Решение задач с целевой функцией помощью excel

«Поиск решений» — функция Excel, которую используют для оптимизации параметров: прибыли, плана продаж, схемы доставки грузов, маркетингового бюджета или рентабельности. Она помогает составить расписание сотрудников, распределить расходы в бизнес-плане или инвестиционные вложения. Знание этой функции экономит много времени и сил. Рассказываем, как освоить функцию поиска решений.


Основные параметры поиска решений

Найти решение задачи можно тремя способами. Во-первых, вручную перебирать параметры, пока не найдется оптимальное соотношение. Во-вторых, составить уравнение с большим количеством неизвестных. В-третьих, вбить данные в Excel и использовать «Поиск решений». Последний способ самый быстрый и покажет максимально точное решение, если знать, как использовать функцию.

Итак, мы решаем задачу с помощью поиска решений в Excel и начинаем с математической модели. В ней четыре типа данных: константы, изменяемые ячейки, целевая функция и ограничения. К поиску решения вернемся чуть позже, а сейчас разберемся, что входит в каждый из этих типов:

Константы — исходная информация. К ней относится удельная маржинальная прибыль, стоимость каждой перевозки, нормы расхода товарно-материальных ценностей. В нашем случае — производительность работников, их оплата и норма в 1000 изделий. Также константа отражает ограничения и условия математической модели: например, только неотрицательные или целые значения. Мы вносим константы в таблицу цифрами или с помощью элементарных формул (СУММ, СРЗНАЧ).

Изменяемые ячейки — переменные, которые в итоге нужно найти. В задаче это распределение 1000 изделий между работниками с минимальными затратами. В разных случаях бывает одна изменяемая ячейка или диапазон. При заполнении функции «Поиск решений» важно оставить ячейки пустыми — программа сама найдет значения.

Целевая функция — результирующий показатель, для которого Excel подбирает наилучшие показатели. Чтобы программа понимала, какие данные наилучшие, мы задаем функцию в виде формулы. Эту формулу мы отображаем в отдельной ячейке. Результирующий показатель может принимать максимальное или минимальное значения, а также быть конкретным числом. 

Ограничения — условия, которые необходимо учесть при оптимизации функции, называющейся целевой. К ним относятся размеры инвестирования, срок реализации проекта или объем покупательского спроса. В нашем случае — количество дней и число работников. 

Пример использования поиска решений

Теперь перейдем к самой функции. 

1) Чтобы включить «Поиск решений», выполните следующие шаги:

  • нажмите «Параметры Excel», а затем выберите категорию «Надстройки»;
  • в поле «Управление» выберите значение «Надстройки Excel» и нажмите кнопку «Перейти»;
  • в поле «Доступные надстройки» установите флажок рядом с пунктом «Поиск решения» и нажмите кнопку ОК.

2019-08-06 18.58.30.jpg

2019-08-06 18.58.37.jpg

2) Теперь упорядочим данные в виде таблицы, отражающей связи между ячейками. Советуем использовать цветовые обозначения: на примере красным выделена целевая функция, бежевым — ограничения, а желтым — изменяемые ячейки.

tg_image_2790408830.jpeg

Не забудьте ввести формулы. Стоимость заказа рассчитывается как «Оплата труда за 1 изделие» умножить на «Число заготовок, передаваемых в работу». Для того, чтобы узнать «Время на выполнение заказа», нужно «Число заготовок, передаваемых в работу» разделить на «Производительность».

tg_image_954796317.jpeg
tg_image_2790408830.jpeg

tg_image_4145344377.jpeg

3) Выделите целевую ячейку, которая должна показать максимум, минимум или определенное значение при заданных условиях. Для этого на панели нажмите  «Данные» и выберете функцию «Поиск решений» (обычно она в верхнем правом углу).

tg_image_2089575366.jpeg

4) Заполните параметры «Поиска решений» и нажмите «Найти решение». 

Совокупная стоимость 1000 изделий рассчитывается как сумма стоимостей количества изделий от каждого работника. Данная ячейка (Е13) — это целевая функция. D9:D12 — изменяемые ячейки. «Поиск решений» определяет их оптимальные значения, чтобы целевая функция достигла минимума при заданных ограничениях.

В нашем примере следующие ограничения: 

  • общее количество изделий 1000 штук ($D$13 = $D$3); 
  • число заготовок, передаваемых в работу — целое и больше нуля либо равно нулю ($D$9:$D$12 = целое, $D$9:$D$12 > = 0); 
  • количество дней меньше либо равно 30 ($F$9:$F$12 < = $D$6, либо как в примере в ячейке F13 задать функцию МАКС(F9:F12) и поставить ограничение $F$13 < = $D$6).

tg_image_1670540083.jpeg
tg_image_1428577646.jpeg

tg_image_2951437605.jpeg

5) В конце проверьте полученные данные на соответствие заданному целевому значению. Если что-то не сходится — нужно пересмотреть исходные данные, введенные формулы и ограничения.

tg_image_1895334008.jpeg

Хотите научиться решать задачи в Excel, как это делают в компаниях-лидерах? Приходите на наш онлайн-курс, на котором вы освоите этот инструмент на уровне профи. Вашими преподавателями будут эксперты-практики, а после обучения вы сможете дополнить резюме весомой строчкой. Регистрируйтесь!

Рассмотрим пример решения задачи линейной оптимизации в Excel

Дана оптимизационная задача в виде таблицы

Ресурсы Нормы затрат на изготовление 1 ед. кровати Нормы затрат на изготовление 1 ед. шкафа Общее количество ресурсов
Сосна 0,8 1,4 200
Дуб 1,2 0,6 150
Трудоемкость (человеко-часов) 4 5 800
Прибыль от продажи одной единицы 9 11

По условию задачи составим целевая функция, которая будет иметь вид
Z=9x1+11x2
Ограничения
0,8x1+1,4x2≤200
1,2x1+0,6x2≤150
4x1+5x2≤800
x1,x2≥0

В Excel создаём таблицу с формулами, пример показан ниже

Таблица в Excel

Формулы можно скопировать из этой таблицы

Переменные
x1 x2
0 0
Функция целевая =9*A4+11*B4
=0.8*A4+1.4*B4 200
=1.2*A4+0.6*B4 150
=4*A4+5*B4 800

Затем переходим на вкладку Данные -> Поиск решения

анализ данных и поиск решения Excel

Выбираем ячейку, в которой надо оптимизировать целевую функцию, в нашем случае B5. Ставим галочку на максимум, затем выбираем ячейки с изменяемыми переменными это x1 и x2A4 и B4 и прописываем ограничения, нажимаем на кнопку добавить.

Параметры поиска решения Добавление ограничения

Из условия задачи значения выражений левой части меньше или равно значений правой части. Указываем сразу диапазон значений. Жмём на кнопку добавить ограничения.

Добавление ограничения

И выбираем из списка метод решения – решения линейной задачи симплекс методом.

Параметры поиска решения симплекс метод решения линейной задачи в excel

Вылетает информационное окно — результаты поиска решения, жмём Ок.

Результаты поиска решения

решение задачи линейной оптимизации в excel

Переменные
x1 x2
75 100
Функция целевая 1775
200 200
150 150
800 800

В результате, в исходной таблице появятся значения неизвестных переменных и значение целевой функции. В итоги мы получили оптимизированные значения переменных, на этом задачи оптимизации линейного программирования решена.

4700



Поиск решения — это надстройка Microsoft Excel, с помощью которой  можно найти оптимальное решение задачи с учетом заданных пользователем ограничений.

Поиск решения будем рассматривать в

MS EXCEL 2010

(эта надстройка претерпела некоторые изменения по сравнению с предыдущей версией в

MS EXCEL 2007)

. В этой статье рассмотрим:

  • создание оптимизационной модели на листе MS EXCEL
  • настройку

    Поиска решения;
  • простой пример (линейная модель).

Установка Поиска решения

Команда

Поиск решения

находится в группе

Анализ

на вкладке

Данные

.

Если команда

Поиск решения

в группе

Анализ

недоступна, то необходимо включить одноименную надстройку. Для этого:

  • На вкладке

    Файл

    выберите команду

    Параметры

    , а затем — категорию

    Надстройки

    ;
  • В поле

    Управление

    выберите значение

    Надстройки Excel

    и нажмите кнопку

    Перейти;
  • В поле

    Доступные надстройки

    установите флажок рядом с пунктом

    Поиск решения

    и нажмите кнопку ОК.


Примечание

. Окно

Надстройки

также доступно на вкладке

Разработчик

. Как включить эту вкладку

читайте здесь

.

После нажатия кнопки

Поиск решения

в группе

Анализ,

откроется его диалоговое окно

.

При частом использовании

Поиска решения

его удобнее запускать с Панели быстрого доступа, а не из вкладки Данные. Чтобы поместить кнопку на Панель, кликните на ней правой клавишей мыши и выберите пункт

Добавить на панель быстрого доступа

.

О моделях

Этот раздел для тех, кто только знакомится с понятием Оптимизационная модель.


Совет

. Перед использованием

Поиска решения

настоятельно рекомендуем изучить литературу по решению оптимизационных задач и построению моделей.

Ниже приведен небольшой ликбез по этой теме.

Надстройка

Поиск решения

помогает определить

лучший способ

сделать

что-то

:

  • «Что-то» может включать в себя выделение денег на инвестиции, загрузку склада, доставку товара или любую другую предметную деятельность, где требуется найти оптимальное решение.
  • «Лучший способ» или оптимальное решение в этом случае означает: максимизацию прибыли, минимизацию затрат, достижение наилучшего качества и пр.

Вот некоторые типичные примеры оптимизационных задач:

  • Определить

    план производства

    , при котором доход от реализации произведенной продукции максимальный;

  • Определить

    схему перевозок

    , при которой общие затраты на перевозку были бы минимальными;

  • Найти

    распределение нескольких станков по разным видам работ

    , чтобы общие затраты на производство продукции были бы минимальными;

  • Определить минимальный срок исполнения всех работ проекта (критический путь).

Для формализации поставленной задачи требуется создать модель, которая бы отражала существенные характеристики предметной области (и не включала бы незначительные детали). Следует учесть, что модель оптимизируется

Поиском решения

только по одному показателю

(этот оптимизируемый показатель называется

целевой функцией

). В MS EXCEL модель представляет собой совокупность связанных между собой формул, которые в качестве аргументов используют переменные. Как правило, эти переменные могут принимать только допустимые значения с учетом заданных пользователем ограничений.

Поиск решения

подбирает такие значения этих переменных (с учетом заданных ограничений), чтобы целевая функция была максимальной (минимальной) или была равна заданному числовому значению.


Примечание

. В простейшем случае модель может быть описана с помощью одной формулы. Некоторые из таких моделей могут быть оптимизированы с помощью инструмента

Подбор параметра

. Перед первым знакомством с

Поиском решения

имеет смысл сначала детально разобраться с родственным ему инструментом

Подбор параметра

. Основные отличия

Подбора параметра

от

Поиска решения

:


  • Подбор параметра

    работает только с моделями с одной переменной;
  • в нем невозможно задать ограничения для переменных;
  • определяется не максимум или минимум целевой функции, а ее равенство некому значению;
  • эффективно работает только в случае линейных моделей, в нелинейном случае находит локальный оптимум (ближайший к первоначальному значению переменной).

Подготовка оптимизационной модели в MS EXCEL


Поиск решения

оптимизирует значение целевой функции. Под целевой функцией подразумевается формула, возвращающая единственное значение в ячейку. Результат формулы должен зависеть от переменных модели (не обязательно напрямую, можно через результат вычисления других формул). Ограничения модели могут быть наложены как на диапазон варьирования самих переменных, так и на результаты вычисления других формул модели, зависящих от этих переменных. Все ячейки, содержащие переменные и ограничения модели должны быть расположены только на одном листе книги. Ввод параметров в диалоговом окне

Поиска решения

возможен только с этого листа. Целевая функция (ячейка) также должна быть расположена на этом листе. Но, промежуточные вычисления (формулы) могут быть размещены на других листах.


Совет

. Организуйте данные модели так, чтобы на одном листе MS EXCEL располагалась только одна модель. В противном случае, для выполнения расчетов придется постоянно сохранять и загружать настройки

Поиска решения

(см. ниже).

Приведем алгоритм работы с

Поиском решения

, который советуют сами разработчики (

]]>
www.solver.com

]]> ):

  • Определите ячейки с переменными модели (decision variables);
  • Создайте формулу в ячейке, которая будет рассчитывать целевую функцию вашей модели (objective function);
  • Создайте формулы в ячейках, которые будут вычислять значения, сравниваемые с ограничениями (левая сторона выражения);
  • С помощью диалогового окна

    Поиск решения

    введите ссылки на ячейки содержащие переменные, на целевую функцию, на формулы для ограничений и сами значения ограничений;
  • Запустите

    Поиск решения

    для нахождения оптимального решения.

Проделаем все эти шаги на простом примере.

Простой пример использования

Поиска решения

Необходимо загрузить контейнер товарами, чтобы вес контейнера был максимальным. Контейнер имеет объем 32 куб.м. Товары содержатся в коробках и ящиках. Каждая коробка с товаром весит 20кг, ее объем составляет 0,15м3. Ящик — 80кг и 0,5м3 соответственно. Необходимо, чтобы общее количество тары было не меньше 110 штук.

Данные модели организуем следующим образом (см.

файл примера

).

Переменные модели (количество каждого вида тары) выделены зеленым. Целевая функция (общий вес всех коробок и ящиков) – красным. Ограничения модели: по минимальному количеству тары (>=110) и по общему объему (<=32) – синим. Целевая функция рассчитывается по формуле

=СУММПРОИЗВ(B8:C8;B6:C6)

– это общий вес всех коробок и ящиков, загруженных в контейнер. Аналогично рассчитываем общий объем —

=СУММПРОИЗВ(B7:C7;B8:C8)

. Эта формула нужна, чтобы задать ограничение на общий объем коробок и ящиков (<=32). Также для задания ограничения модели рассчитаем общее количество тары

=СУММ(B8:C8)

. Теперь с помощью диалогового окна

Поиск решения

введем ссылки на ячейки содержащие переменные, целевую функцию, формулы для ограничений и сами значения ограничений (или ссылки на соответствующие ячейки). Понятно, что количество коробок и ящиков должно быть целым числом – это еще одно ограничение модели.

После нажатия кнопки

Найти решение

будут найдены такие количества коробок и ящиков, при котором общий их вес (целевая функция) максимален, и при этом выполнены все заданные ограничения.


Совет

: в статье »

Поиск решения MS EXCEL. Экстремум функции с несколькими переменными. Граничные условия заданы уравнениями

» показано решение задачи, в которой функция и граничные условия заданы в явном виде, т.е. математическими выражениями типа F(x1, x2, x3)=x1+2*x2+6*x3, что существенно облегчает построение модели, т.к. не требуется особо осмыслять задачу: можно просто подставить переменные x в поле переменные, а ограничения ввести в соответствующее поле окна Поиска решения.

Резюме

На самом деле, основной проблемой при решении оптимизационных задач с помощью

Поиска решения

является отнюдь не тонкости настройки этого инструмента анализа, а правильность построения модели, адекватной поставленной задаче. Поэтому в других статьях сконцентрируемся именно на построении моделей, ведь «кривая» модель часто является причиной невозможности найти решение с помощью

Поиска решения

. Зачастую проще просмотреть несколько типовых задач, найти среди них похожую, а затем адаптировать эту модель под свою задачу. Решение классических оптимизационных задач с помощью

Поиска решения

рассмотрено

в этом разделе

.

Поиску решения не удалось найти решения (Solver could not find a feasible solution)

Это сообщение появляется, когда

Поиск решения

не смог найти сочетаний значений переменных, которые одновременно удовлетворяют всем ограничениям. Если вы используете

Симплекс метод решения линейных задач

, то можно быть уверенным, что решения действительно не существует. Если вы используете метод решения нелинейных задач, который всегда начинается с начальных значений переменных, то это может также означать, что допустимое решение далеко от этих начальных значений. Если вы запустите

Поиск решения

с другими начальными значениями переменных, то, возможно, решение будет найдено. Представим, что при решении задачи нелинейным методом, ячейки с переменными были оставлены не заполненными (т.е. начальные значения равны 0), и

Поиск решения

не нашел решения. Это не означает, что решения действительно не существует (хотя это может быть и так). Теперь, основываясь на результатах некой экспертной оценки, в ячейки с переменными введем другой набор значений, который, по Вашему мнению, близок к оптимальному (искомому). В этом случае,

Поиск решения

может найти решение (если оно действительно существует).


Примечание

. О влиянии нелинейности модели на результаты расчетов можно прочитать в последнем разделе статьи

Поиск решения MS EXCEL (4.3). Выбор места открытия нового представительства

.

В любом случае (линейном или нелинейном), Вы должны сначала проанализировать модель на непротиворечивость ограничений, то есть условий, которые не могут быть удовлетворены одновременно. Чаще всего это связано с неправильным выбором соотношения (например, <= вместо >=) или граничного значения. Если, например, в рассмотренном выше примере, значение максимального объема установить 16 м3 вместо 32 м3, то это ограничение станет противоречить ограничению по минимальному количеству мест (110), т.к. минимальному количеству мест соответствует объем равный 16,5 м3 (110*0,15, где 0,15 – объем коробки, т.е. самой маленькой тары). Установив в качестве ограничения максимального объема 16 м3,

Поиск решения

не найдет решения.

При ограничении 17 м3

Поиск решения

найдет решение.

Некоторые настройки

Поиска решения


Метод решения

Рассмотренная выше модель является линейной, т.е. целевая функция (M – общий вес, который может быть максимален) выражена следующим уравнением M=a1*x1+a2*x2, где x1 и x2 – это переменные модели (количество коробок и ящиков), а1 и а2 – их веса. В линейной модели ограничения также должны быть линейными функциями от переменных. В нашем случае ограничение по объему V=b1*x1+b2*x2 также выражается линейной зависимостью. Очевидно, что другое ограничение — Максимальное количество тары (n) – также линейно x1+x2
Поиска решения

можно также проверить на линейность саму модель. В случае нелинейной модели Вы получите следующее сообщение:

В этом случае необходимо выбрать метод для решения нелинейной задачи. Примеры нелинейных зависимостей: V=b1*x1*x1; V=b1*x1^0,9; V=b1*x1*x2, где x – переменная, а V – целевая функция.


Кнопки Добавить, Изменить, Удалить

Эти кнопки позволяют добавлять, изменять и удалять ограничения модели.


Кнопка Сбросить

Чтобы удалить все настройки

Поиска решения

нажмите кнопку

Сбросить

– диалоговое окно очистится.


Сохранение и загрузка модели

Эта опция удобна при использовании разных вариантов ограничений. При сохранении параметров модели (кнопка

Загрузить/ Сохранить,

далее нажмите кнопку

Сохранить

) предлагается выбрать верхнюю ячейку диапазона (столбца), в который будут помещены: ссылка на целевую функцию, ссылки на ячейки с переменными, ограничения и параметры методов решения (доступные через кнопку

Параметры

). Перед сохранением убедитесь в том, что этот диапазон не содержит данных модели. Для загрузки сохраненных параметров нажмите сначала кнопку

Загрузить/ Сохранить

, затем, в появившемся диалоговом окне кнопку

Загрузить

, после чего задайте диапазон ячеек, содержащих сохраненные ранее настройки (нельзя указывать только одну верхнюю ячейку). Нажмите кнопку OK. Подтвердите сброс текущих значений параметров задачи и их замену на новые.


Точность

При создании модели исследователь изначально имеет некую оценку диапазонов варьирования целевой функции и переменных. Принимая во внимание

ограниченную точность

вычислений в MS EXCEL, рекомендуется, чтобы эти диапазоны варьирования были значительно выше точности вычисления (она обычно устанавливается от 0,001 до 0,000001). Как правило, данные в модели нормируют так, чтобы диапазоны варьирования целевой функции и переменных были в пределах 0,1 – 100 000. Конечно, все зависит от конкретной модели, но если ваши переменные изменяются более чем на 5-6 порядков, то возможно следует «загрубить» модель, например, с помощью операции логарифмирования.

Задачи линейного программирования относятся к широко распространённому классу задач, встречающихся в различных сферах деятельности: в бизнесе, на производстве, в быту. Как оптимально распорядиться бюджетом или за минимальное время добраться до нужного места в городе, как наилучшим образом спланировать деловые встречи, минимизировать риски капитальных вложений, определить оптимальные запасы сырья на складе – это те задачи, в которых нужно найти наилучшее из всех возможных решений.

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Линейное программирование

Линейное программирование – это раздел математики, занимающийся разработкой методов отыскания экстремальных значений функции, на аргументы которой наложены ограничения. Слово «программирование» заимствовано из зарубежной литературы, где оно используется в смысле «планирование».

Решение задач линейного программирования с использованием microsoft excel

Цель работы

Приобретение навыков решения задач линейного программирования (ЛП) в табличном редакторе Microsoft Excel.

Порядок выполнения работы

Для модели линейного программирования, соответствующей номеру Вашего варианта, найдите оптимальное решение в табличном редакторе Microsoft Excel и продемонстрируйте его преподавателю.

Инструкция по использованию microsoft excel для решения задач линейного программирования

Для того чтобы решить задачу линейного программирования в табличном редакторе Microsoft Excel, необходимо выполнить следующие действия.

Ввести условие задачи:

a) создать экранную форму для ввода условия задачи:

  • переменных,
  • целевой функции (ЦФ),
  • ограничений,
  • граничных условий;

b) ввести исходные данные в экранную форму:

  • коэффициенты ЦФ,
  • коэффициенты при переменных в ограничениях,
  • правые части ограничений;

c) ввести зависимости из математической модели в экранную форму:

  • формулу для расчета ЦФ,
  • формулы для расчета значений левых частей ограничений;

d) задать ЦФ (в окне «Поиск решения»):

  • целевую ячейку,
  • направление оптимизации ЦФ;

e) ввести ограничения и граничные условия (в окне «Поиск решения»):

  • ячейки со значениями переменных,
  • граничные условия для допустимых значений переменных,
  • соотношения между правыми и левыми частями ограничений.

Решить задачу:

a) установить параметры решения задачи (в окне «Поиск решения»);

b) запустить задачу на решение (в окне «Поиск решения»);

с) выбрать формат вывода решения (в окне «Результаты поиска решения»).

Возможно эта страница вам будет полезна:

Одноиндексные задачи линейного программирования

Рассмотрим пример нахождения решения для следующей одноиндексной задачи ЛП:

Линейное программирование в Excel задачи с решением

Ввод исходных данных

Создание экранной формы и ввод в нее условия задачи

Экранная форма для ввода условий задачи (1.1) вместе с введенными в нее исходными данными представлена на рис. 1.1.

Линейное программирование в Excel задачи с решением

В экранной форме на рис. 1.1 каждой переменной и каждому коэффициенту задачи поставлена в соответствие конкретная ячейка в Excel. Имя ячейки состоит из буквы, обозначающей столбец, и цифры, обозначающей строку, на пересечении которых находится объект задачи линейного программирования. Так, например, переменным задачи (1.1) соответствуют ячейки Линейное программирование в Excel задачи с решениемЛинейное программирование в Excel задачи с решением, коэффициентам ЦФ соответствуют ячейки

Линейное программирование в Excel задачи с решением
Линейное программирование в Excel задачи с решением

правым частям ограничений соответствуют ячейки

Линейное программирование в Excel задачи с решением

Ввод зависимостей из математической модели в экранную форму

Зависимость для ЦФ

В ячейку F6, в которой будет отображаться значение ЦФ, необходимо ввести формулу, по которой это значение будет рассчитано. Согласно (1.1) значение ЦФ определяется выражением

Линейное программирование в Excel задачи с решением

Используя обозначения соответствующих ячеек в Excel (см. рис. 1.1), формулу для расчета ЦФ (1.2) можно записать как сумму произведений каждой из ячеек, отведенных для значений переменных задачи (ВЗ, СЗ, D3, ЕЗ), на соответствующую ячейку, отведенную для коэффициентов ЦФ (В6, С6, D6, Е6), то есть

Линейное программирование в Excel задачи с решением

Чтобы задать формулу (1.3) необходимо в ячейку F6 ввести следующее выражение и нажать клавишу «Enter»

Линейное программирование в Excel задачи с решением

где символ $ перед номером строки 3 означает, что при копировании этой формулы в другие места листа Excel номер строки 3 не изменится;

символ : означает, что в формуле будут использованы все ячейки, расположенные между ячейками, указанными слева и справа от двоеточия (например, запись В6:Е6 указывает на ячейки В6, С6, D6 и Е6). После этого в целевой ячейке появится 0 (нулевое значение) (рис. 1.2).

Линейное программирование в Excel задачи с решением

Примечание 1.1. Существует другой способ задания функций в Excel с помощью режима «Вставка функций», который можно вызвать из меню «Вставка» или при нажатии кнопки «Линейное программирование в Excel задачи с решением» на стандартной панели инструментов. Так, например, формулу (1.4) можно задать следующим образом:

• курсор в поле F6;

• нажав кнопку «Линейное программирование в Excel задачи с решением«, вызовите окно «Мастер функций — шаг 1 из 2»;

• выберите в окне «Категория» категорию «Математические»;

• в окне «Функция» выберите функцию СУММПРОИЗВ;

• в появившемся окне «СУММПРОИЗВ» в строку «Массив 1» введите выражение В$3:Е$3, а в строку «Массив 2» — выражение В6:Е6 (рис. 1.3);

• после ввода ячеек в строки «Массив 1» и «Массив 2» в окне «СУММПРОИЗВ» появятся числовые значения введенных массивов (см. рис. 1.3), а в экранной форме в ячейке F6 появится текущее значение, вычисленное по введенной формуле, то есть 0 (так как в момент ввода формулы значения переменных задачи нулевые).

Линейное программирование в Excel задачи с решением

Зависимости для левых частей ограничений

Левые части ограничений задачи (1.1) представляют собой сумму произведений каждой из ячеек, отведенных для значений переменных задачи (ВЗ, СЗ, D3, ЕЗ), на соответствующую ячейку, отведенную для коэффициентов конкретного ограничения (В 10, СЮ, D10, ЕЮ — 1-е ограничение; В11, С11, D11, El 1 — 2-е ограничение и В12, С12, D12, Е12 — 3-е ограничение). Формулы, соответствующие левым частям ограничений, представлены в табл. 1.1.

Линейное программирование в Excel задачи с решением

Как видно из табл. 1.1, формулы, задающие левые части ограничений задачи (1.1), отличаются друг от друга и от формулы (1.4) в целевой ячейке F6 только номером строки во втором массиве. Этот номер определяется той строкой, в которой ограничение записано в экранной форме. Поэтому для задания зависимостей для левых частей ограничений достаточно скопировать формулу из целевой ячейки в ячейки левых частей ограничений. Для этого необходимо:

• поместить курсор в поле целевой ячейки F6 и скопировать в буфер содержимое ячейки F6 (клавишами «Ctrl-Insert»);

• помещать курсор поочередно в поля левой части каждого из ограничений, то есть в F10, F11 и F12, и вставлять в эти поля содержимое буфера (клавишами «Shift-Insert») (при этом номер ячеек во втором массиве формулы будет меняться на номер той строки, в которую была произведена вставка из буфера);

• на экране в полях F10, F11 и F12 появится 0 (нулевое значение) (см. рис. 1.2).

Проверка правильности введения формул

Для проверки правильности введенных формул производите поочередно двойное нажатие левой клавиши мыши на ячейки с формулами. При этом на экране рамкой будут выделяться ячейки, используемые в формуле (рис. 1.4 и 1.5).

Линейное программирование в Excel задачи с решением

Задание ЦФ

Дальнейшие действия производятся в окне «Поиск решения», которое вызывается из меню «Сервис» (рис. 1.6):

• поставьте курсор в поле «Установить целевую ячейку»;

• введите адрес целевой ячейки $F$6 или сделайте одно нажатие левой клавиши мыши на целевую ячейку в экранной форме — это будет равносильно вводу адреса с клавиатуры;

• введите направление оптимизации ЦФ, щелкнув один раз левой клавишей мыши по селекторной кнопке «максимальному значению».

Линейное программирование в Excel задачи с решением

Ввод ограничений и граничных условий

Задание ячеек переменных

В окно «Поиск решения» в поле «Изменяя ячейки» впишите адреса $BS3:$E$3. Необходимые адреса можно вносить в поле «Изменяя ячейки» и автоматически путем выделения мышью соответствующих ячеек переменных непосредственно в экранной форме.

Задание граничных условий для допустимых значений переменных

В нашем случае на значения переменных накладывается только граничное условие неотрицательности, то есть их нижняя граница должна быть равна нулю (см. рис. 1.1).

• Нажмите кнопку «Добавить», после чего появится окно «Добавление ограничения» (рис. 1.7).

• В поле «Ссылка на ячейку» введите адреса ячеек переменных $BS3:$E$3. Это можно сделать как с клавиатуры, так и путем выделения мышью всех ячеек переменных непосредственно в экранной форме.

• В поле знака откройте список предлагаемых знаков и выберите >.

• В поле «Ограничение» введите адреса ячеек нижней границы значений переменных, то есть $В$4:$Е$4. Их также можно ввести путем выделения мышью непосредственно в экранной форме.

Линейное программирование в Excel задачи с решением

Задание знаков ограничений <. >, =

• Нажмите кнопку «Добавить» в окне «Добавление ограничения».

• В поле «Ссылка на ячейку» введите адрес ячейки левой части конкретного ограничения, например $F$10. Это можно сделать как с клавиатуры, так и путем выделения мышью нужной ячейки непосредственно в экранной форме.

• В соответствии с условием задачи (1.1) выбрать в поле знака необходимый знак, например =.

• В поле «Ограничение» введите адрес ячейки правой части рассматриваемого ограничения, например $Н$10.

• Аналогично введите ограничения: $F$11>=$Н$11, $F$12<=$H$12.

• Подтвердите ввод всех перечисленных выше условий нажатием кнопки ОК.

Окно «Поиск решения» после ввода всех необходимых данных задачи (1.1) представлено на рис. 1.6.

Если при вводе условия задачи возникает необходимость в изменении или удалении внесенных ограничений или граничных условий, то это делают, нажав кнопки «Изменить» или «Удалить» (см. рис. 1.6).

Решение задачи

Установка параметров решения задачи

Задача запускается на решение в окне «Поиск решения». Но предварительно для установления конкретных параметров решения задач оптимизации определенного класса необходимо нажать кнопку «Параметры» и заполнить некоторые поля окна «Параметры поиска решения» (рис. 1.8).

Линейное программирование в Excel задачи с решением

Параметр «Максимальное время» служит для назначения времени (в секундах), выделяемого на решение задачи. В поле можно ввести время, не превышающее 32 767 секунд (более 9 часов).

Параметр «Предельное число итераций» служит для управления временем решения задачи путем ограничения числа промежуточных вычислений. В поле можно ввести количество итераций, не превышающее 32 767.

Параметр «Относительная погрешность» служит для задания точности, с которой определяется соответствие ячейки целевому значению или приближение к указанным границам. Поле должно содержать число из интервала от 0 до 1. Чем меньше количество десятичных знаков во введенном числе, тем ниже точность. Высокая точность увеличит время, которое требуется для того, чтобы сошелся процесс оптимизации.

Параметр «Допустимое отклонение» служит для задания допуска на отклонение от оптимального решения в целочисленных задачах. При указании большего допуска поиск решения заканчивается быстрее.

Параметр «Сходимость» применяется только при решении нелинейных задач.

Установка флажка «Линейная модель» обеспечивает ускорение поиска решения линейной задачи за счет применение симплекс-метода.

Подтвердите установленные параметры нажатием кнопки «ОК».

Запуск задачи на решение

Запуск задачи на решение производится из окна «Поиск решения» путем нажатия кнопки «Выполнить».

После запуска на решение задачи линейного программирования на экране появляется окно «Результаты поиска решения» с одним из сообщений, представленных на рис. 1.9, 1.10 и 1.11.

Линейное программирование в Excel задачи с решением

Иногда сообщения, представленные на рис. 1.10 и 1.11, свидетельствуют не о характере оптимального решения задачи, а о том, что при вводе условий задачи в Excel были допущены ошибки, не позволяющие Excel найти оптимальное решение, которое в действительности существует (см. ниже подразд.1.3.5).

Если при заполнении полей окна «Поиск решения» были допущены ошибки, не позволяющие Excel применить симплекс-метод для решения задачи или довести ее решение до конца, то после запуска задачи на решение на экран будет выдано соответствующее сообщение с указанием причины, по которой решение не найдено. Иногда слишком малое значение параметра «Относительная погрешность» не позволяет найти оптимальное решение. Для исправления этой ситуации увеличивайте погрешность поразрядно, например от 0,000001 до 0,00001 и т.д.

В окне «Результаты поиска решения» представлены названия трех типов отчетов: «Результаты», «Устойчивость», «Пределы». Они необходимы при анализе полученного решения на чувствительность (см. ниже подразд.3.3). Для получения же ответа (значений переменных, ЦФ и левых частей ограничений) прямо в экранной форме просто нажмите кнопку «ОК». После этого в экранной форме появляется оптимальное решение задачи (рис. 1.12).

Линейное программирование в Excel задачи с решением

Целочисленное программирование

Допустим, что к условию задачи (1.1) добавилось требование целочисленности значений всех переменных. В этом случае описанный выше процесс ввода условия задачи необходимо дополнить следующими шагами.

• В экранной форме укажите, на какие переменные накладывается требование целочисленности (этот шаг делается для наглядности восприятия условия задачи) (рис. 1.13).

• В окне «Поиск решения» (меню «Сервис»—>»Поиск решения»), нажмите кнопку «Добавить» и в появившемся окне «Добавление ограничений» введите ограничения следующим образом (рис.1.14):

  • в поле «Ссылка на ячейку» введите адреса ячеек переменных задачи, то есть $В$3:$Е$3;
  • в поле ввода знака ограничения установите «целое»;
  • подтвердите ввод ограничения нажатием кнопки «ОК».
Линейное программирование в Excel задачи с решением

На рис. 1.13 представлено решение задачи (1.1), к ограничениям которой добавлено условие целочисленности значений ее переменных.

Двухиндексные задачи линейного программирования

Двухиндексные задачи линейного программирования вводятся и решаются в Excel аналогично одноиндексным задачам. Специфика ввода условия двухиндексной задачи ЛП состоит лишь в удобстве матричного задания переменных задачи и коэффициентов ЦФ.

Рассмотрим решение двухиндексной задачи, суть которой заключается в оптимальной организации транспортных перевозок штучного товара со складов в магазины (табл. 1.2).

Линейное программирование в Excel задачи с решением

Целевая функция и ограничения данной задачи имеют вид

Линейное программирование в Excel задачи с решением

Экранные формы, задание переменных, целевой функции, ограничений и граничных условий двухиндексной задачи (1.5) и ее решение представлены на рис. 1.15, 1.16, 1.17 и в табл. 1.3.

Линейное программирование в Excel задачи с решением

Линейное программирование в Excel задачи с решением

Линейное программирование в Excel задачи с решением

Задачи с булевыми переменными

Частным случаем задач с целочисленными переменными являются задачи, в результате решения которых искомые переменные Линейное программирование в Excel задачи с решением могут принимать только одно из двух значений: 0 или 1. Такие переменные в честь предложившего их английского математика Джорджа Буля называют булевыми. На рис. 1.18 представлена экранная форма с решением некоторой двухиндексной задачи с булевыми переменными.

Линейное программирование в Excel задачи с решением

Рис. 1.18. Решение двухиндексной задачи с булевыми переменными

Помимо задания требования целочисленности (см. подразд.1.3.2) при вводе условия задач с булевыми переменными необходимо:

• для наглядности восприятия ввести в экранную форму слово «булевы» в качестве характеристики переменных (см. рис. 1.18);

• в окне «Поиск решения» добавить граничные условия, имеющие смысл ограничения значений переменных по их единичной верхней границе (рис. 1.19).

Линейное программирование в Excel задачи с решением

Вид окна «Поиск решения» для задачи с булевыми переменными, представленной на рис. 1.18, приведен на рис. 1.20.

Линейное программирование в Excel задачи с решением

Возможные ошибки при вводе условий задач линейного программирования

Если при решении задачи линейного программирования выдается сообщение о невозможности нахождения решения, то возможно, что причина заключается в ошибках ввода условия задачи в Excel.

Как решить задачу линейного программирования в excel

Цель работы

Приобретение навыков решения задач линейного программирования (ЗЛП) в табличном редакторе Microsoft Excel. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Для модели линейного программирования, соответствующей номеру Вашего варианта, найдите оптимальное решение в табличном редакторе Microsoft Excel и продемонстрируйте его преподавателю.

Инструкция по использованию microsoft excel для решения задач линейного программирования

Для того чтобы решить ЗЛП в табличном редакторе Microsoft Excel, необходимо выполнить следующие действия. 1. Ввести условие задачи:

a) создать экранную форму для ввода условия задачи:

  • • переменных,
  • • целевой функции (ЦФ),
  • • ограничений,
  • • граничных условий;

b) ввести исходные данные в экранную форму:

  • • коэффициенты ЦФ,
  • • коэффициенты при переменных в ограничениях,
  • • правые части ограничений;

c) ввести зависимости из математической модели в экранную форму:

  • • формулу для расчета ЦФ,
  • • формулы для расчета значений левых частей ограничений; с!) задать ЦФ (в окне «Поиск решения»):
  • • целевую ячейку,
  • • направление оптимизации ЦФ;

е) ввести ограничения и граничные условия (в окне «Поиск решения»):

  • • ячейки со значениями переменных,
  • • граничные условия для допустимых значений переменных,
  • • соотношения между правыми и левыми частями ограничений. 2. Решить задачу:

a)установить параметры решения задачи (в окне «Поиск решения»,);

b) запустить задачу на решение (в окне «Поиск решения»,);

c) выбрать формат вывода решения (в окне «Результаты поиска решения»).

Одноиндексные ЗЛП

Рассмотрим пример нахождения решения для следующей одноиндексной ЗЛП:

Линейное программирование в Excel задачи с решением
  • Ввод исходных данных

Создание экранной формы и ввод в нее условия задачи

Экранная форма для ввода условий задачи (1) вместе с введенными в нее исходными данными представлена на рис.1.

Линейное программирование в Excel задачи с решением

В экранной форме на рис. 1 каждой переменной и каждому коэффициенту задачи поставлена в соответствие конкретная ячейка в Excel. Так, например, переменным задачи (1) соответствуют ячейки

Линейное программирование в Excel задачи с решением

коэффициентам ЦФ соответствуют ячейки

Линейное программирование в Excel задачи с решением
Линейное программирование в Excel задачи с решением

правым частям ограничений соответствуют ячейки

Линейное программирование в Excel задачи с решением

Линейное программирование в Excel задачи с решением
  • Ввод зависимостей из математической модели в экранную форму

Зависимость для ЦФ.

В ячейку F6, в которой будет отображаться значение ЦФ, необходимо ввести формулу, по которой это значение будет рассчитано. Согласно (1 (значение ЦФ определяется выражением

Линейное программирование в Excel задачи с решением

Используя обозначения соответствующих ячеек в Excel (см. рис. 1), формулу для расчета ЦФ (2) можно записать как сумму произведений каждой из ячеек, отведенных для значений переменных задачи (ВЗ, СЗ, D3, ЕЗ), на соответствующую ячейку, отведенную для коэффициентов ЦФ (В6, С6, D6,E6):

Линейное программирование в Excel задачи с решением

После этого в целевой ячейке появится 0 (нулевое значение) (рис. 2).

Линейное программирование в Excel задачи с решением

Зависимости для левых частей ограничений

Левые части ограничений задачи (1) представляют собой сумму произведений каждой из ячеек, отведенных для значений переменных задачи(ВЗ, СЗ, D3, ЕЗ), на соответствующую ячейку, отведенную для коэффициентов конкретного ограничения (B10, С10, D10, Е10 — 1-е ограничение; В11, C11,D11, Е11 — 2-е ограничение и В12, С12, D12, Е12 — 3-е ограничение). Формулы, соответствующие левым частям ограничений, записать самостоятельно. Проверка правильности введения формул

Для проверки правильности введенных формул производите поочередно двойное нажатие левой клавиши мыши на ячейки с формулами. При этом на экране рамкой будут выделяться ячейки, используемые в формуле. Дальнейшие действия производятся в окне «Поиск решения», которое вызывается из меню «Сервис». Решение задачи

Установка параметров решения задачи

Задача запускается на решение в окне «Поиск решения». Но предварительно для установления конкретных параметров решения задач оптимизации определенного класса необходимо нажать кнопку «Параметры»и заполнить некоторые поля окна «Параметры поиска решения».

Параметр «Максимальное время» служит для назначения времени (в секундах), выделяемого на решение задачи. В поле можно ввести время, не превышающее 32 767 секунд (более 9 часов).

Параметр «Предельное число итераций» служит для управления временем решения задачи путем ограничения числа промежуточных вычислений. В поле можно ввести количество итераций, не превышающее32 767. Параметр «Относительная погрешность» служит для задания точности, с которой определяется соответствие ячейки целевому значению или приближение к указанным границам. Поле должно содержать число из интервала от 0 до 1. Чем меньше количество десятичных знаков во введенном числе, тем ниже точность. Высокая точность увеличит время, которое требуется для того, чтобы сошелся процесс оптимизации.

Параметр «Допустимое отклонение» служит для задания допуска на отклонение от оптимального решения в целочисленных задачах. При указании большего допуска поиск решения заканчивается быстрее. Параметр «Сходимость» применяется только при решении нелинейных задач. Установка флажка «Линейная модель» обеспечивает ускорение поиска решения линейной задачи за счет применение симплекс-метода. Подтвердите установленные параметры нажатием кнопки «ОК». Запуск задачи на решение

Запуск задачи на решение производится из окна «Поиск решения» путем нажатия кнопки «Выполнить».

После запуска на решение задачи линейного программирования на экране появляется окно «Результаты поиска решения» с одним из сообщений:

• Сообщение об успешном решении задачи

• Сообщение при несовместной системе ограничений задачи

• Сообщение при неограниченности ЦФ в требуемом направлении Иногда второе и третье сообщения свидетельствуют не о характере оптимального решения задачи, а о том, что при вводе условийзадачи в Excel были допущены ошибки, не позволяющие Excel найти оптимальное решение, которое в действительности существует.

Если при заполнении полей окна «Поиск решения» были допущены ошибки, не позволяющие Excel применить симплекс-метод для решения задачи или довести ее решение до конца, то после запуска задачи на решение на экран будет выдано соответствующее сообщение с указанием причины, по которой решение не найдено. Иногда слишком малое значение параметра»Относительная погрешность» не позволяет найти оптимальное решение. Для исправления этой ситуации увеличивайте погрешность поразрядно, например от 0,000001 до 0,00001 и т.д.

В окне «Результаты поиска решения» представлены названия трех типов отчетов: «Результаты», «Устойчивость», «Пределы». Они необходимы при анализе полученного решения на чувствительность (будет рассмотрено позже). Для получения же ответа (значений переменных, ЦФ и левых частей ограничений) прямо в экранной форме просто нажмите кнопку «ОК». После этого в экранной форме появляется оптимальное решение задачи (рис.3).

Линейное программирование в Excel задачи с решением

Целочисленное программирование

Допустим, что к условию задачи (1) добавилось требование целочисленности значений всех переменных. В этом случае описанный выше процесс ввода условия задачи необходимо дополнить следующими шагами.

• В экранной форме укажите, на какие переменные накладывается требование целочисленности (этот шаг делается для наглядности восприятия условия задачи) (рис. 4).

Линейное программирование в Excel задачи с решением

• В окне «Поиск решения» (меню «Сервис»—►»Поиск решения»), нажмите кнопку «Добавить» и в появившемся окне «Добавление ограничений» введите ограничения целочисленности. Сравните результаты.

Получите у преподавателя индивидуальные задания.

Примеры решения экономических задач Задача 1.

Средства очистки пола оценивают по следующим трем показателям:

  • • очищающие свойства;
  • • дезинфицирующие свойства;
  • • раздражающее воздействие на кожу.

Каждый из этих показателей измеряется по линейной шкале от 0 до 100. Продукт на рынке должен иметь по крайней мере 60 ед. очищающих свойств и по крайней мере 60 ед. дезинфицирующих свойств по соответствующей шкале. При этом раздражающее воздействие на кожу должно быть минимальным. Конечный продукт должен быть смесью трех основных очистителей, характеристики которых приведены в таблице.

Линейное программирование в Excel задачи с решением

Составим математическую модель задачи. Пусть Линейное программирование в Excel задачи с решением — доля очистителя Линейное программирование в Excel задачи с решением в конечном продукте, Линейное программирование в Excel задачи с решением — доля очистителя Линейное программирование в Excel задачи с решением в конечном продукте, Линейное программирование в Excel задачи с решением — доля очистителя Линейное программирование в Excel задачи с решением в конечном продукте.

Целевая функция: Линейное программирование в Excel задачи с решением (т.е. минимизируем раздражающее воздействие на кожу конечного продукта).

Ограничения:

Линейное программирование в Excel задачи с решением

Решение задачи с помощью MS Excel.

Линейное программирование в Excel задачи с решением

Заполним таблицу, содержащую исходные данные. Заполним диалоговое окно

«Поиск решения».

Линейное программирование в Excel задачи с решением

Щелкнув по кнопке ОК, мы получаем на месте исходной таблицы — таблицу с найденными оптимальными значениями. В результате в таблице получим значение целевой функции — 31,4 ед. раздражающего воздействия на кожу при

Линейное программирование в Excel задачи с решением

(т.е. очистители Линейное программирование в Excel задачи с решением нужно брать в долях 30%, 10% и 60% соответственно).

Линейное программирование в Excel задачи с решением

Задача 2.

Фирме требуется уголь с содержанием фосфора не более 0,03% и с примесью пепла не более 3,25%. Доступны 3 сорта угля Линейное программирование в Excel задачи с решением по следующим ценам (за тонну):

Линейное программирование в Excel задачи с решением

Как следует их смешать, чтобы удовлетворить ограничениям на примеси и минимизировать цену?

Решение задач математического программирования с помощью надстройки «Поиск решения» ЭТ Excel

Задачи линейного программирования, целочисленного программирования и ряд задач нелинейного программирования могут быть решены с помощью стандартного прикладного программного обеспечения. Например, в ЭТ MS Excel для этого имеется модуль «Поиск решения», вызываемый командой меню «Сервис/Поиск решения». Для активизации данного модуля необходимо выполнить команду «Сервис/Надстройки» и установить флажок напротив строки меню «Поиск решения».

Рассмотрим пример применения «Поиска решения» на основе решения задачи оптимизации портфеля ценных бумаг — одной из классических задач управления финансовыми средствами.

Постановка задачи. Перед инвестором стоит задача на основе информации, представленной в таблице 1, разместить имеющиеся средства так, чтобы получить максимальную прибыль за 1 период планирования (1 год), при этом должны быть выполнены следующие условия:

  1. Суммарный объем капитала составляет 100 000 $;
  2. доля средств, вложенная в один из объектов, не может превышать 25%;
  3. более 40% всех средств должны быть вложены в долгосрочные активы;
  4. доля высокорисковых активов не может превышать трети от суммарного объема.

Таблица 1 — Информация об объектах инвестирования

Линейное программирование в Excel задачи с решением

Построим экономико-математическую модель задачи.

Искомые переменные — объемы средств, вложенные в активы: Линейное программирование в Excel задачи с решениемЛинейное программирование в Excel задачи с решением.

Прибыль, которую получит инвестор, задается целевой функцией:

Линейное программирование в Excel задачи с решением

Сформируем ограничения:

Ограничения на суммарный объем активов —

Линейное программирование в Excel задачи с решением

Ограничение на размер доли каждого актива

Линейное программирование в Excel задачи с решением

Необходимость долгосрочного инвестирования (например, более 3 лет)

Линейное программирование в Excel задачи с решением

Учет необходимости снижения риска —

Линейное программирование в Excel задачи с решением

Естественное экономическое ограничение — неотрицательность искомых переменных —

Линейное программирование в Excel задачи с решением

Для решения задачи выполним следующие шаги.

  • На рабочем листе представим необходимую для решения информацию, согласно рисунку 1.

Ячейки В13, Н9-Н11 должны содержать формулы, отражающие зависимость между искомыми переменными и условиями задачи. В данном случае целесообразно использовать функцию Суммпроизв(…), аргументами которой являются диапазоны B4-G4 и диапазоны соответствующих параметров.

Линейное программирование в Excel задачи с решением

Рисунок 1 — Исходные данные для решения ЗЛП

  • Выполнить команду Сервис/Поиск решения и заполнить все поля диалогового окна:

Указать адрес ячейки (В 13), содержащей целевую функцию, указать тип целевой функции,

В поле «изменяя ячейки» указать адреса всех искомых переменных (от В4 до G4).

Затем последовательно заполнить все ограничения (Пример на рисунке 2.)

Линейное программирование в Excel задачи с решением

Если возникли ошибки ввода, то изменить или добавить ограничение можно с помощью командных кнопок «Добавить, изменить, удалить».

Линейное программирование в Excel задачи с решением

Далее, если это необходимо, устанавливаются особые значения параметров (кнопка «Параметры»).

Линейное программирование в Excel задачи с решением

Результаты отражаются на рабочем листе. Результаты решения представлены на рисунке 5.

Линейное программирование в Excel задачи с решением

Рисунок 5 — Результаты решения задачи

На рисунке 6 представлена структура инвестиционного портфеля.

Линейное программирование в Excel задачи с решением

На основе решения проводится анализ, и принимаются соответствующие управленческие решения.

Технология решения транспортной задачи

1. На рабочем листе представим необходимую для решения информацию, согласно рисунку 7.

Ячейки В15 содержит формулу Суммпроизв(…), аргументами которой являются диапазоны В4-Е6 и В9-Е11. Ячейки F9-F11 должны содержать формулы, отражающие зависимость между искомыми переменными и условиями задачи. В данном случае целесообразно использовать функцию Сумм(…), аргументами которой являются диапазоны В9-Е9, В10-Е 10 и В11 -Е11. Аналогично определяются формулы в В12-Е 12.

Линейное программирование в Excel задачи с решением

Рисунок 7 — Исходные данные для решения ЗЛП

  • Выполнить команду Сервис/Поиск решения и заполнить все поля диалогового окна:

Указать адрес ячейки (В 15), содержащей целевую функцию, указать тип целевой функции (минимум),

В поле «изменяя ячейки» указать адреса всех искомых переменных (от В9 до Е11).

Затем последовательно заполнить все ограничения (Пример на рисунке 8.)

Линейное программирование в Excel задачи с решением

Если возникли ошибки ввода, то изменить или добавить ограничение можно с помощью командных кнопок «Добавить, изменить, удалить». Результаты отражаются на рабочем листе. Результаты решения представлены на рисунке 9.

Линейное программирование в Excel задачи с решением

Технология решения задачи нелинейного программирования

Построить математическую модель и решить задачу потребительского выбора для заданной функции полезности Линейное программирование в Excel задачи с решением на товары Линейное программирование в Excel задачи с решением, ценах Линейное программирование в Excel задачи с решением и

Линейное программирование в Excel задачи с решением

доходе I. Найти максимальное значение функции полезности.

Построим математическую модель задачи потребительского выбора:

Линейное программирование в Excel задачи с решением

где Линейное программирование в Excel задачи с решением — число потребляемых товаров или благ, Линейное программирование в Excel задачи с решением — потребительский набор, Линейное программирование в Excel задачи с решением — функция полезности потребителя.

Набор, который является решением задачи потребительского выбора, называется оптимальным потребительским набором, или точкой локального рыночного равновесия потребителя. Поставленная задача — задача потребительского выбора — является задачей нелинейного программирования.

  • На рабочем листе представим необходимую для решения информацию, согласно рисунку 10.

Ячейки В5, В6 должны содержать формулы, отражающие зависимость между искомыми переменными и условиями задачи. В данном случае ячейка В5 содержит формулу «=D2B2+E2C2», а ячейка В6 содержит формулу «=2В2Л(3/4)(С2-4)А(1/4)».

Линейное программирование в Excel задачи с решением

Рисунок 10 — Исходные данные для решения ЗНП

  • Выполнить команду Сервис/Поиск решения и заполнить все поля диалогового окна:

Линейное программирование в Excel задачи с решением

Аналитическое решение задачи нелинейного программирования.

В рассматриваемом случае ограничение можно записать в виде строгого равенства, так как оптимальное решение достигается при полном использовании имеющихся средств.

Для решения классической задачи нелинейного программирования применим метод множителей Лагранжа, для этого составим функцию Лагранжа:

Линейное программирование в Excel задачи с решением

Найдем точки экстремума функции Лагранжа.

Линейное программирование в Excel задачи с решением

Приравняем каждое уравнение к 0:

Линейное программирование в Excel задачи с решением

С помощью преобразований — разделим первое уравнение системы на второе, перейдем к системе:

Линейное программирование в Excel задачи с решением

Подставим второе уравнение в первое и построим аналитические функции спроса:

Линейное программирование в Excel задачи с решением

Максимальное значение функции полезности-

Линейное программирование в Excel задачи с решением

Решением задачи потребительского выбора будет набор Линейное программирование в Excel задачи с решениемЛинейное программирование в Excel задачи с решением

Возможно эти страницы вам будут полезны:

  1. Решение задач по математическому программированиюПримеры решения задач по математическому программированиюЗаказать работу по математическому программированиюПомощь по математическому программированиюЗадачи математического программированияЗадача линейного программированияРешение задач по линейному программированиюМетоды решения задач линейного программированияГрафическое решение задач линейного программированияГрафический метод решения задач линейного программированияЗаказать работу по линейному программированиюПомощь по линейному программированиюКонтрольная работа по линейному программированиюКурсовая работа по линейному программированию

«Поиск решения» — это надстройка для Microsoft Excel, которую можно использовать для анализ «что если». С ее помощью можно найти оптимальное значение (максимум или минимум) формула, содержащейся в одной ячейке, называемой целевой, с учетом ограничений на значения в других ячейках с формулами на листе. Надстройка «Поиск решения» работает с группой ячеек, называемых ячейками переменных решения или просто ячейками переменных, которые используются при расчете формул в целевых ячейках и ячейках ограничения. Надстройка «Поиск решения» изменяет значения в ячейках переменных решения согласно пределам ячеек ограничения и выводит нужный результат в целевой ячейке.

Проще говоря, с помощью надстройки «Поиск решения» можно определить максимальное или минимальное значение одной ячейки, изменяя другие ячейки. Например, вы можете изменить планируемый бюджет на рекламу и посмотреть, как изменится планируемая сумма прибыли.

Примечание: В версиях надстройки «Поиск решения», выпущенных до Excel 2007, ячейки переменных решения назывались изменяемыми или регулируемыми. В Excel 2010 надстройка «Поиск решения» была значительно улучшена, так что работа с ней в Excel 2007 будет несколько отличаться.

В приведенном ниже примере количество проданных единиц в каждом квартале зависит от уровня рекламы, что косвенно определяет объем продаж, связанные издержки и прибыль. Надстройка «Поиск решения» может изменять ежеквартальные расходы на рекламу (ячейки переменных решения B5:C5) до ограничения в 20 000 рублей (ячейка F5), пока общая прибыль (целевая ячейка F7) не достигнет максимального значения. Значения в ячейках переменных используются для вычисления прибыли за каждый квартал, поэтому они связаны с формулой в целевой ячейке F7, =СУММ (Q1 Прибыль:Q2 Прибыль).

Перед вычислением с помощью надстройки «Поиск решения»

1. Ячейки переменных

2. Ячейка с ограничениями

3. Целевая ячейка

После выполнения процедуры получены следующие значения.

После вычисления с помощью надстройки «Поиск решения»

  1. На вкладке Данные в группе Анализ нажмите кнопку Поиск решения.
    Изображение ленты Excel

    Изображение диалогового окна "Поиск решения" в Excel 2010 +

  2. В поле Оптимизировать целевую функцию введите ссылка на ячейку или имя целевой ячейки. Целевая ячейка должна содержать формулу.

  3. Выполните одно из следующих действий.

    • Чтобы значение целевой ячейки было максимальным из возможных, установите переключатель в положение Макс.

    • Чтобы значение целевой ячейки было минимальным из возможных, установите переключатель в положение Мин.

    • Чтобы задать для целевой ячейки конкретное значение, установите переключатель в положение Значение и введите в поле нужное число.

    • В поле Изменяя ячейки переменных введите имена диапазонов ячеек переменных решения или ссылки на них. Несмежные ссылки разделяйте запятыми. Ячейки переменных должны быть прямо или косвенно связаны с целевой ячейкой. Можно задать до 200 ячеек переменных.

  4. В поле В соответствии с ограничениями введите любые ограничения, которые требуется применить. Для этого выполните указанные ниже действия.

    1. В диалоговом окне Параметры поиска решения нажмите кнопку Добавить.

    2. В поле Ссылка на ячейку введите ссылку на ячейку или имя диапазона ячеек, на значения которых налагаются ограничения.

    3. Щелкните связь (<=, =, >=, int,binили dif), которая требуется между ячейкой, на которую ссылается ссылка, и ограничением. Если щелкнуть int, в поле Ограничение появится integer. Если щелкнуть бин,в поле Ограничение появится двоичное поле. Если нажать кнопку dif,в поле Ограничение появится ссылкаalldifferent.

    4. Если в поле Ограничение было выбрано отношение <=, = или >=, введите число, ссылку на ячейку (или имя ячейки) или формулу.

    5. Выполните одно из указанных ниже действий.

      • Чтобы принять данное ограничение и добавить другое, нажмите кнопку Добавить.

      • Чтобы принять ограничение и вернуться в диалоговое окно Параметрырешения, нажмите кнопку ОК.
        Примечание    Отношения int,binи dif можно применять только в ограничениях для ячеек переменных решения.

        Чтобы изменить или удалить существующее ограничение, выполните указанные ниже действия.

    6. В диалоговом окне Параметры поиска решения щелкните ограничение, которое требуется изменить или удалить.

    7. Нажмите кнопку Изменить и внесите изменения либо нажмите кнопку Удалить.

  5. Нажмите кнопку Найти решение и выполните одно из указанных ниже действий.

    • Чтобы сохранить значения решения на листе, в диалоговом окне Результаты поиска решения выберите вариант Сохранить найденное решение.

    • Чтобы восстановить исходные значения перед нажатием кнопки Найти решение, выберите вариант Восстановить исходные значения.

    • Вы можете прервать поиск решения, нажав клавишу ESC. Лист Excel будет пересчитан с учетом последних найденных значений для ячеек переменных решения.

    • Чтобы создать отчет, основанный на найденном решении, выберите тип отчета в поле Отчеты и нажмите кнопку ОК. Отчет будет помещен на новый лист книги. Если решение не найдено, будут доступны только некоторые отчеты или они вообще не будут доступны.

    • Чтобы сохранить значения ячейки переменной решения в качестве сценария, который можно будет отобразить позже, нажмите кнопку Сохранить сценарий в диалоговом окне Результаты поиска решения, а затем введите имя этого сценария в поле Название сценария.

  1. После постановки задачи нажмите кнопку Параметры в диалоговом окне Параметры поиска решения.

  2. Чтобы просмотреть значения всех найденных решений, в диалоговом окне Параметры установите флажок Показывать результаты итераций и нажмите кнопку ОК.

  3. В диалоговом окне Параметры поиска решения нажмите кнопку Найти решение.

  4. В диалоговом окне Показать предварительное решение выполните одно из указанных ниже действий.

    • Чтобы остановить поиск решения и вывести на экран диалоговое окно Результаты поиска решения, нажмите кнопку Стоп.

    • Чтобы продолжить процесс поиска решения и просмотреть следующий вариант решения, нажмите кнопку Продолжить.

  1. В диалоговом окне Параметры поиска решения нажмите кнопку Параметры.

  2. В диалоговом окне на вкладках Все методы, Поиск решения нелинейных задач методом ОПГ и Эволюционный поиск решения выберите или введите значения нужных параметров.

  1. В диалоговом окне Параметры поиска решения нажмите кнопку Загрузить/сохранить.

  2. Введите диапазон ячеек для области модели и нажмите кнопку Сохранить или Загрузить.

    При сохранении модели введите ссылку на первую ячейку вертикального диапазона пустых ячеек, в котором следует разместить модель оптимизации. При загрузке модели введите ссылку на весь диапазон ячеек, содержащий модель оптимизации.

    Совет: Чтобы сохранить последние параметры, настроенные в диалоговом окне Параметры поиска решения, вместе с листом, сохраните книгу. Каждый лист в книге может иметь свои параметры надстройки «Поиск решения», и все они сохраняются. Кроме того, для листа можно определить более одной задачи, если нажимать кнопку Загрузить или сохранить для сохранения задач по отдельности.

В диалоговом окне Параметры поиска решения можно выбрать любой из указанных ниже алгоритмов или методов поиск решения.

  • Нелинейный метод обобщенного понижающего градиента (ОПГ).    Используется для гладких нелинейных задач.

  • Симплекс-метод.    Используется для линейных задач.

  • Эволюционный метод    Используется для негладких задач.

В приведенном ниже примере количество проданных единиц в каждом квартале зависит от уровня рекламы, что косвенно определяет объем продаж, связанные издержки и прибыль. Надстройка «Поиск решения» может изменять ежеквартальные расходы на рекламу (ячейки переменных решения B5:C5) до ограничения в 20 000 рублей (ячейка D5), пока общая прибыль (целевая ячейка D7) не достигнет максимального значения. Значения в ячейках переменных используются для вычисления прибыли за каждый квартал, поэтому они связаны с формулой в целевой ячейке D7, =СУММ (Q1 Прибыль:Q2 Прибыль).

Пример анализа с помощью надстройки "Поиск решения"

Выноска 1
Выноска 1 переменных

Выноска 2 с ограничениями

Выноска 3 цель

В результате выполнения получены следующие значения:

Пример анализа с помощью надстройки "Поиск решения" с использованием новых значений

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. В разделе Оптимизировать целевую функцию, введите ссылка на ячейку или имя целевой ячейки.

    Примечание: Целевая ячейка должна содержать формулу.

  3. Выполните одно из следующих действий.

    Задача

    Необходимые действия

    Сделать так, чтобы значение целевой ячейки было максимальным из возможных

    Выберите значение Макс.

    Сделать так, чтобы значение целевой ячейки было минимальным из возможных

    Выберите значение Мин.

    Сделать так, чтобы целевая ячейка имела определенное значение

    Щелкните Значение, а затем введите нужное значение в поле.

  4. В поле Изменяя ячейки переменных введите имена диапазонов ячеек переменных решения или ссылки на них. Несмежные ссылки разделяйте запятыми.

    Ячейки переменных должны быть прямо или косвенно связаны с целевой ячейкой. Можно задать до 200 ячеек переменных.

  5. В поле В соответствии с ограничениями введите любые ограничения, которые требуется применить.

    Для этого выполните следующие действия:

    1. В диалоговом окне Параметры поиска решения нажмите кнопку Добавить.

    2. В поле Ссылка на ячейку введите ссылку на ячейку или имя диапазона ячеек, на значения которых налагаются ограничения.

    3. Во всплывающем меню <= задайте требуемое отношение между целевой ячейкой и ограничением. Если вы выбрали <=, =, или >= в поле Ограничение, введите число, имя ячейки, ссылку на нее или формулу.

      Примечание: Отношения int, бин и раз можно использовать только в ограничениях для ячеек, в которых находятся переменные решения.

    4. Выполните одно из указанных ниже действий.

    Задача

    Необходимые действия

    Принять ограничение и добавить другое

    Нажмите кнопку Добавить.

    Принять ограничение и вернуться в диалоговое окно Параметры поиска решения

    Нажмите кнопку ОК.

  6. Нажмите кнопку Найти решение и выполните одно из следующих действий:

    Задача

    Необходимые действия

    Сохранить значения решения на листе

    В диалоговом окне Результаты поиска решения выберите вариант Сохранить найденное решение.

    Восстановить исходные значения

    Щелкните Восстановить исходные значения.

Примечания: 

  1. Чтобы прервать поиск решения, нажмите клавишу ESC. Лист Excel будет пересчитан с учетом последних найденных значений для ячеек переменных.

  2. Чтобы создать отчет, основанный на найденном решении, выберите тип отчета в поле Отчеты и нажмите кнопку ОК. Отчет будет помещен на новый лист книги. Если решение не найдено, отчет не будет доступен.

  3. Чтобы сохранить значения ячейки переменной решения в качестве сценария, который можно будет отобразить позже, нажмите кнопку Сохранить сценарий в диалоговом окне Результаты поиска решения, а затем введите имя этого сценария в поле Название сценария.

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. После постановки задачи нажмите кнопку Параметры в диалоговом окне Параметры поиска решения.

  3. Чтобы просмотреть значения всех предварительных решений, установите флажок Показывать результаты итераций и нажмите кнопку ОК.

  4. В диалоговом окне Параметры поиска решения нажмите кнопку Найти решение.

  5. В диалоговом окне Показать предварительное решение выполните одно из следующих действий:

    Задача

    Необходимые действия

    Остановить поиск решения и вывести на экран диалоговое окно Результаты поиска решения

    Нажмите кнопку Стоп.

    Продолжить поиск и просмотреть следующее предварительное решение

    Нажмите кнопку Продолжить.

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. Нажмите кнопку Параметры, а затем в диалоговом окне Параметры или Поиск решения выберите один или несколько из следующих вариантов:

    Задача

    Необходимые действия

    Настроить время решения и число итераций

    На вкладке Все методы в разделе Пределы решения в поле Максимальное время (в секундах) введите количество секунд, в течение которых можно будет искать решение. Затем в поле Итерации укажите максимальное количество итераций, которое вы хотите разрешить.

    Примечание: Если будет достигнуто максимальное время поиска решения или количество итераций, а решение еще не будет найдено, средство «Поиск решения» выведет диалоговое окно Показать предварительное решение.

    Задать точность

    На вкладке Все методы введите в поле Точность ограничения нужное значение погрешности. Чем меньше число, тем выше точность.

    Задать степень сходимости

    На вкладке Поиск решения нелинейных задач методом ОПГ или Эволюционный поиск решения в поле Сходимость укажите, насколько должны отличаться результаты последних пяти итераций, чтобы средство прекратило поиск решения. Чем меньше число, тем меньше должно быть изменение.

  3. Нажмите кнопку ОК.

  4. В диалоговом окне Параметры поиска решения нажмите кнопку Найти решение или Закрыть.

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. Щелкните Загрузить/сохранить, укажите диапазон ячеек для области модели и нажмите кнопку Сохранить или Загрузить.

    При сохранении модели введите ссылку на первую ячейку вертикального диапазона пустых ячеек, в котором следует разместить модель оптимизации. При загрузке модели введите ссылку на весь диапазон ячеек, содержащий модель оптимизации.

    Совет: Чтобы сохранить последние параметры, настроенные в диалоговом окне Параметры поиска решения, вместе с листом, сохраните книгу. Каждый лист в книге может иметь свои параметры надстройки «Поиск решения», и все они сохраняются. Кроме того, для листа можно определить более одной задачи, если нажимать кнопку Загрузить/сохранить для сохранения задач по отдельности.

  1. В Excel 2016 для Mac: выберите пункты Данные > Поиск решения.

    Поиск решения

    В Excel 2011 для Mac: на вкладке Данные в группе Анализ выберите Поиск решения.

    Вкладка "Данные", группа "Анализ", надстройка "Поиск решения"

  2. Во всплывающем меню Выберите метод решения выберите одно из следующих значений:

Метод решения

Описание

Нелинейный метод обобщенного понижающего градиента (ОПГ)

Используется по умолчанию для моделей со всеми функциями Excel, кроме ЕСЛИ, ВЫБОР, ПРОСМОТР и другие ступенчатые функции.

Поиск решения линейных задач симплекс-методом

Используйте этот метод для задач линейного программирования. В формулах модели, которые зависят от ячеек переменных, должны использоваться функции СУММ, СУММПРОИЗВ, +, — и *.

Эволюционный поиск решения

Этот метод, основанный на генетических алгоритмах, лучше всего подходит в том случае, если в модели используются функции ЕСЛИ, ВЫБОР и ПРОСМОТР с аргументами, которые зависят от ячеек переменных.

Примечание: Авторские права на части программного кода надстройки «Поиск решения» версий 1990–2010 принадлежат компании Frontline Systems, Inc. Авторские права на части версии 1989 принадлежат компании Optimal Methods, Inc.

Поскольку надстройки не поддерживаются в Excel в Интернете, вы не сможете использовать надстройку «Поиск решения» для анализа данных «что если», чтобы найти оптимальные решения.

Если у вас есть Excel, вы можете нажать кнопку Открыть в Excel, чтобы открыть книгу для использования надстройки «Поиск решения».

Дополнительная справка по надстройке «Поиск решения»

За дополнительной справкой по надстройке «Поиск решения» обращайтесь по этим адресам:

Frontline Systems, Inc.
P.O. Box 4288
Incline Village, NV 89450-4288
(775) 831-0300
Веб-сайт: http://www.solver.com
Электронная почта: info@solver.com
«Решение» на www.solver.com.

Авторские права на части программного кода надстройки «Поиск решения» версий 1990-2009 принадлежат компании Frontline Systems, Inc. Авторские права на части версии 1989 принадлежат компании Optimal Methods, Inc.

Дополнительные сведения

Вы всегда можете задать вопрос специалисту Excel Tech Community или попросить помощи в сообществе Answers community.

См. также

Использование «Решения» для бюджетов с использованием средств на счете вех

Использование «Решение» для определения оптимального сочетания продуктов

Введение в анализ гипотетических вариантов

Полные сведения о формулах в Excel

Рекомендации, позволяющие избежать появления неработающих формул

Обнаружение ошибок в формулах

Сочетания клавиш в Excel

Функции Excel (по алфавиту)

Функции Excel (по категориям)

Like this post? Please share to your friends:
  • Решение задач с функцией если в excel пример
  • Решение задач с финансовыми функциями в excel
  • Решение задач с помощью электронных таблиц excel
  • Решение задач с помощью электронной таблицы excel
  • Решение задач с массивами в excel