Рішення задач за допомогою excel

Пользователи Excel давно и успешно применяют программу для решения различных типов задач в разных областях.

Excel – это самая популярная программа в каждом офисе во всем мире. Ее возможности позволяют быстро находить эффективные решения в самых разных сферах деятельности. Программа способна решать различного рода задачи: финансовые, экономические, математические, логические, оптимизационные и многие другие. Для наглядности мы каждое из выше описанных решение задач в Excel и примеры его выполнения.

Решение задач оптимизации в Excel

Оптимизационные модели применяются в экономической и технической сфере. Их цель – подобрать сбалансированное решение, оптимальное в конкретных условиях (количество продаж для получения определенной выручки, лучшее меню, число рейсов и т.п.).

В Excel для решения задач оптимизации используются следующие команды:

Для решения простейших задач применяется команда «Подбор параметра». Самых сложных – «Диспетчер сценариев». Рассмотрим пример решения оптимизационной задачи с помощью надстройки «Поиск решения».

Условие. Фирма производит несколько сортов йогурта. Условно – «1», «2» и «3». Реализовав 100 баночек йогурта «1», предприятие получает 200 рублей. «2» — 250 рублей. «3» — 300 рублей. Сбыт, налажен, но количество имеющегося сырья ограничено. Нужно найти, какой йогурт и в каком объеме необходимо делать, чтобы получить максимальный доход от продаж.

Известные данные (в т.ч. нормы расхода сырья) занесем в таблицу:

Известные данные.

На основании этих данных составим рабочую таблицу:

Рабочая таблица.

  1. Количество изделий нам пока неизвестно. Это переменные.
  2. В столбец «Прибыль» внесены формулы: =200*B11, =250*В12, =300*В13.
  3. Расход сырья ограничен (это ограничения). В ячейки внесены формулы: =16*B11+13*B12+10*B13 («молоко»); =3*B11+3*B12+3*B13 («закваска»); =0*B11+5*B12+3*B13 («амортизатор») и =0*B11+8*B12+6*B13 («сахар»). То есть мы норму расхода умножили на количество.
  4. Цель – найти максимально возможную прибыль. Это ячейка С14.

Активизируем команду «Поиск решения» и вносим параметры.

Параметры настройки.

После нажатия кнопки «Выполнить» программа выдает свое решение.

Результат решения.

Оптимальный вариант – сконцентрироваться на выпуске йогурта «3» и «1». Йогурт «2» производить не стоит.



Решение финансовых задач в Excel

Чаще всего для этой цели применяются финансовые функции. Рассмотрим пример.

Условие. Рассчитать, какую сумму положить на вклад, чтобы через четыре года образовалось 400 000 рублей. Процентная ставка – 20% годовых. Проценты начисляются ежеквартально.

Оформим исходные данные в виде таблицы:

Исходные данные.

Так как процентная ставка не меняется в течение всего периода, используем функцию ПС (СТАВКА, КПЕР, ПЛТ, БС, ТИП).

Заполнение аргументов:

  1. Ставка – 20%/4, т.к. проценты начисляются ежеквартально.
  2. Кпер – 4*4 (общий срок вклада * число периодов начисления в год).
  3. Плт – 0. Ничего не пишем, т.к. депозит пополняться не будет.
  4. Тип – 0.
  5. БС – сумма, которую мы хотим получить в конце срока вклада.

Параметры функции БС.

Вкладчику необходимо вложить эти деньги, поэтому результат отрицательный.

Результат функции БС.

Для проверки правильности решения воспользуемся формулой: ПС = БС / (1 + ставка)кпер. Подставим значения: ПС = 400 000 / (1 + 0,05)16 = 183245.

Решение эконометрики в Excel

Для установления количественных и качественных взаимосвязей применяются математические и статистические методы и модели.

Дано 2 диапазона значений:

Диапазон значений.

Значения Х будут играть роль факторного признака, Y – результативного. Задача – найти коэффициент корреляции.

Для решения этой задачи предусмотрена функция КОРРЕЛ (массив 1; массив 2).

Функция КОРРЕЛ.

Решение логических задач в Excel

В табличном процессоре есть встроенные логические функции. Любая из них должна содержать хотя бы один оператор сравнения, который определит отношение между элементами (=, >, <, >=, <=). Результат логического выражения – логическое значение ИСТИНА или логическое значение ЛОЖЬ.

Пример задачи. Ученики сдавали зачет. Каждый из них получил отметку. Если больше 4 баллов – зачет сдан. Менее – не сдан.

Пример задачи.

  1. Ставим курсор в ячейку С1. Нажимаем значок функций. Выбираем «ЕСЛИ».
  2. Заполняем аргументы. Логическое выражение – B1>=4. Это условие, при котором логическое значение – ИСТИНА.
  3. Если ИСТИНА – «Зачет сдал». ЛОЖЬ – «Зачет не сдал».

Решение задачи.

Решение математических задач в Excel

Средствами программы можно решать как простейшие математические задачки, так и более сложные (операции с функциями, матрицами, линейными уравнениями и т.п.).

Условие учебной задачи. Найти обратную матрицу В для матрицы А.

  1. Делаем таблицу со значениями матрицы А.
  2. Выделяем на этом же листе область для обратной матрицы.
  3. Нажимаем кнопку «Вставить функцию». Категория – «Математические». Тип – «МОБР».
  4. В поле аргумента «Массив» вписываем диапазон матрицы А.
  5. Нажимаем одновременно Shift+Ctrl+Enter — это обязательное условие для ввода массивов.

Результат выполнения массива.

Скачать примеры

Возможности Excel не безграничны. Но множество задач программе «под силу». Тем более здесь не описаны возможности которые можно расширить с помощью макросов и пользовательских настроек.

«Розв’язувач» – це надбудова Microsoft Excel, яка використовується для аналіз «what-if». За її допомогою можна знайти оптимальне (максимальне або мінімальне) значення для формула в одній клітинці (так званій клітинці цільової функції), що обмежується значеннями формул в інших клітинках аркуша. Надбудова «Розв’язувач» працює із групою клітинок (які називаються клітинками змінних рішення або просто клітинками змінних), що використовуються для обчислення формул у цільових функціях і клітинках обмежень. Надбудова регулює значення у клітинках змінних відповідно до меж у клітинках обмежень і виводить потрібний результат у клітинці цільової функції.

Простіше кажучи, ви можете використовувати Розв’язувач, щоб визначати максимальне або мінімальне значення однієї клітинки, змінюючи інші клітинки. Наприклад, можна змінити прогнозований бюджет на рекламу та побачити, яке це вплине на прогнозований прибуток.

Примітка.: У версіях надбудови «Пошук розв’язання», старіших за Excel 2007, клітинки цільових функцій називають цільовими клітинками, а клітинки змінних рішень – змінюваними клітинками або клітинками змінних. Надбудова «Пошук розв’язання» для Excel 2010 значно вдосконалена, тому в Excel 2007 вона дещо відрізнятиметься.

У цьому прикладі рівень реклами в кожному кварталі впливає на кількість проданих одиниць товару, опосередковано визначаючи обсяг збуту, пов’язані з цим витрати та прибуток. За допомогою розв’язувача можна змінити квартальні бюджети на рекламу (клітинки змінних рішень B5:C5), аж до загального обмеження бюджету в 20 000 грн (клітинка F5), доки загальний прибуток (клітинка цільової програми F7) не досягне максимально можливого значення. Значення у клітинках змінних використовуються для обчислення прибутку в кожному кварталі, тому вони пов’язані з клітинкою цільової функції F7, =SUM (Прибуток за 1 квартал:Прибуток кв.2).

До застосування надбудови «Пошук розв’язання»

1. Клітинки змінних

2. Клітинка з обмеженням

3. Клітинка цільової функції

Так виглядатимуть нові значення після запуску надбудови «Розв’язувач».

Після застосування надбудови «Пошук розв’язання»

  1. На вкладці Дані в групі Аналіз виберіть Розв’язувач.
    Практичне заняття у програмі PowerPoint 2010

    Діалогове вікно "Параметри розв’язувача" в Excel 2010 і пізніших версіях програми

  2. У полі Оптимізувати цільову функцію введіть посилання на клітинку або назва клітинки цільової функції. Клітинка цільової функції має містити формулу.

  3. Виконайте одну з таких дій:

    • Якщо потрібно встановити найбільше значення клітинки цільової функції, виберіть пункт Максимум.

    • Якщо потрібно встановити найменше значення клітинки цільової функції, виберіть пункт Мінімум.

    • Якщо у клітинці цільової функції потрібно встановити певне значення, виберіть пункт Значення та введіть потрібне значення в полі.

    • У полі Змінюючи клітинки змінних введіть ім’я або посилання для кожного діапазону клітинок змінних. Несуміжні посилання слід розділяти комами. Клітинки змінних мають бути безпосередньо або опосередковано пов’язані з клітинками цільової функції. Можна вказати не більше 200 клітинок змінних.

  4. У полі Підлягає обмеженням введіть потрібні обмеження, виконавши наведені нижче дії.

    1. У діалоговому вікні Параметри розв’язувача натисніть кнопку Додати.

    2. У полі Посилання на клітинку введіть посилання на клітинку або ім’я діапазону клітинок, для якого потрібно обмежити значення.

    3. Клацніть зв’язок ( <=, =, >=, int, binабо dif ), який потрібно розташувати між клітинкою, на яку посилається посилання, і обмеженням. Якщо клацнути цілечисло, відобразиться в полі Обмеження. Якщо клацнути двійкове значення, у полі Обмеження з’явиться двійкове. Якщо натиснути кнопку різкийвимкнуто, у полі Обмеження відобразиться напис Усі байдужі.

    4. Якщо в полі Обмеження для зв’язку вибрано оператори «<=», «=» або «>=», введіть число, посилання на клітинку, ім’я клітинки або формулу.

    5. Виконайте одну з таких дій:

      • Щоб прийняти обмеження та додати ще одне, натисніть кнопку Додати.

      • Щоб прийняти обмеження та повернутися до діалогового вікна Параметри розв’язатора,натисніть кнопку OK.
        Примітка    Зв’язки int,binі dif можна застосовувати лише в обмеженнях у клітинках змінних рішень.

        Щоб змінити або видалити наявне обмеження, виконайте наведені нижче дії.

    6. У діалоговому вікні Параметри розв’язувача виберіть обмеження, яке потрібно змінити або видалити.

    7. Натисніть кнопку Змінити та внесіть зміни або натисніть кнопку Видалити.

  5. Натисніть кнопку Розв’язати та виконайте одну з наведених нижче дій.

    • Щоб зберігати значення розв’язання на аркуші, у діалоговому вікні Результати розв’язувача виберіть елемент Зберегти розв’язання розв’язувача.

    • Щоб відновити вихідні значення, натисніть кнопку Відновити первинні значення, перш ніж натиснути кнопку Розв’язати.

    • Процес пошуку розв’язання можна перервати, натиснувши клавішу Esc. Програма Excel заново обчислить аркуш з останніми значеннями у клітинках змінних рішення.

    • Щоб створити звіт на основі власного розв’язання після того, як надбудова знайде своє, виберіть тип звіту в полі Звіти та натисніть кнопку OK. Звіт буде створено на новому аркуші книги. Якщо розв’язання не знайдено, не буде доступних звітів або будуть доступні лише деякі з них.

    • Щоб зберегти значення клітинок змінних рішення як сценарій, до якого можна повернутися пізніше, у діалоговому вікні Результати розв’язувача виберіть командуЗберегти сценарій і введіть ім’я сценарію в полі Назва сценарію.

  1. Визначивши задачу, натисніть кнопку Параметри в діалоговому вікні Параметри розв’язувача.

  2. У діалоговому вікні Параметри встановіть прапорець Відображати результати ітерацій, щоб переглядати значення для кожного пробного розв’язання, а потім натисніть кнопку OK.

  3. У діалоговому вікні Параметри розв’язувача натисніть кнопку Розв’язати.

  4. У діалоговому вікні Показати пробне розв’язання виконайте одну з наведених нижче дій.

    • Щоб зупинити процес розв’язання та відобразити діалогове вікно Параметри розв’язувача, натисніть кнопку Зупинити.

    • Щоб продовжити процес розв’язання та відобразити наступне пробне розв’язання, натисніть кнопку Продовжити.

  1. У діалоговому вікні Параметри розв’язувача натисніть кнопку Параметри.

  2. У діалоговому вікні «Параметри» виберіть або введіть значення для параметрів на вкладках Усі методи, За методом зведеного градієнта та Розвиваний розв’язувач.

  1. У діалоговому вікні Параметри розв’язувача натисніть кнопку Завантажити/зберегти.

  2. Введіть діапазон клітинок для області моделі та натисніть кнопку Зберегти або Завантажити.

    Під час збереження моделі введіть посилання на першу клітинку вертикального діапазону пустих клітинок, у яких потрібно розташувати модель задачі. Під час завантаження моделі введіть посилання для всього діапазону клітинок, який містить модель задачі.

    Порада.: Останні вибрані параметри в діалоговому вікні Параметри розв’язувача можна зберегти разом з аркушем, зберігши книгу. Кожен аркуш у книзі може містити власні параметри надбудови «Пошук розв’язання», і всі вони зберігаються. Крім того, ви можете визначити кілька задач для аркуша, натиснувши кнопку Завантажити/зберегти, щоб зберегти кожну задачу окремо.

Можна вибрати будь-який із трьох алгоритмів або методів розв’язання в діалоговому вікні Параметри розв’язувача.

  • Нелінійний метод узагальненого зведеного градієнта (GRG).    Використовується для гладких нелінійних задач.

  • Симплекс-метод.    Використовується для лінійних задач.

  • Розвиваний розв’язувач.    Використовується для розв’язання негладких задач.

У цьому прикладі рівень реклами в кожному кварталі впливає на кількість проданих одиниць товару, опосередковано визначаючи обсяг збуту, пов’язані з цим витрати та прибуток. За допомогою надбудови «Пошук розв’язання» можна змінити квартальні бюджети на рекламу (клітинки змінних рішень B5:C5), аж до загального обмеження бюджету в розмірі 20 000 грн (клітинка D5), доки загальний прибуток (клітинка цільової функції D7) не досягне максимально можливого рівня. Значення в клітинках змінних використовуються для обчислення прибутку в кожному кварталі, тому вони пов’язані з формулою =SUM (Прибуток_кв.1:Прибуток_кв.2) у клітинці цільової функції D7.

Example Solver evaluation

Виноска 1 клітинок змінних

Доступ до книги клітинки з обмеженням

Callout 3 клітинка цільової цілі

Такий вигляд матимуть нові значення після запуску надбудови «Пошук розв’язання»:

Веб-застосунок PowerPoint Web App

  1. В Excel 2016 для Mac: на вкладці Data (Дані) натисніть кнопку Solver (Розв’язувач).

    Пошук розв’язання

    В Excel 2011 для Mac: на вкладці Data (Дані) у групі Analysis (Аналіз) натисніть кнопку Solver (Розв’язувач).

    Data tab, Analysis group, Solver Add-In

  2. У поле Set Objective (Оптимізувати цільову функцію) введіть посилання на клітинку або ім’я клітинки цільової функції.

    Примітка.: Клітинка цільової функції має містити формулу.

  3. Виконайте одну з таких дій:

    Дія

    Виконайте такі дії

    Установлення найбільшого значення в клітинці цільової функції

    Виберіть параметр Max (Максимум).

    Установлення найменшого значення в клітинці цільової функції

    Виберіть параметр Min (Мінімум).

    Установлення певного значення в клітинці цільової функції

    Виберіть параметр Value Of (Значення), а потім введіть у поле потрібне значення.

  4. У поле By Changing Variable Cells (Змінюючи клітинки змінних) введіть ім’я або посилання для кожного діапазону клітинок змінних рішень. Несуміжні посилання слід розділяти крапкою з комою.

    Клітинки змінних мають бути безпосередньо або опосередковано пов’язані з клітинкою цільової функції. Ви можете вказати до 200 клітинок змінних.

  5. У поле Subject to the Constraints (Підлягає обмеженням) введіть потрібні обмеження.

    Щоб додати обмеження, виконайте такі дії:

    1. У діалоговому вікні Параметри розв’язувача натисніть кнопку Додати.

    2. У полі Посилання на клітинку введіть посилання на клітинку або ім’я діапазону клітинок, для якого потрібно обмежити значення.

    3. У спливаючому меню <= виберіть зв’язок, що потрібно встановити між клітинкою, на яку додається посилання, і обмеженням. Якщо ви виберете <=, = або >=, у поле Constraint (Обмеження) введіть число, посилання на клітинку або її ім’я чи формулу.

      Примітка.: Зв’язки int (ціл), bin (двійк) і dif (різ) можна застосовувати лише в обмеженнях у клітинках змінних рішень.

    4. Виконайте одну з таких дій:

    Дія

    Виконайте такі дії

    Прийняття обмеження та додавання іншого

    Натисніть кнопку Add (Додати).

    Прийняття обмеження та повернення до діалогового вікна Solver Parameters (Параметри розв’язувача)

    Натисніть кнопку OK.

  6. Натисніть кнопку Solve (Розв’язати) і виконайте одну з таких дій:

    Дія

    Виконайте такі дії

    Збереження значень розв’язання на аркуші

    У діалоговому вікні Solver Results (Результати розв’язувача) натисніть кнопку Keep Solver Solution (Зберегти розв’язання розв’язувача).

    Відновлення первинних даних

    Натисніть кнопку Restore Original Values (Відновити первинні значення).

Примітки.: 

  1. Пошук розв’язання можна перервати, натиснувши клавішу Esc. Excel заново обчислить аркуш з останніми значеннями в клітинках змінних.

  2. Щоб створити звіт на основі власного розв’язання після того, як надбудова знайде своє, виберіть тип звіту в полі Reports (Звіти) і натисніть кнопку OK. Звіт створюється на новому аркуші книги. Якщо розв’язання не знайдено, створити звіт не можна.

  3. Щоб зберегти значення клітинок змінних як сценарій, до якого можна повернутися пізніше, у діалоговому вікні Solver Results (Результати розв’язувача) натисніть кнопку Save Scenario (Зберегти сценарій) і введіть ім’я сценарію в поле Scenario Name (Назва сценарію).

  1. В Excel 2016 для Mac: на вкладці Data (Дані) натисніть кнопку Solver (Розв’язувач).

    Пошук розв’язання

    В Excel 2011 для Mac: на вкладці Data (Дані) у групі Analysis (Аналіз) натисніть кнопку Solver (Розв’язувач).

    Data tab, Analysis group, Solver Add-In

  2. Визначивши задачу, у діалоговому вікні Solver Parameters (Параметри розв’язувача) натисніть кнопку Options (Параметри).

  3. Установіть прапорець Show Iteration Results (Відображати результати ітерацій), щоб переглядати значення для кожного пробного розв’язання, а потім натисніть кнопку OK.

  4. У діалоговому вікні Solver Parameters (Параметри розв’язувача) натисніть кнопку Solve (Розв’язати).

  5. У діалоговому вікні Show Trial Solution (Показати пробне розв’язання) виконайте одну з таких дій:

    Дія

    Виконайте такі дії

    Припинення розв’язання й відображення діалогового вікна Solver Results (Результати розв’язувача)

    Натисніть кнопку Stop (Зупинити).

    Продовження розв’язання й відображення наступного пробного розв’язання

    Натисніть кнопку Continue (Продовжити).

  1. В Excel 2016 для Mac: на вкладці Data (Дані) натисніть кнопку Solver (Розв’язувач).

    Пошук розв’язання

    В Excel 2011 для Mac: на вкладці Data (Дані) у групі Analysis (Аналіз) натисніть кнопку Solver (Розв’язувач).

    Data tab, Analysis group, Solver Add-In

  2. Натисніть кнопку Options (Параметри), а потім у діалоговому вікні Options (Параметри) або Solver Options (Параметри розв’язувача) виконайте одну або кілька таких дій:

    Дія

    Виконайте такі дії

    Установлення тривалості розв’язання та кількості ітерацій

    На вкладці All Methods (Усі методи) у розділі Solving Limits (Ліміти розв’язання в поле Max Time (Seconds) (Максимальний час [Секунди]) введіть потрібну кількість секунд для пошуку розв’язання. Потім у поле Iterations (Ітерації) введіть максимальну дозволену кількість ітерацій.

    Примітка.: Якщо тривалість пошуку розв’язання або кількість ітерацій досягне максимально припустимого значення, відобразиться діалогове вікно Show Trial Solution (Показати пробне розв’язання).

    Установлення ступеня точності

    На вкладці All Methods (Усі методи) у поле Constraint Precision (Точність обмеження) введіть потрібний ступінь точності. Що менше число, то вища точність.

    Установлення ступеня конвергенції

    На вкладці GRG Nonlinear (За методом зведеного градієнта) або Evolutionary (Розвиваний розв’язувач) у поле Convergence (Конвергенція) введіть значення відносної зміни, яку потрібно дозволити в останніх п’яти ітераціях, перш ніж надбудова «Пошук розв’язання» припинить роботу й знайде розв’язання. Що менше число, то менша відносна зміна дозволена.

  3. Натисніть кнопку OK.

  4. У діалоговому вікні Solver Parameters (Параметри розв’язувача) натисніть кнопку Solve (Розв’язати) або Close (Закрити).

  1. В Excel 2016 для Mac: на вкладці Data (Дані) натисніть кнопку Solver (Розв’язувач).

    Пошук розв’язання

    В Excel 2011 для Mac: на вкладці Data (Дані) у групі Analysis (Аналіз) натисніть кнопку Solver (Розв’язувач).

    Data tab, Analysis group, Solver Add-In

  2. Натисніть кнопку Load/Save (Завантажити/зберегти), введіть діапазон клітинок для області моделі й натисніть кнопку Save (Зберегти) або Load (Завантажити).

    Під час збереження моделі введіть посилання на першу клітинку вертикального діапазону пустих клітинок, у яких потрібно розташувати модель задачі. Під час завантаження моделі введіть посилання для всього діапазону клітинок, який містить модель задачі.

    Порада.: Останні вибрані параметри в діалоговому вікні Solver Parameters (Параметри розв’язувача) можна зберегти разом з аркушем, зберігши книгу. Кожен аркуш у книзі може містити власні параметри надбудови «Пошук розв’язання», і всі вони зберігаються. Крім того, ви можете визначити кілька задач для аркуша, натиснувши кнопку Load/Save (Завантажити/зберегти), щоб зберегти кожну задачу окремо.

  1. В Excel 2016 для Mac: на вкладці Data (Дані) натисніть кнопку Solver (Розв’язувач).

    Пошук розв’язання

    В Excel 2011 для Mac: на вкладці Data (Дані) у групі Analysis (Аналіз) натисніть кнопку Solver (Розв’язувач).

    Data tab, Analysis group, Solver Add-In

  2. У спливаючому меню Select a Solving Method (Виберіть метод розв’язання) виберіть один із таких параметрів:

Метод розв’язання

Опис

GRG Nonlinear (За методом зведеного градієнта)

Стандартний параметр для моделей, у яких застосовується більшість функцій Excel, окрім IF, CHOOSE, LOOKUP та інших покрокових функцій.

Simplex LP (За симплекс-методом)

Використовуйте цей метод для завдань лінійного програмування. У моделі мають використовуватися функції SUM і SUMPRODUCT, а також оператори +, — і * у формулах, що залежать від клітинок змінних.

Evolutionary (Розвиваний розв’язувач)

Цей метод, заснований на генетичних алгоритмах, найкраще підходить, коли в моделі застосовуються функції IF, CHOOSE або LOOKUP з аргументами, що залежать від клітинок змінних.

Примітка.: Авторські права на частини програмного коду надбудови «Пошук розв’язання» версій 1990–2010 років належать корпорації Frontline Systems, Inc. Авторські права на версію 1989 року належать корпорації Optimal Methods, Inc.

Оскільки надбудови не підтримуються в Інтернет-версія Excel, ви не зможете використовувати надбудову «Пошук розв’язання», щоб виконувати аналіз «what-if» на основі даних, щоб знайти оптимальні розв’язання.

Мивши програму Excel для настільних комп’ютерів, можна скористатися кнопкою Відкрити у програмі Excel, щоб відкрити книгу й скористатися надбудовою «Пошук розв’язання».

Додаткова довідка з використання надбудови «Розв’язувач»

Контактні дані для отримання поглибленої довідки стосовно надбудови «Розв’язувач»:

Frontline Systems, Inc.
P.O. Box 4288
Incline Village, NV 89450-4288
(775) 831-0300
Веб-сайт: http://www.solver.com
Електронна пошта: info@solver.com
«Пошук розв’язання» на www.solver.com.

Авторські права на частини програмного коду надбудови «Розв’язувач» версій 1990–2009 рр. належать корпорації Frontline Systems, Inc. Авторські права на версію 1989 року належать корпорації Optimal Methods, Inc.

Потрібна додаткова довідка?

Ви завжди можете поставити запитання експерту в спільноті Tech у розділі Excel чи отримати підтримку в спільноті Answers.

Додаткові відомості

Використання розв’язання для складання великих бюджетів

Використання розв’язувача для визначення оптимального комбайна

Загальні відомості про аналіз «what-if»

Огляд формул в Excel

Способи уникнення недійсних формул

Виявлення помилок у формулах

Сполучення клавіш в Excel

Функції Excel (за алфавітом)

Функції Excel (за категоріями)

во втором поле выбрать оператор ограничения (>, Поиск решения).

Найденные решения (значения изменяемых ячеек) можно сохранить в качестве сценария. Для этого нужно:

  1. В диалоговом окне Результаты поиска решения выбрать Сохранить сценарий.
  2. В поле Название сценария ввести имя сценария. Просмотреть сценарии можно с помощью команды Данные > Работа с данными > Анализ что-если > Диспетчер сценариев > Сценарии.

С помощью программы Поиск решения можно создать три типа отчетов по результатам, полученным при успешном завершении процедуры решения.

Каждый отчет создается на отдельном листе текущей рабочей книги.

Для создания отчета надо в диалоговом окне Результаты поиска решения выбрать нужный тип отчета в поле Тип отчета. Можно выбрать сразу несколько типов (при выделении нескольких строк используется клавиша ).

  • Результаты – отчет содержит целевую ячейку, список изменяемых ячеек, их исходные и конечные значения, ограничения и сведения о них.
  • Устойчивость – отчет содержит сведения о степени зависимости модели от изменений величин, входящих в формулы, применяемые в задаче (формулы модели и формулы ограничений).
  • Пределы – выводится целевая ячейка и ее значение, а также список изменяемых ячеек, их значений, нижних и верхних пределов и целевых результатов.

Рассмотрим применение процессора Excel для решения ЗЛП на примерах.

Задача 1. Планирование производства

Модель линейного программирования дает возможность определить наиболее выгодную производственную программу выпуска нескольких видов продукции при заданных ограничениях на ресурсы.

МП выпускает товары х1234, получая от реализации каждого прибыль в 60,70,120,130 руб. соответственно. Затраты на производство приведены в таблице.

Затраты х1 х2 x3 х4 Всего
Трудовые 1 1 1 1 16
Сырьевые 6 5 4 1 110
Финансы 4 6 10 13 100
  1. Максимум прибыли в зависимости от оптимального распределения затрат.
  2. Минимум ресурсов, необходимых для получения максимальной прибыли.

Решение задачи средствами Excel состоит из 4 этапов:

  1. Создание математической модели задачи ЛП.
  2. Создание формы для ввода условий задачи, ввод в неё исходных данных и зависимостей из математической модели.
  3. Ввод данных из формы в окно Excel Поиск решения из меню Данные.
  4. Задание параметров поиска и решение задачи.

Создание математической модели задачи

Составим математическую модель процесса по описанию задачи:

— целевая функция прибыли.

— граничные условия модели, так как количество производимых товаров не может быть отрицательной величиной.

Для решения данной задачи c помощью программы MS Excel создадим новую книгу с именем Линейное программирование и изменим имя ее первого рабочего листа на Задача о производстве.

Создание формы

  • Составление формы в виде:
A B C D E F G H
1 Переменная х7 х2 x3 х4 Формула Знак Св.член
2 Значение
3 Коэф. ЦФ 60 70 120 130 =СУММПРОИЗВ(В$2:Е$2;В3:Е3) Max
4 Трудовые 1 1 1 1 =СУММПРОИЗВ(В$2:Е$2;В4:Е4) 16
5 Сырьевые 6 5 4 1 =СУММПРОИЗВ(В$2:Е$2;В5:Е5) 110
6 Финансы 4 6 10 13 =СУММПРОИЗВ(В$2:Е$2;В6:Е6) 100
  • Запись в ячейки В3:Е3 коэффициентов целевой функции F (1), в В4:Е6 коэффициентов из системы ограничений (2) и в ячейки Н4:Н6 – свободных членов из системы (2).
  • Ввод формул с помощью fx – Мастера функций.

Для ввода формулы в целевую ячейку (целевой функции): щелкнуть левой клавишей мыши по ячейке F3 , затем по значку Мастера функций fx на панели инструментов, в появившемся окне «Мастер функций, Шаг 1» выбрать категорию «Математические», далее выбрать функцию СУММПРОИЗВ, нажать клавишу ОК, в окне «Мастер функций Шаг 2» в поле Массив 1 ввести с клавиатуры В2:Е2 (ячейки, в которых будут варьироваться х1..х4), в поле Массив 2 ввести В3:Е3 (коэффициенты целевой функции ЦФ).

Примечание. Можно вводить В2:Е2 не с клавиатуры, а поставить курсор в окно Массив 1, а затем протащить курсор при нажатой левой клавише мыши по ячейкам В2:Е2, имена ячеек сами запишутся в окно. Аналогично поступить с полем Массив 2.

Нажать клавишу ОК, в ячейку F3 запишется формула 60х1+70х2+120х3+ 130х4 в виде СУММПРОИЗВ(В2:Е2;В3:Е3).

Чтобы не вводить формулы в другие ячейки, необходимо изменить тип адресации для ячеек В2:Е2 с относительной на абсолютную $B$2:$E$2 , установив курсор перед нужным адресом B2 и нажав функциональную клавишу F4 , затем повторить эти действия для адреса E2 . Формула примет следующий вид:

После внесенных изменений необходимо скопировать формулу в ячейки F4:F6 c помощью маркера заполнения. Для этого необходимо выделить ячейку F3 , содержащую нужную формулу, установить указатель мыши на черный квадратик в правом нижнем углу ячейки (он примет форму черного крестика) и протащить с помощью левой кнопки мыши на весь требуемый диапазон.

В результате копирования мы увидим следующие формулы:

  • в ячейке F4 – СУММПРОИЗВ($В$2:$Е$2;В4:Е4),
  • в ячейке F5 – СУММПРОИЗВ($В$2:$Е$2;В5:Е5),
  • в ячейке F6 – СУММПРОИЗВ($В$2:$Е$2;В6:Е6).

Заполнение окна Поиск решения

Выбрать в пункте меню Данные команду Поиск решения, поставить курсор в поле целевой функции, выделить ячейку F3 в форме (или ввести F3 с клавиатуры), поставить переключатель в положение «Максимальному значению» (см. рис. 12.1 рис. 12.1). В поле «Изменяя ячейки» ввести $В$2:$Е$2(с клавиатуры или протащив мышью).

Нажать клавишу «Добавить», в окне «Добавление ограничения» в поле «Ссылка на ячейку» ввести F4 , выбрать через «стрелка вниз» знак ««, в поле справа ввести Н4 (рис. 12. рис. 12.2).

Аналогично через «Добавить» ввести , для системы ограничений (2), а также , , и .

Также необходимо добавить ограничения для получения целочисленных величин по количеству товаров: B2=цел, C2=цел, D2=цел и Е2=цел.

После ввода последнего граничного условия вместо «Добавить» нажать клавишу ОК, появится окно «Поиск решения».

Для изменения или удаления ограничений и граничных условий используются клавиши Изменить, Удалить.

Параметры поиска

В окне «Поиск решения» нажать клавишу «Параметры», выбрать по умолчанию Максимальное время – 100 с, число итераций – 100 (для большинства задач это количество просчётов подходит с большим запасом), установить флажок в строке «Линейная модель», нажать ОК, в появившемся окне Поиск Решения нажать Выполнить (рис. 12. рис. 12.3).

Результаты поиска решения с таблицей результатов:

A B C D E F G H
1 Переменная X1 X2 X3 X4 Формула Знак Св.член
2 Значение 10 0 6 0
3 Коэф. ЦФ 60 70 120 130 1320 Max
4 Трудовые 1 1 1 1 16 16
5 Сырьевые 6 5 4 1 84 110
6 Финансы 4 6 10 13 100 100

Таким образом оптимальный план Х(Х1234)=(10,0,6,0) при минимальном использовании ресурсов

  • Трудовые – 16 (У1)
  • Сырьевые – 84 (У2)
  • Финансы – 100 (У3)

даёт максимум прибыли F в 1320 руб.

Вывод: Максимальная прибыль F в 1320 руб. получается при выпуске только товаров Х1 и Х3 в количестве 10 и 6 штук соответственно, товары Х3 и Х4 выпускать не нужно (это приведёт к снижению прибыли). Трудовые (У1) и финансовые (У3) ресурсы используются полностью, по сырьевым ресурсам (У2) есть запас в 110-84=26 ед.

Кроме того, это означает, что изменение трудовых ( y1 ) и финансовых ( y3 ) ресурсов приведёт к изменению прибыли F , а изменение сырьевых ресурсов ( y2 ) – нет.

Разности между плановыми ресурсами и использованными являются двойственными переменными y1, y2 и y3 сопряжённой задачи линейного программирования. В данном случае y1=y3=0 , а y2=26 ед. Таким образом, ресурс y2 можно уменьшить на 26 ед., тогда план по сырью тоже будет оптимальным.

Задача 2. Задача об оптимальной диете

Имеется n видов продуктов питания, в которых содержится m типов питательных веществ (белки, жиры, углеводы). В одной весовой единице продукта i-го типа содержится аi единиц питательного вещества j-го вида . Известна минимальная суточная потребность b j (j in <1,2. т>) человека в каждом из видов питательных веществ. Задана калорийность сi одной весовой единицы i-го продукта ( i принадлежит <1, 2, . n>).

Требуется определить оптимальный состав рациона продуктов, такой, чтобы каждое питательное вещество содержалось в нем в необходимом количестве, обеспечивающем суточную потребность человека, и при этом суммарная калорийность рациона была минимальной.

Ведем в рассмотрение следующие переменные: х – весовое количество продукта питания i-го типа в суточном рационе.

Тогда в общем случае математическая постановка задачи об оптимальной диете может быть сформулирована следующим образом:

где множество допустимых альтернатив формируется следующей системой ограничений типа неравенств:

Для решения задачи об оптимальной диете с помощью программы MS Excel необходимо задать конкретные значения параметрам исходной задачи.

Для определенности предположим, что в качестве исходных типов продуктов рассматриваются: хлеб, мясо, сыр, бананы, огурцы, помидоры, виноград ( n = 7), а в качестве питательных веществ рассматриваются белки, жиры, углеводы ( m = 3).

Калорийность одной весовой единицы каждого из продуктов следующая:с1 = 2060,с2= 2430,с3= 3600,с4= 890,с5= 140,с6= 230, с7 = 650. Содержание питательных веществ в каждом из продуктов может быть задано в форме нижеприведенной таблицы.

Минимальная суточная потребность в питательных веществах следующая: в белках b 1 = 100, в жирах b 2= 70, в углеводах b3 = 400.

Для решения данной задачи c помощью программы MS Excel создадим новую книгу с именем Линейное программирование и изменим имя ее второго рабочего листа на Задача о диете.

Таблица 1. Содержание питательных веществ в продуктах питания

Продукты/питательные вещества Хлеб ржаной Мясо баранина Сыр «Российский» Банан Огурцы Помидоры Виноград
Белки 61 220 230 15 8 11 6
Жиры 12 172 290 1 1 2 2
Углеводы 420 0 0 212 26 38 155

Создание математической модели задачи

Составим математическую модель процесса по описанию задачи:

– целевая функция (суммарная калорийность продуктов).

– граничные условия

Создание формы

Для решения поставленной задачи выполним следующие подготовительные действия:

  1. Внесем необходимые надписи в ячейки A1:I1, A2:A7, B4, I4, J4 .
  2. В ячейки ВЗ:НЗ введем значения коэффициентов целевой функции: с1 = 2060, с2 = 2430, с3 = 3600, с4 = 890, с5 = 140, с6 = 230, с7 = 650.
  3. В ячейку I2 введем формулу: =СУММПРОИЗВ( b 2:Н2;B3:H3), которая представляет целевую функцию (4).
  4. В ячейки В5:Н7 введем значения коэффициентов ограничений, взятых из таблицы.

  1. В ячейки J5 :J7 введем значения правых частей ограничений, соответствующих минимальной суточной потребности в питательных веществах: в белках b 1=100 , жирах b 2= 70 и углеводах b3 = 400.
  2. В ячейку I5 введем формулу: =СУММПРОИЗВ($B$2:$H$2;В5:Н5), которая представляет левую часть первого ограничения (5).
  3. Скопируем формулу, введенную в ячейку I5 , в ячейки I6 и I7 .
  4. Внешний вид рабочего листа MS Office Excel с исходными данными для решения задачи об оптимальном рационе питания имеет следующий вид (pиc. 12.4).

Для отображения формул в ячейках рабочего листа необходимо выполнить команду меню: Формулы и на панели инструментов в группе Зависимости формул выбрать Показать формулы.

Заполнение окна Поиск решения

Для дальнейшего решения задачи следует вызвать мастер поиска решения, для чего необходимо выполнить операцию: Данные > Поиск решения.

После появления диалогового окна Поиск решения следует выполнить следующие действия:

  1. В поле с именем Установить целевую ячейку: ввести абсолютный адрес ячейки $I$2 .
  2. Для группы Равной: выбрать вариант поиска решения – минимальному значению.
  3. В поле с именем Изменяя ячейки: ввести абсолютный адрес ячеек $B$2:$H$2 .
  4. Добавить 3 ограничения, представляющие минимальные суточные потребности в питательных веществах. С этой целью выполнить следующие действия:
    • для задания первого ограничения в исходном диалоговом окне Поиск решения нажать кнопку с надписью Добавить (рис. 12.5 рис. 12.5, а);
    • в появившемся дополнительном окне выбрать ячейку $I$5 , которая должна отобразиться в поле с именем Ссылка на ячейку;
    • в качестве знака ограничения из выпадающего списка выбрать нестрогое неравенство » «;
    • в качестве значения правой части ограничения выбрать ячейку $J$5 ;
    • для добавления первого ограничения в дополнительном окне нажать кнопку с надписью Добавить;
    • аналогичным образом задать оставшиеся два ограничения (рис. 12.5 рис. 12.5, б).

Параметры

В окне «Поиск решения» нажать клавишу «Параметры», выбрать «Поиск решения Линейных задач симплекс-методом», нажать ОК, затем нажать Найти Решение (рис. 12.6 рис. 12.6, б).

После задания ограничений и целевой функции можно приступить к поиску численного решения, для чего следует нажать кнопку Выполнить. После выполнения расчетов программой MS Excel будет получено количественное решение, которое имеет вид, представленный на рис. 12. рис. 12.7.

Результатом решения задачи об оптимальной диете являются найденные оптимальные значения переменных: х1 = 0, х2 = 0,211, 3 = 0,109, х4= 1,887, х5 = 0, х6 = 0, х7 = 0, которым соответствует значение целевой функции: fопт= 2587,140. При выполнении расчетов для ячеек В2:I2 был выбран числовой формат с 3 знаками после запятой.

Анализ найденного решения показывает, что для удовлетворения суточной потребности в питательных веществах (белки, жиры, углеводы) следует использовать 211 г мяса баранины, 109 г сыра и 1887 г бананов, совсем отказавшись от хлеба, огурцов, помидоров и винограда. При этом общая калорийность найденной оптимальной диеты будет приближенно равна 2590 ккал, что вполне соответствует малоактивному образу жизни без серьезных физических нагрузок. Напомним, что согласно медицинским данным, энергетические затраты работников интеллектуального труда (юристы, бухгалтера, врачи, педагоги) лежат в пределах 3000 ккал.

ЗАДАНИЕ

  1. Составить математическую модель задачи линейного программирования.
  2. Решить задачу линейного программирования в Excel с помощью Поиска решения.
  3. Сохранить в виде модели установочные параметры.

Предприятие легкой промышленности выпускает две модели машин, причем каждая модель производится на отдельной технологической линии. Суточный объем производства первой линии – 80 изделий, второй линии – 85 изделий. На машину первой модели расходуются 12 однотипных элементов электронных схем, на машину второй модели – 6 таких же элементов. Максимальный суточный запас используемых элементов равен 800 единицам. Прибыль от реализации одной машины первой и второй моделей равна $30 и $40 соответственно. Определить оптимальный суточный объем производства первой и второй моделей.

Процесс изготовления двух видов промышленных изделий состоит в последовательной обработке каждого из них на трех приборах. Время использования этих приборов для производства данных изделий ограничено 10 ч. в сутки. Найти оптимальный объем производства изделий каждого вида.

Фирма имеет возможность рекламировать свою продукции, используя местные радио- и телевизионную сеть. Затраты на рекламу в бюджете фирмы ограничены $1000 в месяц. Каждая минута радиорекламы обходится в $5, а минута телерекламы – в $100. Фирма хотела бы использовать радиосеть, по крайней мере, в два раза чаще, чем сеть телевидения. Опыт прошлых лет показал, что объем сбыта, который обеспечивает каждая минута телерекламы, в 25 раз больше сбыта, обеспечиваемого одной минутой радиорекламы. Определить оптимальное распределение ежемесячно отпускаемых средств между радио- и телерекламой.

Фирма производит два вида продукции – А и B . Объем сбыта продукции вида A составляет не менее 70% общего объема реализации продукции обоих видов. Для изготовления продукции А и В используется одно и то же сырье, суточный запас которого ограничен величиной 120 кг. Расход сырья на единицу продукции A составляет 3 кг, а на единицу продукции В – 5 кг. Цены продукции А и В равны $20 и $60 соответственно. Определить оптимальное распределение сырья для изготовления продукции А и В.

Фирма выпускает женские шляпы двух фасонов. Трудоемкость изготовления шляпы фасона 1 вдвое выше трудоемкости изготовления шляпы фасона 2. Если бы фирма выпускала только шляпы фасона 1, суточный объем производства мог бы составить 60 шляп. Суточный объем сбыта шляп обоих фасонов ограничен диапазоном от 50 до 100 штук. Прибыль от продажи шляпы фасона 1 равна $6, а фасона 2 – $7. Определить какое количество шляп каждого фасона следует изготавливать, чтобы максимизировать прибыль.

Изделия четырех типов проходят последовательную обработку на двух станках. Время обработки одного изделия каждого типа на каждом из станков:

Затраты на производство одного изделия каждого типа определяются как величины, прямо пропорциональные времени использования станков (в машино-часах). Стоимость машино-часа составляет $10 и $15 для станка 1 и 2 соответственно. Допустимое время для использования станков для обработки изделий всех типов ограничено следующими значениями: 500 машино-часов – для станка 1 и 380 машино-часов для станка 2. Цены изделий типов 1,2,3 и 4 равны $65, $70, $55 и $45 соответственно. Составить план производства, максимизирующий чистую прибыль.

Завод выпускает изделия трех моделей ( I, II III ) Для их изготовления используется два вида ресурсов (А и В), запасы которых составляют – 5000 и 6000 единиц. Расходы ресурсов на одно изделие каждой модели:

Трудоемкость изготовления модели I вдвое больше, чем изделия модели II , и втрое больше, чем изделие модели III . Численность рабочих завода позволяет выпускать 1500 изделий I . Анализ условий сбыта показывает, что минимальный спрос на продукцию завода составляет 200, 200 и 150 изделий моделей I,II и III соответственно. Однако соотношение выпуска изделий моделей I,II и III должно быть равно 3:2:5. Удельная прибыль от реализации изделий моделей I,II и III составляет $30, $20 и $50 соответственно. Определить выпуск изделий, максимизирующий прибыль.

Требуется распределить имеющиеся денежные средства по четырем альтернативным вариантам. Игра имеет три исхода. Ниже приведены размеры выигрыша (или проигрыша) на каждый доллар, вложенный в соответствующий альтернативный вариант, для любого из трех исходов. У игрока имеется $500, причем, использовать в игре их можно только один раз. Точный исход игры заранее неизвестен, и, учитывая эту неопределенность, игрок решил распределить деньги так, чтобы максимизировать максимальную отдачу от этой суммы.

Бройлерное хозяйство птицеводческой фермы насчитывает 80000 цыплят, которые выращиваются до 8-недельного возраста и после соответствующей обработки поступают в продажу. Хотя недельный рацион цыплят зависит от их возраста, в дальнейшем будем считать, что в среднем (за 8 недель) он составляет 1 фунт.

Для того чтобы цыплята достигли к восьмой неделе необходимых весовых кондиций, кормовой рацион должен удовлетворять определенным требованиям по питательности. Этим требованиям могут соответствовать смеси различных видов кормов или ингредиентов. Ограничим наше рассмотрение только тремя ингредиентами: известняком, зерном и соевыми бобами. Ниже приведены данные, характеризующие содержание (по весу) питательных веществ в каждом из ингредиентов и удельную стоимость каждого ингредиента.

Смесь должна содержать:

  • не менее 0.8%, но не более 1.2% кальция;
  • не менее 22% белка;
  • не более 5% клетчатки.

Необходимо определить количество каждого из трех ингредиентов, образующих смесь минимальной стоимости при соблюдении требований к общему расходу кормовой смеси и ее питательности.

Имеется n видов продуктов питания, в которых содержится m типов питательных веществ (белки, жиры, углеводы). В одной весовой единице продукта i-го типа содержится аi единиц питательного вещества j-го вида . Известна минимальная суточная потребность b j человека в каждом из видов питательных веществ. Задана калорийность сi одной весовой единицы i-го продукта ( i принадлежит <1, 2, . n >). Требуется определить оптимальный состав рациона продуктов, такой, чтобы каждое питательное вещество содержалось в нем в необходимом количестве, обеспечивающем суточную потребность человека, и при этом суммарная калорийность рациона была минимальной.

Для решения задачи об оптимальной диете с помощью программы MS Excel необходимо задать конкретные значения параметрам исходной задачи. Для определенности предположим, что в качестве исходных типов продуктов рассматриваются: хлеб, мясо, сыр, бананы, огурцы, помидоры, виноград ( n = 7), а в качестве питательных веществ рассматриваются белки, жиры, углеводы ( m = 3). Калорийность одной весовой единицы каждого из продуктов следующая:с1 = 2060,с2= 2430,с3= 3600,с4= 890,с5= 140,с6= 230, с7 = 650. Содержание питательных веществ в каждом из продуктов может быть задано в форме следующей таблицы (см. табл.).

Таблица 1. Содержание питательных веществ в продуктах питания

Продукты/питательные вещества Хлеб ржаной Мясо баранина Сыр «Российский» Банан Огурцы Помидоры Виноград
Белки 66 225 235 20 13 16 11
Жиры 17 177 295 1 1 7 7
Углеводы 425 0 0 217 31 43 200

Минимальная суточная потребность в питательных веществах следующая: в белках b 1 = 105, в жирах b 2 = 75, в углеводах b 3 = 405.

Определить суточную потребности в питательных веществах (белки, жиры, углеводы) и общую калорийность оптимальной диеты.

Предприятие электронной промышленности выпускает две модели радиоприемников, причем каждая модель производится на отдельной технологической линии. Суточный объем производства первой линии – 60 изделий, второй линии – 75 изделий. На радиоприемник первой модели расходуются 10 однотипных элементов электронных схем, на радиоприемник второй модели – 8 таких же элементов. Максимальный суточный запас используемых элементов равен 800 единицам. Прибыль от реализации одного радиоприемника первой и второй моделей равна $30 и $20 соответственно. Определить оптимальный суточный объем производства первой и второй моделей.

Процесс изготовления двух видов промышленных изделий состоит в последовательной обработке каждого из них на трех станках. Время использования этих станков для производства данных изделий ограничено 10 ч. в сутки. Найти оптимальный объем производства изделий каждого вида.

Фирма имеет возможность рекламировать свою продукции, используя местные радио- и телевизионную сеть. Затраты на рекламу в бюджете фирмы ограничены $1000 в месяц. Каждая минута радиорекламы обходится в $5, а минута телерекламы – в $100. Фирма хотела бы использовать радиосеть, по крайней мере, в два раза чаще, чем сеть телевидения. Опыт прошлых лет показал, что объем сбыта, который обеспечивает каждая минута телерекламы, в 25 раз больше сбыта, обеспечиваемого одной минутой радиорекламы. Определить оптимальное распределение ежемесячно отпускаемых средств между радио- и телерекламой.

Фирма производит два вида продукции – A и B . Объем сбыта продукции вида A составляет не менее 60% общего объема реализации продукции обоих видов. Для изготовления продукции А и В используется одно и то же сырье, суточный запас которого ограничен величиной 100 кг. Расход сырья на единицу продукции A составляет 2 кг, а на единицу продукции В – 4 кг. Цены продукции А и В равны $20 и $40 соответственно. Определить оптимальное распределение сырья для изготовления продукции А и В.

Фирма выпускает ковбойские шляпы двух фасонов. Трудоемкость изготовления шляпы фасона 1 вдвое выше трудоемкости изготовления шляпы фасона 2. Если бы фирма выпускала только шляпы фасона 1, суточный объем производства мог бы составить 60 шляп. Суточный объем сбыта шляп обоих фасонов ограничен диапазоном от 50 до 100 штук. Прибыль от продажи шляпы фасона 1 равна $8, а фасона 2 – $5. Определить какое количество шляп каждого фасона следует изготавливать, чтобы максимизировать прибыль.

Изделия четырех типов проходят последовательную обработку на двух станках. Время обработки одного изделия каждого типа на каждом из станков:

Затраты на производство одного изделия каждого типа определяются как величины, прямо пропорциональные времени использования станков (в машино-часах). Стоимость машино-часа составляет $10 и $15 для станка 1 и 2 соответственно. Допустимое время для использования станков для обработки изделий всех типов ограничено следующими значениями: 500 машино-часов – для станка 1 и 380 машино-часов для станка 2. Цены изделий типов 1,2,3 и 4 равны $65, $70, $55 и $45 соответственно. Составить план производства максимизирующий чистую прибыль.

Завод выпускает изделия трех моделей ( I, II III ). Для их изготовления используется два вида ресурсов (А и В), запасы которых составляют – 4000 и 6000 единиц. Расходы ресурсов на одно изделие каждой модели:

Трудоемкость изготовления модели I вдвое больше, чем изделия модели II , и втрое больше, чем изделие модели III . Численность рабочих завода позволяет выпускать 1500 изделий I . Анализ условий сбыта показывает, что минимальный спрос на продукцию завода составляет 200, 200 и 150 изделий моделей I,II и III соответственно. Однако соотношение выпуска изделий моделей I,II и III должно быть равно 3:2:5. Удельная прибыль от реализации изделий моделей I,II и III составляет $30, $20 и $50 соответственно. Определить выпуск изделий, максимизирующий прибыль.

Некоторое производственное предприятие выпускает три вида клея. Для производства клея используется 4 типа химических веществ: крахмал, желатин, квасцы и мел. Расход этих веществ в кг для получения 1 кг каждого вида клея и их запас на складе предприятия представлены в таблице.

Таблица 1. Расход химических веществ на изготовления клея, их запас на складе

Вид клея /Химические вещества Клей № 1 Клей № 2 Клей № 3 Запас на складе
Крахмал 0,4 0,3 0,2 20
Желатин 0,2 0,3 0,4 35
Квасцы 0,05 0,07 0,1 7
Мел 0,01 0,05 0,15 10

Стоимость каждого вида клея для оптовых покупателей следующая:с1 = 380 руб/кг,с2 =430 руб/кг,с3 = 460 руб/кг. Требуется определить оптимальный объем выпуска клея каждого вида, обеспечивающий максимум общей стоимости готовой продукции.

Бройлерное хозяйство птицеводческой фермы насчитывает 20000 цыплят, которые выращиваются до 8-недельного возраста и после соответствующей обработки поступают в продажу. Хотя недельный рацион цыплят зависит от их возраста, в дальнейшем будем считать, что в среднем (за 8 недель) он составляет 1 фунт.

Для того чтобы цыплята достигли к восьмой неделе необходимых весовых кондиций, кормовой рацион должен удовлетворять определенным требованиям по питательности. Этим требованиям могут соответствовать смеси различных видов кормов или ингредиентов. Ограничим наше рассмотрение только тремя ингредиентами: известняком, зерном и соевыми бобами. Ниже приведены данные, характеризующие содержание (по весу) питательных веществ в каждом из ингредиентов и удельную стоимость каждого ингредиента.

Смесь должна содержать:

  • не менее 0.8%, но не более 1.2% кальция;
  • не менее 22% белка;
  • не более 5% клетчатки.

Необходимо определить количество каждого из трех ингредиентов, образующих смесь минимальной стоимости при соблюдении требований к общему расходу кормовой смеси и ее питательности.

Имеется конечное число видов продуктов питания: ананас, арбуз, грейпфрут, язык говяжий, сардельки говяжьи, хлеб «Бородинский», картофель ( n = 7), а в качестве питательных веществ рассматриваются белки, жиры, углеводы ( m = 3). Калорийность 1 кг каждого из продуктов следующая:с1 = 470,с2= 380,с3 = 350,с4 = 1460,с5 = 2150,с6 = 2070, с7 = 800. Минимальная суточная потребность в питательных веществах следующая: в белках b 1 = 100, в жирах b 2 = 70, в углеводах b3 = 400. Содержание питательных веществ в каждом из продуктов может быть задано в форме нижеприведенной таблицы (табл.).

Требуется определить такой рацион питания, чтобы каждое питательное вещество содержалось в нем в необходимом количестве, обеспечивающем суточную потребность человека, и при этом суммарная калорийность рациона была минимальной.

Поиск решения задач в Excel с примерами

Пользователи Excel давно и успешно применяют программу для решения различных типов задач в разных областях.

Excel – это самая популярная программа в каждом офисе во всем мире. Ее возможности позволяют быстро находить эффективные решения в самых разных сферах деятельности. Программа способна решать различного рода задачи: финансовые, экономические, математические, логические, оптимизационные и многие другие. Для наглядности мы каждое из выше описанных решение задач в Excel и примеры его выполнения.

Решение задач оптимизации в Excel

Оптимизационные модели применяются в экономической и технической сфере. Их цель – подобрать сбалансированное решение, оптимальное в конкретных условиях (количество продаж для получения определенной выручки, лучшее меню, число рейсов и т.п.).

В Excel для решения задач оптимизации используются следующие команды:

Для решения простейших задач применяется команда «Подбор параметра». Самых сложных – «Диспетчер сценариев». Рассмотрим пример решения оптимизационной задачи с помощью надстройки «Поиск решения».

Условие. Фирма производит несколько сортов йогурта. Условно – «1», «2» и «3». Реализовав 100 баночек йогурта «1», предприятие получает 200 рублей. «2» — 250 рублей. «3» — 300 рублей. Сбыт, налажен, но количество имеющегося сырья ограничено. Нужно найти, какой йогурт и в каком объеме необходимо делать, чтобы получить максимальный доход от продаж.

Известные данные (в т.ч. нормы расхода сырья) занесем в таблицу:

На основании этих данных составим рабочую таблицу:

  1. Количество изделий нам пока неизвестно. Это переменные.
  2. В столбец «Прибыль» внесены формулы: =200*B11, =250*В12, =300*В13.
  3. Расход сырья ограничен (это ограничения). В ячейки внесены формулы: =16*B11+13*B12+10*B13 («молоко»); =3*B11+3*B12+3*B13 («закваска»); =0*B11+5*B12+3*B13 («амортизатор») и =0*B11+8*B12+6*B13 («сахар»). То есть мы норму расхода умножили на количество.
  4. Цель – найти максимально возможную прибыль. Это ячейка С14.

Активизируем команду «Поиск решения» и вносим параметры.

После нажатия кнопки «Выполнить» программа выдает свое решение.

Оптимальный вариант – сконцентрироваться на выпуске йогурта «3» и «1». Йогурт «2» производить не стоит.

Решение финансовых задач в Excel

Чаще всего для этой цели применяются финансовые функции. Рассмотрим пример.

Условие. Рассчитать, какую сумму положить на вклад, чтобы через четыре года образовалось 400 000 рублей. Процентная ставка – 20% годовых. Проценты начисляются ежеквартально.

Оформим исходные данные в виде таблицы:

Так как процентная ставка не меняется в течение всего периода, используем функцию ПС (СТАВКА, КПЕР, ПЛТ, БС, ТИП).

  1. Ставка – 20%/4, т.к. проценты начисляются ежеквартально.
  2. Кпер – 4*4 (общий срок вклада * число периодов начисления в год).
  3. Плт – 0. Ничего не пишем, т.к. депозит пополняться не будет.
  4. Тип – 0.
  5. БС – сумма, которую мы хотим получить в конце срока вклада.

Вкладчику необходимо вложить эти деньги, поэтому результат отрицательный.

Для проверки правильности решения воспользуемся формулой: ПС = БС / (1 + ставка) кпер . Подставим значения: ПС = 400 000 / (1 + 0,05) 16 = 183245.

Решение эконометрики в Excel

Для установления количественных и качественных взаимосвязей применяются математические и статистические методы и модели.

Дано 2 диапазона значений:

Значения Х будут играть роль факторного признака, Y – результативного. Задача – найти коэффициент корреляции.

Для решения этой задачи предусмотрена функция КОРРЕЛ (массив 1; массив 2).

Решение логических задач в Excel

В табличном процессоре есть встроенные логические функции. Любая из них должна содержать хотя бы один оператор сравнения, который определит отношение между элементами (=, >, =, Пример задачи. Ученики сдавали зачет. Каждый из них получил отметку. Если больше 4 баллов – зачет сдан. Менее – не сдан.

  1. Ставим курсор в ячейку С1. Нажимаем значок функций. Выбираем «ЕСЛИ».
  2. Заполняем аргументы. Логическое выражение – B1>=4. Это условие, при котором логическое значение – ИСТИНА.
  3. Если ИСТИНА – «Зачет сдал». ЛОЖЬ – «Зачет не сдал».

Решение математических задач в Excel

Средствами программы можно решать как простейшие математические задачки, так и более сложные (операции с функциями, матрицами, линейными уравнениями и т.п.).

Условие учебной задачи. Найти обратную матрицу В для матрицы А.

  1. Делаем таблицу со значениями матрицы А.
  2. Выделяем на этом же листе область для обратной матрицы.
  3. Нажимаем кнопку «Вставить функцию». Категория – «Математические». Тип – «МОБР».
  4. В поле аргумента «Массив» вписываем диапазон матрицы А.
  5. Нажимаем одновременно Shift+Ctrl+Enter — это обязательное условие для ввода массивов.

Возможности Excel не безграничны. Но множество задач программе «под силу». Тем более здесь не описаны возможности которые можно расширить с помощью макросов и пользовательских настроек.

источники:

http://intuit.ru/studies/courses/3659/901/lecture/32717

http://exceltable.com/vozmojnosti-excel/poisk-resheniya-v-excel

Решение различных
математических задач, используя н
адстройки
«Подбор параметра» и «Поиск решения»
в MS Excel.

Цель работы. Изучить:

·      надстройку «Подбор параметра» для нахождения корней нелинейных
уравнений;

·      надстройку «Поиск решения» для нахождения корней систем уравнений.

Пользуясь приемами выполнения простейших
расчетов и построения графиков функций в
Excel, можно
находить решение различных математических задач. Рассмотрим это на примере
наиболее часто встречающихся задач нахождения корней нелинейных уравнений и
решения систем линейных уравнений. Указанные математические задачи легко
решаются с помощью надстроек
Excel Поиск решения и Подбор параметра.

Подбор параметра

Надстройка Microsoft Excel Подбор параметра служит для нахождения
оптимального желаемого решения за счет изменения одного из параметров. С
формальной точки зрения такие задачи описываются уравнением с одной переменной,
которое в общем случае можно представить в следующем каноническом виде:

F(x) = 0,

где функция F(x) определена и непрерывна на интервале [a, b]. Таким образом, можно сказать, что
инструмент Подбор параметра служит для нахождения корня уравнения
x. В этой надстройке реализован алгоритм метода
половинного деления.

Пример 1. Решим
уравнение
x2 – 3 =
0, используя надстройку Подбор параметра.

В ячейку А1 вводится начальное приближение
для поиска одного из корней уравнения. Лучше найти его графически, хотя можно подставить и произвольное значение (например,
ноль). В ячейку В2 записывается в виде формулы левая часть решаемого уравнения.
Диалоговое окно данного инструмента вызывается через меню Дан
ные
/ Что-если / Подбор параметра
и имеет
следующий вид (рис. 2.7.1, 2.7.2):

Рис. 2.7.1. Надстройка Подбор параметра

В поле Установить в ячейке вводится
ссылка на ячейку, содержащую левую часть уравнения. В поле Значение
непосредственно (т.е. без ссылок на ячейки) вводится правая часть уравнения.
Причем правая часть уравнения должна обязательно представлять собой конкретное
числовое значение. Если правая часть уравнения содержит переменную или
какое-либо выражение, то такое уравнение должно быть предварительно
преобразовано к равносильному виду (в общем случае, к каноническому виду
F(x) = 0). Нажав кнопку ОК, получаем в
ячейке А1 значение искомого корня: 1,731856.

Рис. 2.7.2. Надстройка Подбор параметра

Поиск решения

Нелинейные
уравнения также можно решать, используя надстройку Поиск решения. Для
того чтобы ее подключить, следует в меню
Office (рис. 2.7.3) выбрать пункт Параметры Excel (рис. 2.7.4) и в раскрывшемся списке войти в меню Надстройки,
далее активировать Поиск решения, установив флажок против пункта Поиск
решения
(рис. 2.7.5).

Рис. 2.7.3 Кнопка Office

Рис. 2.7.4. Меню Office

Рис. 2.7.5. Надстройки

После нажатия кнопки ОК
соответствующий значок появится во вкладке Данные (рис. 2.7.6).

Рис. 2.7.6. значок Поиск решения

Пример 2. Решим
уравнение
x2 – 3 =
0, используя надстройку Поиск решения.

В ячейку А1
заносится начальное приближение корня, в ячейку В1 – левая

часть уравнения в виде формулы. Для предыдущего примера она имеет вид =А1*А1-3.

Далее из вкладки меню Данные
запускается надстройка Поиск решения.

В открывшемся диалоговом окне Поиск
решения
устанавливается целевая ячейка $
B$1, равная
нулевому значению. В текстовом поле Изменяя ячейки устанавливается адрес
$А$1 и нажимается кнопка Выполнить (рис. 2.7.7).

Рис. 2.7.7. Надстройка Поиск
решения

В ячейке А1 получается значение корня
1,732051 (рис. 2.7.8).

Рис. 2.7.8. Результаты работы
надстройки Поиск решения

Как видим, оно совпало с точностью до 0,001
с найденным ранее значением.

Обращает на
себя внимание неточность решения. Мы получаем очень близко приближающиеся к
точным, но все же неточные корни уравнения. Это происходит потому, что решение
уравнений на вычислительной технике происходит не аналитическими методами, как
это делает человек, а специально разработанными методами, получившими название
численных. В отличие от аналитических (точных) методов численные методы
обладают определенной погрешностью. В
Excel с целью повышения точности решения
пользователь может уменьшить погрешность вычислений, но при этом может
потребоваться увеличение количества итераций. При этом надо помнить, что тем
самым увеличивается время на поиск решения. Установленные по умолчанию
значения подходят для большинства практических задач, относительная
погрешность вычислений составляет 0,001 (рис. 2.7.9).

Рис. 2.7.9. Изменение
погрешности

Следует отметить, что найден только один из
двух корней данного уравнения. Для нахождения второго корня, следует в ячейку
А1 ввести новое приближение, близкое ко второму корню, и повторить поиск
решения.

Пример 3. Решим
систему уравнений, используя надстройку Поиск решения.

Для того, чтобы использовать рассматриваемую
надстройку Поиск решения для нахождения решения системы линейных
алгебраических уравнений, следует ввести в
столбец А начальное приближение для значений всех неизвестных. Пусть это будут
нули. В столбец В ввести формулы, описывающие левые части уравнений. В столбец
С вводят значения правых частей уравнений. Курсор ставят на ячейку В1 и
запускают
надстройку Поиск решения. Значение целевой ячейки $
B$1устанавливают равным значению ячейки С1. Изменяют значения ячеек
столбца А. К ограничениям добавляют все уравнения, кроме первого. Для системы
уравнений:

настроенный на
показ формул лист
Excel с диалоговым окном Поиск решения
будут выглядеть так, как это показано на рисунках
2.7.10, 2.7.11.

Рис. 2.7.10. добавление ограничения

Рис. 2.7.11. Поиск решения
системы уравнений

Нажав кнопку Выполнить, получается в
столбце А значение неизвестных (рис. 2.7.12):

Как видно, надстройка Поиск решения
очень удобна для решения рассмотренных задач. Однако следует помнить, что
алгоритмы, реализованные в ней, предназначались не для них, а для решения задач
оптимизации. Поэтому возможны сбои в работе надстройки, и к полученным
результатам необходимо подходить критически.

.

Рис. 2.7.12. Результаты
работы с надстройкой Поиск решения

Задания для выполнения

Варианты заданий для работы приведены в
таблице 2.7.1, 2.7.2.

Задание1.

1.                 
Используя надстройку «Подбор параметра», найти все
корни уравнения (по вариантам) на отрезке [-2; +2] (табл. 2.7.1).

Таблица 2.7.1

Варианты заданий


варианта

Задание


варианта

Задание

1

11

2

12

3

13

4

14

5

15

6

16

7

17

8

18

9

19

10

20

Задание 2.

1.                 
Используя надстройку «Поиск решения», решить
систему линейных уравнений
AX = B (по вариантам) (табл. 2.7.2)
и проверить правильность решения в
Excel, подставив найденные значения неизвестных в систему уравнений. A – матрица коэффициентов при x1, x2, x3, x4. В- матрица свободных членов уравнений.

 Таблица 2.7.2

Варианты заданий


варианта

Задание


варианта

Задание

1

2

3

4

1

9

2

10

3

11

4

12

5

13

6

14

7

15

8

16

Цель урока: продолжить формирование
навыков работы с электронными таблицами.

Задачи:



  • обучающие: формировать умения создания,
    редактирования, форматирования и выполнения
    простейших вычислений в электронных таблицах.

  • развивающие: расширить представления
    учащихся о возможных сферах применения
    электронных таблиц; развивать навыки
    аналитического мышления, речи и внимания.

  • воспитательные: формировать и воспитывать
    познавательный интерес; прививать навыки
    самостоятельности в работе.

План урока.

  1. Организационный момент.
  2. Актуализация знаний учащихся.
  3. Проверка домашнего задания.
  4. Решение задач.
  5. Самостоятельное решение задачи.
  6. Подведение итогов. Оценки.
  7. Домашнее задание.

Ход урока

1. Организационный момент.

Сообщить тему урока, сформулировать цели и
задачи урока.

Сегодня мы вновь окажемся в гостях у маленького
великана Васи в Сказочной стране. Ему, как всегда,
требуется ваша помощь, ребята.

Сможете ли вы помочь Васе? Сейчас проверим!

2. Актуализация знаний учащихся.

1) Устно ответить на вопросы.

  A B C D
1 2 1 =A1+3*B1 =A1^2+B1
2 4 6 =A2+3*B2 =A2^2+B2
  • Что такое электронная таблица?
  • Какие основные элементы электронной таблицы
    вам известны?
  • Как задается имя ячейки (строки, столбца) в
    электронной таблице?
  • Что может быть содержимым ячейки?
  • Число 1 находится в столбце …, в строке …, в
    ячейке с адресом …
  • Число 4 находится в ячейке с адресом …
  • Каковы правила записи формул в ячейках?
  • Чему равно значение, вычисляемое по формуле, в
    ячейке С1?
  • Чему равно значение, вычисляемое по формуле, в
    ячейке D2?

2) Какой результат будет получен в ячейках с
формулами?

  А В
1 25 4
2 2 =A1*B1/2
3    

Ответ: 25*4/2=50

  A B C D
1   5 2 1
2   6 8 3
3   8 3 4
4       =СУММ(B1:D3)
  • Что означает запись =СУММ(В1:D3)?
  • Сколько элементов содержит блок В1:D3? Ответ: 9.
  • Содержимое ячейки D3? Ответ: 5+2+1+6+8+3+8+3+4= 40

3) Проверка домашнего задания

Результаты соревнований по плаванию

Один ученик рассказывает, как он выполнил
домашнее задание (через проектор).

Ф.И.О. 1 2 3 Лучшее время Среднее время Отклонение
1 Лягушкин 3.23 3.44 3.30      
2 Моржов 3.21 3.22 3.24      
3 Акулов 3.17 3.16 3.18      
4 Рыбин 3.24 3.20 3.18      
5 Черепахин 3.56 3.44 3.52      
   
  Лучший результат
соревнований
 
Среднее время участников
соревнований
 
Максимальное отклонение  
  • Среднее время для каждого спортсмена находится
    как среднее арифметическое трех его заплывов.
  • В ячейку «Лучшее время» записывается
    минимальный результат из 3 заплывов.
  • В ячейку «Лучший результат соревнований»
    записывается минимальное время из столбца.
  • В столбец «Отклонение» записывается
    разность между лучшим временем спортсмена и
    лучшим результатом соревнований.
  • В ячейку «Максимальное отклонение»
    записывается максимальное значение столбца.
Результаты соревнований
по плаванию
     
Ф.И.О. 1 2 3 Лучшее время Среднее время Отклонение
1 Лягушкин 3,23 3,44 3,30 3,23 3,32 0,07
2 Моржов 3,21 3,22 3,24 3,21 3,22 0,05
3 Акулов 3,17 3,16 3,18 3,16 3,17 0,00
4 Рыбин 3,24 3,20 3,18 3,18 3,21 0,02
5 Черепахин 3,56 3,44 3,52 3,44 3,51 0,28
  Лучший результат
соревнований
3,16
  Среднее время участников
соревнований
3,29
  Максимальное отклонение 0,28

4) Решение простых задач.

Маленький великан Вася решил отремонтировать
забор вокруг своего огорода и вскопать его под
посадку овощей (наступила очередная весна),
разметить грядки прямоугольной формы. Для работы
ему потребовалось найти длину забора и площадь
участка. Но ведь в школе он никогда не учился.
Поможем Васе.

№ 1. Вычислить периметр и площадь
прямоугольника со сторонами:

а) 3 и 5; б) 6 и 8; в) 10 и 7.

Эту задачу обсуждаем совместно с детьми:

  • Как оформить таблицу?
  • Какие формулы использовать?
  • Как использовать уже записанные формулы для
    следующего прямоугольника?

Оформление таблицы – на доске и в тетрадях.

В то же время другой ученик самостоятельно
решает следующую задачу и представляет свое
решение учащимся (через проектор).

№ 2. Маленький великан Вася решил
подсчитать, через сколько дней в его копилке
будет 100 руб., если ежедневно он стал класть туда
на 5 руб. больше, чем в предыдущий день. Помогите
Васе. Сейчас в его копилке 2,02 руб.

Обсудив решение задачи № 2, переходим к решению
следующей.

Один ученик показывает, как работать с
формулами, другой – как использовать функцию
суммирования, числовой формат (общий, денежный) и
т.д. (Таблица уже готова, ученикам предстоит
ввести формулы, использовать суммирование и
получить ответ).

№ 3. Посчитайте, используя ЭТ, хватит ли
Васе 150 рублей, чтобы купить все продукты, которые
ему заказала мама, и хватит ли на чипсы за 10
рублей? Сдачу мама разрешила положить в копилку.
Сколько рублей попадет в копилку?

Предполагаемое решение:

Наименование Цена в рублях Количество Стоимость
1 Хлеб 9,6 2 =C2*D2
2 Кофе 2,5 5 =C3*D3
3 Молоко 13,8 2 =C4*D4
4 Пельмени 51,3 1 =C5*D5

Итого:

=СУММ(E2:E5)
После покупок останется =150-E6  
После покупки чипсов
останется
=D7-10  

5) Самостоятельное решение задачи.

Маленький великан Вася часто бывал в гостях у
жителей Цветочного города.

Собираясь на пляж, веселые человечки решили
запастись прохладительными напитками. Незнайка
взял с собой 2 литра кваса, 1 литр газировки и 1
литр малинового сиропа, Пончик – 3 литра
газировки и 2 литра малинового сиропа, Торопыжка
– 2 литра газировки, доктор Пилюлькин – 1 литр
кваса и 1 литр касторки.

  • Сколько литров напитков каждого вида взяли все
    человечки вместе?
  • Сколько всего литров напитков взял с собой
    каждый из человечков?
  • Сколько всего литров напитков взяли все
    человечки вместе?

Оформите таблицу произвольно и сохраните в
своей личной папке.

Результат работы.

Веселые человечки.
Напитки.
Напиток Незнайка Пончик Торопыжка Пилюлькин Всего
Квас, л 2 0 0 1 3
Газировка, л 1 3 2 0 6
Сироп, л 1 2 0 0 9
Касторка, л 0 0 0 1 1
ИТОГО: 4 5 2 2 13

7) Подведение итогов. Оценки.

8) Домашнее задание.

Подумайте и решите эту задачу, если известны
еще следующие величины.

Как изменится таблица? Какие формулы появятся?

Известно, что 1 литр кваса в Цветочном городе
стоит 1 монету, 1 литр газировки – 3 монеты, 1 литр
малинового сиропа – 6 монет, 1 литр касторки – 2
монеты.

  • Сколько монет истратил на покупку напитков
    каждый человечек?
  • Сколько монет затрачено на покупку напитков
    каждого вида?
  • Сколько потрачено денег всеми человечками
    вместе?

Литература


  1. Информатика. Задачник-практикум в 2 т. /Под ред.
    И.Г.Семакина, Е.К.Хеннера – М.: Лаборатория
    Базовых Знаний, 2010.
  2. Ефимова О. Курс компьютерной технологии с
    основами информатики. – М.: ООО “издательство
    АСТ”; АВF, 2005.

Презентация

Понравилась статья? Поделить с друзьями:
  • Рифмы к слову стрелок word
  • Рифма to word with
  • Рисунок телефона для word
  • Рисунок в excel в клетках
  • Рисунок word замещающий текст