 5 исходов:(2;6), (3,5), (4;4), (5,3), (6;2). Для события В благоприятными являются следующие 6 исходов:(1;6), (2,5), (3,4), (4;3), (5,2), (6;1). Отсюда: Р (А)=5/36 Р(В)=6/36.Поэтому делаем вывод шансов выиграть у Игоря больше, чем у Антона. Значит, такая игра не является справедливой.

Проверим это. Для этого: введите формулы в расчетные ячейки.

A

B

C

D

E

F

1

=ЦЕЛОЕ(СЛЧИС()*6+1)

=ЦЕЛОЕ(СЛЧИС()*6+1)

=A1+B1

1

{=ЧАСТОТА(C1:C100;D1:D12)}

=Е1/100*100

2

Копируем формулу

Копируем формулу

2

3

до

до

3

4

100

100

4

5

строки

строки

5

6

12

100

Задача 6.

На карточках написаны натуральные числа от 1 до 10 включительно, после чего карточки перевернули и перемешали. Затем наугад открыли одну карточку. Какова вероятность того, что на ней будет написано простое число или число, большее 7?

Решение.

Пусть событие А означает, что на каточке написано простое число, а событие В означает число, большее 7. Для события А благоприятными являются 4 исхода 10 равновозможных(появление одного из чисел 2,3,5,7), то есть вероятность события А равна 0,4.

Для события В благоприятными являются 3 исхода из 10 равновозможных(появление чисел 8,9,10), то есть вероятность события В равна 0,3.

Нас интересует событие С, когда на карточке написано простое число или число, большее 7. Событие С наступает тогда, когда наступает одно из событий А или В. Очевидно, что эти события являются несовместимыми. Значит, вероятность события С равна сумме вероятностей событий А и В, то есть: Р(С)= Р(А) + Р(В)=0,4+0,3=0,7.

Проверим это. Для этого: введите формулы в расчетные ячейки.

A

B

C

D

E

F

G

H

1

2

3

5

7

7

2

1

=ЦЕЛОЕ(СЛЧИС()*10+1)

=ЕСЛИ(B2=C$1;1;0)

=ЕСЛИ(B2=D$1;1;0)

=ЕСЛИ(B2=Е$1;1;0

=ЕСЛИ(B2= F$1;1;0)

=ЕСЛИ(B27;1;0)

=СУММ(C2:G2)

3

2

Копируем формулу

4

до

5

97

98

=СЧЁТЕСЛИ

(H2:H97;»0″)

99

=Н98/97

Задача 7.

В результате многократных наблюдений установили, что вероятность попадания в мишень одного стрелка равна 0,9, а другого – 0,8. Каждый из стрелков сделал по одному выстрелу по мишени. Какова вероятность того, что мишень будет поражена?

Решение.

Рассмотрим такие события: А – первый стрелок попал в мишень; В – второй стрелок попал в мишень; С – мишень поражена. События А и В независимые. Однако воспользоваться в этом случае умножением вероятностей нельзя, так как событие С наступает не только, тогда, когда оба стрелка попали в мишень, но и тогда, когда в мишень попал хотя бы один из них.

Поступим иначе. Рассмотрим события Ā, B, С, противоположные соответственно событиям А, В, С. События Ā, B являются независимыми, так как промах при выстреле по мишени первого стрелка ( событие Ā) не зависит от промаха второго стрелка( событие B). Событие С означает совместное появление событий Ā,B. Поэтому Р(С)= Р(Ā) • Р(B).

Из свойств вероятностей противоположных событий вытекает, что Р(Ā)=1-0,9=0,1;

Р(B)=1-0,8=0,2; Отсюда получаем Р(С)= Р(Ā) •Р(B)=0,1•0,2=0,02. Так как события С и С противоположные, то теперь несложно найти вероятность события С: Р(С)= 1-Р(С)=1-0,02=0,98. Значит, вероятность того, что мишень будет поражена, равна 0,98.

Проверим это на компьютере. Для этого: введите формулы в расчетные ячейки.

A

B

C

D

E

F

1

1

=СЛЧИС()

=СЛЧИС()

=ЕСЛИ(B10,1;1;0)

=ЕСЛИ(C10,2;1;0)

=C1+D1

2

2

заполнить

заполнить

заполнить

заполнить

заполнить

3

3

4

4

5

5

6

6

7

7

97

98

98

=СЧЁТЕСЛИ(F1:F97;»0″)

99

99

=F98/A97

Задания для самостоятельного выполнения:

  1. На карточках написали цифры 1,2,3, после чего карточки перевернули и перемешали. Затем последовательно открыли карточки и положили в ряд. Какова вероятность того, что получится трехзначное число, большее 300?

  2. Для экзамена подготовили билеты с номерами от 1 до 25. Какова вероятность того,

что взятый наугад учеником билет имеет:

а) однозначный номер;

б) двухзначный номер?

  1. Многократные испытания показали, что для некоторого стрелка вероятность выбить при стрельбе 10 очков равна 0,1, а вероятность выбить 9 очков равна 0,3. Чему равна для этого стрелка вероятность выбить не менее 9 очков?

МОДЕЛИРОВАНИЕ СЛУЧАЙНЫХ ПРОЦЕССОВ

Случай является неотъемлемой частью нашей жизни. Если случай помог нам в чем-то, мы говорим — повезло, если оказался не в нашу пользу, мы сокрушаемся — что за судьба! Многие ученые посвятили свой талант изучению закономерностей случайных событий. Знание законов случайностей может быть полезным в разных сферах: от определения вероятности некоторого события, например выигрыша в лотерею, до использования статистических закономерностей в научных опытах. Ниже будут смоделированы ситуации, которые в теории вероятности получили название «случайных блужданий».

ЗАДАЧА. Бросание монеты

I ЭТАП. ПОСТАНОВКА ЗАДАЧИ

Описание задачи

У вас есть 10 монет. Вы хотите увеличить свой капитал в два раза, испытав заодно и свою судьбу. Суть игры проста. Играя с маклером, вы делаете ставку и бросаете монету. Если выпадет «орел», маклер выдает вам сумму вашей ставки, в противном случае — вы ему отдаете эту сумму. Ставка может быть любой: от 1 до 10 монет. Удвоение начального капитала или банкротство приводит к незамедлительному прекращению этого сеанса игры и расчету. Игра может продолжиться по вашему усмотрению. 

Цель моделирования

Моделируя возможные игровые ситуации, в частности, варьируя ставки в данной игре, выяснить, какая тактика чаще приводит к результату (положительному или отрицательному).

Предупредить потенциальных игроков о степени риска и невозможности обогащения за счет азартных игр. 

Формализация задачи

Уточняющий вопрос

Что моделируется?

Каков характер процесса?

Чем определяется выигрыш/проигрыш?

Какие объекты участвуют?

Чем характеризуется игрок?

Чем характеризуется монета?

Какую роль выполняет маклер?

Ответ

Процесс игры

Случайный

Монетой: орел/решка

Игрок, маклер и монета

Начальным капиталом Кнач

Ставкой СТ

Текущей наличностью Ктек

II ЭТАП. РАЗРАБОТКА МОДЕЛИ

Информационная модель

Здесь моделируется игра. Игра — это процесс, в котором участвуют три объекта: игрок, маклер и случай, который в данной игре представлен монетой. Маклер определяет проигрыш или выигрыш игрока, выплачивает выигрыш.

Математическая модель процесса складывается из следующих рассуждений.

Имитировать результат падения монеты можно с помощью функции СЛЧИС(). Эта функция выдает случайные числа х в диапазоне 0 ≤ х ˂ 1. Поскольку вероятность выпадения той или иной стороны «половина на половину», то, если СЛЧИС() ˂ 0,5, то результат «орел» (1), в противном случае — «решка» (0).

Формула падения монеты при броске имеет следующий вид:

Бросок = ЕСЛИ(СЛЧИС() ˂ 0,5; 1; 0).

Объект

Параметры

Действия

Название

Значение

Игрок

Начальным капиталом Кнач

Ставкой СТ

Текущей наличностью Ктек

Исходные данные

Исходные данные

Расчетные данные

Выбор ставки

Вычисление наличности

Продолжение игры

Маклер

Бросок

Выигрыш

Проигрыш

Расчетные данные

Расчетные данные

Расчетные данные

Выплата проигранного

Прекращение игры по банкротству

Монета

Вероятность угадывания результата

Положение «орел/решка»

Константа

Расчетные данные

Подбрасывание монет

Определение результата падения

Формула изменения наличности игрока:

Наличность = ЕСЛИ (Бросок=1; Наличность+Ставка; Наличность-Ставка)

Формула определения выигрыша:

Выигрыш = ЕСЛИ(Наличность ˂ 2*Нач.Капитал;»-«; «банк») здесь выдается сообщение «банк» при увеличении наличности вдвое или больше, что является условием прекращения игры.

Функция определения проигрыша:

Проигрыш = ЕСЛИ (Наличность ˃ 0; «банкрот») здесь выдается сообщение «банкрот» по окончании наличности, что также является условием прекращения игры. 

Компьютерная модель

Для моделирования выберем среду электронной таблицы. В этой среде информационная и математическая модель объединяются в таблицу, которая содержит три области: исходные данные;  расчетные данные (результаты); статистика по экспериментам.

В ячейку А7 вводится формулу:=ЕСЛИ(СЛЧИС()

В ячейку В7 вводится формулу:=ЕСЛИ(A7=1;$B$4+$D$4;$B$4-$D$4)

В ячейку C7 вводится формулу:=ЕСЛИ(B7B$4;”-“;”банк”)

В ячейку D7 вводится формулу:=ЕСЛИ(B70;”-“;”банкрот”)

В ячейку B8 вводится формулу:=ЕСЛИ(A8=1;B7+$D$4;B7-$D$4)

Ввести в таблицу исходные данные.

A

B

C

D

1

БРОСАНИЕ МОНЕТЫ

2

3

Исходные данные

4

Начальный капитал

10

ставка

1

5

Результаты

6

Бросок

Наличность

Выиграш

Проигрыш

7

Формула 1

Формула 2

Формула 3

Формула 4

8

Статистика по экспериментам

Ставка

№ сеанса

Количество бросков до результата

Результат

III ЭТАП. КОМПЬЮТЕРНЫЙ ЭКСПЕРИМЕНТ

План эксперимента

Тестирование

Проверить правильность ввода формул.

Эксперимент 1

Исследовать выпадение «орла» и «решки» в течение сеанса игры.

Эксперимент 2

Собрать статистические данные о выигрыше и проигрыше в течение нескольких сеансов игры с различными значениями ставок и исследовать их. 

Проведение исследования

Тестирование

Введите в таблицу контрольные исходные данные и расчетные формулы в первую строку. Результаты сравнить с приведенными в таблице.

IV ЭТАП. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ

На основе области «Статистика» сделать выводы по поводу ставки в одну монету; других ставок. Выбрать и обосновать собственную тактику игры (ставку). 

Задания для самостоятельного выполнения:

Задача 1. Игра в рулетку

Казино процветает из-за того, что у владельца всегда есть некоторое преимущество перед игроком. Например, в одном из вариантов рулетки колесо имеет 38 лунок: 36 пронумерованы и разбиты на черный и красный цвет, а две оставшиеся имеют № 0 и 00 и выкрашены зеленым. Игрок, ставя на красное или черное, имеет на выигрыш 18 шансов из 38, а на то, что он проиграет, — 20 шансов из 38. Пусть у вас имеется некоторый начальный капитал, который вы хотите удвоить. Постройте компьютерную модель ситуации.

Задача 2. Игра в кости

Два игрока бросают по две игровые кости. Сумма очков, выпавших на двух игровых костях, накапливается. Игра прекращается, когда один из игроков достигает суммы 101.

Игра повторяется до трех побед. 

Задача 3. Лотерея «Спортлото»

Смоделируйте серию игр в 5 из 36. Изберите следующую тактику игры:

  • зачеркивать в билетах одну и ту же комбинацию из «счастливых билетов»

  • бросать кубик и из количества точек на верхней грани составлять набор чисел.

Задача 4. Очередь

За два часа обеденного перерыва 40 человек встали в очередь за билетами.

Кассирша обслуживает одного клиента в среднем одну минуту. Каждый клиент «мучает» вопросами кассиршу до пяти минут(случайным образом). Построить модель ситуации и исследовать ее. Ответьте на вопросы:

  • Хватит ли на обслуживание всех клиентов 2 часов?

  • Если не хватит, то, сколько будет обслужено?

  • Как влияет время расспросов на время обслуживания очереди?

ИГРАЛЬНАЯ КОСТЬ. ИМИТАЦИЯ БРОСАНИЯ ИГРАЛЬНОЙ КОСТИ (VBA)

Microsoft Excel имеет встроенный язык программирования — Visual Basic for Аpplications (VBA). Этот язык позволяет создавать приложения, выполняемые в среде Microsoft Office. Редактор Visual Basic for Application позволяет существенно расширить возможности Excel.

С помощью VBA можно легко и быстро создавать различные приложения, даже не являясь специалистом в области программирования. Редактор Visual Basic for Application имеет графическую инструментальную среду, позволяющую создавать экранные формы и управляющие элементы. С его помощью можно создавать свои собственные функции для Excel, вызываемые мастером функций, разрабатывать макросы, создавать собственные меню и многое другое.

ЗАДАЧА. Снова бросаем игральный кубик

Разработайте программу, которая будет имитировать многократное бросание одной игральной кости, а также определять и показывать количество выпадений на кубике того или иного числа. Программа должна делать ставки, позволять начинать бросание кости, останавливать его в любой момент и переустанавливать результаты подсчета.

Игральную кость можно рассматривать как генератор случайных чисел в целочисленном интервале [1..N] с одинаковой вероятностью выпадения всех чисел интервала.

Создание интерфейса

Перед началом работы над программой в VBA, вам нужно воспользоваться графическим редактором Paint или другим, чтобы создать изображения игральной кости. Вам понадобятся шесть отдельных bmp-файлов, каждый из которых будет картинкой одной из граней кубика (кости).

Запустите VBA, начните новый проект и разместите на форме элемент управления Image, 18 надписей и четыре кнопки.

Н

Рисунок 1.

азначение каждого элемента управления: (см. рисунок 1)

  • элемент управления Image — для графического представления игральной кости (одной ее грани);

  • надписи — для показа количества выпадений того или иного числа и для подписей к ним;

  • кнопки:

Выход — для завершения программы по щелчку на ней;

Начать — чтобы начать бросание по щелчку на кнопке;

Остановить — чтобы остановить бросание по щелчку на ней;

Сброс — чтобы обнулить счет по щелчку на кнопке.

В этой программе присутствует повторяющийся процесс (бросание кости и вывод результата) через регулярные интервалы времени функция — timer.

Код:

Private Sub atimer()

Dim Kost, a, d, stavka As Integer

stavka = CDbl(TextBox2.Text)

PauseTime = 1

Start = timer

Do While timer

DoEvents

Randomize

kost = Int(Rnd * 6) + 1

Select Case kost

Case 1

Image1.Picture = LoadPicture(«C:UsersDesktopkosti1.bmp»)

Label1.Caption = Label1.Caption + 1

Case 2

Image1.Picture = LoadPicture(«C:UsersDesktopkosti2.bmp»)

Label2.Caption = Label2.Caption + 1

Case 3

Image1.Picture = LoadPicture(«C:UsersDesktopkosti3.bmp»)

Label3.Caption = Label3.Caption + 1

Label3.Caption = Label3.Caption + 1

Case 4

Image1.Picture = LoadPicture(«C:UsersDesktopkosti4.bmp»)

Label4.Caption = Label4.Caption + 1

Case 5

Image1.Picture = LoadPicture(«C:UsersDesktopkosti5.bmp»)

Label5.Caption = Label2.Caption + 1

C

Рисунок 2.

ase 6

Image1.Picture = LoadPicture(«C:UsersDesktopkosti6.bmp»)

Label6.Caption = Label6.Caption + 1

End Select

Loop

If stavka = kost Then

Label15.Caption = Label15.Caption + 3

Else

Label15.Caption = Label15.Caption — 2

End If

End Sub

Private Sub CommandButton1_Click()

stavka = CDbl(TextBox2.Text)

Label18.Visible = False

If stavka 0 Then

atimer

Else

Label18.Visible = True

Label18.Caption = «Вы не сделали ставку !!!»

End If

End Sub

Private Sub CommandButton2_Click()

PauseTime = 0

End Sub

Private Sub CommandButton3_Click()

Label1.Caption = «0»

Label2.Caption = «0»

Label3.Caption = «0»

Label4.Caption = «0»

Label5.Caption = «0»

Label6.Caption = «0»

Label15.Caption = «0»

TextBox2.Text = » «

End Sub

Private Sub CommandButton4_Click()

UserForm1.Hide

End Sub

Заключение:

Тема работы со случайными числами является очень актуальной, так как случайные числанаходят своё применение в приложениях различных типов и имеет большое практическое значение. Не одна задача современного программирования (в криптографии) не обходится без решения вопроса генерирования случайных данных.

Задания для самостоятельного выполнения:

Задача 1. Эксперимент состоит в подсчете числа бросаний двух костей до выпадения двух шестерок. Требуется найти среднее число бросаний, необходимых для получения двух шестерок. (Проводится N экспериментов).

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В ЭКОНОМИКЕ

Задача 1. Пусть известно, что в штате больницы состоит 6 санитарок, 8 медсестер, 10 врачей, 3 заведующих отделениями, главный врач, заведующий аптекой, заведующий хозяйством и заведующий больницей. Общий месячный фонд зарплаты составляет 10 000 у. е. Необходимо определить, какими должны быть оклады сотрудников больницы.

Построим модель решения этой задачи. За основу возьмем оклад санитарки, а остальные оклады будем вычислять, исходя из него: во сколько-то раз или на сколько-то больше. Говоря математическим языком, каждый оклад является линейной функцией от оклада санитарки: , где С – оклад санитарки; Аi и Bi – коэффициенты, которые для каждой должности определяются следующим образом:

– медсестра получает в 1,5 раза больше санитарки (; );

– врач – в 3 раза больше санитарки (;);

– заведующий отделением – на 30 у. е. больше, чем врач (; );

– заведующий аптекой – в 2 раза больше санитарки (; );

– заведующий хозяйством – на 40 у.е. больше медсестры (; );

– главный врач – в 4 раза больше санитарки (; );

– заведующий больницей – на 20 у.е. больше главного врача (; ).

Зная количество человек на каждой должности, нашу модель можно записать как уравнение:

где N1 – число санитарок, N2 – число медсестер и т. д.

В этом уравнении нам известны А1…А8, В1…В8 и N1…N8, а С неизвестно.

Анализ уравнения показывает, что задача составления расписания свелась к решению линейного уравнения относительно С. Решим его.

– Заполните таблицу в соответствии с образцом:

A

B

C

D

E

F

G

1

Должность

Коэф.

А

Коэф.

В

Зарплата

сотрудника

Кол-во

сотрудников

Суммарная

зарплата

Зарплата

санитарки

2

Санитарка

1

0

=B2*$G$2+C2

6

=D2*E2

150

3

Медсестра

1,5

0

8

4

Врач

3

0

10

5

Зав.отделением

3

30

3

6

Зав. аптекой

2

0

1

7

Завхоз

1,5

40

1

8

Главврач

4

0

1

9

Зав. больницей

4

20

1

10

Итого

=СУММ(F2:F9)

В ячейке F10 вычислите суммарный фонд заработной платы больницы. Рабочий лист электронной таблицы будет выглядеть, как показано ниже:

A

B

C

D

E

F

G

1

Должность

Коэф.

А

Коэф.

В

Зарплата

сотрудника

Кол-во

сотрудников

Суммарная

зарплата

Зарплата санитарки

2

Санитарка

1

0

150

6

900

150

3

Медсестра

1,5

0

225

8

1800

4

Врач

3

0

450

10

4500

5

Зав.отделением

3

30

480

3

1440

6

Зав. аптекой

2

0

300

1

300

7

Завхоз

1,5

40

265

1

265

8

Главврач

4

0

600

1

600

9

Зав. больницей

4

20

620

1

620

10

10425

Как видите, взяв оклад санитарки за 150, мы превысили месячный фонд зарплаты.

Определите оклад санитарки так, чтобы расчетный фонд был равен заданному.

Для этого:

– активизируйте команду Подбор параметра;

– в поле «Установить в ячейке» появившегося окна введите ссылку на ячейку F10, содержащую формулу;

– в поле «Значение» наберите искомый результат 10000.

– В поле «Изменяя значение ячейки» введите ссылку на изменяемую ячейку G2 и щелкните кнопкой ОК. Таблица будет выглядеть следующим образом:

A

B

C

D

E

F

G

1

Должность

Коэф.

А

Коэф.

В

Зарплата

сотрудника

Кол-во

сотрудников

Суммарная

зарплата

Зарплата санитарки

2

Санитарка

1

0

143,80

6

862,77

143,79

3

Медсестра

1,5

0

215,69

8

1 725,55

4

Врач

3

0

431,39

10

4 313,87

5

Зав. отделением

3

30

461,39

3

1 384,16

6

Зав. аптекой

2

0

287,59

1

287,59

7

Завхоз

1,5

40

255,69

1

255,69

Главврач

4

0

575,18

1

575,18

Зав. больницей

4

20

595,18

1

595,18



Итого

10 000,00

Задача об использовании сырья

Что такое линейное программирование

Многие экономические процессы описываются математическими моделями, в которых требуется найти такие значения переменных параметров, при которых достигается максимальное или минимальное значение линейной функции от этих переменных, при различных ограничениях, задаваемых линейными управлениями или неравенствами. Искомые переменные, называются контролируемыми факторами, функция – целевой функцией. Задачи такого типа называются задачами линейного программирования.

Модели линейного программирования в экономике и управлении используются как инструмент оптимизации при планировании производства, составление планов перевозов и т.д.

Постановка задачи

Предприятие выпускает курс n видов продукции, которые обозначим: P1, P2,…, Pn. Для этого используется m вида сырья: S1, S2, … , Sm, запасы которого равны соответственно b1, b2, … , bm. Известно, что расход i-го вида сырья для производства единицы j-го вида продукции Pj равен aij. От реализации единицы j-го вида продукции Pj предприятие получает доход, равный Cj. Требуется составить такой план производства каждого вида продукции, чтобы при имеющихся запасах сырья обеспечить предприятию максимальный суммарный доход.

Математическая модель

Построение математической модели осуществляется в три этапа:

  1. Определение переменных, для которых будет составляться математическая модель.

  2. Формирование целевой функции.

  3. Формирование системы ограничений.

Составим план производства для ателье, занимающегося пошивом туристического снаряжения – палаток. Для пошива используется три вида материалов (сырья): водоотталкивающая ткань, утеплитель, москитная сетка. Представим данные с двумя видами продукции (палатки двух моделей) и тремя видами материалов (водоотталкивающая ткань, утеплитель, москитная сетка) в виде таблицы.

Материалы(Si)

Запасы материалов (bi), м

Расход материалов на продукцию Pj, м

Палатка (модель 1)

Палатка (модель 2)

Водооттал. ткань

105

7

4

Утеплитель

68

3

5

Москитная сетка

66

1

6

Удельный доход от реализации (Сj)

5

6

Ячейки, выделенные фоном, содержат значения расхода каждого вида сырья (материалов) на производство единицы каждого вида продукции. Это и есть матрица aij. Такой расход сырья называется удельным. Обозначим план пошива палаток модели 1 через X (шт.), а план пошива палат моделей палаток модели 2 через Y (шт.). При таком плане расход материалов, например водоотталкивающей ткани, составит 7 X + 4 Y метров. Поскольку расход материала не может превышать имеющиеся запасы, получаем ограничения по расходу водоотталкивающей ткани 7 X + 4 Y  105. Аналогические рассуждения приводят к ограничениям и по другим видам материалов. Кроме того, значения X и Y не могут быть отрицательными. Сформулированные условия запишем в виде системы неравенств, которым должны удовлетворять неизвестные X и Y:

Доход от реализации одной палатки модели 1 равен 5 единицам стоимости (например, 5 тыс. руб.), а доход от реализации палатки модели 2 — 6 единицам стоимости тогда суммарный доход предприятия от реализации всей произведенной продукции определится формулой: Z =5 X + 6 Y. Следовательно, Z есть функция от X и Y. Z(X, Y) является целевой функцией, поскольку целью производства является получение максимального дохода.

Таким образом, математическая формулировка задачи звучит так: требуется найти такое решение системы линейных неравенств (1)-(5),при котором целевая функция Z(X, Y) принимает максимальное значение.

Решение с помощью электронных таблиц

П

Таблица 1.

одготовим данные, как это показано в таб.1. В ячейках В2 и В3 будет получено решение, т.е. найдены объемы производства каждого вида продукции, при которых суммарных доход, вычисляемый в ячейках В17, принимает максимальное значение. Диапазон ячеек В13:В15 содержит формулы, с помощью которых задаются левые части неравенств (1)-(2), ограничивающих расход сырья. Диапазон ячеек D13:D15 содержит запасы материалов.

A

B

C

D

1

Объем производства

2

Палатки (модель 1)

3

Палатки (модель 2)

4

5

6

Материалы

Запасы материалов

Палатки (модель 1)

Палатки (модель 2)

7

Водооттал. ткань

105

7

4

8

Утеплитель

68

3

5

9

Москитная сетка

66

1

6

10

Удельный доход от реализации

5

6

11

12

Ограничения

13

=C7*$B$2+D7*$B$3

105

14

=C8*$B$2+D8*$B$3

68

15

=C9*$B$2+D9*$B$3

66

16

17

Суммарный доход

=C10*B2+D10*B3

Установим курсор в ячейку В17, в которой должно быть вычислено значение целевой функции, и выполним команду Поиск решения. В открывшемся окне необходимо произвести установки, показанные на рис. 1.

Д

Рисунок 1.

ля этого выполняются следующие действия:

В поле Установить целевую ячейку вводится адрес ячейки В17.

  • Для поля Равной выбирается параметр максимальному значению.

  • В поле Изменяя ячейки вводится диапазон ячеек с неизвестными В2:В3.

  • Щелчком на кнопке Добавить вызывается окно Добавить ограничение.

  • Для ввода первого ограничения в поле Ссылка на ячейку указывается адрес ячейки В13, а в поле Ограничение – адрес ячейки D13. Между ними выбирается знак отношения  и нажимается кнопка Добавить. Аналогично добавляются два оставшихся ограничения.

  • Щелчком на кнопке параметры вызывается окно Параметры поиска решения (рис. 2), в котором необходимо отметить, что ищутся неотрицательные значения X и Y и используется линейная модель. Это означает то, что целевая функция линейно зависит от переменных X и Y.

Неотрицательные решения системы линейных неравенств, при которых целевая функция (суммарный доход) принимает максимальное значение, табличный процессор Microsoft Excel находит приближенно, используя итерационный метод поиска, который называется методом Ньютона. Поэтому в качестве параметров указывается предельное число итераций и относительная погрешность. С такого рода параметрами мы встречались при решении задачи теплопроводности методов итераций.

Рисунок 2.

После того как все установки сделаны, следует нажать кнопку Выполнить.

В результате в ячейках В2 и В3 будет получено решение – объем производства палаток первой и второй моделей (таб.2), а в ячейке В17 – максимальный доход, полученный от реализации такого объема продукции. Как исследовало ожидать, полученные значения совпадают с результатами графического метода решения задачи: X = 11, Y = 7, Z = 97.

Таблица 2. Результаты решение задачи

A

B

C

D

1

Объем производства

2

Палатки (модель 1)

11

3

Палатки (модель 2)

7

4

5

6

Материалы

Запасы материалов

Палатки (модель 1)

Палатки (модель 2)

7

Водооттал. ткань

105

7

4

8

Утеплитель

68

3

5

9

Москитная сетка

66

1

6

10

Удельный доход от реализации

5

6

11

12

Ограничения

13

105

105

14

68

68

15

53

66

16

17

Суммарный доход

97

Задания для самостоятельного выполнения:

Задача 1.

Предположим, что мы решили производить несколько видов конфет. Назовем их условно «А», «В», «С». Известно, что реализация 10 килограммов конфет «А» дает прибыль 9 у. е., «В» – 10 у. е., «С» – 16 у. е.

Конфеты можно производить в любых количествах, но запасы сырья ограничены. Необходимо определить, каких конфет и сколько десятков килограммов необходимо произвести, чтобы общая прибыль от реализации была максимальной.

Нормы расхода сырья на производство 10 кг конфет каждого вида приведены ниже.

Сырье

Нормы расхода сырья

Запас сырья

А

В

С

Какао

18

15

12

360

Сахар

6

4

8

192

Наполнитель

5

3

3

180

Прибыль

9

10

16

Задача 2.

Ваше предприятие выпускает изделия 1, изделия 2, изделия 3, используя общий склад комплектующих. Каждое изделие состоит из деталей, имеющихся на складе. В связи с ограниченностью запаса необходимо найти оптимальное соотношение объемов выпуска изделий. Прибыль, получаемая от каждого изделия, равна соответственно 47,32; 31,55; 22,08. Число деталей, идущих на каждое изделие, указано в таблице.

Наличие на складе

Изделие 1

Изделие 2

Изделие 3

Деталь 1

450

1

1

0

Деталь 2

250

1

0

0

Деталь 3

800

2

2

1

Деталь 4

450

1

1

0

Деталь 5

600

2

1

1

Задача 3.

В ресторане готовятся фирменные блюда трех видов (блюдо А, блюдо В и блюдо С) с использованием при приготовлении ингредиентов трех видов (ин­гредиент 1, ингредиент 2 и ингредиент 3). Расход ингредиентов в граммах на блю­до задается следующей таблицей:

Вид ингредиента

Блюдо А

Блюдо В

Блюдо C

Ингредиент 1

20

50

10

Ингредиент 2

20

0

40

Ингредиент 3

20

10

10

Стоимость приготовления блюд одинакова (100 руб.).

Ежедневно в ресторан поступает 5 кг ингредиента 1 и по 4 кг ингредиентов видов 2 и 3. Каково оптимальное соотношение дневного производства блюд различного вида, если производственные мощности ресторана позволяют использовать весь запас поступивших продуктов?

Задача 4.

Пошивочная мастерская планирует выпуск двух видов костюмов: мужских и женских. На женский костюм требуется 1 м шерсти, 2 м лавсана и 1 человеко-день трудозатрат. На мужской костюм — 3,5 м шерсти, 0,5 м лавсана и 1 челове­ко-день трудозатрат. Всего имеется 350 м шерсти и 240 м лавсана, 150 человеко-дней трудозатрат. Предусматривается выпуск не менее 110 костюмов, причем, необходимо обеспечить прибыль не менее 1400 руб. Определите оптимальное количество костюмов каждого вида, если прибыль от реализации женского костюма составляет 10 руб., а мужского — 20 руб.

ПОСТРОЕНИЕ И ИССЛЕДОВАНИЕ ОПТИМИЗАЦИОННОЙ МОДЕЛИ НА VBA

Задача 1.

В ходе производственного процесса из листов материала получают заготовки деталей двух типов А и В тремя различными способами, при этом количество получаемых заготовок при каждом методе различается.

Тип заготовки Способы раскроя
1-й

2-й

3-й

А

10

3

8

В

3

6

4

Необходимо выбрать оптимальное сочетание способов раскроя, для того чтобы получить 500 заготовок типа А и 300 заготовок типа В.

Формальная модель:

Параметрами, значения которых требуется определить, являются количества листов материала, которые будут раскроены различными способами:

X1— количество листов, раскроенное способом 1;

X2— количество листов, раскроенное способом 2;

X3— количество листов, раскроенное способом 3.

Ограничения:

Определяются значениями требуемых количеств заготовок типа А и В:

10X1+3X2+8X3=500 и 3X1+6X2+4X3=300

Кроме того, количества листов не могут быть отрицательными: X10, X20, X30 и дробными X1, X2, X3 – целые.

Создание интерфейса:

Запустите V BA, начните новый проект и разместите на форме 8 надписей; одну кнопку.

P

Рисунок 1.

rivate Sub CommandButton1_Click()

Dim x1, x2, x3, F As Integer

F = 300

For x1 = 0 To 100

For x2 = 0 To 100

For x3 = 0 To 100

If (10 * x1 + 3 * x2 + 8 * x3 = 500) And (3 * x1 + 6 * x2 + 4 * x3 = 300) Then

If x1 + x2 + x3

F = x1 + x2 + x3

Label1.Caption = x1

Label2.Caption = x2

Label3.Caption = x3

Label4.Caption = F

End If

End If

Next x3

Next x2

Next x1

End Sub

Задания для самостоятельного выполнения:

Задача 1.

Фабрика производит два вида красок: первый – для наружных, а второй – для внутренних работ. Для производства красок используется два ингредиента: А и В. Максимально возможные суточные запасы этих ингредиентов составляют 6 и 8 т соответственно. Известные расходы А и В на 1 т красок:

Ингредиенты

Расход ингредиентов, т.ингр./т.краски

Запас, т.ингр./сут

Краска 1-го вида

Краска 2-го вида

А

1

2

6

В

2

1

8

Изучение рынка сбыта показало, что суточный спрос на краску 2-го вида никогда не превышает спроса на краску 1-го вида более, чем на 1 т. Кроме того, спрос на краску 2-го вида не превышает 2 т /сут. Оптовые цены 1 т красок равны: 3 т. руб. для краски 1-го вида и 2 т. руб. для краски 2-го вида. Найти какое количество краски каждого вида необходимо производить, чтобы доход от реализации продукции был максимальным.

Задача 2.

Фабрика производит два вида красок: первый – для наружных, а второй – для внутренних работ. Для производства красок используется два ингредиента: А и В. Максимально возможные суточные запасы этих ингредиентов составляют 6 и 8 т соответственно. Известные расходы А и В на 1 т красок:

Ингредиенты

Расход ингредиентов, т.ингр./т.краски

Запас, т.ингр./сут

Краска 1-го вида

Краска 2-го вида

А

1

2

6

В

2

1

8

Изучение рынка сбыта показало, что суточный спрос на краску 2-го вида никогда не превышает спроса на краску 1-го вида более чем на 1 т. Кроме того, спрос на краску 2-го вида не превышает 2 т /сут. Оптовые цены 1 т красок равны: 3 т. руб. для краски 1-го вида и 2 т. руб. для краски 2-го вида. Найти какое количество краски каждого вида необходимо производить, чтобы доход от реализации продукции был максимальным.

Транспортная задача

Рассмотрим еще одну типовую задачу линейного программирования.

Постановка задачи

Транспортной задачей называют составления плана перевозок от поставщиков к потребителям с помощью некоторых транспортных средств. Составленный план должен обеспечивать выполнение таких условий, как:

  • Полное удовлетворение спроса потребителей;

  • Вывоз всей продукции от поставщика;

  • Минимизация транспортных затрат.

Математическая модель

Рассмотрим простейший вариант транспортной задачи. В т пунктах отправления (складах) А1, А2, …, Ат находится однородный груз в количестве а1, а2, …, ат единиц соответственно. Потребность в этом грузе в п пунктах назначения (магазинах) В1, В2, …, Вп составляет b1, b2, …, bn соответственно. Будем считать, что сумма запасов на складах равна суммарным потребностям в магазинах, т.е. = . Такая модель называется замкнутой.

Обозначим через Сij удельные затраты, т.е. затраты на перевозку единицы груза из iго пункта в j-й пункт назначения, а через Xij – неизвестный объем груза, который надор перевезти из j— го пункта отправления в j-й пункт назначения.

Перевозку груза надо организовать таким образом, чтобы суммарные затраты на перевозки были минимальными. Суммарные затраты на перевозки Z определяются следующим образом: необходимо просуммировать все объемы перевозок груза, умноженные на соответствующие удельные затраты, т.е. Z=. Суммарные затраты являются целевой функцией.

Искомыми величинами являются объемы Xij перевозок груза, отправляемые каждым поставщиком каждому потребителю при выполнении указанных условий.

Рассмотрим транспортную задачу на примере четырех складов и четырех магазинов.

Задача. Известно, что на складах имеется запас муки в количестве 45, 100, 20, 75 мешков. А магазины имеют потребность в этом товаре в количестве 30, 80, 95, 35 мешков.

Магазин № 1

Магазин №2

Магазин №3

Магазин №4

b1 = 30

b2 = 80

b3 = 95

b4 = 35

Склад № 1

a1 = 45

6

3

7

10

Склад № 2

a2 = 100

10

4

12

10

Склад № 3

a3 = 20

5

9

8

11

Склад № 4

a4 = 75

4

2

4

8

Ячейки, выделенные фоном, содержат удельные стоимости перевозок Cij. Например, стоимость перевозки единицы груза (мешка) со склада № 3 в магазин № 4 составляет 11 денежных единиц. Проверим замкнутость модели. Для этого просуммируем все запасы муки на складах: 45 + 100 + 20 + 75 = 240. Найдем суммарные потребности магазинов в муке: 30 + 80 + 95 + 35 = 240. Таким образом, модель является замкнутой, т. е. потребность магазинов в муке равна запасу на складах.

Весь груз со складов должен быть вывезен. Этот факт для i-го склада можно отразить следующим образом: Xi1 + Xi2 + Xi3 + Xi4 = ai. Весь груз в магазины должен быть ввезен. Для j-го магазина будет справедливо следующее: X1j + X2j + X3j + X4j = bj.

Таким образом, удовлетворению спроса магазинов отвечает выполнение системы уравнений:

Вывоз всего груза со складов достигается при выполнении системы уравнений:

Получается общая система из 8 уравнений с 16 неизвестными, которая имеет, вообще говоря, бесконечное множество решений. Среди этих решений интерес представляют неотрицательные решения, при которых суммарные затраты по всем маршрутам будут минимальны, т. е. целевая функция может быть представлена следующим образом:

Z = C11 X11 + … + C14X14 + C21 · X 21 + … + С24 · X24 + C31 · X31 +…+ C34 · X34 +C41 · X41 +…+ C44 · X44.

Решение с помощью электронных таблиц

Р

Таблица 1.

ассмотрим решение задачи на примере табличного процессора Microsoft Excel.

Представим данные в виде, показанном в таблице 1.

A

B

C

D

E

F

G

1

Матрица перевозок

2

Магазин 1

Магазин 2

Магазин 3

Магазин 4

3

Склад № 1

=сумм

4

Склад № 2

=сумм

5

Склад № 3

=сумм

6

Склад № 4

=сумм

7

=сумм

=сумм

=сумм

=сумм

8

9

10

11

bj

30

80

95

35

12

ai

Магазин 1

Магазин 2

Магазин 3

Магазин 4

13

45

Склад № 1

6

3

7

10

14

100

Склад № 2

10

4

12

10

15

20

Склад № 3

5

9

8

11

16

75

Склад № 4

4

2

4

8

17

18

19

Сумм. затраты:

=СУММПРОИЗВЕД(С3:F16;C13:F16)

Исходными данными являются удельные затраты на перевозки (диапазон ячеек C13:F16), запасы муки на складах (диапазон ячеек A13:A16), потребности магазинов в муке ( диапазон ячеек С11:F11).

Диапазон ячеек C3:F6 предназначен для получения искомого решения-объемов перевозок груза. Суммируя объемы перевозок в каждой строке, задаем левые части уравнений-ограничений, обеспечивающий вывоз всего груза с каждого склада. Суммированием объемов перевозок по столбцам задаются левые части уравнений-огранечений, удовлетворяющих спрос каждого магазина в муке. Формула =СУММПРОИЗВ (С3:F6; C13:F16), вычисляющая целевую функцию(суммарные затраты) Z, размещена в ячейке С19. Встроенная функция СУММПРОИЗВ суммирует произведения, полученные построчным перемножением содерживого ячеек из диапозонов С3:F6; C13:F16.

Например, СУММПРОИЗВ (А1:В2;А3:B4) =A1*A3+B1*B3+A2*A4+B2*B4.

Рисунок 1.

Установите курсор в ячейку С19, в которой должно быть выполнено значение целевой функции.

Выполним команду Поиск решения.

В открышевшемся окне необходимо провести установки, показанные на рис.1.

В

Таблица 2.

результате будет найдено решение, представленное в таблице 2.

A

B

C

D

E

F

G

1

Матрица перевозок

2

Магазин 1

Магазин 2

Магазин 3

Магазин 4

3

Склад № 1

0

10

35

0

45

4

Склад № 2

30

70

0

0

100

5

Склад № 3

0

0

20

0

20

6

Склад № 4

0

0

40

35

75

7

30

80

95

35

8

9

10

11

bj

30

80

95

35

12

ai

Магазин 1

Магазин 2

Магазин 3

Магазин 4

13

45

Склад № 1

6

3

7

10

14

100

Склад № 2

10

4

12

10

15

20

Склад № 3

5

9

8

11

16

75

Склад № 4

4

2

4

8

17

18

19

Сумм.затраты:

1455

Искомые объемы перевозок представлены в ячейках C3:F6. Со склада №1 мука будет отправлена в магазины №2 и 3 в объемах 10 и 35 мешков соответсвенно, со склада №2 – в магазины №1 и 2 в объемах 30 и 70 мешков, со склада №3 — в магазин №3 в объеме 20 мешков, со склада №4 в магазины №3 и 4 в объемах 40 и 35 мешков. Минимальные затраты на перевозки составляют 1455 денежных единиц.

Задания для самостоятельного выполнения:

Задача 1. Найти оптимальный объем перевозок товаров с 3 заводов на 5 региональных складов. То есть минимизировать затраты на перевозку грузов от заводов-производителей на торговые склады.

Производительность каждого завода и затраты на перевозку от завода на каждый склад приведены в таблице:

Заводы

Поставки

Затраты

склад 1

склад 2

склад 3

склад 4

склад 5

Завод 1

310

10

8

6

5

4

Завод 2

260

6

5

4

3

6

Завод 3

280

3

4

5

5

9

Технология работы:

– Заполните таблицу в соответствии с образцом:

A

B

C

D

E

F

G

1

Заводы

Всего

склад 1

склад 2

склад 3

склад 4

склад 5

2

Завод 1

=СУММ (С2:G2)

1

1

1

1

1

3

Завод 2

Заполнить вниз

1

1

1

1

1

4

Завод 3

1

1

1

1

1

5

Допустим, что от каждого завода на каждый склад перевозится ед.продукции

6

Итого

=СУММ (С2;С4)

7

8

Потреб. складов

180

80

200

160

220

9

Заводы

Поставки

Затраты

10

Завод 1

310

10

8

6

5

4

11

Завод 2

260

6

5

4

3

6

12

Завод 3

280

3

4

5

5

9

13

14

Перевозка

=СУММ (С14:G14)

=С2*С10+С3*С11+С4*С12

Количество перевезенных грузов не может превышать производственных возможностей заводов. Количество доставляемых грузов не должно быть меньше потребностей складов. То есть производство должно быть не меньше потребностей. Число перевозок не может быть отрицательным.

Задача 2.

Авиакомпания по заказу армии должна перевезти на некотором участке 700 человек. В распоряжении компании имеется два типа самолетов, которые можно использовать для перевозки. Самолет первого типа перевозит 30 пассажиров и имеет экипаж 3 человека, второго типа – 65 и 5 соответственно.

Эксплуатация 1 самолета первого типа обойдется 5000$, а второго 9000$. Сколько надо использовать самолетов каждого типа, если для формирования экипажей имеется не более 60 человек.

МОДЕЛИРОВАНИЕ ЗАДАЧИ ОПТИМАЛЬНОГО УПРАВЛЕНИЯ

Задача. Для снабжения населенных пунктов, расположенных в труднодоступной местности, требуется разместить железнодорожную станцию и аэродром таким образом, чтобы суммарное расстояние (и, соответственно, стоимость) воздушных перевозок от станции и от аэродрома к населенным пунктам было оптимальным.

Координаты населенных пунктов приведены в табл. 1.

Таблица 1

Номера населенных пунктов

Координаты населенных пунктов

Х

У

1

2,0

8,0

2

10,0

9,0

3

1,0

2,0

4

4,0

9,0

5

9,0

5,0

Решение.

Из условия задачи следует, что надо найти оптимальное, с точки зрения экономии затрат на воздушные перевозки, местоположение двух объектов: аэродрома и железнодорожной станции. Такое возможно, если суммарная протяженность воздушных трасс между всеми объектами будет минимальной. Как известно, кратчайшее расстояние между двумя точками определяется отрезком, соединяющим эти точки.

Для решения задачи введем обозначения (табл. 2).

Таблица 2

Объект

Координата Х

Координата У

Населенный пункт №1

Х1

У1

Населенный пункт №2

Х2

У2

Населенный пункт №3

Х3

У3

Населенный пункт №4

Х4

У4

Населенный пункт №5

Х5

У5

Аэродром

ХА

УА

Железнодорожная станция

ХС

УС

Минимальное расстояние от железнодорожной станции до i-го населенного пункта (i = 1, …, 5) через аэропорт можно определить следующим образом:

Решение с помощью электронных таблиц

В соответствующие ячейки Табл. 3 введите расчетные формулы.

Таблица 3

Адрес ячейки

Содержимое ячейки (формула)

1

Е5

=КОРЕНЬ(($B$12-B5)^2+($C$12-C5)^2)

2

E6—E9

Скопировать формулу из Е5 в E6—E9

3

В16

=КОРЕНЬ((B14-B12)^2+(C14-C12)^2)+СУММ(Е5:Е9)

Компьютерная модель

A

B

C

D

E

1

Моделирование расположения аэродрома и железнодорожной станции

2

Расположение населенных пунктов

3

Объект, населенный пункт

Координата

Расстояние между

Аэродромом и населенными пунктами

x

y

4

5

Населенный пункт №1

2,0

8,0

6

Населенный пункт №2

10,0

9,0

7

Населенный пункт №3

1,0

2,0

8

Населенный пункт №4

4,0

9,0

9

Населенный пункт №5

9,0

5,0

10

11

Оптимальные координаты объектов (аэродрома и железнодорожных станций)

12

Аэродром

13

Железнодорожная станция

14

15

16

Оптимальное суммарное расстояние от аэродрома до станции и всех населенных пунктов

Эксперимент № 1

  • Применяя надстройку Excel «Поиск решения» ( Поиск решения), назначьте в качестве целевой ячейки В16 и установите переключатель Равной: равным минимальному значению.

  • Укажите в качестве изменяемых ячеек ячейки $B$12:$C$12; $B$14:$C$14 (координаты аэродрома и станции). Ограничения не вводите.

Щелкните по кнопке Выполнить. Фрагмент рабочего листа

A

B

C

D

E

1

Моделирование расположения аэродрома и железнодорожной станции

2

Расположение населенных пунктов

3

Объект, населенный пункт

Координата

Расстояние между

Аэродромом и населенными пунктами

x

y

4

5

Населенный пункт №1

2,0

8,0

2,5

6

Населенный пункт №2

10,0

9,0

5,7

7

Населенный пункт №3

1,0

2,0

6,6

8

Населенный пункт №4

4,0

9,0

1,5

9

Населенный пункт №5

9,0

5,0

5,2

10

11

Оптимальные координаты объектов (аэродрома и железнодорожных станций)

12

Аэродром

4,5

7,6

13

14

Железнодорожная станция

4,5

7,6

15

16

Оптимальное суммарное расстояние от аэродрома до станции и всех населенных пунктов

21,5

  • Постройте диаграмму, выберите тип Точечная.

  • Проанализируйте результат.

На основе полученных данных моделирования можно сделать следующий вывод: моделирование, проводимое в условиях, когда ограничения не заданы, приводит к совпадению координат расположения железнодорожной станции и аэродрома. Это вытекает и из простого анализа расчетной формулы. Минимальное расстояние будет, когда координаты объектов совпадут. В реальных условиях такие объекты располагаются на безопасном расстоянии друг от друга, кроме того, есть и некоторые технические критерии обеспечения нормальных условий функционирования объектов.

Эксперимент № 2

Усложним задачу. Введем ограничения. Предположим, что в указанном районе есть озеро и проходит железная дорога. Координаты ограничивающие местоположение аэродрома и станции, приведены в табл. 4

Таблица 4

Объект

Координата Х

Координата У

Озеро

≥ 0 и ≤4

≥ 3 и ≤ 6

Железная дорога

≥ 6

=1

Рисунок 1.

  • Установите курсор в ячейку В16.

  • Введите условия ограничения на расположение аэродрома и станции. В частности, примите во внимание, что аэродром не должен находиться внутри области, чьи координаты указаны в табл. 4, а железнодорожная станция, наоборот, должна находиться на железной дороге.

  • Произведите поиск решения.

Фрагмент рабочего листа (после ввода ограничений)

A

B

C

D

E

1

Моделирование расположения аэродрома и железнодорожной станции

2

Расположение населенных пунктов

3

Объект, населенный пункт

Координата

Расстояние между

Аэродромом и населенными пунктами

x

y

4

5

Населенный пункт №1

2,0

8,0

3,8

6

Населенный пункт №2

10,0

9,0

5,8

7

Населенный пункт №3

1,0

2,0

5,9

8

Населенный пункт №4

4,0

9,0

3,2

9

Населенный пункт №5

9,0

5,0

3,9

10

11

Оптимальные координаты объектов (аэродрома и железнодорожных станций)

12

Аэродром

5,2

6,1

13

14

Железнодорожная станция

6,0

1,0

15

16

Оптимальное суммарное расстояние от аэродрома до станции и всех населенных пунктов

27,5

ЗАДАЧИ ТЕОРИИ РАСПИСАНИЙ

Постановка задач теории расписаний

В задачах теории расписаний рассматриваются комплексы работ, связанных общим объектом или общим исполнителем, направленные на достижение определенной цели. Модели теории расписаний позволяют найти наиболее дешевый или наиболее быстрый порядок выполнения работ.

К задачам выбора самого дешевого порядка выполнения работ относится известная задача о шлюзе. Шлюз может пропускать в порядке очереди только по одному судну. Если создается очередь, то необходимо определить такой порядок прохождения судов через шлюз, при котором будет минимален ущерб от простоя. В такой формулировке задача появилась еще в XIX веке.

При выборе наиболее быстрого по времени варианта работ минимизируется отрезок времени от начала работ до их окончания (достижения цели). Простейшей задачей такого типа является задача и двух станках. На двух станках надо обработать N деталей. Каждая из деталей обрабатывается сначала на одном станке, а затем – на втором. Время обработки каждой детали на каждом станке известно. Задача состоит в том, что необходимо определить такой порядок обработки деталей, при котором время выполнения всей работы будет минимальным. Порядок обработки, минимизируется время T, называется оптимальным.

Задача о шлюзе

Математическая модель

Через шлюз последовательно должны пройти N судов. Известно время (в часах) шлюзования каждого судна – ti и ущерб от 1 часа простоя судна — Ui денежных единиц. Здесь индекс обозначает порядковый номер судна в очереди. Например, t1 это время шлюзования 1-го судна, t2 – время шлюзования 2-го судна, u2 – стоимость 1 часа простоя в ожидании своей очереди 2-го судна и т.д. Время простоя в очереди, например, 4-го судна, если оно ждет, пока через шлюз пройдут первые три, равно: t1 + t2 + t3 , а материальный ущерб от простоя 4-го судна равен: u4(t1 + t2 + t3).

Показатель экономической эффективности работы шлюза связан с суммарным ущербом от простоя судов в ожидании своей очереди на шлюзовании. Например, если к шлюзу подошли одновременно 4 судна и они пропускаются через шлюз в порядке их номеров, то суммарный ущерб от простоя (S) вычисляется так: S = u2t1 + u3(t1 + t2) + u4(t1 + t2 + t3).

В общем случае, если в очереди находятся N судов, то суммарный ущерб от простоя выражается формулой: S = .

Задача состоит в том, чтобы определить такой порядок пропускания судов через шлюз, при котором величина S будет минимальна.

Математический анализ этой задачи приводит к следующему ответу: минимум величины S достигается в том случае, если суда пропускаются в порядке убывания величины . Этот принцип можно пояснить на следующем примере. Пусть к шлюзу подошли одновременно два судна, время шлюзования которых одинаково (t1 = t2 ), но стоимость простоя разная. Тогда в первую очередь надо пропустить то судно, у которого простой стоит дороже. Если же у двух судов в очереди одинаковая стоимость простоя ( u1 = u2 ), то вперед надо пропустить то судно, у которого меньше время шлюзования.

Критерию убывания величины равносилен критерий возрастания величины . При вычислениях можно использовать как тот, так и другой критерий.

Решение в электронных таблицах

Рассмотрим пример для пяти судов, выстроившихся в очередь к шлюзу в порядке из прибытия. Данные приведены в таблице 1.

№ судна

1

2

3

4

5

Время шлюзования

45

36

28

24

72

Ущерб от простоя

5

12

7

4

3

Вычислим общий ущерб от простоя по формуле:

S= u2 • t1 + u3 •(t1 + t2) + u4 •(t1 + t2 + t3) + u5 •(t1 + t2 + t3 + t4).

Если шлюзование судов проводить в таком порядке, то ущерб от простоя не будет минимальным. В нашем случае сумма ущерба составляет 1942 денежные единицы:

S=12•45+7•(45+36)+4•(45+36+28)+3•(45+36+28+24) =1942.

Найдем оптимальный порядок (расписание) шлюзования судов, обеспечивающий минимальный ущерб от простоя.

Чтобы найти ущерб от простоя, в ячейках С6:F6 вычислим суммы вида : , а в ячейку B7 поместим формулу = СУММПРОИЗВ(C3:F3;C6:F6).

В соответствии с этой формулой вычисляется сумма произведений: C3*C6+D3*D6+E3*E6+F3*F6 Таблица 2.

A

B

C

D

E

F

1

№ судна

1

2

3

4

5

2

Время простоя

45

36

28

24

72

3

Ущерб от простоя

5

12

7

4

3

4

5

6

=B2

=C6+C2

=D6+D2

=E6+E2

7

=СУММПРОИЗВ(C3:F3;C6:F6)

В 4-ю строку таблицы впишем формулы, по которым для каждого судна сосчитается величина k= . Затем отсортируем столбцы диапазона ячеек B1:F4 в порядке возрастания значений k в 4-й строке. Указание на то, что производится сортировка столбцов, задается с помощью диалогового окна Параметры сортировки: столбцы диапозона; cортировать по – строка 4, по возрастанию.

После проведения сортировки в диапазоне ячеек B1:F1 будет содержаться порядок прохождения судов через шлюз со следующими номерами: № 2, 3, 4, 1, 5. При такой очередности общий ущерб от простоя будет минимальным и составит 1347 денежных единиц, в то время как при шлюзовании судов в порядке их прибытия общий ущерб составлял 1942 денежных единицы. Таблица 3.

A

B

C

D

E

F

1

№ судна

2

3

4

1

5

2

Время простоя

36

28

24

45

72

3

Ущерб от простоя

12

7

4

5

3

4

k

3

4

6

9

24

5

6

36

64

88

133

7

Общий ущерб

1347

ИССЛЕДОВАНИЕ МЕТОДОВ ВЫЧИСЛЕНИЯ ОПРЕДЕЛЁННЫХ ИНТЕГРАЛОВ

Задача 1. Вычислить по формуле прямоугольников   с шагом . Заметим, что этот интеграл легко может быть вычислен аналитически:  

Чтобы найти приближённое значение интеграла  , нужно:

  • разделить отрезок [ab] на n равных частей точками х0= а, х1, х2,…, х n -1, х n = b;

  • вычислить значения подынтегральной функции   в точках деления, т.е. нати  у 0 = f (x0)у 1 =f (x1)у 2 = f (x2)у n -1 = f (xn-1)у n = f (xn) ;

  • воспользоваться одной из приближённых формул.

Метод прямоугольников:

Простейшим приближённым методом является метод прямоугольников.

Геометрически идея способа вычисления определённого интеграла по формуле прямоугольников состоит в том, что площадь криволинейной трапеции АВСD  заменяется суммой площадей прямоугольников, одна сторона которых равна, а другая —

Для нахождения определённого интеграла методом прямоугольников необходимо ввести значения подынтегральной функции f(x) в рабочую таблицу Excel в диапазоне х  [0;3 ] с заданным шагом х = 0,1.

A

B

1

Аргумент

Функция

2

0

=A2^2

3

0,1

4

0,2

5

6

7

8

9

32

33

= 0,1* Сумм (В3:В32)

В ячейке В33 появляется приближённое значение искомого интеграла (9,455) .

Сравнивая полученное приближённое значение с истинным значением интеграла (9), можно видеть, что ошибка приближения метода прямоугольников в данном случае равна= 0,455

Метод трапеций:

Криволинейная трапеция заменяется на сумму нескольких трапеций и приближённое значение определённого интеграла находится как сумма площадей трапеций.

Для нахождения определенного интеграла методом трапеций, как и в случае использования метода прмоугольников, значения подынтегральной функции f(x) должны быть введены рабочую таблицу Excel в диапазоне х  [0;3] с заданным шагом х = 0,1.

A

B

1

Аргумент

Функция

2

0

=A2^2

3

0,1

4

0,2

5

6

7

8

9

32

33

=0,1*((B2+B32)/2+СУММ(B2:B31))

В ячейке В34 появляется приближённое значение искомого интеграла (9,005) .

Сравнивая полученное приближённое значение с истинным значением интеграла (9), можно видеть, что ошибка приближения метода трапеций в данном случае равна= 0,005

Метод трапеций обычно даёт более точное значение интеграла, чем метод прямоугольников

Задача 2.  Вычислить по формуле прямоугольников   с шагом .

Решение с помощью VBA

С

Рисунок 1.

оздание интерфейса:

Код программы:

Private Sub CommandButton3_Click()

End

End Sub

Рисунок 1.

Private Sub UserForm_Initialize()

With Me.ComboBox1

.AddItem «Метод_Трапеции»

.AddItem «Метод_Прямоугольников»

End With

End Sub

Private Sub CommandButton2_Click()

Dim n As Single, a As Single, x As Single

Dim b As Single, s As Single, s1 As Single

Dim s2 As Single, z As Single, i As String

i = ComboBox1.Value

a = TextBox1.Text

b = TextBox2.Text

n = TextBox3.Text

Select Case i

Case Is = «Метод_Трапеции»

h = (b — a) / n: s = 0

x = a + h

Do While x

s = s + fun(x)

x = x + h

Loop

s = (h / 2) * (fun(a) + 2 * s + fun(b))

T

Рисунок 2.

extBox4.Text = s

Case Is = «Метод_Прямоугольников»

h = (b — a) / n: s1 = 0

x = a + h

Do While x

s1 = s1 + fun(x)

x = x + h

Loop

s1 = h * s1

TextBox5.Text = s1

End Select

End Sub

Function fun(x As Single) As Single

fun = x ^ 2

End Function

Задания для самостоятельного выполнения:

Задача 1. Методом прямоугольников и методом трапеций найти следующие интегралы:

  1. при x=0,1;

  2. при x=0,1.

Задание 2. Построить график и вычислить площадь криволинейной трапеции, ограниченной линиями y=x2sin x, y=0, x=a, x=b (ai = a+(b-a) СЛЧИС()).

Литература:

  1. Информатика и ИКТ. Профильный уровень: учебник для 11 класса. / И.Г. Семакин, Е.К. Хеннер, Л.В.Шестакова.— М.: БИНОМ, Лаборатория знаний, 2012. — 330 с.

  2. Информатика. Сборник элективных курсов. А.А.Чернов. Волгоград: Учитель, 2007г

  3. http://иванов-м.рф/informatika_11/informatika_materialy_zanytii_11_20.html

  4. Куклина И. Д. Применение электронных таблиц при изучении приближенных методов вычисления интеграла // Информатика и образование. — М. — 2010. — № 9. — С. 94 —96.

  5. Попова О. Н. Моделирование задачи оптимального управления// Информатика и образование. — М. — 2002. — № 10. — С. 78 —82.

  1. Гельман В.Я. Решение математических задач средствами Excel: Практикум. – СПб.: Питер, 2003. – 240 с.

  2. Тимофеева Н.М. Как решать задачи? / “В мир информатики” № 67 (“Информатика” № 2/2006).

2

На строительном участке в инструментальной
мастерской работают два мастера. Если
рабочий заходит в мастерскую, когда оба
мастера заняты обслуживанием ранее
обратившихся работников, то они покидают
мастерскую, не ожидая обслуживания.
Статистика показала, что среднее число
рабочих, обратившихся в мастерскую в
течение часа, равно 18; среднее время,
которое мастер затрачивает на заточку
или ремонт равно 10 мин.

Оценить характеристики работы данной
мастерской как СМО с отказами. Сколько
мастеров должно работать в мастерской,
чтобы вероятность обслуживания рабочих
была выше 85%?

Решение.

По условию задачи:

  • В системе
    работают 2 мастера — мастерская
    представляет собой 2 канальную
    СМО:
    n=2;

  • работник
    покидает мастерскую, не ожидая
    обслуживания — СМО с отказами;

  • среднее
    число рабочих, обратившихся в мастерскую
    в течение часа, равно 18 — поток заявок
    простейший с интенсивностью λ = 18;

  • среднее
    время на обслуживание равно 10 мин. —
    .=10
    мин или 1/ 6 часа.

Вычислим интенсивность длительности
обслуживания: μ==6.

Определим характеристики СМО. Для
этого следует определить: вероятность
того, что заявка, пришедшая в момент
времениt , получит
отказ; абсолютную и относительную
пропускную способность СМО; среднее
число заявок, обслуживаемых одновременно
(другими словами, среднее число занятых
мастеров).

Воспользуемся формулами:

  1. Вероятность отказа в обслуживании
    (формулы Эрланга)

,

где
– вероятность того, что все мастера
свободны;

= 18/6=3 — нагрузка на систему:

при

  1. Относительная пропускная способность
    В, т.е. вероятность того, что заявка
    будет обслужена,

.

  1. Абсолютную пропускную способность Аполучим, умножая интенсивность потока
    заявок λ наВ:

.

  1. Среднее
    число занятых каналов

Очевидно, что СМО перегружена: из двух
мастеров занято в среднем М=1,4, а из
обращающихся в мастерскую рабочих около
Ротк=53% остаются необслуженными.

Определим, сколько мастеров должно
работать в мастерской, чтобы вероятность
обслуживания рабочих была выше 85%.

События «отказ в обслуживании» и
«рабочего обслужили» являются
противоположными, следовательно,
.

Рассчитаем
для разного количества мастеров:

при

;

при
;

при

и т.д.

Остальные вычисления выполнены в Excel:

Из графика и из таблицы расчетов видно,
что минимальное число каналов обслуживания
(мастеров), при котором вероятность
обслуживания работников будет выше 85%
(вероятность отказа ниже 15%), равно
.

Задача 5. Имитационное моделирование.

Смоделировать 10 значений СВ Х –
длительность приёма пациентов в кабинете
врача, имеющую показательное распределение,
где интенсивность приёма μ = 3, и СВ Y- число поступающих в единицу времени
пациентов, имеющую распределение
Пуассона, где параметр Пуассона λ = 4,
используя средстваExcel.

Решение.

Для получения значений случайной
величины Хс показательным
законом распределенияиспользуем датчик случайных чисел.
Так какесть равномерно распределенная случайная
величина в интервале от 0 до 1, то и (1 —)
является таковой. Непрерывное распределение
моделирует функцияExcel=
СЛЧИС(), которая возвращает случайное
число из интервала от 0 до 1. У этой функции
нет аргумента (рис. 26).

Для моделирования значений СВ Yиспользуем инструментГенерация
случайных чисел
вMSExcelПакет анализа. При
вызове этой надстройки (Данные/ Анализ
данных
) появляется диалоговое окноАнализ данных, содержащее список
инструментов анализа:

Из списка Инструменты анализа выбирается
пунктГенерация случайных чисел
(кнопкаОК). На экране появляется диалоговое окноГенерация случайных
чисел
:

Рассматриваемая надстройка позволяет
использовать семь типов распределений:
равномерное, нормальное, Бернулли,
биномиальное, Пуассона, модельное и
дискретное.

Заполним его для распределения Пуассона,
задавая количество чисел -10 и значение
λ= 4 и ячейку для вывода значений СВY.

В итоге получим два столбца для ХиY.

Полученные результаты можно интерпретировать
следующим образом:

  • для СВ Y: в первый
    час приёма кабинет врача посетило 2
    пациента, во второй час — 5 пациентов и
    т.д.

  • для СВ Х: первый пациент был на
    приёме около 6 минут (0,11 часа); второй
    — 18 минут (0,33 часа) и т.д.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Слайд 1Задачи по моделированию в среде Excel”

Задачи по моделированию в среде Excel”


Слайд 2

Компьютерный эксперимент

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т.е. на настоящем образце изделия, подвергая его всяческим испытаниям. Это требует больших материальных затрат и времени. В помощь пришли компьютерные исследования моделей. При проведении компьютерного эксперимента проверяют правильность построения моделей. Изучают поведение модели при различных параметрах объекта. Каждый эксперимент сопровождается осмыслением результатов. Если результаты компьютерного эксперимента противоречат смыслу решаемой задачи, то ошибку надо искать в неправильно выбранной модели или в алгоритме и методе ее решения. После выявления и устранения ошибок компьютерный эксперимент повторяется.


Слайд 3Под математической моделью понимают систему математических соотношений

— формул, уравнений неравенств и т.д., отражающих

существенные свойства объекта или процесса.

Под математической моделью понимают систему математических соотношений — формул, уравнений неравенств и


Слайд 4Задачи по моделированию из различных предметных областей
Экономика
Астрономия
Физика
Экология
Биология
География

Задачи по моделированию из различных предметных областей Экономика Астрономия Физика Экология Биология География


Слайд 5
Машиностроительный завод, реализуя продукцию

по договорным ценам, получил определенную выручку, затратив

на производство некоторую сумму денег. Определить отношение чистой прибыли к вложенным средствам.
Постановка задачи
Цель моделирования — исследовать процесс производства и реализации продукции с целью получения наибольшей чистой прибыли. Пользуясь экономическими формулами найти отношение чистой прибыли к вложенным средствам.

Экономика

Машиностроительный завод, реализуя продукцию по договорным ценам, получил


Слайд 6Основными параметрами объекта моделирования являются: выручка, себестоимость,

прибыль, рентабельность, налог с прибыли.
Исходные данные:
выручка B;
затраты

(себестоимость) S.
Другие параметры найдем, используя основные экономические зависимости. Значение прибыли определяется как разность между выручкой и себестоимостью P=B-S.
Рентабельность r вычисляется по формуле: .
Прибыль, соответствующая предельному уровню рентабельности 50%, составляет 50% от себестоимости продукции S, т.е. S*50/100=S/2, поэтому налог с прибыли N определяется следующим образом:
если r<=50, то N=P*32/100 р., иначе N=S/2*32/100+(P-S/2)*75/100.
Чистая прибыль Рч=Р-N.
И, наконец, результат решения этой задачи — отношение чистой прибыли к вложенным средствам q= Рч/S.
Так выглядит электронная таблица в формате отображения формул:

Основными параметрами объекта моделирования являются: выручка, себестоимость, прибыль, рентабельность, налог с прибыли.


Слайд 9 Анализ результатов
Полученная модель позволяет в зависимости

от рентабельности определять налог с прибыли, автоматически

пересчитывать размер чистой прибыли, находить отношение чистой прибыли к вложенным средствам.
Проведенный компьютерный эксперимент показывает, что отношение чистой прибыли к вложенным средствам увеличивается при увеличении выручки и уменьшается при увеличении себестоимости продукции.

Анализ результатов 	Полученная модель позволяет в зависимости от рентабельности определять налог


Слайд 10 Задача .
Определите скорость движения

планет по орбите. Для этого составьте компьютерную

модель Солнечной системы.
Постановка задачи
Цель моделирования — определить скорость движения планет по орбите.
Объект моделирования — Солнечная система, элементами которой являются планеты. Внутреннее строение планет в расчет не принимается. Будем рассматривать планеты как элементы, обладающие следующими характеристиками:
название;
R — удаленность от Солнца (в астрономических единицах;
астроном. ед. — среднее расстояние от Земли до Солнца);
t — период обращения вокруг Солнца (в годах);
V — скорость движения по орбите (астр.ед./год), предполагая, что планеты
движутся вокруг Солнца по окружностям с постоянной скоростью.

Астрономия

Задача . Определите скорость движения планет по орбите. Для


Слайд 15Анализ результатов

1. Проанализируйте результаты расчетов. Можно ли

утверждать, что планеты, находящиеся ближе к Солнцу

имеют большую скорость движения по орбите?
2. Представленная модель Солнечной системы является статической. При построении этой модели мы пренебрегали изменениями расстояния от планет до Солнца во время их движения по орбите. Чтобы знать, какая планета дальше и каковы примерные соотношения между расстояниями, этой информации вполне достаточно. Если же мы хотим определить расстояние между Землей и Марсом, то пренебрегать временными изменениями нельзя, и здесь придется использовать уже динамическую модель.

Анализ результатов  1. Проанализируйте результаты расчетов. Можно ли утверждать, что планеты,


Слайд 18Компьютерный эксперимент
Введите в компьютерную модель исходные данные.
(Например:

μ=0,5; α=12)
Найти такой коэффициент трения при котором

машина поедет с горы (при данном угле).
Найти такой угол при котором машина будет стоять на горе (при данном коэффициенте трения).
Каков будет результат, если силой трения пренебречь.
Анализ результатов
Данная компьютерная модель позволяет проводить вычислительный эксперимент, взамен физическому. Меняя значения исходных данных, можно видеть все изменения происходящие в системе.
Интересно заметить, что в построенной модели результат не зависит ни от массы автомобиля, ни от ускорения свободного падения.

Компьютерный эксперимент Введите в компьютерную модель исходные данные.
 (Например: μ=0,5; α=12) Найти


Слайд 19
Задача

.
Представьте себе, что на Земле останется только

один источник пресной воды — озеро Байкал. На сколько лет Байкал обеспечит население всего мира водой?

Экология

Задача . Представьте себе, что


Слайд 20Разработка модели
Для построения математической модели определим исходные

данные. Обозначим:
V — объем озера Байкал 23000

км3;
N — население Земли 6 млрд. чел.;
p — потребление воды в день на 1 человека (в среднем) 300 л.
Так как 1л. = 1 дм3 воды, необходимо выполнить перевод V воды озера из км3 в дм3. V (км3) = V * 109 (м3) = V * 1012 (дм3)
Результат — количество лет, за которое население Земли использует воды Байкала, обозначим g. Итак, g=(V*1000000000000)/(N*p*365)
Так выглядит электронная таблица в режиме отображения формул:

Разработка модели 	Для построения математической модели определим исходные данные. Обозначим: V -


Слайд 22
Задача .
Для

производства вакцины на заводе планируется выращивать культуру

бактерий. Известно, что если масса бактерий — x г., то через день она увеличится на (a-bx)x г., где коэффициенты a и b зависят от вида бактерий. Завод ежедневно будет забирать для нужд производства вакцины m г. бактерий. Для составления плана важно знать, как изменяется масса бактерий через 1, 2, 3, …, 30 дней..

Биология

Задача . Для производства вакцины на


Слайд 26
Задача .
Какова будет численность населения

России в 2010 году?
География

Задача . Какова будет численность населения России в 2010 году? География


Слайд 27 Постановка задачи
Объектом моделирования является процесс изменения

численности населения в зависимости от времени. На

этот процесс влияют многие факторы: экология, состояние медицинского обслуживания, экономическая ситуация в стране, международная обстановка и многое другое. Обобщив демографические данные, ученые вывели функцию, выражающую зависимость численности населения от времени:
f(t)=где коэффициента a и b для каждого государства свои,
e основание натурального логарифма.
Эта формула лишь приближенно отражает реальность. Для нахождения значений коэффициентов a и b можно воспользоваться статистическим справочником. Взяв из справочника значения f(t) (численность населения в момент времени t), можно приближенно подобрать a и b так, чтобы теоретические значения f(t), вычисляемые по формуле, не сильно отличались от фактических данных в справочнике.

Постановка задачи Объектом моделирования является процесс изменения численности населения в зависимости


Слайд 28Использование компьютера как инструмента учебной деятельности дает

возможность переосмыслить традиционные подходы к изучению многих

вопросов естественнонаучных дисциплин, усилить экспериментальную деятельность учащихся, приблизить процесс обучения к реальному процессу познания, основанному на технологии моделирования.
Решение задач из различных областей деятельности человека на компьютере базируются не только на знаниях учащимися технологии моделирования, но, естественно, и на знаниях данной предметной области. В связи с этим, предложенные уроки по моделированию целесообразнее проводить после изучения учащимися материала на общеобразовательном предмете, учителю информатики необходимо сотрудничать с учителями разных образовательных областей. Известен опыт проведения бинарных уроков, т.е. уроков, проводимых учителем информатики совместно с учителем-предметником.

Использование компьютера как инструмента учебной деятельности дает возможность переосмыслить традиционные подходы к


Пользователи Excel давно и успешно применяют программу для решения различных типов задач в разных областях.

Excel – это самая популярная программа в каждом офисе во всем мире. Ее возможности позволяют быстро находить эффективные решения в самых разных сферах деятельности. Программа способна решать различного рода задачи: финансовые, экономические, математические, логические, оптимизационные и многие другие. Для наглядности мы каждое из выше описанных решение задач в Excel и примеры его выполнения.

Решение задач оптимизации в Excel

Оптимизационные модели применяются в экономической и технической сфере. Их цель – подобрать сбалансированное решение, оптимальное в конкретных условиях (количество продаж для получения определенной выручки, лучшее меню, число рейсов и т.п.).

В Excel для решения задач оптимизации используются следующие команды:

Для решения простейших задач применяется команда «Подбор параметра». Самых сложных – «Диспетчер сценариев». Рассмотрим пример решения оптимизационной задачи с помощью надстройки «Поиск решения».

Условие. Фирма производит несколько сортов йогурта. Условно – «1», «2» и «3». Реализовав 100 баночек йогурта «1», предприятие получает 200 рублей. «2» — 250 рублей. «3» — 300 рублей. Сбыт, налажен, но количество имеющегося сырья ограничено. Нужно найти, какой йогурт и в каком объеме необходимо делать, чтобы получить максимальный доход от продаж.

Известные данные (в т.ч. нормы расхода сырья) занесем в таблицу:

Известные данные.

На основании этих данных составим рабочую таблицу:

Рабочая таблица.

  1. Количество изделий нам пока неизвестно. Это переменные.
  2. В столбец «Прибыль» внесены формулы: =200*B11, =250*В12, =300*В13.
  3. Расход сырья ограничен (это ограничения). В ячейки внесены формулы: =16*B11+13*B12+10*B13 («молоко»); =3*B11+3*B12+3*B13 («закваска»); =0*B11+5*B12+3*B13 («амортизатор») и =0*B11+8*B12+6*B13 («сахар»). То есть мы норму расхода умножили на количество.
  4. Цель – найти максимально возможную прибыль. Это ячейка С14.

Активизируем команду «Поиск решения» и вносим параметры.

Параметры настройки.

После нажатия кнопки «Выполнить» программа выдает свое решение.

Результат решения.

Оптимальный вариант – сконцентрироваться на выпуске йогурта «3» и «1». Йогурт «2» производить не стоит.



Решение финансовых задач в Excel

Чаще всего для этой цели применяются финансовые функции. Рассмотрим пример.

Условие. Рассчитать, какую сумму положить на вклад, чтобы через четыре года образовалось 400 000 рублей. Процентная ставка – 20% годовых. Проценты начисляются ежеквартально.

Оформим исходные данные в виде таблицы:

Исходные данные.

Так как процентная ставка не меняется в течение всего периода, используем функцию ПС (СТАВКА, КПЕР, ПЛТ, БС, ТИП).

Заполнение аргументов:

  1. Ставка – 20%/4, т.к. проценты начисляются ежеквартально.
  2. Кпер – 4*4 (общий срок вклада * число периодов начисления в год).
  3. Плт – 0. Ничего не пишем, т.к. депозит пополняться не будет.
  4. Тип – 0.
  5. БС – сумма, которую мы хотим получить в конце срока вклада.

Параметры функции БС.

Вкладчику необходимо вложить эти деньги, поэтому результат отрицательный.

Результат функции БС.

Для проверки правильности решения воспользуемся формулой: ПС = БС / (1 + ставка)кпер. Подставим значения: ПС = 400 000 / (1 + 0,05)16 = 183245.

Решение эконометрики в Excel

Для установления количественных и качественных взаимосвязей применяются математические и статистические методы и модели.

Дано 2 диапазона значений:

Диапазон значений.

Значения Х будут играть роль факторного признака, Y – результативного. Задача – найти коэффициент корреляции.

Для решения этой задачи предусмотрена функция КОРРЕЛ (массив 1; массив 2).

Функция КОРРЕЛ.

Решение логических задач в Excel

В табличном процессоре есть встроенные логические функции. Любая из них должна содержать хотя бы один оператор сравнения, который определит отношение между элементами (=, >, <, >=, <=). Результат логического выражения – логическое значение ИСТИНА или логическое значение ЛОЖЬ.

Пример задачи. Ученики сдавали зачет. Каждый из них получил отметку. Если больше 4 баллов – зачет сдан. Менее – не сдан.

Пример задачи.

  1. Ставим курсор в ячейку С1. Нажимаем значок функций. Выбираем «ЕСЛИ».
  2. Заполняем аргументы. Логическое выражение – B1>=4. Это условие, при котором логическое значение – ИСТИНА.
  3. Если ИСТИНА – «Зачет сдал». ЛОЖЬ – «Зачет не сдал».

Решение задачи.

Решение математических задач в Excel

Средствами программы можно решать как простейшие математические задачки, так и более сложные (операции с функциями, матрицами, линейными уравнениями и т.п.).

Условие учебной задачи. Найти обратную матрицу В для матрицы А.

  1. Делаем таблицу со значениями матрицы А.
  2. Выделяем на этом же листе область для обратной матрицы.
  3. Нажимаем кнопку «Вставить функцию». Категория – «Математические». Тип – «МОБР».
  4. В поле аргумента «Массив» вписываем диапазон матрицы А.
  5. Нажимаем одновременно Shift+Ctrl+Enter — это обязательное условие для ввода массивов.

Результат выполнения массива.

Скачать примеры

Возможности Excel не безграничны. Но множество задач программе «под силу». Тем более здесь не описаны возможности которые можно расширить с помощью макросов и пользовательских настроек.

Слайды презентации

Слайд 2

Компьютерный экспериментКомпьютерный эксперимент

Чтобы дать

жизнь новым конструкторским разработкам, внедрить Чтобы дать жизнь новым

конструкторским разработкам, внедрить
новые технические решения в производство или проверить

новые новые технические решения в производство или проверить новые
идеи, нужен эксперимент. В недалеком прошлом такой эксперимент идеи, нужен эксперимент. В недалеком прошлом такой эксперимент
можно было провести либо в лабораторных условиях на специально можно было провести либо в лабораторных условиях на специально
создаваемых для него установках, либо на натуре, т.е. на настоящем создаваемых для него установках, либо на натуре, т.е. на настоящем
образце изделия, подвергая его всяческим испытаниям. Это требует образце изделия, подвергая его всяческим испытаниям. Это требует
больших материальных затрат и времени. В помощь пришли больших материальных затрат и времени. В помощь пришли
компьютерные исследования моделей. При проведении компьютерные исследования моделей. При проведении
компьютерного эксперимента проверяют правильность построения компьютерного эксперимента проверяют правильность построения
моделей. Изучают поведение модели при различных параметрах моделей. Изучают поведение модели при различных параметрах
объекта. Каждый эксперимент сопровождается осмыслением объекта. Каждый эксперимент сопровождается осмыслением
результатов. Если результаты компьютерного эксперимента результатов. Если результаты компьютерного эксперимента
противоречат смыслу решаемой задачи, то ошибку надо искать в противоречат смыслу решаемой задачи, то ошибку надо искать в
неправильно выбранной модели или в алгоритме и методе ее неправильно выбранной модели или в алгоритме и методе ее
решения. После выявления и устранения ошибок компьютерный решения. После выявления и устранения ошибок компьютерный
эксперимент повторяется.эксперимент повторяется.


Слайд 3


Под Под
математической модельюматематической моделью

понимают систему математических понимают систему

математических
соотношений — формул, уравнений соотношений — формул, уравнений

неравенств и т.д., отражающих неравенств и т.д., отражающих
существенные свойства

объекта или существенные свойства объекта или
процесса.процесса.

 Под Под  математической модельюматематической моделью   понимают систему математических понимают систему


Слайд 4


Задачи по моделированию из различных Задачи по моделированию из различных

предметных областейпредметных областей

ЭкономикаЭкономика

АстрономияАстрономия

ФизикаФизика

ЭкологияЭкология

БиологияБиология

ГеографияГеография

 Задачи по моделированию из различных Задачи по моделированию из различных  предметных областейпредметных


Слайд 5

Машиностроительный завод, реализуя продукцию Машиностроительный завод, реализуя продукцию
по договорным

ценам, получил определенную по договорным ценам, получил определенную
выручку,

затратив на производство некоторую выручку, затратив на производство некоторую
сумму

денег. Определить отношение чистой сумму денег. Определить отношение чистой
прибыли к вложенным средствам.прибыли к вложенным средствам.

Постановка задачиПостановка задачи

Цель моделирования — исследовать процесс Цель моделирования — исследовать процесс
производства и реализации продукции с целью производства и реализации продукции с целью
получения наибольшей чистой прибыли. Пользуясь получения наибольшей чистой прибыли. Пользуясь
экономическими формулами найти отношение экономическими формулами найти отношение
чистой прибыли к вложенным средствам.чистой прибыли к вложенным средствам.

Машиностроительный завод, реализуя продукцию Машиностроительный завод, реализуя


Слайд 6


Основными параметрами объекта моделирования являются: выручка, Основными параметрами объекта моделирования

являются: выручка,
себестоимость, прибыль, рентабельность, налог с прибыли.себестоимость, прибыль,

рентабельность, налог с прибыли.

Исходные данные:Исходные данные:

выручка B;выручка B;

затраты (себестоимость) S.затраты

(себестоимость) S.

Другие параметры найдем, используя основные экономические Другие параметры найдем, используя основные экономические
зависимости. Значение прибыли определяется как разность между зависимости. Значение прибыли определяется как разность между
выручкой и себестоимостью P=B-S.выручкой и себестоимостью P=B-S.

Рентабельность r вычисляется по формуле: .Рентабельность r вычисляется по формуле: .

Прибыль, соответствующая предельному уровню рентабельности 50%, Прибыль, соответствующая предельному уровню рентабельности 50%,
составляет 50% от себестоимости продукции S, т.е. S*50/100=S/2, составляет 50% от себестоимости продукции S, т.е. S*50/100=S/2,
поэтому налог с прибыли N определяется следующим образом: поэтому налог с прибыли N определяется следующим образом:

если r<=50, то N=P*32/100 р., иначе N=S/2*32/100+(P-S/2)*75/100.если r<=50, то N=P*32/100 р., иначе N=S/2*32/100+(P-S/2)*75/100.

Чистая прибыль Рч=Р-N.Чистая прибыль Рч=Р-N.

И, наконец, результат решения этой задачи — отношение чистой И, наконец, результат решения этой задачи — отношение чистой
прибыли к вложенным средствам q= Рч/S.прибыли к вложенным средствам q= Рч/S.

Так выглядит электронная таблица в формате отображения формул:Так выглядит электронная таблица в формате отображения формул:

 Основными параметрами объекта моделирования являются: выручка, Основными параметрами объекта моделирования являются: выручка,


Слайд 9

Анализ результатовАнализ результатов

Полученная модель позволяет в зависимости от Полученная модель

позволяет в зависимости от
рентабельности определять налог с прибыли,

рентабельности определять налог с прибыли,
автоматически пересчитывать размер чистой прибыли,

автоматически пересчитывать размер чистой прибыли,
находить отношение чистой прибыли к вложенным находить отношение чистой прибыли к вложенным
средствам.средствам.

Проведенный компьютерный эксперимент Проведенный компьютерный эксперимент
показывает, что отношение чистой прибыли к вложенным показывает, что отношение чистой прибыли к вложенным
средствам увеличивается при увеличении выручки и средствам увеличивается при увеличении выручки и
уменьшается при увеличении себестоимости продукции. уменьшается при увеличении себестоимости продукции.

Анализ результатовАнализ результатов  Полученная модель позволяет в зависимости от Полученная


Слайд 10

Задача .Задача .
Определите скорость движения планет по орбите. Для этого

Определите скорость движения планет по орбите. Для этого
составьте

компьютерную модель Солнечной системы.составьте компьютерную модель Солнечной системы.
Постановка задачиПостановка задачи
Цель

моделирования — определить скорость движения планет по Цель моделирования — определить скорость движения планет по
орбите.орбите.
Объект моделирования — Солнечная система, элементами которой Объект моделирования — Солнечная система, элементами которой
являются планеты. Внутреннее строение планет в расчет не являются планеты. Внутреннее строение планет в расчет не
принимается. Будем рассматривать планеты как элементы, принимается. Будем рассматривать планеты как элементы,
обладающие следующими характеристиками:обладающие следующими характеристиками:
название;название;
R — удаленность от Солнца (в астрономических единицах;R — удаленность от Солнца (в астрономических единицах;
астроном. ед. — среднее расстояние от Земли до Солнца);астроном. ед. — среднее расстояние от Земли до Солнца);
t — период обращения вокруг Солнца (в годах);t — период обращения вокруг Солнца (в годах);
V — скорость движения по орбите (астр.ед./год), предполагая, что планеты V — скорость движения по орбите (астр.ед./год), предполагая, что планеты
движутся вокруг Солнца по окружностям с постоянной скоростью.движутся вокруг Солнца по окружностям с постоянной скоростью.

Задача .Задача . Определите скорость движения планет


Слайд 15


Анализ результатовАнализ результатов

1. Проанализируйте результаты расчетов. Можно ли 1. Проанализируйте

результаты расчетов. Можно ли
утверждать, что планеты, находящиеся ближе

к Солнцу утверждать, что планеты, находящиеся ближе к Солнцу
имеют

большую скорость движения по орбите?имеют большую скорость движения по орбите?

2. Представленная модель Солнечной системы является 2. Представленная модель Солнечной системы является
статической. При построении этой модели мы статической. При построении этой модели мы
пренебрегали изменениями расстояния от планет до пренебрегали изменениями расстояния от планет до
Солнца во время их движения по орбите. Чтобы знать, Солнца во время их движения по орбите. Чтобы знать,
какая планета дальше и каковы примерные соотношения какая планета дальше и каковы примерные соотношения
между расстояниями, этой информации вполне между расстояниями, этой информации вполне
достаточно. Если же мы хотим определить расстояние достаточно. Если же мы хотим определить расстояние
между Землей и Марсом, то пренебрегать временными между Землей и Марсом, то пренебрегать временными
изменениями нельзя, и здесь придется использовать уже изменениями нельзя, и здесь придется использовать уже
динамическую модель.динамическую модель.

 Анализ результатовАнализ результатов  1. Проанализируйте результаты расчетов. Можно ли 1. Проанализируйте результаты


Слайд 18

Компьютерный эксперимент
Введите в компьютерную модель исходные данные.
(Например:  =0,5; 

=12)
Найти такой коэффициент трения при котором машина поедет с

горы (при данном угле).
Найти такой угол при котором машина будет

стоять на горе (при данном коэффициенте
трения).
Каков будет результат, если силой трения пренебречь.
Анализ результатов
Данная компьютерная модель позволяет проводить вычислительный
эксперимент, взамен физическому. Меняя значения исходных данных, можно видеть все
изменения происходящие в системе.
Интересно заметить, что в построенной модели результат не зависит ни от
массы автомобиля, ни от ускорения свободного падения.

Компьютерный эксперимент Введите в компьютерную модель исходные данные. (Например:  =0,5;  =12) Найти


Слайд 19

Задача .Задача .

Представьте себе, что на Земле останется только один

Представьте себе, что на Земле останется только один
источник

пресной воды — озеро Байкал. На сколько лет источник пресной

воды — озеро Байкал. На сколько лет
Байкал обеспечит население всего мира водой?Байкал обеспечит население всего мира водой?

Задача .Задача


Слайд 20


Разработка моделиРазработка модели

Для построения математической модели Для построения математической модели

определим исходные данные. Обозначим:определим исходные данные. Обозначим:

V — объем

озера Байкал 23000 км3;V — объем озера Байкал 23000 км3;

N

— население Земли 6 млрд. чел.;N — население Земли 6 млрд. чел.;

p — потребление воды в день на 1 человека (в p — потребление воды в день на 1 человека (в
среднем) 300 л.среднем) 300 л.

Так как 1л. = 1 дм3 воды, необходимо выполнить Так как 1л. = 1 дм3 воды, необходимо выполнить
перевод V воды озера из км3 в дм3. перевод V воды озера из км3 в дм3.
V (км3) = V V (км3) = V
* 109 (м3) = V * 1012 (дм3)* 109 (м3) = V * 1012 (дм3)

Результат — количество лет, за которое население Результат — количество лет, за которое население
Земли использует воды Байкала, обозначим g.Земли использует воды Байкала, обозначим g.
Итак, g=(V*1000000000000)/(N*p*365)Итак, g=(V*1000000000000)/(N*p*365)

Так выглядит электронная таблица в режиме Так выглядит электронная таблица в режиме
отображения формул:отображения формул:

 Разработка моделиРазработка модели  Для построения математической модели Для построения математической модели


Слайд 22

Задача .Задача .

Для производства вакцины на заводе планируется Для производства

вакцины на заводе планируется
выращивать культуру бактерий. Известно, что

выращивать культуру бактерий. Известно, что
если масса бактерий — x

г., то через день она если масса бактерий — x г., то через день она
увеличится на (a-bx)x г., где коэффициенты a и b увеличится на (a-bx)x г., где коэффициенты a и b
зависят от вида бактерий. Завод ежедневно зависят от вида бактерий. Завод ежедневно
будет забирать для нужд производства вакцины будет забирать для нужд производства вакцины
m г. бактерий. Для составления плана важно m г. бактерий. Для составления плана важно
знать, как изменяется масса бактерий через 1, 2, знать, как изменяется масса бактерий через 1, 2,
3, …, 30 дней..3, …, 30 дней..

Задача .Задача . 


Слайд 26

Задача .Задача .

Какова будет численность населения России в 2010 году?Какова

будет численность населения России в 2010 году?

Задача .Задача .  Какова будет численность населения России


Слайд 27

Постановка задачиПостановка задачи

Объектом моделирования является процесс изменения численности Объектом моделирования

является процесс изменения численности
населения в зависимости от времени.

На этот процесс влияют многие населения в зависимости от времени.

На этот процесс влияют многие
факторы: экология, состояние медицинского обслуживания, факторы: экология, состояние медицинского обслуживания,
экономическая ситуация в стране, международная обстановка и экономическая ситуация в стране, международная обстановка и
многое другое. Обобщив демографические данные, ученые вывели многое другое. Обобщив демографические данные, ученые вывели
функцию, выражающую зависимость численности населения от функцию, выражающую зависимость численности населения от
времени:времени:

f(t)=где коэффициента a и b для каждого государства свои,f(t)=где коэффициента a и b для каждого государства свои,

e основание натурального логарифма.e основание натурального логарифма.

Эта формула лишь приближенно отражает реальность. Для Эта формула лишь приближенно отражает реальность. Для
нахождения значений коэффициентов a и b можно воспользоваться нахождения значений коэффициентов a и b можно воспользоваться
статистическим справочником. Взяв из справочника значения f(t) статистическим справочником. Взяв из справочника значения f(t)
(численность населения в момент времени t), можно приближенно (численность населения в момент времени t), можно приближенно
подобрать a и b так, чтобы теоретические значения f(t), вычисляемые подобрать a и b так, чтобы теоретические значения f(t), вычисляемые
по формуле, не сильно отличались от фактических данных в по формуле, не сильно отличались от фактических данных в
справочнике.справочнике.

Постановка задачиПостановка задачи  Объектом моделирования является процесс изменения численности Объектом


Слайд 28


Использование компьютера как инструмента учебной Использование компьютера как инструмента учебной

деятельности дает возможность переосмыслить деятельности дает возможность переосмыслить
традиционные

подходы к изучению многих вопросов традиционные подходы к изучению многих

вопросов
естественнонаучных дисциплин, усилить естественнонаучных дисциплин, усилить
экспериментальную деятельность учащихся, приблизить экспериментальную деятельность учащихся, приблизить
процесс обучения к реальному процессу познания, процесс обучения к реальному процессу познания,
основанному на технологии моделирования.основанному на технологии моделирования.

Решение задач из различных областей деятельности Решение задач из различных областей деятельности
человека на компьютере базируются не только на знаниях человека на компьютере базируются не только на знаниях
учащимися технологии моделирования, но, естественно, и на учащимися технологии моделирования, но, естественно, и на
знаниях данной предметной области. В связи с этим, знаниях данной предметной области. В связи с этим,
предложенные уроки по моделированию целесообразнее предложенные уроки по моделированию целесообразнее
проводить после изучения учащимися материала на проводить после изучения учащимися материала на
общеобразовательном предмете, учителю информатики общеобразовательном предмете, учителю информатики
необходимо сотрудничать с учителями разных необходимо сотрудничать с учителями разных
образовательных областей. Известен опыт проведения образовательных областей. Известен опыт проведения
бинарных уроков, т.е. уроков, проводимых учителем бинарных уроков, т.е. уроков, проводимых учителем
информатики совместно с учителем-предметником.информатики совместно с учителем-предметником.

 Использование компьютера как инструмента учебной Использование компьютера как инструмента учебной  деятельности дает


Чтобы скачать презентацию — поделитесь ей с друзьями с помощью
социальных кнопок.

Понравилась статья? Поделить с друзьями:
  • Системы сбора данных excel
  • Сканер jpg в word
  • Системные требования word of tank
  • Система документооборота с excel
  • Системы программирования linux word