Решение задач в excel на поиск подбора параметров

«Подбор параметра» — ограниченный по функционалу вариант надстройки «Поиск решения». Это часть блока задач инструмента «Анализ «Что-Если»».

В упрощенном виде его назначение можно сформулировать так: найти значения, которые нужно ввести в одиночную формулу, чтобы получить желаемый (известный) результат.

Где находится «Подбор параметра» в Excel

Известен результат некой формулы. Имеются также входные данные. Кроме одного. Неизвестное входное значение мы и будем искать. Рассмотрим функцию «Подбора параметров» в Excel на примере.

Необходимо подобрать процентную ставку по займу, если известна сумма и срок. Заполняем таблицу входными данными.

Условия займа.

Процентная ставка неизвестна, поэтому ячейка пустая. Для расчета ежемесячных платежей используем функцию ПЛТ.

Когда условия задачи записаны, переходим на вкладку «Данные». «Работа с данными» — «Анализ «Что-Если»» — «Подбор параметра».

Подбор параметра.

В поле «Установить в ячейке» задаем ссылку на ячейку с расчетной формулой (B4). Поле «Значение» предназначено для введения желаемого результата формулы. В нашем примере это сумма ежемесячных платежей. Допустим, -5 000 (чтобы формула работала правильно, ставим знак «минус», ведь эти деньги будут отдаваться). В поле «Изменяя значение ячейки» — абсолютная ссылка на ячейку с искомым параметром ($B$3).

Ввод параметров.

После нажатия ОК на экране появится окно результата.

Пример.

Чтобы сохранить, нажимаем ОК или ВВОД.

Пример.

Функция «Подбор параметра» изменяет значение в ячейке В3 до тех пор, пока не получит заданный пользователем результат формулы, записанной в ячейке В4. Команда выдает только одно решение задачи.



Решение уравнений методом «Подбора параметров» в Excel

Функция «Подбор параметра» идеально подходит для решения уравнений с одним неизвестным. Возьмем для примера выражение: 20 * х – 20 / х = 25. Аргумент х – искомый параметр. Пусть функция поможет решить уравнение подбором параметра и отобразит найденное значение в ячейке Е2.

В ячейку Е3 введем формулу: = 20 * Е2 – 20 / Е2.

Формула.

А в ячейку Е2 поставим любое число, которое находится в области определения функции. Пусть это будет 2.

Запускам инструмент и заполняем поля:

«Установить в ячейке» — Е3 (ячейка с формулой);

«Значение» — 25 (результат уравнения);

«Изменяя значение ячейки» — $Е$2 (ячейка, назначенная для аргумента х).

Изменяя значение.

Результат функции:

Пример1.

Найденный аргумент отобразится в зарезервированной для него ячейке.

Аргумент.

Решение уравнения: х = 1,80.

Функция «Подбор параметра» возвращает в качестве результата поиска первое найденное значение. Вне зависимости от того, сколько уравнение имеет решений.

Если, например, в ячейку Е2 мы поставим начальное число -2, то решение будет иным.

Результат.

Примеры подбора параметра в Excel

Функция «Подбор параметра» в Excel применяется тогда, когда известен результат формулы, но начальный параметр для получения результата неизвестен. Чтобы не подбирать входные значения, используется встроенная команда.

Пример 1. Метод подбора начальной суммы инвестиций (вклада).

Известные параметры:

  • срок – 10 лет;
  • доходность – 10%;
  • коэффициент наращения – расчетная величина;
  • сумма выплат в конце срока – желаемая цифра (500 000 рублей).

Внесем входные данные в таблицу:

Данные.

Начальные инвестиции – искомая величина. В ячейке В4 (коэффициент наращения) – формула =(1+B3)^B2.

Вызываем окно команды «Подбор параметра». Заполняем поля:

Поля.

После выполнения команды Excel выдает результат:

Пример2.

Чтобы через 10 лет получить 500 000 рублей при 10% годовых, требуется внести 192 772 рубля.

Пример 2. Рассчитаем возможную прибавку к пенсии по старости за счет участия в государственной программе софинансирования.

Входные данные:

  • ежемесячные отчисления – 1000 руб.;
  • период уплаты дополнительных страховых взносов – расчетная величина (пенсионный возраст (в примере – для мужчины) минус возраст участника программы на момент вступления);
  • пенсионные накопления – расчетная величина (накопленная за период участником сумма, увеличенная государством в 2 раза);
  • ожидаемый период выплаты трудовой пенсии – 228 мес.;
  • желаемая прибавка к пенсии – 2000 руб.

Прибавка.

С какого возраста необходимо уплачивать по 1000 рублей в качестве дополнительных страховых взносов, чтобы получить прибавку к пенсии в 2000 рублей:

  1. Ячейка с формулой расчета прибавки к пенсии активна – вызываем команду «Подбор параметра». Заполняем поля в открывшемся меню.
  2. Значения.

  3. Нажимаем ОК – получаем результат подбора.

Пример3.

Чтобы получить прибавку в 2000 руб., необходимо ежемесячно переводить на накопительную часть пенсии по 1000 рублей с 41 года.

Функция «Подбор параметра» работает правильно, если:

  • значение желаемого результата выражено формулой;
  • все формулы написаны полностью и без ошибок.

Функция Excel: подбор параметра

Программа Excel радует своих пользователей множеством полезных инструментов и функций. К одной из таких, несомненно, можно отнести Подбор параметра. Этот инструмент позволяет найти начальное значение исходя из конечного, которое планируется получить. Давайте разберемся, как работать с данной функцией в Эксель.

Зачем нужна функция

Как было уже выше упомянуто, задача функции Подбор параметра состоит в нахождении начального значения, из которого можно получить заданный конечный результат. В целом, эта функция похожа на Поиск решения (подробно вы можете с ней ознакомиться в нашей статье – “Поиск решения в Excel: пример использования функции”), однако, при этом является более простой.

Применять функцию можно исключительно в одиночных формулах, и если потребуется выполнить вычисления в других ячейках, в них придется все действия выполнить заново. Также функционал ограничен количеством обрабатываемых данных – только одно начальное и конечное значения.

Использование функции

Давайте перейдем к практическому примеру, который позволит наилучшим образом понять, как работает функция.

Итак, у нас есть таблица с перечнем спортивных товаров. Мы знаем только сумму скидки (560 руб. для первой позиции) и ее размер, который для всех наименований одинаковый. Предстоит выяснить полную стоимость товара. При этом важно, чтобы в ячейке, в которой в дальнейшем отразится сумма скидки, была записана формула ее расчета (в нашем случае – умножение полной суммы на размер скидки).

Итак, алгоритм действий следующий:

  1. Переходим во вкладку “Данные”, в которой нажимаем на кнопку “Анализ “что если” в группе инструментов “Прогноз”. В раскрывшемся списке выбираем “Подбор параметра” (в ранних версиях кнопка может находиться в группе “Работа с данными”).
  2. На экране появится окно для подбора параметра, которе нужно заполнить:
    • в значении поля “Установить в ячейке” пишем адрес с финальными данными, которые нам известны, т.е. это ячейка с суммой скидки. Вместо ручного ввода координат можно просто щелкнуть по нужной ячейке в самой таблице. При этом курсор должен быть в соответствующем поле для ввода информации.

Решение уравнений с помощью подбора параметра

Несмотря на то, что это не основное направление использования функции, в некоторых случаях, когда речь идет про одну неизвестную, она может помочь в решении уравнений.

Например, нам нужно решить уравнение: 7x+17x-9x=75 .

  1. Пишем выражение в свободной ячейке, заменив символ x на адрес ячейки, значение которой нужно найти. В итоге формула выглядит так: =7*D2+17*D2-9*D2 .
  2. Щелкаем Enter и получаем результат в виде числа 0, что вполне логично, так как нам только предстоит вычислить значение ячейки D2, которе и является “иксом” в нашем уравнении.

Заключение

Подбор параметра – функция, которая может помочь в поиске неизвестного числа в таблице или, даже решении уравнения с одной неизвестной. Главное – овладеть навыками использования данного инструмента, и тогда он станет незаменимым помощников во время выполнения различных задач.

Уравнения и задачи на подбор параметра в Excel

Часто нам нужно предварительно спрогнозировать, какие будут результаты вычислений при определенных входящих параметрах. Например, если получить кредит на закупку товара в банке с более низкой процентной ставкой, а цену товара немного повысить – существенно ли возрастет прибыль при таких условиях?

При разных поставленных подобных задачах, результаты вычислений могут завесить от одного или нескольких изменяемых условий. В зависимости от типа прогноза в Excel следует использовать соответствующий инструмент для анализа данных.

Подбор параметра и решение уравнений в Excel

Данный инструмент следует применять для анализа данных с одним неизвестным (или изменяемым) условием. Например:

  • y =7 является функцией x ;
  • нам известно значение y , следует узнать при каком значении x мы получим y вычисляемый формулой.

Решим данную задачу встроенными вычислительными инструментами Excel для анализа данных:

  1. Заполните ячейки листа, так как показано на рисунке:
  2. Перейдите в ячейку B2 и выберите инструмент, где находится подбор параметра в Excel: «Данные»-«Работа с данными»-«Анализ что если»-«Подбор параметра».
  3. В появившемся окне заполните поля значениями как показано на рисунке, и нажмите ОК:

В результате мы получили правильное значение 3.

Получили максимально точный результат: 2*3+1=7

Второй пример использования подбора параметра для уравнений

Немного усложним задачу. На этот раз формула выглядит следующим образом:

  1. Заполните ячейку B2 формулой как показано на рисунке:
  2. Выберите встроенный инструмент: «Данные»-«Работа с данными»-«Анализ что если»-«Подбор параметра» и снова заполните его параметрами как на рисунке (в этот раз значение 4):
  3. Сравните 2 результата вычисления:

Обратите внимание! В первом примере мы получили максимально точный результат, а во втором – максимально приближенный.

Это простые примеры быстрого поиска решений формул с помощью Excel. Сегодня каждый школьник знает, как найти значение x. Например:

Excel в своих алгоритмах инструментов анализа данных использует более простой метод – подстановки. Он подставляет вместо x разные значения и анализирует, насколько результат вычислений отклоняется от условий указанных в параметрах инструмента. Как только будет, достигнут результат вычисления с максимальной точностью, процесс подстановки прекращается.

По умолчанию инструмент выполняет 100 повторений (итераций) с точностью 0.001. Если нужно увеличить количество повторений или повысить точность вычисления измените настройки: «Файл»-«Параметры»-«Формулы»-«Параметры вычислений»:

Таким образом, если нас не устраивает результат вычислений, можно:

  1. Увеличить в настройках параметр предельного числа итераций.
  2. Изменить относительную погрешность.
  3. В ячейке переменной (как во втором примере, A3) ввести приблизительное значение для быстрого поиска решения. Если же ячейка будет пуста, то Excel начнет с любого числа (рандомно).

Используя эти способы настроек можно существенно облегчить и ускорить процесс поиска максимально точного решения.

О подборе нескольких параметров в Excel узнаем из примеров следующего урока.

Решение уравнений в excel — примеры решений

Microsoft Office Excel может здорово помогать студентам и магистрантам в решении различных задач из высшей математики. Не многие пользователи знают, что базовые математические методы поиска неизвестных значений в системе уравнений реализованы в редакторе. Сегодня рассмотрим, как происходит решение уравнений в excel.

Первый метод

Суть этого способа заключается в использовании специального инструмента программы – подбор параметра. Найти его можно во вкладке Данные на Панели управления в выпадающем списке кнопки Анализ «что-если».

1. Зададимся простым квадратичным уравнением и найдем решение при х=0.

2. Переходите к инструменту и заполняете все необходимые поля

3. После проведения вычислений программа выдаст результат в ячейке с иксом.

4. Подставив полученное значение в исходное уравнение можно проверить правильность решения.

Второй метод

Используем графическое решение этого же уравнения. Суть заключается в том, что создается массив переменных и массив значений, полученных при решении выражения. Основываясь на этих данных, строится график. Место пересечения кривой с горизонтальной осью и будет неизвестной переменной.

1. Создаете два диапазона.

На заметку! Смена знака результата говорит о том, что решение находится в промежутке между этими двумя переменными.

2. Переходите во вкладку Вставка и выбираете обычный график.

3. Выбираете данные из столбца f (x), а в качестве подписи горизонтальной оси – значения иксов.

Важно! В настройках оси поставьте положение по делениям.

4. Теперь на графике четко видно, что решение находится между семеркой и восьмеркой ближе к семи. Чтобы узнать более точное значение, необходимо изменять масштаб оси и уточнять цифры в исходных массивах.

Такая исследовательская методика в первом приближении является достаточно грубой, однако позволяет увидеть поведение кривой при изменении неизвестных.

Третий метод

Решение систем уравнений можно проводить матричным методом. Для этого в редакторе есть отдельная функция МОБР. Суть заключается в том, что создаются два диапазона: в один выписываются аргументы при неизвестных, а во второй – значения в правой стороне выражения. Массив аргументов трансформируется в обратную матрицу, которая потом умножается на цифры после знака равно. Рассмотрим подробнее.

1. Записываете произвольную систему уравнений.

2. Отдельно выписываете аргументы при неизвестных в каждую ячейку. Если нет какого-то из иксов – ставите ноль. Аналогично поступаете с цифрами после знака равно.

3. Выделяете в свободной зоне диапазон ячеек равный размеру матрицы. В строке формул пишете МОБР и выбираете массив аргументов. Чтобы функция сработала корректно нажимаете одновременно Ctrl+Shift+Enter.

4. Теперь находите решение при помощи функции МУМНОЖ. Также предварительно выделяете диапазон размером с матрицу результатов и нажимаете уже известное сочетание клавиш.

Четвертый метод

Методом Гаусса можно решить практически любую систему уравнений. Суть в том, чтобы пошагово отнять одно уравнение из другого умножив их на отношение первых коэффициентов. Это прямая последовательность. Для полного решения необходимо еще провести обратное вычисление до тех пор, пока диагональ матрицы не станет единичной, а остальные элементы – нулевыми. Полученные значения в последнем столбце и являются искомыми неизвестными. Рассмотрим на примере.

Важно! Если первый аргумент является нулевым, то необходимо поменять строки местами.

1. Зададимся произвольной системой уравнений и выпишем все коэффициенты в отдельный массив.

2. Копируете первую строку в другое место, а ниже записываете формулу следующего вида: =C67:F67-$C$66:$F$66*(C67/$C$66).

Поскольку работа идет с массивами, нажимайте Ctrl+Shift+Enter, вместо Enter.

3. Маркером автозаполнения копируете формулу в нижнюю строку.

4. Выделяете две первые строчки нового массива и копируете их в другое место, вставив только значения.

5. Повторяете операцию для третьей строки, используя формулу

=C73:F73-$C$72:$F$72*(D73/$D$72). На этом прямая последовательность решения закончена.

6. Теперь необходимо пройти систему в обратном порядке. Используйте формулу для третьей строчки следующего вида =(C78:F78)/E78

7. Для следующей строки используйте формулу =(C77:F77-C84:F84*E77)/D77

8. В конце записываете вот такое выражение =(C76:F76-C83:F83*D76-C84:F84*E76)/C76

9. При получении матрицы с единичной диагональю, правая часть дает искомые неизвестные. После подстановки полученных цифр в любое из уравнений значения по обе стороны от знака равно являются идентичными, что говорит о правильном решении.

Метод Гаусса является одним из самых трудоемких среди прочих вариантов, однако позволяет пошагово просмотреть процесс поиска неизвестных.

Как видите, существует несколько методов решения уравнений в редакторе. Однако каждый из них требует определенных знаний в математике и четкого понимания последовательности действий. Однако для упрощения можно воспользоваться онлайн калькулятором, в который заложен определенный метод решения системы уравнений. Более продвинутые сайты предоставляют несколько способов поиска неизвестных.

Жми «Нравится» и получай только лучшие посты в Facebook ↓

источники:

http://exceltable.com/vozmojnosti-excel/uravnenie-i-podbor-parametra

http://mir-tehnologiy.ru/reshenie-uravnenij-v-excel-primery-reshenij/

Практическое
занятие по теме: «Подбор параметра и оптимизация (поиск решений)  в
Excel»

Цель
практического занятия:
Изучение технологии «Подбора параметра и оптимизация
(поиск решений) » для решения задач, имеющих точное целевое значение, зависящее
от одного неизвестного параметра

Задачи:

1)               
Познакомится
с основными ключевыми понятиями «Подбора параметра»

2)               
 рассматривается
процесс нахождения исходных данных, которые при подстановке в формулы, дают
необходимое значение в ячейке результата

3)               
Решение
задач по теме «Подбор параметра» по образцу и по алгоритму.

4)               
Решение
задач по указанной теме самостоятельно

План занятия:

1)               
Ознакомление
студентов с ключевыми понятиями.

2)               
Рассмотрение
процесса
нахождения
исходных данных

3)               
Знакомство
с понятием Подбор параметра и Поиск решения

4)               
Решение
задач по теме «Подбор параметра» по образцу и по алгоритму

5)               
Решение
задач по указанной теме самостоятельно

Ход занятия

Для
эффективного использования  формул необходимо ознакомиться с тремя ключевыми
понятиями.

Вычисление  
— это процесс расчета по формулам и последующего отображения значений
результатов в ячейках, содержащих формулы. Во избежание ненужных вычислений
Microsoft Office Excel автоматически пересчитывает формулы только при изменении
влияющих на формулу ячеек. Это является стандартной процедурой при первом
открытии книги и ее редактировании. Однако тем, как и когда Excel будет
пересчитывать формулы, можно управлять.

Итерация  
— это многократный пересчет листа до удовлетворения определенного числового
условия. Excel не может автоматически рассчитать значение по формуле, которая
ссылается (прямо или косвенно) на ячейку, содержащую формулу (это называется
циклической ссылкой). Если формула содержит обратную ссылку на одну из своих
собственных ячеек, необходимо определить, сколько раз следует пересчитывать
формулу. Циклические ссылки могут пересчитываться до бесконечности. Однако
существует возможность управления максимальным числом итераций и количеством
допустимых изменений.

Точность  
— это показатель степени сходимости вычислений. Excel хранит и выполняет
вычисления с точностью 15 значащих цифр. Однако существует возможность изменить
точность вычислений, так что Excel при пересчете формул будет использовать для
вычислений не хранимое, а отображаемое значение.

Процесс
изменения значений ячеек и анализа влияния этих изменений на результат
вычисления формул в
Excel
называется анализом «что-если».

Рассмотрим 
процесс нахождения исходных данных, которые при подстановке в формулы, дают
необходимое значение в ячейке результата. Если вы знаете, каким должен быть
результат вычисления по формуле, то
Excel подскажет вам
значения одного или нескольких входных параметров, которые позволяют получить
нужный результат.

Другими
словами, вы можете задать вопрос типа: Какой рост продаж необходим для получения
дохода в $1 200 000? В
Excel для этого
предусмотрены два подходящих средства.

·
Подбор
параметра

– определяет значение одной входной ячейки, которое требуется для получения
желаемого результата в зависимой ячейке (ячейке результата).

·
Поиск
решения

— определяет значения в нескольких входных ячейках, которые требуются для
получения желаемого результата. Более того, можно накладывать ограничения на
входные данные, поэтому здесь можно получить решение  (если оно существует)
многих практических задач.

Подбор
параметра

является удобным средством для решения задач, которые имеют точное целевое
значение, зависящее от одного неизвестного параметра. С помощью Подбора
параметра
можно определить значение, которое будет давать желаемый
результат.

Решим
следующую задачу
:

Вы хотите
положить деньги в банк под 4,5% и получить ровно 1000 руб. по истечении года.
Необходимо определить сумму вклада. Для решения данной задачи используем
средство Подбор параметра.

Задание:

1.                
Создайте
новый файл под именем Лаб.раб. Лист 1 переименуйте в  Подбор.

2.                
Оформите
таблицу (рис. 1). Введите указанную формулу.

Рис.1

3.                
 Активизируйте
ячейку В3. Выполните команду Данные — -Анализ «что- если»
ÞПодбор
параметра
.

4.                
В
открывшемся диалоговом окне укажите значение необходимой конечной суммы и
ссылку на ячейку с искомым значением вклада (рис.2).

Рис.2

5.                
Нажмите
кнопку ОК. Средство подбор параметра найдет решение и сообщит об этом
(рис. 3). Нажмите кнопку ОК и убедитесь, что искомое значение помещено в
ячейке В2.

Рис.3

Задание для самостоятельной работы:

1.                
Решите
задачу
:
Для покупки автомобиля Вам необходима сумма 200 000 руб. У Вас есть
возможность взять ипотечную ссуду, при этом нужно сделать первый взнос 20%.
Определите, какую сумму нужно взять в банке, чтобы на руки вы получили
требуемую сумму.

2.                
Для
решения задачи оформите таблицу (рис.4). Введите формулы.

Рис.4

3.                
С
помощью средства Подбор параметра определите размер ссуды.

Задачи оптимизации
(поиск решения)

Цель: Изучение
технологии поиска решения для задач оптимизации (минимизации, максимизации).

Задание 1.  Составление плана
выгодного производства.

Фирма производит несколько видов продукции
из одного и того же сырья – А, В, С. Реализация продукции А дает прибыль 10р.,
В – 15р., С-20р. На единицу изделия. Продукцию можно производить в любых
количествах, поскольку известно, что сбыт обеспечен, но ограничены запасы
сырья. Необходимо определить, какой продукции и сколько надо произвести, чтобы
общая прибыль от реализации была максимальной.

Нормы расхода сырья на производство
продукции  каждого вида приведены в таблице.

Сырье

Нормы расхода
сырья

Запас сырья

А

В

С

Сырье 1

18

15

12

350

Сырье 2

6

4

8

200

Сырье 3

5

3

3

100

Прибыль

10

15

20

Решение:

1.     Создать
расчетную таблицу

А                    
В              С          
D                   
E                                   F

План выгодного
производства

Сырье

Норма расхода
сырья

Запас сырья

Расход сырья

А

В

С

Сырье 1

18

15

12

350

=$B$9*B5+$C$9*C5+$D$9*D5

Сырье 2

6

4

8

200

=$B$9*B6+$C$9*C6+$D$9*D6

Сырье 3

5

3

3

100

=$B$9*B7+$C$9*C7+$D$9*D7

Прибыль на ед. изделия

10

15

20

Количество

Общая прибыль

=B8*B9

=C8*C9

=D8*D9

=СУММ(B10:D10)

2.     В
меню Сервис
активизируйте
команду Поиск решения и введите параметры поиска

Сервис — настройки
– поиск решения

Параметры:

В результате должно получиться следующее:

Сырье

Норма расхода
сырья

Запас сырья

Расход сырья

А

В

С

Сырье 1

18

15

12

350

350

Сырье 2

6

4

8

200

200

Сырье 3

5

3

3

100

83,33333333

Прибыль на ед. изделия

10

15

20

Количество

0

5,5555556

22,222

Общая прибыль

0

83,333333

444,44

527,77778

Сохранить под именем «План
производства» и сделать выводы.

Задание№2. Выполнить
аналогичные расчеты

Вариант 1

Сырье

Норма расхода
сырья

Запас сырья

А

В

С

Сырье 1

25

17

11

350

Сырье 2

9

7

10

400

Сырье 3

15

8

5

300

Прибыль на ед. изделия

5

10

12

Количество

?

?

?

Общая прибыль

?

?

?

?

Вариант 2

Сырье

Норма расхода
сырья

Запас сырья

А

В

С

Сырье 1

12

11

8

3500

Сырье 2

14

15

2

280

Сырье 3

8

9

10

711

Прибыль на ед. изделия

10

9

8

Количество

?

?

?

Общая прибыль

?

?

?

?

Вариант 3

Сырье

Норма расхода
сырья

Запас сырья

А

В

С

Сырье 1

10

20

15

2700

Сырье 2

16

25

13

3800

Сырье 3

8

9

10

1200

Прибыль на ед. изделия

7

8

6

Количество

?

?

?

Общая прибыль

?

?

?

?

Вариант 4

Сырье

Норма расхода
сырья

Запас сырья

А

В

С

Сырье 1

14

15

19

460

Сырье 2

7

8

12

820

Сырье 3

17

24

6

214

Прибыль на ед. изделия

15

10

25

Количество

?

?

?

Общая прибыль

?

?

?

?

«Поиск решения» — это надстройка для Microsoft Excel, которую можно использовать для анализ «что если». С ее помощью можно найти оптимальное значение (максимум или минимум) формула, содержащейся в одной ячейке, называемой целевой, с учетом ограничений на значения в других ячейках с формулами на листе. Надстройка «Поиск решения» работает с группой ячеек, называемых ячейками переменных решения или просто ячейками переменных, которые используются при расчете формул в целевых ячейках и ячейках ограничения. Надстройка «Поиск решения» изменяет значения в ячейках переменных решения согласно пределам ячеек ограничения и выводит нужный результат в целевой ячейке.

Проще говоря, с помощью надстройки «Поиск решения» можно определить максимальное или минимальное значение одной ячейки, изменяя другие ячейки. Например, вы можете изменить планируемый бюджет на рекламу и посмотреть, как изменится планируемая сумма прибыли.

Примечание: В версиях надстройки «Поиск решения», выпущенных до Excel 2007, ячейки переменных решения назывались изменяемыми или регулируемыми. В Excel 2010 надстройка «Поиск решения» была значительно улучшена, так что работа с ней в Excel 2007 будет несколько отличаться.

В приведенном ниже примере количество проданных единиц в каждом квартале зависит от уровня рекламы, что косвенно определяет объем продаж, связанные издержки и прибыль. Надстройка «Поиск решения» может изменять ежеквартальные расходы на рекламу (ячейки переменных решения B5:C5) до ограничения в 20 000 рублей (ячейка F5), пока общая прибыль (целевая ячейка F7) не достигнет максимального значения. Значения в ячейках переменных используются для вычисления прибыли за каждый квартал, поэтому они связаны с формулой в целевой ячейке F7, =СУММ (Q1 Прибыль:Q2 Прибыль).

Перед вычислением с помощью надстройки «Поиск решения»

1. Ячейки переменных

2. Ячейка с ограничениями

3. Целевая ячейка

После выполнения процедуры получены следующие значения.

После вычисления с помощью надстройки «Поиск решения»

  1. На вкладке Данные в группе Анализ нажмите кнопку Поиск решения.
    Изображение ленты Excel

    Изображение диалогового окна "Поиск решения" в Excel 2010 +

  2. В поле Оптимизировать целевую функцию введите ссылка на ячейку или имя целевой ячейки. Целевая ячейка должна содержать формулу.

  3. Выполните одно из следующих действий.

    • Чтобы значение целевой ячейки было максимальным из возможных, установите переключатель в положение Макс.

    • Чтобы значение целевой ячейки было минимальным из возможных, установите переключатель в положение Мин.

    • Чтобы задать для целевой ячейки конкретное значение, установите переключатель в положение Значение и введите в поле нужное число.

    • В поле Изменяя ячейки переменных введите имена диапазонов ячеек переменных решения или ссылки на них. Несмежные ссылки разделяйте запятыми. Ячейки переменных должны быть прямо или косвенно связаны с целевой ячейкой. Можно задать до 200 ячеек переменных.

  4. В поле В соответствии с ограничениями введите любые ограничения, которые требуется применить. Для этого выполните указанные ниже действия.

    1. В диалоговом окне Параметры поиска решения нажмите кнопку Добавить.

    2. В поле Ссылка на ячейку введите ссылку на ячейку или имя диапазона ячеек, на значения которых налагаются ограничения.

    3. Щелкните связь (<=, =, >=, int,binили dif), которая требуется между ячейкой, на которую ссылается ссылка, и ограничением. Если щелкнуть int, в поле Ограничение появится integer. Если щелкнуть бин,в поле Ограничение появится двоичное поле. Если нажать кнопку dif,в поле Ограничение появится ссылкаalldifferent.

    4. Если в поле Ограничение было выбрано отношение <=, = или >=, введите число, ссылку на ячейку (или имя ячейки) или формулу.

    5. Выполните одно из указанных ниже действий.

      • Чтобы принять данное ограничение и добавить другое, нажмите кнопку Добавить.

      • Чтобы принять ограничение и вернуться в диалоговое окно Параметрырешения, нажмите кнопку ОК.
        Примечание    Отношения int,binи dif можно применять только в ограничениях для ячеек переменных решения.

        Чтобы изменить или удалить существующее ограничение, выполните указанные ниже действия.

    6. В диалоговом окне Параметры поиска решения щелкните ограничение, которое требуется изменить или удалить.

    7. Нажмите кнопку Изменить и внесите изменения либо нажмите кнопку Удалить.

  5. Нажмите кнопку Найти решение и выполните одно из указанных ниже действий.

    • Чтобы сохранить значения решения на листе, в диалоговом окне Результаты поиска решения выберите вариант Сохранить найденное решение.

    • Чтобы восстановить исходные значения перед нажатием кнопки Найти решение, выберите вариант Восстановить исходные значения.

    • Вы можете прервать поиск решения, нажав клавишу ESC. Лист Excel будет пересчитан с учетом последних найденных значений для ячеек переменных решения.

    • Чтобы создать отчет, основанный на найденном решении, выберите тип отчета в поле Отчеты и нажмите кнопку ОК. Отчет будет помещен на новый лист книги. Если решение не найдено, будут доступны только некоторые отчеты или они вообще не будут доступны.

    • Чтобы сохранить значения ячейки переменной решения в качестве сценария, который можно будет отобразить позже, нажмите кнопку Сохранить сценарий в диалоговом окне Результаты поиска решения, а затем введите имя этого сценария в поле Название сценария.

  1. После постановки задачи нажмите кнопку Параметры в диалоговом окне Параметры поиска решения.

  2. Чтобы просмотреть значения всех найденных решений, в диалоговом окне Параметры установите флажок Показывать результаты итераций и нажмите кнопку ОК.

  3. В диалоговом окне Параметры поиска решения нажмите кнопку Найти решение.

  4. В диалоговом окне Показать предварительное решение выполните одно из указанных ниже действий.

    • Чтобы остановить поиск решения и вывести на экран диалоговое окно Результаты поиска решения, нажмите кнопку Стоп.

    • Чтобы продолжить процесс поиска решения и просмотреть следующий вариант решения, нажмите кнопку Продолжить.

  1. В диалоговом окне Параметры поиска решения нажмите кнопку Параметры.

  2. В диалоговом окне на вкладках Все методы, Поиск решения нелинейных задач методом ОПГ и Эволюционный поиск решения выберите или введите значения нужных параметров.

  1. В диалоговом окне Параметры поиска решения нажмите кнопку Загрузить/сохранить.

  2. Введите диапазон ячеек для области модели и нажмите кнопку Сохранить или Загрузить.

    При сохранении модели введите ссылку на первую ячейку вертикального диапазона пустых ячеек, в котором следует разместить модель оптимизации. При загрузке модели введите ссылку на весь диапазон ячеек, содержащий модель оптимизации.

    Совет: Чтобы сохранить последние параметры, настроенные в диалоговом окне Параметры поиска решения, вместе с листом, сохраните книгу. Каждый лист в книге может иметь свои параметры надстройки «Поиск решения», и все они сохраняются. Кроме того, для листа можно определить более одной задачи, если нажимать кнопку Загрузить или сохранить для сохранения задач по отдельности.

В диалоговом окне Параметры поиска решения можно выбрать любой из указанных ниже алгоритмов или методов поиск решения.

  • Нелинейный метод обобщенного понижающего градиента (ОПГ).    Используется для гладких нелинейных задач.

  • Симплекс-метод.    Используется для линейных задач.

  • Эволюционный метод    Используется для негладких задач.

В приведенном ниже примере количество проданных единиц в каждом квартале зависит от уровня рекламы, что косвенно определяет объем продаж, связанные издержки и прибыль. Надстройка «Поиск решения» может изменять ежеквартальные расходы на рекламу (ячейки переменных решения B5:C5) до ограничения в 20 000 рублей (ячейка D5), пока общая прибыль (целевая ячейка D7) не достигнет максимального значения. Значения в ячейках переменных используются для вычисления прибыли за каждый квартал, поэтому они связаны с формулой в целевой ячейке D7, =СУММ (Q1 Прибыль:Q2 Прибыль).

Пример анализа с помощью надстройки "Поиск решения"

Выноска 1
Выноска 1 переменных

Выноска 2 с ограничениями

Выноска 3 цель

В результате выполнения получены следующие значения:

Пример анализа с помощью надстройки "Поиск решения" с использованием новых значений

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. В разделе Оптимизировать целевую функцию, введите ссылка на ячейку или имя целевой ячейки.

    Примечание: Целевая ячейка должна содержать формулу.

  3. Выполните одно из следующих действий.

    Задача

    Необходимые действия

    Сделать так, чтобы значение целевой ячейки было максимальным из возможных

    Выберите значение Макс.

    Сделать так, чтобы значение целевой ячейки было минимальным из возможных

    Выберите значение Мин.

    Сделать так, чтобы целевая ячейка имела определенное значение

    Щелкните Значение, а затем введите нужное значение в поле.

  4. В поле Изменяя ячейки переменных введите имена диапазонов ячеек переменных решения или ссылки на них. Несмежные ссылки разделяйте запятыми.

    Ячейки переменных должны быть прямо или косвенно связаны с целевой ячейкой. Можно задать до 200 ячеек переменных.

  5. В поле В соответствии с ограничениями введите любые ограничения, которые требуется применить.

    Для этого выполните следующие действия:

    1. В диалоговом окне Параметры поиска решения нажмите кнопку Добавить.

    2. В поле Ссылка на ячейку введите ссылку на ячейку или имя диапазона ячеек, на значения которых налагаются ограничения.

    3. Во всплывающем меню <= задайте требуемое отношение между целевой ячейкой и ограничением. Если вы выбрали <=, =, или >= в поле Ограничение, введите число, имя ячейки, ссылку на нее или формулу.

      Примечание: Отношения int, бин и раз можно использовать только в ограничениях для ячеек, в которых находятся переменные решения.

    4. Выполните одно из указанных ниже действий.

    Задача

    Необходимые действия

    Принять ограничение и добавить другое

    Нажмите кнопку Добавить.

    Принять ограничение и вернуться в диалоговое окно Параметры поиска решения

    Нажмите кнопку ОК.

  6. Нажмите кнопку Найти решение и выполните одно из следующих действий:

    Задача

    Необходимые действия

    Сохранить значения решения на листе

    В диалоговом окне Результаты поиска решения выберите вариант Сохранить найденное решение.

    Восстановить исходные значения

    Щелкните Восстановить исходные значения.

Примечания: 

  1. Чтобы прервать поиск решения, нажмите клавишу ESC. Лист Excel будет пересчитан с учетом последних найденных значений для ячеек переменных.

  2. Чтобы создать отчет, основанный на найденном решении, выберите тип отчета в поле Отчеты и нажмите кнопку ОК. Отчет будет помещен на новый лист книги. Если решение не найдено, отчет не будет доступен.

  3. Чтобы сохранить значения ячейки переменной решения в качестве сценария, который можно будет отобразить позже, нажмите кнопку Сохранить сценарий в диалоговом окне Результаты поиска решения, а затем введите имя этого сценария в поле Название сценария.

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. После постановки задачи нажмите кнопку Параметры в диалоговом окне Параметры поиска решения.

  3. Чтобы просмотреть значения всех предварительных решений, установите флажок Показывать результаты итераций и нажмите кнопку ОК.

  4. В диалоговом окне Параметры поиска решения нажмите кнопку Найти решение.

  5. В диалоговом окне Показать предварительное решение выполните одно из следующих действий:

    Задача

    Необходимые действия

    Остановить поиск решения и вывести на экран диалоговое окно Результаты поиска решения

    Нажмите кнопку Стоп.

    Продолжить поиск и просмотреть следующее предварительное решение

    Нажмите кнопку Продолжить.

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. Нажмите кнопку Параметры, а затем в диалоговом окне Параметры или Поиск решения выберите один или несколько из следующих вариантов:

    Задача

    Необходимые действия

    Настроить время решения и число итераций

    На вкладке Все методы в разделе Пределы решения в поле Максимальное время (в секундах) введите количество секунд, в течение которых можно будет искать решение. Затем в поле Итерации укажите максимальное количество итераций, которое вы хотите разрешить.

    Примечание: Если будет достигнуто максимальное время поиска решения или количество итераций, а решение еще не будет найдено, средство «Поиск решения» выведет диалоговое окно Показать предварительное решение.

    Задать точность

    На вкладке Все методы введите в поле Точность ограничения нужное значение погрешности. Чем меньше число, тем выше точность.

    Задать степень сходимости

    На вкладке Поиск решения нелинейных задач методом ОПГ или Эволюционный поиск решения в поле Сходимость укажите, насколько должны отличаться результаты последних пяти итераций, чтобы средство прекратило поиск решения. Чем меньше число, тем меньше должно быть изменение.

  3. Нажмите кнопку ОК.

  4. В диалоговом окне Параметры поиска решения нажмите кнопку Найти решение или Закрыть.

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. Щелкните Загрузить/сохранить, укажите диапазон ячеек для области модели и нажмите кнопку Сохранить или Загрузить.

    При сохранении модели введите ссылку на первую ячейку вертикального диапазона пустых ячеек, в котором следует разместить модель оптимизации. При загрузке модели введите ссылку на весь диапазон ячеек, содержащий модель оптимизации.

    Совет: Чтобы сохранить последние параметры, настроенные в диалоговом окне Параметры поиска решения, вместе с листом, сохраните книгу. Каждый лист в книге может иметь свои параметры надстройки «Поиск решения», и все они сохраняются. Кроме того, для листа можно определить более одной задачи, если нажимать кнопку Загрузить/сохранить для сохранения задач по отдельности.

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. Во всплывающем меню Выберите метод решения выберите одно из следующих значений:

Метод решения

Описание

Нелинейный метод обобщенного понижающего градиента (ОПГ)

Используется по умолчанию для моделей со всеми функциями Excel, кроме ЕСЛИ, ВЫБОР, ПРОСМОТР и другие ступенчатые функции.

Поиск решения линейных задач симплекс-методом

Используйте этот метод для задач линейного программирования. В формулах модели, которые зависят от ячеек переменных, должны использоваться функции СУММ, СУММПРОИЗВ, +, — и *.

Эволюционный поиск решения

Этот метод, основанный на генетических алгоритмах, лучше всего подходит в том случае, если в модели используются функции ЕСЛИ, ВЫБОР и ПРОСМОТР с аргументами, которые зависят от ячеек переменных.

Примечание: Авторские права на части программного кода надстройки «Поиск решения» версий 1990–2010 принадлежат компании Frontline Systems, Inc. Авторские права на части версии 1989 принадлежат компании Optimal Methods, Inc.

Поскольку надстройки не поддерживаются в Excel в Интернете, вы не сможете использовать надстройку «Поиск решения» для анализа данных «что если», чтобы найти оптимальные решения.

Если у вас есть Excel, вы можете нажать кнопку Открыть в Excel, чтобы открыть книгу для использования надстройки «Поиск решения».

Дополнительная справка по надстройке «Поиск решения»

За дополнительной справкой по надстройке «Поиск решения» обращайтесь по этим адресам:

Frontline Systems, Inc.
P.O. Box 4288
Incline Village, NV 89450-4288
(775) 831-0300
Веб-сайт: http://www.solver.com
Электронная почта: info@solver.com
«Решение» на www.solver.com.

Авторские права на части программного кода надстройки «Поиск решения» версий 1990-2009 принадлежат компании Frontline Systems, Inc. Авторские права на части версии 1989 принадлежат компании Optimal Methods, Inc.

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community или попросить помощи в сообществе Answers community.

См. также

Использование «Решения» для бюджетов с использованием средств на счете вех

Использование «Решение» для определения оптимального сочетания продуктов

Введение в анализ гипотетических вариантов

Полные сведения о формулах в Excel

Рекомендации, позволяющие избежать появления неработающих формул

Обнаружение ошибок в формулах

Сочетания клавиш в Excel

Функции Excel (по алфавиту)

Функции Excel (по категориям)

Содержание

Решение
задач – Подбор параметра

Задачи оптимизации с одним
неизвестным

Задача оптимизации затрат

Подбор параметра и таблицы
подстановки

РЕШЕНИЕ
ЗАДАЧ – Подбор параметра

Решение
задач –
одно из важных применений Excel.
Самый простой инструмент предназначен
для подбора значений и называется
«что-если»
анализ: задается некоторая целевая
функция и ее числовое значение, Excel
автоматически подбирает параметры
целевой функции до получения целевого
значения. Формула в целевой функции
должна логически зависеть от подбираемого
параметра.


В
Excel
встроены инструменты для решения задач
статистического и инженерного анализа,
сложных задач со многими неизвестными
и ограничениями, в частности, решения
уравнений и задач оптимизации. Эти
инструменты поставляются в виде надстроек
Поиск
решения
и
Пакет анализа
;
устанавливаются через пункт меню
СервисНадстройки…,
далее
пометить пункты
Поиск решения
и
Пакет анализа
.
Смотрите справку – клавиша F1.

Эти
инструменты Excel
(будут рассмотрены в следующих разделах)
полезны экономистам, администраторам,
менеджерам, которым для решения деловых
проблем и принятия решений в сферах
финансов, бухгалтерского учета,
маркетинга, управления операциями,
экономики, менеджмента необходимо
применять количественные методы анализа
и прогнозирования.

Рис.
1.20

В
качестве примера разберем расчет прибыли
от продаж, показанный на рис. 1.20. В ячейках
А3, А4 и А7 записаны формулы – формулы
для наглядности продублированы в
скобках. Поскольку Другие
затраты

и Количество
здесь постоянны, то нужную прибыль можно
получить подбором Цены
единицы

или Себестоимости
единицы

товара. Попробуем получить прибыль
20000, изменяя Цену
единицы
.
Проделайте следующие действия:

  1. Встаньте
    на целевую ячейку А7. Выберите пункт
    меню СервисПодбор
    параметра…
    .
    Введите значение ожидаемой прибыли.
    Для ввода адреса изменяемой ячейки,
    перейдите в нижнее поле и встаньте на
    ячейку А9 в таблице – адрес будет записан
    автоматически в поле. Нажмите ОК.

  1. В
    следующем окне можно либо принять, либо
    отменить результат подбора параметра.
    Результат:

Самостоятельно
попробуйте подобрать Себестоимость
единицы
,
чтобы получить прибыль 20000 при Цене
единицы
=200.

Далее
приводятся другие применения инструмента
Подбор
параметра
.

Задачи
оптимизации с одним неизвестным

Часто уравнения
не имеют точного аналитического решения.
Тогда их решают методом последовательных
приближений (итераций) неизвестных
параметров так, чтобы они давали минимум
ошибки целевой функции.

Для численного
решения уравнений с одним неизвестным
в Excel
имеется эффективный инструмент Подбор
параметра
.
Целевая функция может быть линейной,
квадратичной, третьей и выше степени.

Инструмент Подбор
параметра

был рассмотрен в предыдущем разделе
для расчета прибыли от продаж. Здесь
рассмотрим его применение для решения
некоторого уравнения, например
3-3х2+х-5=0.

Решение задачи
состоит из двух этапов. На первом этапе
следует ввести уравнение в ячейку (В2),
а в другую ячейку (А2) ввести некоторое
ориентировочное значение, здесь 1:

На втором этапе
следует воспользоваться инструментом
Подбор
параметра
:

  1. Встаньте на ячейку
    В2 и вызовите его – СервисПодбор
    параметра…
    .

  2. В открывшемся
    окне введите искомое значение функции
    и адрес изменяемой ячейки:

  1. После нажатия
    кнопки ОК Вы получите следующее решение:

Найденное решение
приближенное, поэтому можно считать,
что при х=1,918578609 значение уравнения
3-3х2+х-5
стремится к нулю, т.е. к 0,000107348. Смело
установите для ячеек А2 и В2 числовой
формат отображения данных и получите
следующее:


Следует
отметить, что уравнение может иметь
более одного решения. Поэтому рекомендуется
выполнить подбор параметра для разных
начальных значений Х, указывая
положительные, отрицательные, большие
и малые значения. В нашем примере
установите начальное значение А2=–1 и
повторите подбор. Решение будет таким
же.

Задача
оптимизации затрат

С
помощью подбора параметров можно решать
задачи оптимального распределения
ресурсов следующего плана. Требуется
закупить составляющие (конфета
карамельная, конфета шоколадная, упаковка
печенья и мармелада) для комплектования
подарочных наборов так, чтобы цена
набора не превышала 100 руб. При этом
известны соотношения цен относительно
одной
из компонент (здесь карамели): цена
шоколадной конфеты в 2.5 раза выше цены
карамели, цена печенья на 10 руб. больше
карамели и цена мармелада в 8.5 раза выше
цены карамели. В наборе должно быть 5-10
конфет карамель, 4-6 шоколадных конфет,
1-2 упаковки печенья и 1 упаковка мармелада.
Рассчитать закупочные цены для разных
комплектов.

Ниже
показаны расчеты закупочных цен для
максимального и минимального комплектов:

В ячейки В4:В6
запишите формулы: =B3*2.5, =B3+10 и =B3*8.5. В
колонки D3:D6
поставьте формулы вычисления сумм по
строкам, а в D7
вычислите общую сумму: =СУММ(D3:D6). В итоге
целевая функция – стоимость набора D7
есть C3*x+C4*2.5*x+C5*(x+10)+C6*8.5*x,
где x=B3
цена одной компоненты – конфеты карамель.
Параметры инструмента Подбор
параметра

заполните так:

Подбор
параметра и таблицы подстановки

В паре с инструментом
Подбор
параметра

обычно применяют инструмент Таблица
подстановки
,
который позволяет расширить количество
одновременно рассчитываемых вариантов
решений. Таблицы подстановки создаются
на основе одной или двух изменяемых
параметров.

Рассмотрим пример.
Фирма производит изделия и продает их
по цене 90руб. Ежемесячные постоянные
затраты составляют 5000руб., переменные
затраты на единицу изделия – 30руб.
Необходимо определить точку безубыточности,
т.е. вычислить количество изделий, при
котором прибыль равна 0. Кроме того,
требуется определить изменение прибыли
для 10 следующих значений количества с
шагом 5, а также прибыль при этих значениях
количества для цен 80, 85, 95 и 100руб.

Решение. Введите
в Excel
исходные данные, приведенные ниже:

В точке безубыточности
валовая прибыль равна валовым затратам,
т.е. (В3*В4)-(В1+В2*В4)=0.
Вызовите Подбор
параметра
,
заполните параметры и нажмите ОК – в
ячейке В4 будет вычислено значение 83.33
(рис. 17).

На следующем шаге
рассчитаем 10 значений прибыли для
следующих значений количества с шагом
5. Используем для этого таблицу подстановки
с одним изменяемым параметром. Подготовьте
исходные данные (рис. 2.35):
в ячейки C4:C13
запишите значения количества с шагом
5, а в колонке справа в строке выше (ячейка
D3)
— формулу из ячейки В7.

Примените инструмент
Таблица
подстановки

к подготовленным данным: выделите
диапазон C3:D13
(рис. 2.36), вызовите пункт ДанныеТаблица
подстановки…
,
укажите изменяемую ячейку ($B$4)
и порядок расположения исходных данных
(в строках) в окне запроса – рис. 2.36.
После нажатия ОК в ячейках D4:D13
будут рассчитаны значения прибыли.

На последнем шаге
рассчитаем значения прибыли для тех же
значений количества при ценах 80, 85, 95 и
100руб. Используем для этого таблицу
подстановки с двумя изменяемыми
параметрами. Результат показан на рис.
2.37.

Для его получения
подготовьте исходные данные:
в ячейки F4:F13
запишите значения количества, в строке
G3:J3
запишите значения цен, на пересечении
строки и столбца с данными в ячейке F3
запишите формулу из ячейки В7. Примените
инструмент Таблица
подстановки

к подготовленным данным: выделите
диапазон F3:F13
(рис. 2.37), вызовите пункт ДанныеТаблица
подстановки…
,
укажите изменяемую ячейку по строкам
($B$4)
и по столбцам ($B$3)
в окне запроса – рис. 2.38. После нажатия
ОК в ячейках G4:J13
будут рассчитаны значения прибыли.

Рис.
2.35

Рис.
2.36

Рис.
2.37

Рис.
2.38

Задания для
самостоятельного выполнения:

  1. Найдите решение
    уравнения х3+5х2-х+1=0

  2. Найдите два решения
    уравнения х2-3х+2=0.

  3. Найдите решение
    уравнения ех=20000.

  4. Примените инструмент
    Таблица
    подстановки

    при решении предыдущей задачи
    комплектования подарочных наборов.

5

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Like this post? Please share to your friends:
  • Решение задач excel платно
  • Рецептурный бланк 148 1 у 88 скачать word
  • Решение задач в excel матрицы
  • Решение задач 19 21 егэ по информатике с помощью excel
  • Рецептурные бланки скачать word