Для
того чтобы уточнить корни уравнения
cos(2x)+x-5=0 методом половинного деления,
используя Excel, необходимо выполнить
следующие действия:
-
Заполнить
ячейки A1:H1 последовательно следующим
образом: a, b, c=(a+b)/2, f(a), f(b), f(c), |b-a|<=2*e, e. -
Ввести
в ячейку A2 число 5, в ячейку B2 — число 6. -
В
ячейку C2
ввести формулу: =(A2+B2)/2. -
В
ячейку D2 ввести формулу: =cos(2*A2)+A2-5,
скопировать эту формулу в ячейки E2:F2. -
Ввести
в ячейку G2 формулу: =ЕСЛИ(ABS(B2-A2)<=2*$H$2;C2;»-«). -
Ввести
в ячейку H2 число 0,00001. -
В
ячейку A3 ввести формулу: =ЕСЛИ(D2*F2<0;A2;C2). -
В
ячейку B3 ввести формулу: =ЕСЛИ(D2*F2<0;C2;B2). -
Диапазон
ячеек C2:G2 скопировать в диапазон ячеек
C3:G3. -
Выделить
диапазон ячеек A3:G3 и с помощью маркера
заполнения заполнить все нижестоящие
ячейки до получения результата в одной
из ячеек столбца G (это ячейки A3:G53).
В
итоге получаем следующее:
Ответ:
Корень уравнения cos(2x)+x-5=0 равен 5,32977.
Соседние файлы в папке exel
- #
- #
- #
22.05.2015157.7 Кб80Копия Лабраб_6rgr.xls
- #
22.05.201527.14 Кб126Лабраб_6.xls
- #
- #
- #
Решение уравнений в EXCEL методом половинного деления, методом хорд и касательных.
При прохождении темы численные методы учащиеся уже умеют работать с электронными таблицами и составлять программы на языке паскаль. Работа комбинированного характера.Расчитана на 40 минут. Цель работы повторить и закрепить навыки паботы с программами EXCEL, ABCPascal. Материал содержит 2 файла. Один содержит теоретический материал, так как он и предлагается ученику . Во 2-м файле пример работы ученика Иванова Ивана.
Скачать:
Вложение | Размер |
---|---|
материал для ученика | 57.5 КБ |
работа ученика | 27 КБ |
Предварительный просмотр:
Аналитическое решение некоторых уравнений, содержащих, например тригонометрические функции может быть получено лишь для единичных частных случаев. Так, например, нет способа решить аналитически даже такое простое уравнение, как cos x=x
Численные методы позволяют найти приближенное значение корня с любой заданной точностью.
Приближённое нахождение обычно состоит из двух этапов:
1) отделение корней, т.е. установление возможно точных промежутков [a,b], в которых содержится только один корень уравнения;
2) уточнение приближённых корней, т.е. доведение их до заданной степени точности.
Мы будем рассматривать решения уравнений вида f(x)=0. Функция f(x) определена и непрерывна на отрезке [а.Ь]. Значение х 0 называется корнем уравнения если f(х 0 )=0
Для отделения корней будем исходить из следующих положений:
- Если f(a)* f(b] a, b существует, по крайней мере, один корень
- Если функция y = f(x) непрерывна на отрезке [a, b], и f(a)*f(b) и f ‘(x) на интервале (a, b) сохраняет знак, то внутри отрезка [а, b] существует единственный корень уравнения
Приближённое отделение корней можно провести и графически. Для этого уравнение (1) заменяют равносильным ему уравнением р(х) = ф(х), где функции р(х) и ф(х] более простые, чем функция f(x). Тогда, построив графики функций у = р(х) и у = ф(х), искомые корни получим, как абсциссы точек пересечения этих графиков
Для уточнения корня разделим отрезок [а, b] пополам и вычислим значение функции f(х) в точке x sr =(a+b)/2. Выбираем ту из половин [a, x sr ] или [x sr ,b], на концах которых функция f(x) имеет противоположные знаки.. Продолжаем процесс деления отрезка пополам и проводим то же рассмотрение до тех пор, пока. длина [a,b] станет меньше заданной точности . В последнем случае за приближённое значение корня можно принять любую точку отрезка [a,b] (как правило, берут его середину). Алгоритм высокоэффективен, так как на каждом витке (итерации) интервал поиска сокращается вдвое; следовательно, 10 итераций сократят его в тысячу раз. Сложности могут возникнуть с отделением корня у сложных функций.
Для приближенного определения отрезка на котором находится корень можно воспользоваться табличным процессором, построив график функции
ПРИМЕР : Определим графически корень уравнения . Пусть f1(х) = х , a и построим графики этих функций. (График). Корень находится на интервале от 1 до 2. Здесь же уточним значение корня с точностью 0,001(на доске шапка таблицы)
Алгоритм для программной реализации
- а:=левая граница b:= правая граница
- m:= (a+b)/2 середина
- определяем f(a) и f(m)
- если f(a)*f(m)
- если (a-b)/2>e повторяем , начиная с пункта2
Точки графика функции на концах интервала соединяются хордой. Точка пересечения хорды и оси Ох (х*) и используется в качестве пробной. Далее рассуждаем так же, как и в предыдущем методе: если f(x a ) и f(х*) одного знака на интервале , нижняя граница переносится в точку х*; в противном случае – переносим верхнюю границу. Далее проводим новую хорду и т.д.
Осталось только уточнить, как найти х*. По сути, задача сводится к следующей: через 2 точки с неизвестными координатами (х 1 , у 1 ) и (х 2 , у 2 ) проведена прямая; найти точку пересечения этой прямой и оси Ох.
Запишем уравнение прямой по двум точках:
В точке пересечения этой прямой и оси Ох у=0, а х=х*, то есть
, откуда
процесс вычисления приближённых значений продолжается до тех пор, пока для двух последовательных приближений корня х„ и х п _1 не будет выполняться условие abs(xn-x n-1 ) е — заданная точность
Сходимость метода гораздо выше предыдущего
Алгоритм различается только в пункте вычисления серединной точки- пересечения хорды с осью абсцисс и условия останова (разность между двумя соседними точками пересечения)
Уравнения для самостоятельного решения: (отрезок в excel ищем самостоятельно)
1 Численный метод решения нелинейных уравнений
1.1 Область локализации корней
В общем виде любое уравнение одной переменной принято записывать так , при этом корнем (решением) называется такое значение x*, что оказывается верным тождеством. Уравнение может иметь один, несколько (включая бесконечное число) или ни одного корня. Как легко видеть, для действительных корней задача отыскания решения уравнения легко интерпретируется графически: корень есть такое значение независимой переменной, при котором происходит пересечение графика функции, стоящей в левой части уравнения f ( x ), с осью абсцисс.
Например , для уравнения выполним преобразование и приведем его к виду f(x)= 0 т.е. . График этой функции представлен на рисунке 1. Очевидно, что данное уравнение имеет два действительных корня – один на отрезке [-1, 0] , а второй – [1, 2].
Рисунок 1. График функции
Таким образом, можно приблизительно определять область локализации корней уравнения. Заметим, что отделить корень можно не единственным образом: если корень отделён на каком-либо отрезке, то годится и любой меньший отрезок, содержащий этот корень. Вообще говоря, чем меньше отрезок, тем лучше, но при этом не следует забывать о том, что на отделение корня на меньших отрезках также тратятся вычислительные усилия, и, быть может, весьма значительные. Таким образом, часто для начала довольствуются весьма широким отрезком, на котором корень отделён.
Некоторые виды уравнений допускают аналитическое решение. Например, степенные алгебраические уравнения степени n при n ≤ 4. Однако, в общем виде, аналитическое решение, как правило, отсутствует. В этом случае, применяются численные методы. Все численные методы решения уравнений представляют собой итерационные алгоритмы последовательного приближения к корню уравнения. То есть, выбирается начальное приближение к корню x 0 и затем с помощью итерационной формулы генерируется последовательность x 1, x 2, …, xk сходящаяся к корню уравнения .
1.2 Критерии сходимости при решении уравнений
Ø Абсолютная погрешность — абсолютное изменение приближения на соседних шагах итерации
Ø Относительная погрешность — относительное изменение приближения на соседних шагах итерации
Ø Близость к нулю вычисленного значения левой части уравнения (иногда это значение называют невязкой уравнения, так как для корня невязка равна нулю)
1.3 Метод половинного деления (метод дихотомии)
Метод половинного деления основан на последовательном делении отрезка локализации корня пополам.
Для этого выбирается начальное приближение к отрезку [ a , b ], такое, что f ( a ) × f ( b ) — середине отрезка [ a , b ]. Если он противоположен знаку функции в точке a, то корень локализован на отрезке [ a , c ], если же нет – то на отрезке [ c , b ]. Схема метода дихотомии приведен на рис у нке 2.
Рисунок 2. Последовательное деление отрезка пополам и приближение к корню
Алгоритм метода дихотомии можно записать так:
1. представить решаемое уравнение в виде
2. выбрать a, b и вычислить
3. если f(a) × f( с ) то a=a; b = c иначе a = c; b=b
4. если критерий сходимости не выполнен, то перейти к п. 2
Пример решения уравнения методом дихотомии
Найти решение заданного уравнения методом дихотомии с точностью до 10 -5 .
Пример создания расчетной схемы на основе метода дихотомии на примере уравнения: на отрезке [1, 2]
Данный метод заключается в проверке на каждой итерации условия:
если f ( a ) × f (с) и выбор соответствующего отрезка для следующей итерации.
Рисунок 3. Последовательность итераций метода дихотомии при поиске корня уравнения на отрезке [1, 2]
a ) схема расчета (зависимые ячейки); b) режим отображения формул;
Для нашего примера итерационная последовательность для нахождения решения принимает вид:
Точность до пятой значащей цифры достигается за 20 итераций.
Скорость сходимости этого метода является линейной.
При выполнении начального условия он сходится к решению всегда.
Метод половинного деления удобен при решении физически реальных уравнений, когда заранее известен отрезок локализации решения уравнения.
2 Решение уравнений , используя “Подбор параметра ”
Используя возможности Excel можно находить корни нелинейного уравнения вида f(x)=0 в допустимой области определения переменной. Последовательность операций нахождения корней следующая:
1. Производится табулирование функции в диапазоне вероятного существования корней;
2. По таблице фиксируются ближайшие приближения к значениям корней;
3. Используя средство Excel Подбор параметра, вычисляются корни уравнения с заданной точностью.
При подборе параметра Excel использует итерационный (циклический) процесс. Количество итераций и точность устанавливаются в меню Сервис/Параметры/вкладка Вычисления. Если Excel выполняет сложную задачу подбора параметра, можно нажать кнопку Пауза в окне диалога Результат подбора параметра и прервать вычисление, а затем нажать кнопку Шаг, чтобы выполнить очередную итерацию и просмотреть результат. При решении задачи в пошаговом режиме появляется кнопка П родолжить — для возврата в обычный режим подбора параметра.
2.1 Пример решения уравнения, используя “Подбор параметра”
Например , найдем все корни уравнения 2x 3 -15sin(x)+0,5x-5=0 на отрезке [-3 ; 3].
Для локализации начальных приближений необходимо определить интервалы значений Х, внутри которых значение функции пересекает ось абсцисс, т.е. функция меняет знак. С этой целью табулируем функцию на отрезке [–3; 3] с шагом 0,2, получим табличные значения функции. Из полученной таблицы находим, что значение функции трижды пересекает ось Х, следовательно, исходное уравнение имеет на заданном отрезке все три корня.
Рисунок 4. Поиск приближенных значений корней уравнения
Выполните команду меню Сервис/Параметры, во вкладке Вычисления установите относительную погрешность вычислений E=0,00001, а число итераций N=1000, установите флажок Итерации.
Выполните команду меню Сервис/Подбор параметра. В диалоговом окне (рисунок 9) заполните следующие поля:
þ Установить в ячейке : в поле указывается адрес ячейки, в которой записана формула правой части функции;
þ Значение : в поле указывается значение, которое должен получить полином в результате вычислений, т.е. правая часть уравнения (в нашем случае 0);
þ Изменяя значение : в поле указывается адрес ячейки (где записано начальное приближение), в которой будет вычисляться корень уравнения и на которую ссылается формула.
Рисунок 5. Диалоговое окно Подбор параметра для поиска первого корня
После щелчка на ОК получим значение первого корня -1,65793685 .
Выполняя последовательно операции аналогичные предыдущим, вычислим значения остальных корней: -0,35913476 и 2,05170101 .
3 Решение уравнений и систем уравнений, используя надстройку “Поиск решения”
Для решения уравнений можно также использовать команду Поиск решения, доступ к которой реализуется через пункт меню Сервис/Поиск решения.
Последовательность операций нахождения корней следующая:
1. Найти приближенное значение корня уравнения
2. Открыть диалог Поиск решения и установить следующие параметры (рисунок 10):
þ в поле У становить целевую ячейку ввести адрес ячейки, содержащей формулу (левую часть уравнения);
þ установить переключатель в положение ‘ значению’ и ввести значение 0 (правая часть уравнения);
þ в поле Изменяя ячейки ввести адреса изменяемых ячеек, т.е. аргумента x целевой функции,;
þ в поле Ограничения с помощью кнопки Д обавить ввести все ограничения, которым должен отвечать результат поиска (область поиска корня уравнения);
þ для запуска процесса поиска решения нажать кнопку В ыполнить.
þ Для сохранения полученного решения необходимо использовать переключатель С охранить найденное решение в открывшемся окне диалога Результаты поиска решения.
Рисунок 6. Диалоговое окно Поиск решения
Полученное решение зависит от выбора начального приближения. Поиск начальных приближений рассмотрен выше.
Рассмотрим некоторые Опции, управляющие работой Поиска решения, задаваемые в окне Параметры (окно появляется, если нажать на кнопку Параметры окна Поиск решения):
þ Максимальное время — ограничивает время, отведенное на процесс поиска решения (по умолчанию задано 100 секунд, что достаточно для задач, имеющих около 10 ограничений, если задача большой размерности, то время необходимо увеличить).
þ Относительная погрешность — задает точность, с которой определяется соответствие ячейки целевому значению или приближение к указанным ограничениям (десятичная дробь от 0 до 1).
þ Неотрицательные значения — этим флажком можно задать ограничения на переменные, что позволит искать решения в положительной области значений, не задавая специальных ограничений на их нижнюю границу.
þ Показывать результаты итераций — этот флажок позволяет включить пошаговый процесс поиска, показывая на экране результаты каждой итерации.
þ Метод поиска — служит для выбора алгоритма оптимизации. Метод Ньютона был рассмотрен ранее. В Методе сопряженных градиентов запрашивается меньше памяти, но выполняется больше итераций, чем в методе Ньютона. Данный метод следует использовать, если задача достаточно велика и если итерации дают слишком малое отличие в последовательных приближениях.
Рисунок 7. Вкладка Параметры окна Поиск решения
3.1 Пример решения уравнения, используя надстройку “Поиск решения”
Например , найдем все корни уравнения 2x 3 -15sin(x)+0,5x-5=0 на отрезке [-3 ; 3]. Для локализации начальных приближений необходимо определить интервалы значений Х, внутри которых значение функции пересекает ось абсцисс, т.е. функция меняет знак. С этой целью табулируем функцию на отрезке [–3;3] с шагом 0,2, получим табличные значения функции. Из полученной таблицы находим, что значение функции трижды пересекает ось Х, следовательно, исходное уравнение имеет на заданном отрезке все три корня. На рисунке 12 представлен пример заполнения окна Поиск решения для нахождения первого корня на отрезке [-2; -1].
Рисунок 8. Пример решения уравнения при помощи надстройки Поиск решения
Задание 1. Решение уравнений численным методом
На листе 1 (название листа: Численные методы) для заданного уравнения вида f(x)=0 (Таблица 1. Индивидуальные задания ) реализовать итерационные расчетные схемы методов, указанных в Таблице 1 для нахождения хотя бы одного корня на заданном интервале. Количество итераций просчитать, оценивая , .
Задания 2. Решение уравнений встроенными средствами “Подбор параметра” и “Поиск решения”
На листе 2 (название листа: Подбор Поиск) для заданного уравнения вида f(x)=0 (Таблица 1. Индивидуальные задания) на заданном интервале и с некоторым шагом (шаг выбрать самостоятельно) построить таблицу значений функции f(x) и определить количество корней уравнения и выделить интервалы, на которых находятся корни. Построить график функции. Уточнить на заданных интервалах с точностью до 10 -6 корни уравнения с помощью встроенных средств: Подбор параметра, Поиск решения
Конспект урока информатики в 11-м классе «Исследование математических моделей. Решение уравнений методом половинного деления»
Цели урока:
- Обучающая– формирование новых знаний, умений и навыков по теме “Моделирование. Исследование математических моделей”, формирование общеучебных и специальных умений и навыков, контроль за усвоением учебного материала.
- Развивающая– развивать умение выделять главное; развивать мышление учащихся посредством анализа, сравнения и обобщения изучаемого материала; самостоятельность; развитие речи, эмоций, логического мышления учащихся.
- Воспитательная – формировать интерес к предмету, навыки контроля и самоконтроля; чувство ответственности, деловые качества учащихся. Активизация познавательной и творческой активности учащихся
Задачи урока:
- начать изучение исследования математических моделей,
- начать изучение приближенных методов решения уравнений,
- познакомить учащихся с методом половинного деления,
- познакомить учащихся с приближенным методом решения уравнений с помощью электронных таблиц Excel,
- сформировать у учащихся умение приближенно решать уравнения с помощью электронных таблиц Excel,
- разработать компьютерную модель нахождения корня уравнения на языке Visual Basic,
- формировать у учащихся потребность использования информационных технологий в решении задач по математике,
- развивать межпредметные связи.
Тип урока: урок изучения нового материала.
Оборудование: компьютерный класс, оборудованный компьютерами Pentium I и выше, лицензионное ПО: операционная система Windows 97/2000/XP, MS Office 2000 и выше, среда программирования Visual Basic, интерактивная доска, проектор.
-
Организационный момент. Объявление темы, цели и задач урока.
- Актуализация знаний, необходимых для изучения нового материала:
- Что называется уравнением?
- Что называется корнем уравнения?
- Что значит “решить уравнение”?
- Объяснить, как можно графически решить уравнение. (Использовать интерактивную доску, на которой строится график в заранее заготовленной системе координат)
- Как построить график функции в Excel?
- Изучение нового материала.
Решение уравнений методом половинного деления.
Числовой метод половинного деления
Идея метода состоит в выборе точности решения и сведении первоначального отрезка [А;В], на котором существует корень уравнения, к отрезку заданной точности. Процесс сводится к последовательному делению отрезков пополам точкой С=(А+В)/2 и отбрасыванию той половины отрезка ([А;С] или [С;В]), на котором корня нет.
Выбор нужной половины отрезка основывается на проверке знаков значений функции на его краях. Выбирается та половина, на которой произведение значений функции на краях отрицательно, то есть где функция пересекает ось абсцисс.
Процесс продолжается до тех пор, пока длина отрезка не станет меньше удвоенной точности. Деление этого отрезка пополам дает значение корня х=(А+В)/2 с заданной точностью. (Объяснение материала сопровождается презентацией)
Приближенное решение уравнений с помощью электронных таблиц Excel.
Задача: решить уравнение x 3 =cosx
Чтобы решить уравнение графически, введем функцию у= x 3 — cosx
На интерактивной доске демонстрируется таблица значений функции на промежутке
[-2,5; 2,5] с шагом h=0,5 (заготовлена заранее). Построим график этой функции. На промежутке (-2,5; 2,5) график имеет одну точку пересечения с осью абсцисс, значит, на этом промежутке уравнение имеет один корень.
- Разработка компьютерной модели нахождения корня уравнения на языке Visual Basic (Приложение 3)
Проект “Приближенное решение уравнения” (Приложение1)
1. Поместить на форму текстовые поля для ввода числовых значений концов отрезка А и В, поле для ввода точности вычислений и поле для вывода значений корня.
2. Поместить на форму кнопку и создать событийную процедуру, вычисляющую корень уравнения методом половинного деления:
Private Sub Комманда1_Click()
dblC = (dblA + dblB) / 2
If (dblA ^ 3 — Cos(dblA)) * (dblC ^ 3 — Cos(dblC)) dblE
Текст8.Text = (dblA + dblB) / 2
End Sub
- Закрепление материала. Проверка качества усвоения материала.
Работа на компьютерах. Учащиеся получают задание (Приложение 2) решить уравнения в Excel и проверить правильность выполнения задания, используя программу, разработанную на Visual Basic.
Определить корни уравнения графически. Уточнить один из корней уравнения с точностью e =0,1.
источники:
http://zf.bsut.by/it/fbo/zda/t5.htm
http://urok.1sept.ru/articles/508238
Решение уравнений
Аналитическое решение некоторых уравнений, содержащих, например тригонометрические функции может быть получено лишь для единичных частных случаев. Так, например, нет способа решить аналитически даже такое простое уравнение, как cos x=x
Численные методы позволяют найти приближенное значение корня с любой заданной точностью.
Приближённое нахождение обычно состоит из двух этапов:
1) отделение корней, т.е. установление возможно точных промежутков [a,b], в которых содержится только один корень уравнения;
2) уточнение приближённых корней, т.е. доведение их до заданной степени точности.
Мы будем рассматривать решения уравнений вида f(x)=0. Функция f(x)определена и непрерывна на отрезке [а.Ь]. Значение х0 называется корнем уравнения если f(х0)=0
Для отделения корней будем исходить из следующих положений:
- Если f(a)* f(b] < 0 , то внутри отрезка a, b существует, по крайней мере, один корень
- Если функция y = f(x) непрерывна на отрезке [a, b], и f(a)*f(b)<0 и f‘(x) на интервале (a, b) сохраняет знак, то внутри отрезка [а, b] существует единственный корень уравнения
Приближённое отделение корней можно провести и графически. Для этого уравнение (1) заменяют равносильным ему уравнением р(х) = ф(х), где функции р(х) и ф(х] более простые, чем функция f(x). Тогда, построив графики функций у = р(х) и у = ф(х), искомые корни получим, как абсциссы точек пересечения этих графиков
Метод дихотомии
Для уточнения корня разделим отрезок [а, b] пополам и вычислим значение функции f(х) в точке xsr=(a+b)/2. Выбираем ту из половин [a, xsr ] или [xsr ,b], на концах которых функция f(x) имеет противоположные знаки.. Продолжаем процесс деления отрезка пополам и проводим то же рассмотрение до тех пор, пока. длина [a,b] станет меньше заданной точности. В последнем случае за приближённое значение корня можно принять любую точку отрезка [a,b] (как правило, берут его середину). Алгоритм высокоэффективен, так как на каждом витке (итерации) интервал поиска сокращается вдвое; следовательно, 10 итераций сократят его в тысячу раз. Сложности могут возникнуть с отделением корня у сложных функций.
Для приближенного определения отрезка на котором находится корень можно воспользоваться табличным процессором, построив график функции
ПРИМЕР: Определим графически корень уравнения . Пусть f1(х) = х, a и построим графики этих функций. (График). Корень находится на интервале от 1 до 2. Здесь же уточним значение корня с точностью 0,001(на доске шапка таблицы)
Решение в Excel,
Алгоритм для программной реализации
- а:=левая граница b:= правая граница
- m:= (a+b)/2 середина
- определяем f(a) и f(m)
- если f(a)*f(m)<0 то b:=m иначе a:=m
- если (a-b)/2>e повторяем , начиная с пункта2
Метод хорд.
Точки графика функции на концах интервала соединяются хордой. Точка пересечения хорды и оси Ох (х*) и используется в качестве пробной. Далее рассуждаем так же, как и в предыдущем методе: если f(xa) и f(х*) одного знака на интервале , нижняя граница переносится в точку х*; в противном случае – переносим верхнюю границу. Далее проводим новую хорду и т.д.
Осталось только уточнить, как найти х*. По сути, задача сводится к следующей: через 2 точки с неизвестными координатами (х1, у1) и (х2, у2) проведена прямая; найти точку пересечения этой прямой и оси Ох.
Запишем уравнение прямой по двум точках:
В точке пересечения этой прямой и оси Ох у=0, а х=х*, то есть
, откуда
процесс вычисления приближённых значений продолжается до тех пор, пока для двух последовательных приближений корня х„ и хп_1 не будет выполняться условие abs(xn-xn-1)е — заданная точность
Сходимость метода гораздо выше предыдущего
Алгоритм различается только в пункте вычисления серединной точки- пересечения хорды с осью абсцисс и условия останова (разность между двумя соседними точками пересечения)
Решение в Excel
Уравнения для самостоятельного решения: (отрезок в excel ищем самостоятельно)
- (х=1,261)
- (х=?)
- sin(x/2)+1=x^2 (х=1,26)
- y=sin3x*cos5x (х=?)
- (х=0,756)
- x-cosx=0 (х=0,739)
- x^2+4sinx=0 (х=-1,933)
- x=(x+1)3 (х=-2,325)
Одна из наиболее актуальных проблем компьютерного обучения – проблема отбора и использования педагогически целесообразных обучающих программ.
При изучении отдельных тем и решении некоторых задач на уроках математики в старших классах громоздкие вычисления как, например, при решении уравнений методом деления отрезка пополам или методом последовательных приближений, затмевают существо математической задачи, не дают увидеть красоту, рациональность применяемого метода решения.
В данной статье я представила те задачи, решение которых с помощью MS EXCEL позволяет получить наглядное, доступное для понимания учащимися решение, показать его логику, рациональность. Попутно учащиеся получают устойчивые навыки работы с программой.
Нахождение корней уравнения с помощью подбора параметра
Пример 1.
Пусть известно, что в штате больницы состоит 6 санитарок, 8 медсестер, 10 врачей, 3 заведующих отделениями, главный врач, заведующий аптекой, заведующая хозяйством и заведующий больницей. Общий месячный фонд зарплаты составляет 1000 000 условных единиц. Необходимо определить, какими должны быть оклады сотрудников больницы.
Решение такой задачи можно искать методом перебора. Однако в лучшем случае на это уходит много времени. Можно предложить другой способ решения. В EXCEL он реализован как поиск значения параметра формулы, удовлетворяющего ее конкретному значению.
Построим модель решения этой задачи. За основу возьмем оклад санитарки, а остальные оклады будем вычислять, исходя из него: во столько-то раз или на столько-то больше. Говоря математическим языком, каждый оклад является линейной функцией от оклада санитарки: Ai*С+Вi, где С – оклад санитарки; Аi и Вi – коэффициенты, которые для каждой должности определяют следующим образом:
- медсестра получает в 1,5 раза больше санитарки (А2=1,5; В2=0);
- врач – в 3 раза больше санитарки (А3=3; В3=0);
- заведующий отделением – на 30 y.e. больше, чем врач (А4=3; B4=30);
- заведующий аптекой – в 2 раза больше санитарки (А5=2; В5=0);
- заведующий хозяйством – на 40 y.e. больше медсестры (А6=1,5; В6=40);
- заведующий больницей – на 20 y.e. больше главного врача (А8=4; В8=20);
- главный врач – в 4 раза больше санитарки (А7=4; В7=0);
Зная количество человек на каждой должности, нашу модель можно
записать как уравнение: N1*(A1*C+B1)+N2*(A2*C+B2)+…+N8*(A8*C+B8) = 1000000, где N1 – число санитарок, N2 – число медсестер и т.д.
В этом уравнении нам известны A1…A8, B1…B8 и N1…N8, а С неизвестно. Анализ уравнения показывает, что задача вычисления заработной платы свелась к решению линейного уравнения относительно С. Предположим, что зарплата у санитарки 150,00 y.e.
Введите исходные данные в рабочий лист электронной таблицы, как показано ниже.
A |
B |
C |
D |
E |
F |
Оклад мед. Работников |
|||||
Должность |
Коэф. A |
Коэф. B |
Зарплата |
Количество сотрудников |
Суммарная зарплата |
Санитарка |
1 |
0,00 |
150,00 |
6 |
|
Медсестра |
1,5 |
0,00 |
8 |
||
Врач |
3 |
0,00 |
10 |
||
Зав. отделением |
3 |
30,00 |
3 |
||
Зав. аптекой |
2 |
0,00 |
1 |
||
Завхоз |
1,5 |
40,00 |
1 |
||
Главврач |
4 |
0,00 |
1 |
||
Зав. больницей |
4 |
20,00 |
1 |
||
Общий фонд равен |
В столбце D вычислите заработную плату для каждой должности. Например, для ячейки D4 формула расчета имеет вид =B4*$D$3+C4.
В столбце F вычислите заработную плату всех работников данной должности. Например, для ячейки F3 формула расчета имеет вид =D3*E3.
В ячейке F11вычислите суммарный фонд заработной платы больницы. Рабочий лист электронной таблицы будет выглядеть, как показано ниже.
A |
B |
C |
D |
E |
F |
Оклад мед. Работников |
|||||
Должность |
Коэф. A |
Коэф. B |
Зарплата |
Количество сотрудников |
Суммарная зарплата |
Санитарка |
1 |
0,00 |
150,00 |
6 |
900,00 |
Медсестра |
1,5 |
0,00 |
225,00 |
8 |
1800,00 |
Врач |
3 |
0,00 |
450,00 |
10 |
4500,00 |
Зав. отделением |
3 |
30,00 |
480,00 |
3 |
1440,00 |
Зав. аптекой |
2 |
0,00 |
300,00 |
1 |
300,00 |
Завхоз |
1,5 |
40,00 |
265,00 |
1 |
265,00 |
Главврач |
4 |
0,00 |
600,00 |
1 |
600,00 |
Зав. больницей |
4 |
20,00 |
620,00 |
1 |
620,00 |
Общий фонд равен |
10425,00 |
Чтобы определите оклад санитарки так, чтобы расчетный фонд был равен заданному надо:
- Активизировать команду Подбор параметра во вкладке Данные / Работа с данными /Анализ «Что, если»;
- В поле «Установить в ячейке» появившегося окна ввести ссылку на ячейку F11, содержащую формулу;
- В поле «Значение» набрать искомый результат 1000000;
- В поле «Изменяя значение ячейки» ввести ссылку на изменяемую ячейку D3 и щелкните на кнопке ОК.
Анализ задачи показывает, что с помощью Excel можно решать линейные уравнения. Конечно, такое уравнение может решить любой школьник. Однако, благодаря этому простому примеру стало, очевидным, что поиск значения параметра формулы, удовлетворяющего ее конкретному значению, – это не что иное, как численное решение уравнений. Другими словами, используя Excel, можно решать любые уравнения с одной переменной.
Приложение 1
Задание для учащихся:
Составить несколько вариантов штатного расписания с использованием функции Подбор параметра и оформить их в виде таблицы:
- Изменить количество сотрудников на различных должностях;
- Подобрать зарплату санитарки в новых условиях;
- Составить таблицу нескольких вариантов штатного расписания.
Рассмотрим еще один пример нахождения корней уравнения с помощью подбора параметра. При решении этого уравнения используется также метод последовательных приближений. Учащиеся в классах с углубленным изучением математики знакомы с этим методом. Поэтому, чтобы этот пример был доступен для других учащихся, предлагаю краткую теорию этого метода.
Пусть дано уравнение, записанное в виде x=F(x). Выбирают некоторое начальное приближение x1 и подставляют его вместо x в F(x). Полученное значение x2=F(x1) этой функции считают вторым приближением. Далее находят третье приближение по формуле x3=F(x2) и так далее. Таким образом, получаем последовательность x1, x2, x3,…, xn,… чисел, имеющая предел α. Тогда если функция F(x) непрерывна, из равенства xn+1=F(xn) получаем α=F(α). Это означает, что α является решением уравнения x=F(x).
Пример 2.
Пусть нам дан многочлен третьей степени:
x3-0,01x2-0,7044x+0,139104=0.
Так как мы ищем корни полинома третьей степени, то имеются не более трех вещественных корней. Для нахождения корней их первоначально надо локализовать, то есть найти интервалы, на которых они существуют. Такими интервалами локализации корней могут служить промежутки, на концах которых функция имеет противоположный знак. С целью нахождения интервалов, на концах которых функция изменяет знак, необходимо построить ее график или протабулировать ее. Составим таблицу значений функции на интервале [-1;1] с шагом 0,2. Для этого необходимо:
- Ввести в ячейку A2 значение -1, а в ячейку A3 значение -0,8.
- Выбрать диапазон A2:A3, расположить указатель мыши на маркере заполнения этого диапазона и протянуть его на диапазон A4:A12, аргумент протабулирован.
- В ячейку B2 ввести формулу: =A2^3-0,01*A2^2-0,7044*A2+0,139104
- Выбрать ячейку B2. Расположить указатель мыши на маркере заполнения этой ячейки и протянуть его на диапазон B3:B12. Функция также протабулирована.
Значение аргумента х |
Значение функции у |
-1,00 |
-0,1665 |
-0,8 |
0,1842 |
-0,60 |
0,3421 |
-0,4 |
0,3553 |
-0,20 |
0,2716 |
0 |
0,1391 |
0,20 |
0,0058 |
0,4 |
-0,0803 |
0,60 |
-0,0711 |
0,8 |
0,0812 |
1,00 |
0,4247 |
Из таблицы видно, что полином меняет знак на интервалах [-1; -0,8], [0,2; 0,4] и [0,6; 0,8], и поэтому на каждом из этих интервалов имеется свой корень. Так как полином третьей степени имеет не более трех корней, то они все локализованы.
Прежде чем приступить к нахождению корней при помощи подбора параметра, необходимо выполнить некоторую подготовительную работу:
- Установить точность, с которой находится корень. Корень при помощи подбора параметра находится методом последовательных приближений. Для этого в Настройке панели быстрого доступа / Другие команды, и на вкладке Формулы диалогового окна Параметры Exel задайте в Параметрах вычислений относительную погрешность и предельное число итераций равными 0,00001 и 1000, соответственно.
- Отвести на рабочем листе ячейку, например С2, под искомый корень. Эта ячейка будет играть двойную роль. До применения подбора параметра в ней находится начальное приближение к корню уравнения, а после применения – найденное приближенное значение корня.
- Корень при помощи подбора параметра находим методом последовательных приближений. Поэтому в ячейку C2 надо ввести значение, являющееся приближением к искомому корню. В нашем случае, первым отрезком локализации корня является [-1;-0,8]. Следовательно, за начальное приближение к корню разумно взять среднюю точку этого отрезка -0,9.
- Отвести ячейку, например D2, под функцию, для которой ведется поиск корня, причем вместо неизвестной у этой функции должна указываться ссылку на ячейку, отведенную под искомый корень. Таким образом, в ячейку D2 введите формулу: =C2^3-0,01*C2^2-0,7044*C2+0,139104
Аналогично надо поступить с двумя другими искомыми корнями:
- Отвести ячейку C8 под второй корень, ввести в нее начальное приближение 0,3, а в ячейку D8 ввести следующую формулу: =C8^3-0,01*C8^2-0,7044*C8+0,139104
- Отвести ячейку C10 под второй корень, ввести в нее начальное приближение 0,7, а в ячейку D10 ввести следующую формулу: =C10^3-0,01*C10^2-0,7044*C10+0,139104
Результаты выполненных действий приведены в таблице.
Значение х |
Значение у |
Начальное приближение до применения метода |
Значение функции |
-1,00 |
-0,1665 |
-0,9 |
0,0360 |
-0,8 |
0,1842 |
||
-0,60 |
0,3421 |
||
-0,4 |
0,3553 |
||
-0,20 |
0,2716 |
||
0 |
0,1391 |
||
0,20 |
0,0058 |
0,3 |
-0,0461 |
0,4 |
-0,0803 |
||
0,60 |
-0,0711 |
0,7 |
-0,0159 |
0,8 |
0,0812 |
||
1,00 |
0,4247 |
Теперь можно переходить к нахождению первого корня уравнения:
Выберете команду Подбор параметра. На экране отобразится диалоговое окно Подбор параметра.
- В поле Установить в ячейкевведите ссылку на ячейку D2. В этом поле дается ссылка на ячейку, в которой введена формула, вычисляющая значение левой части уравнения. Для нахождения корня с помощью подбора параметра уравнение надо представить в таком виде, чтобы его правая часть не содержала переменную.
- В поле Значение введите 0. Здесь указывается значение из правой части уравнения.
- В поле Изменяя значение ячейки введите C2. В данном поле приводится ссылка на ячейку, отведенную под переменную.
- Нажмите кнопку OK.
На экране отображается окно Результат подбора параметра с результатами работы команды Подбор параметра. Кроме того, рассматриваемое средство помещает найденное приближенное значение корня в ячейку C2. В данном случае оно равно -0,920. Аналогично в ячейках C8 и C10 находятся два оставшихся корня. Они равны 0,210 и 0,721.
Значение х |
Значение у |
Корень уравнения |
Значение функции |
-1,00 |
-0,1665 |
-0,920 |
0,00 |
-0,8 |
0,1842 |
||
-0,60 |
0,3421 |
||
-0,4 |
0,3553 |
||
-0,20 |
0,2716 |
||
0 |
0,1391 |
||
0,20 |
0,0058 |
0,210 |
0,00 |
0,4 |
-0,0803 |
||
0,60 |
-0,0711 |
0,721 |
0,00 |
0,8 |
0,0812 |
||
1,00 |
0,4247 |
Приложение 2
Задание для учащихся:
Найти все корни уравнений
1. Х3-2,92Х2+1,4355Х+0,791136=0
2. Х3-2,56Х2-1,3251Х+4,395006=0
3. Х3+2,84Х2-5,6064Х-14,766336=0
Нахождение корней уравнения методом деления отрезка пополам
Краткая теория метода. Пусть непрерывная функция F(x) имеет значения разных знаков на концах отрезка [a;b], то есть F(a)F(b)<0.Тогда уравнение F(x)=0 имеет корень внутри этого отрезка. Отрезок [a;b] отрезком локализации корня. Пусть c=(a+b)/2 – середина отрезка [a;b]. Если F(a)F(c)<=0, то корень находится на отрезке [a;c], который берем за новый отрезок локализации корня. Если F(a)F(c)>0, то за новый отрезок локализации корня берем [c;b].Отметим, что новый отрезок локализации корня в два раза меньше первоначального. Процесс деления отрезка для локализации корня продолжаем до тех пор, пока его длина не станет меньше ε, точности нахождения корня. В этом случае любая точка отрезка локализации отличается от корня не более чем на ε/2.
Найдем корни уравнения x2–2=0 с точностью до 0,001 методом деления отрезка пополам. За первоначальный отрезок локализации корня выбран [0;2]. Для реализации этого метода введите в ячейки рабочего листа формулы либо значения, приведенные ниже в таблице:
Ячейка |
Формула или значение |
B1 |
0,001 |
A3 |
0 |
B3 |
2 |
C3 |
=(A3+B3)/2 |
D3 |
=(A3^2-2)*(C3^2-2) |
E3 |
=C3^2-2 |
F3 |
=ЕСЛИ(B3–A3<$B$1;»Корень найден и равен » & текст (C3;»0,000»); » ») |
A4 |
=ЕСЛИ (D3<=0; A3;C3) |
B4 |
= ЕСЛИ(D3<=0; C3; B3) |
C4 |
=(A4+B4)/2 |
D4 |
=(A4^2-2)*(C4^2-2) |
E4 |
C4^2-2 |
F4 |
=ЕСЛИ(B4-A4<$B$1; »Корень найден и равен » & текст(C4; »0,000»); » ») |
Теперь осталось только выбрать диапазон A4:F4, расположить указатель мыши на маркере его заполнения и пробуксировать его вниз до тех пор, пока в столбце F не появится сообщение о том, что корень найден. В данном случае сообщение появится в ячейке F14, а значение корня с точностью до 0,001 равно 1,415.
Число шагов можно определить заранее и скопировать формулы в диапазон из необходимого числа строк. Число шагов до нахождения корня определяется по формуле: [log2((b-a)/(2*t))]+1 (1), где [x] есть целая часть числа х, t – заданная точность.
Вычислить корень уравнения cosx = x на отрезке [0;2] с точностью до 0,001. Число шагов для определения корня вычислить при помощи формулы (1).
Использование MS EXEL значительно расширяет круг задач, которые можно использовать в обучении. Это обусловлено возможностью передачи трудоемких операций компьютеру, например, при решении уравнений методами итераций и деления отрезка пополам.
Решение уравнений в EXCEL методом половинного деления, методом хорд и касательных.
При прохождении темы численные методы учащиеся уже умеют работать с электронными таблицами и составлять программы на языке паскаль. Работа комбинированного характера.Расчитана на 40 минут. Цель работы повторить и закрепить навыки паботы с программами EXCEL, ABCPascal. Материал содержит 2 файла. Один содержит теоретический материал, так как он и предлагается ученику . Во 2-м файле пример работы ученика Иванова Ивана.
Скачать:
Вложение | Размер |
---|---|
материал для ученика | 57.5 КБ |
работа ученика | 27 КБ |
Предварительный просмотр:
Аналитическое решение некоторых уравнений, содержащих, например тригонометрические функции может быть получено лишь для единичных частных случаев. Так, например, нет способа решить аналитически даже такое простое уравнение, как cos x=x
Численные методы позволяют найти приближенное значение корня с любой заданной точностью.
Приближённое нахождение обычно состоит из двух этапов:
1) отделение корней, т.е. установление возможно точных промежутков [a,b], в которых содержится только один корень уравнения;
2) уточнение приближённых корней, т.е. доведение их до заданной степени точности.
Мы будем рассматривать решения уравнений вида f(x)=0. Функция f(x) определена и непрерывна на отрезке [а.Ь]. Значение х 0 называется корнем уравнения если f(х 0 )=0
Для отделения корней будем исходить из следующих положений:
- Если f(a)* f(b] a, b существует, по крайней мере, один корень
- Если функция y = f(x) непрерывна на отрезке [a, b], и f(a)*f(b) и f ‘(x) на интервале (a, b) сохраняет знак, то внутри отрезка [а, b] существует единственный корень уравнения
Приближённое отделение корней можно провести и графически. Для этого уравнение (1) заменяют равносильным ему уравнением р(х) = ф(х), где функции р(х) и ф(х] более простые, чем функция f(x). Тогда, построив графики функций у = р(х) и у = ф(х), искомые корни получим, как абсциссы точек пересечения этих графиков
Для уточнения корня разделим отрезок [а, b] пополам и вычислим значение функции f(х) в точке x sr =(a+b)/2. Выбираем ту из половин [a, x sr ] или [x sr ,b], на концах которых функция f(x) имеет противоположные знаки.. Продолжаем процесс деления отрезка пополам и проводим то же рассмотрение до тех пор, пока. длина [a,b] станет меньше заданной точности . В последнем случае за приближённое значение корня можно принять любую точку отрезка [a,b] (как правило, берут его середину). Алгоритм высокоэффективен, так как на каждом витке (итерации) интервал поиска сокращается вдвое; следовательно, 10 итераций сократят его в тысячу раз. Сложности могут возникнуть с отделением корня у сложных функций.
Для приближенного определения отрезка на котором находится корень можно воспользоваться табличным процессором, построив график функции
ПРИМЕР : Определим графически корень уравнения . Пусть f1(х) = х , a и построим графики этих функций. (График). Корень находится на интервале от 1 до 2. Здесь же уточним значение корня с точностью 0,001(на доске шапка таблицы)
Алгоритм для программной реализации
- а:=левая граница b:= правая граница
- m:= (a+b)/2 середина
- определяем f(a) и f(m)
- если f(a)*f(m)
- если (a-b)/2>e повторяем , начиная с пункта2
Точки графика функции на концах интервала соединяются хордой. Точка пересечения хорды и оси Ох (х*) и используется в качестве пробной. Далее рассуждаем так же, как и в предыдущем методе: если f(x a ) и f(х*) одного знака на интервале , нижняя граница переносится в точку х*; в противном случае – переносим верхнюю границу. Далее проводим новую хорду и т.д.
Осталось только уточнить, как найти х*. По сути, задача сводится к следующей: через 2 точки с неизвестными координатами (х 1 , у 1 ) и (х 2 , у 2 ) проведена прямая; найти точку пересечения этой прямой и оси Ох.
Запишем уравнение прямой по двум точках:
В точке пересечения этой прямой и оси Ох у=0, а х=х*, то есть
, откуда
процесс вычисления приближённых значений продолжается до тех пор, пока для двух последовательных приближений корня х„ и х п _1 не будет выполняться условие abs(xn-x n-1 ) е — заданная точность
Сходимость метода гораздо выше предыдущего
Алгоритм различается только в пункте вычисления серединной точки- пересечения хорды с осью абсцисс и условия останова (разность между двумя соседними точками пересечения)
Уравнения для самостоятельного решения: (отрезок в excel ищем самостоятельно)
Решение уравнение метод половинного деления excel
Часто в классической математике многое выглядит элементарно. Так, если нужно найти экстремум некоторой функции, то предлагается взять ее производную, приравнять нулю, решить полученное уравнение и т.д. Вне сомнения, что первые два действия в состоянии выполнить многие школьники и студенты. Что касается третьего действия, то позвольте усомниться в его элементарности.
Пусть после взятия производной мы пришли к уравнению tg(x)=1/x. Проведем следующие преобразования:
tg(x)=1/x Ю x tg(x)=1 Ю x2 tg=1 Ю x2= 1 / tg(x) Ю x = ±.
Если в приведённой здесь цепочке преобразований ничто не взволновало вашу мысль, то может быть лучше обучение на этом прекратить и заняться чем-нибудь другим, не требующим уровня знаний выше церковно-приходской школы начала XX века.
В самом деле, мы прекрасно решаем квадратные и биквадратные уравнения, наипростейшие тригонометрические и степенные. Еще водятся «мастодонты», знающие о существовании формул Кардано для кубических уравнений. В общем же случае надежд на простое аналитическое решение нет. Более того, доказано, что даже алгебраическое уравнение выше четвертой степени неразрешимо в элементарных функциях. Поэтому решение уравнения проводят численно в два этапа (здесь разговор идет лишь о вещественных корнях уравнения). На первом этапе производится отделение корней — поиск интервалов, в которых содержится только по одному корню. Второй этап решения связан с уточнением корня в выбранном интервале (определением значения корня с заданной точностью).
1.1. Отделение корней
В общем случае отделение корней уравнения f(x)=0 базируется на известной теореме, утверждающей, что если непрерывная функция f(x) на концах отрезка [a,b] имеет значения разных знаков, т.е. f(a) ґ f(b) Ј 0, то в указан-ном промежутке содержится хотя бы один корень. Например, для уравнения f(x)= x 3 -6x+2=0 видим, что при x ®Ґ f(x)>0, при x ®-Ґ f(x) ґ f(x+h) ґ f(b) Ј 0 (рис. 1), тогда на отрезке имеется хотя бы один корень.
Возьмем середину отрезка с=(a+b)/2. Если f(a) ґ f(c) Ј 0, то корень явно принадлежит отрезку от a до (a+b)/2 и в противном случае от (a+b)/2 до b.
Поэтому берем подходящий из этих отрезков, вычисляем значение функции в его середине и т.д. до тех пор, пока длина очередного отрезка не окажется меньше заданной предельной абсолютной погрешности (b-a) e .
Так как каждое очередное вычисление середины отрезка c и значения функции f(c) сужает интервал поиска вдвое, то при исходном отрезке [a,b] и предельной погрешности e количество вычислений n определяется условием (b-a)/2 n e , или n
log2((b-a)/ e ). Например, при исходном единичном интервале и точности порядка 6 знаков ( e
10 -6 ) после десятичной точки достаточно провести 20 вычислений (итераций) значений функции.
С точки зрения машинной реализации (рис. 2) этот метод наиболее прост и используется во многих стандартных программных средствах, хотя существуют и другие более эффективные по затратам времени методы.
1.3. Уточнение корней методом хорд
В отличие от метода дихотомии, обращающего внимание лишь на знаки значений функции, но не на сами значения, метод хорд использует пропорциональное деление интервала (рис. 3).
Рис. 3. Метод хорд |
Здесь вычисляются значения функции на концах отрезка, и строится «хорда», соединяющая точки (a,f(a)) и (b,f(b)). Точка пересечения ее с осью абсцисс
Можно доказать, что истинная погрешность найденного приближения:
1.4. Уточнение корней методом касательных (Ньютона)
Обширную группу методов уточнения корня представляют итерационные методы — методы последовательных приближений. Здесь в отличие от метода дихотомии задается не начальный интервал местонахождения корня, а его начальное приближение.
Наиболее популярным из итерационных методов является метод Ньютона (метод касательных).
Рис. 4. Метод касательных |
Пусть известно некоторое приближенное значение Zn корня X * . Применяя формулу Тейлора и ограничиваясь в ней двумя членами, имеем
Геометрически этот метод предлагает построить касательную к кривой y=f(x) в выбранной точке x=Zn, найти точку пересечения её с осью абсцисс и принять эту точку за очередное приближение к корню (рис. 4).
Очевидно, что этот метод обеспечивает сходящийся процесс приближений лишь при выполнении некоторых условий (например при непрерывности и знакопостоянстве первой и второй производной функции в окрестности корня) и при их нарушении либо дает расходящийся процесс (рис. 5), либо приводит к другому корню (рис. 6).
Очевидно, что для функций, производная от которых в окрестности корня близка к нулю, использовать метод Ньютона едва ли разумно.
Если производная функции мало изменяется в окрестности корня, то можно использовать видоизменение метода
Существуют и другие модификации метода Ньютона.
1.5. Уточнение корней методом простой итерации
Другим представителем итерационных методов является метод простой итерации.
Здесь уравнение f(x)=0 заменяется равносильным уравнением x= j (x) и строится последовательность значений
Если функция j (x) определена и дифференцируема на некотором интервале, причем | j /(x)| j (x) на этом интервале.
Геометрическая интерпретация процесса представлена на рис. 7. Здесь первые два рисунка (а, б) демонстрируют одностороннее и двустороннее приближение к корню, третий же (в) выступает иллюстрацией расходящегося процесса (| j /(x)| > 1).
Если f ‘(x)>0, то подбор равносильного уравнения можно свести к замене x=x- l Ч f(x), т.е. к выбору j (x)= x- l Ч f(x), где l >0 подбирается так, чтобы в окрестности корня 0 j ‘(x)=1- l Ч f ‘(x) Ј 1. Отсюда может быть построен итерационный процесс
Можно и искусственно подобрать подходящую форму уравнения, например:
Конспект урока информатики в 11-м классе «Исследование математических моделей. Решение уравнений методом половинного деления»
Цели урока:
- Обучающая– формирование новых знаний, умений и навыков по теме “Моделирование. Исследование математических моделей”, формирование общеучебных и специальных умений и навыков, контроль за усвоением учебного материала.
- Развивающая– развивать умение выделять главное; развивать мышление учащихся посредством анализа, сравнения и обобщения изучаемого материала; самостоятельность; развитие речи, эмоций, логического мышления учащихся.
- Воспитательная – формировать интерес к предмету, навыки контроля и самоконтроля; чувство ответственности, деловые качества учащихся. Активизация познавательной и творческой активности учащихся
Задачи урока:
- начать изучение исследования математических моделей,
- начать изучение приближенных методов решения уравнений,
- познакомить учащихся с методом половинного деления,
- познакомить учащихся с приближенным методом решения уравнений с помощью электронных таблиц Excel,
- сформировать у учащихся умение приближенно решать уравнения с помощью электронных таблиц Excel,
- разработать компьютерную модель нахождения корня уравнения на языке Visual Basic,
- формировать у учащихся потребность использования информационных технологий в решении задач по математике,
- развивать межпредметные связи.
Тип урока: урок изучения нового материала.
Оборудование: компьютерный класс, оборудованный компьютерами Pentium I и выше, лицензионное ПО: операционная система Windows 97/2000/XP, MS Office 2000 и выше, среда программирования Visual Basic, интерактивная доска, проектор.
- Организационный момент. Объявление темы, цели и задач урока.
- Актуализация знаний, необходимых для изучения нового материала:
- Что называется уравнением?
- Что называется корнем уравнения?
- Что значит “решить уравнение”?
- Объяснить, как можно графически решить уравнение. (Использовать интерактивную доску, на которой строится график в заранее заготовленной системе координат)
- Как построить график функции в Excel?
- Изучение нового материала.
Решение уравнений методом половинного деления.
Числовой метод половинного деления
Идея метода состоит в выборе точности решения и сведении первоначального отрезка [А;В], на котором существует корень уравнения, к отрезку заданной точности. Процесс сводится к последовательному делению отрезков пополам точкой С=(А+В)/2 и отбрасыванию той половины отрезка ([А;С] или [С;В]), на котором корня нет.
Выбор нужной половины отрезка основывается на проверке знаков значений функции на его краях. Выбирается та половина, на которой произведение значений функции на краях отрицательно, то есть где функция пересекает ось абсцисс.
Процесс продолжается до тех пор, пока длина отрезка не станет меньше удвоенной точности. Деление этого отрезка пополам дает значение корня х=(А+В)/2 с заданной точностью. (Объяснение материала сопровождается презентацией)
Приближенное решение уравнений с помощью электронных таблиц Excel.
Задача: решить уравнение x 3 =cosx
Чтобы решить уравнение графически, введем функцию у= x 3 — cosx
На интерактивной доске демонстрируется таблица значений функции на промежутке
[-2,5; 2,5] с шагом h=0,5 (заготовлена заранее). Построим график этой функции. На промежутке (-2,5; 2,5) график имеет одну точку пересечения с осью абсцисс, значит, на этом промежутке уравнение имеет один корень.
- Разработка компьютерной модели нахождения корня уравнения на языке Visual Basic (Приложение 3)
Проект “Приближенное решение уравнения” (Приложение1)
1. Поместить на форму текстовые поля для ввода числовых значений концов отрезка А и В, поле для ввода точности вычислений и поле для вывода значений корня.
2. Поместить на форму кнопку и создать событийную процедуру, вычисляющую корень уравнения методом половинного деления:
Private Sub Комманда1_Click()
dblC = (dblA + dblB) / 2
If (dblA ^ 3 — Cos(dblA)) * (dblC ^ 3 — Cos(dblC)) dblE
Текст8.Text = (dblA + dblB) / 2
End Sub
- Закрепление материала. Проверка качества усвоения материала.
Работа на компьютерах. Учащиеся получают задание (Приложение 2) решить уравнения в Excel и проверить правильность выполнения задания, используя программу, разработанную на Visual Basic.
Определить корни уравнения графически. Уточнить один из корней уравнения с точностью e =0,1.
источники:
http://msk.edu.ua/ivk/Informatika/Uch_posobiya/Excel/Equations/Doc/gl1.html
http://urok.1sept.ru/articles/508238