Распределение стьюдента в excel график


Рассмотрим Распределение Стьюдента (t-распределение). С помощью функции MS EXCEL

СТЬЮДЕНТ.РАСП()

построим графики функции распределения и плотности вероятности, поясним применение этого распределения для целей математической статистики.


Распределение Стьюдента

(также называется

t

-распределением

) применяется в различных методах математической статистики:

  • при построении

    доверительных интервалов для среднего

    (используется функция

    ДОВЕРИТ.СТЬЮДЕНТ()

    );

  • для

    оценки различия двух выборочных средних

    (используется функция

    СТЬЮДЕНТ.ТЕСТ()

    );

  • при

    проверке гипотез (выборка небольшого размера, стандартное отклонение не известно)

    ,

  • в линейном регрессионном анализе (при проверке гипотез на значимость отдельных регрессионных коэффициентов).


Определение

: Если случайная величина Z распределена по

стандартному нормальному закону

N(0;1) и случайная величина U имеет

распределение ХИ-квадрат

с ν степенями свободы, то случайная величина T=Z/√(U/v) имеет

t-распределение

.

Плотность распределения

Стьюдента

выражается формулой:

при −∞ < t < ∞


СОВЕТ

: Подробнее о

Функции распределения

и

Плотности вероятности

см. статью

Функция распределения и плотность вероятности в MS EXCEL

.


Распределение

Стьюдента

(англ.

Student



s

t



distribution

)

зависит от одного параметра, который называется

степенью свободы

(

df

,

degrees

of

freedom

). Например, при

построении доверительного интервала для среднего

число степеней свободы

равно df=n-1, где n – размер

выборки

. При увеличении

числа степеней свободы

это распределение стремится к

стандартному нормальному распределению

.

В центральной части распределения (около 0) при df=25, относительная разница со

стандартным нормальным распределением

составляет порядка 1%, а при df=100 разница составляет 0,25%.

По аналогии со

стандартным нормальным распределением

,

t

-распределение

часто называется «стандартизированным», т.к. у него нет параметра отвечающего за положение (

среднее

всегда равно 0).

Дисперсию

t

-распределения

можно вычислить по формуле =df/(df-2)

Графики функций

В

файле примера на листе График

приведены

графики плотности распределения

вероятности и

интегральной функции распределения

.

График

плотности распределения Стьюдента

, как и

стандартного

нормального распределения

, является симметричным и колоколообразным, но с более тяжелыми хвостами.

Ниже для сравнения приведены графики

плотности стандартного нормального распределения

и

распределения Стьюдента.


Примечание

: Для построения

функции распределения

и

плотности вероятности

можно использовать диаграмму типа

График

или

Точечная

(со сглаженными линиями и без точек). Подробнее о построении диаграмм читайте статью

Основные типы диаграмм

.

t-распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для

t-распределения

имеется функция

СТЬЮДЕНТ.РАСП()

, английское название — T.DIST(), которая позволяет вычислить

плотность вероятности

(см. формулу выше) и

интегральную функцию распределения

(вероятность, что случайная величина Х, имеющая

распределение Стьюдента

, примет значение меньше или равное х, P(X <= x)).


Примечание

: В

файле примера на листе Функции

приведены основные функции MS EXCEL, связанные с этим распределением.

Кроме этой функции в MS EXCEL имеется еще довольно много других функций, относящихся к данному распределению, но по большому счету их функционал покрывается функцией

СТЬЮДЕНТ.РАСП()

.

Кроме того,

СТЬЮДЕНТ.РАСП()

является единственной функцией, которая возвращает

плотность вероятности

(третий аргумент должен быть равным ЛОЖЬ). Остальные функции возвращают

интегральную функцию распределения

, т.е. вероятность того, что случайная величина примет значение из указанного диапазона: P(X <= x), P(X > x) или даже P(|X| > x).

Очевидно, что справедливо равенство


=СТЬЮДЕНТ.РАСП.ПХ(x;n)+СТЬЮДЕНТ.РАСП(x;n;ИСТИНА)=1

т.к. первое слагаемое вычисляет вероятность P(X > x), а второе P(X <= x).

До MS EXCEL 2010 в EXCEL была только функция

СТЬЮДРАСП()

, которая позволяет вычислить

функцию распределения

(точнее — правостороннюю вероятность, т.е. P(X>x)) и объединяет возможности нескольких новых функций MS EXCEL 2010:

СТЬЮДЕНТ.РАСП(x; n; ЛОЖЬ)

,

СТЬЮДЕНТ.РАСП.ПХ()

,

СТЬЮДЕНТ.РАСП.2Х()

. Функция

СТЬЮДРАСП()

оставлена в MS EXCEL 2010 для совместимости.

  • Если значение аргумента «хвосты» = 1, функция

    СТЬЮДРАСП()

    вычисляет правостороннюю вероятность P(X > x), где X — случайная переменная, соответствующая t-распределению. Под термином «хвост» подразумевается «хвост» распределения, в данном случае правый. На графике

    плотности вероятности

    этому «хвосту» будет соответствовать площадь фигуры под графиком (выделена синим), которая ограничена слева вертикальной линией X = x.

  • Если значение аргумента «хвосты» = 2, функция

    СТЬЮДРАСП()

    вычисляет вероятность P(|X| > x) или другими словами P(X > x или X < -x). Т.е. формула

    =СТЬЮДРАСП(x;n;2)

    эквивалентна

    =СТЬЮДРАСП(x;n;1)*2
  • Функцией

    СТЬЮДРАСП()

    значения x < 0 не поддерживаются и нельзя записать

    СТЬЮДРАСП(-x;n;1)

    . Чтобы вычислить вероятность P(X <= x), в том числе и для отрицательных х, используйте формулу

    =ЕСЛИ(x>0;СТЬЮДРАСП(x;n;1);1-СТЬЮДРАСП(-x;n;1))

    .

Примеры

Найдем вероятность, что случайная величина Х примет значение меньше или равное заданного

x

: P(X <=

x

). Это можно сделать несколькими функциями:


  • =СТЬЮДЕНТ.РАСП(x; n; ИСТИНА)

    или

    =1-СТЬЮДЕНТ.РАСП(-x; n; ИСТИНА)

    , используется свойство симметричности плотности распределения относительно оси Х.

  • =1-СТЬЮДЕНТ.РАСП.ПХ(x;n)

    или

    =СТЬЮДЕНТ.РАСП.ПХ(-x;n)

    , функция

    СТЬЮДЕНТ.РАСП.ПХ()

    возвращает вероятность P(X > x), так называемую правостороннюю вероятность, поэтому, чтобы найти P(X <= x), необходимо вычесть ее результат от 1 или воспользоваться свойством t-распределения t(-х)=1-t(x).

  • =1-СТЬЮДЕНТ.РАСП.2Х(x;n)/2

    или

    =1-СТЬЮДРАСП(x;n;2)/2

    , в этой формуле

    х

    может принимать только положительные значения (подробнее об этой функции см. ниже);

  • =1-СТЬЮДРАСП(x; n; 1)

    , в этой формуле

    х

    может принимать только положительные значения, функция

    СТЬЮДРАСП()

    , как и

    СТЬЮДЕНТ.РАСП.ПХ()

    , возвращает «правостороннюю вероятность», т.е. P(X > x).

Аналогичные вычисления для P(X > x) и P(|X| > x) приведены в

файле примера на листе Функции

, в том числе и для x<0.

Обратная функция t-распределения

Обратная функция используется для вычисления

альфа

квантилей

, т.е. для вычисления значений

x

при заданной вероятности

альфа

, причем

х

должен удовлетворять выражению P{X<=x}=

альфа

.

Функция

СТЬЮДЕНТ.ОБР()

используется для вычисления как двухсторонних, так и

односторонних доверительных интервалов

. А функции

СТЬЮДЕНТ.ОБР.2Х()

и

СТЬЮДРАСПОБР()

созданы специально для вычисления

квантилей

, необходимых для расчета двусторонних

доверительных интервалов:

в качестве аргумента нужно указывать

уровень значимости

альфа

, а не

альфа/2

, как для

СТЬЮДЕНТ.ОБР()

.

Вышеуказанные функции можно взаимозаменять, т.к. нижеуказанные формулы возвращают одинаковый результат:

=СТЬЮДЕНТ.ОБР(альфа;n) =-СТЬЮДРАСПОБР(альфа*2;n) =-СТЬЮДЕНТ.ОБР.2Х(альфа*2;n)

Некоторые примеры расчетов приведены в

файле примера на листе Функции

.


Примечание

: Ниже приведено соответствие русских и английских названий функций:

СТЬЮДЕНТ.РАСП.ПХ()

— англ. название T.DIST.RT, т.е. T-DISTribution Right Tail, the right-tailed Student’s t-distribution

СТЬЮДЕНТ.РАСП.2Х()

— англ. название T.DIST.2T, т.е. T-DISTribution 2 Tails

СТЬЮДЕНТ.ОБР()

— англ. название T.INV, т.е. T-distribution INVerse

СТЬЮДРАСП()

— англ. название TDIST, т.е. T-DISTribution

СТЬЮДРАСПОБР()

— англ. название TINV, т.е. T-distribution INVerse (the right-tailed inverse of the Student’s t-distribution)

СТЬЮДЕНТ.ОБР.2Х()

— англ. название T.INV.2T

Функции MS EXCEL, использующие t-распределение

Как было сказано выше, при

построении доверительных интервалов

используется функция

ДОВЕРИТ.СТЬЮДЕНТ()

— англ. название CONFIDENCE.T.

Например, формула

=ДОВЕРИТ.СТЬЮДЕНТ(альфа;СТАНДОТКЛОН.В(B20:B79); СЧЁТ(B20:B79))

эквивалентна классической формуле для вычисления доверительного интервала

=СТЬЮДЕНТ.ОБР(1-альфа/2; СЧЁТ(B20:B79)-1)* СТАНДОТКЛОН.В(B20:B79)/КОРЕНЬ(СЧЁТ(B20:B79))

где предполагается, что

выборка

находится в диапазоне

B20:B79

.

Как видим, особых преимуществ в использовании

ДОВЕРИТ.СТЬЮДЕНТ()

нет.

Другая функция —

СТЬЮДЕНТ.ТЕСТ()

— англ. название T.TEST, используется для

оценки различия двух выборочных средних

.

Оценка параметров распределения

Т.к. обычно

t-распределение

используется для целей математической статистики (вычисление

доверительных интервалов,

проверки гипотез и др.),

и практически никогда для построения моделей реальных величин, то для этого распределения обсуждение оценки параметров распределения здесь не производится.


СОВЕТ

: О других распределениях MS EXCEL можно прочитать в статье

Распределения случайной величины в MS EXCEL

.

Рассматриваемая функция возвращает значение t, соответствующее условию P(|x|>t)=p. Здесь x является значением некоторой случайной величины с распределением Стьюдента, у которого число степеней свобод соответствует k (второй аргумент функции СТЮДРАСПОБР).

Пример 1. Определить односторонне и двустороннее t-значения для распределения Стьюдента, характеризующееся вероятностью 0,17 и числом степени свобод 16.

Теперь перейдем непосредственно к вопросу, как рассчитать данный показатель в Экселе. Его можно произвести через функцию СТЬЮДЕНТ.ТЕСТ. В версиях Excel 2007 года и ранее она называлась ТТЕСТ. Впрочем, она была оставлена и в позднейших версиях в целях совместимости, но в них все-таки рекомендуется использовать более современную — СТЬЮДЕНТ.ТЕСТ. Данную функцию можно использовать тремя способами, о которых подробно пойдет речь ниже.

Проще всего производить вычисления данного показателя через Мастер функций.

Выполняется расчет, а результат выводится на экран в заранее выделенную ячейку.

Функцию СТЬЮДЕНТ.ТЕСТ можно вызвать также путем перехода во вкладку «Формулы» с помощью специальной кнопки на ленте.

Этапы статистического вывода (statistic inference)

  1. Первый из них – это вопрос, который мы хотим изучить с помощью статистических методов. То есть первый этап: что изучаем? И какие у нас есть предположения относительно результата? Этот этап называется этап статистических гипотез.
  2. Второй этап – нужно определиться с тем, какие у нас есть в реальности данные для того, чтобы ответить на первый вопрос. Этот этап – тип данных.
  3. Третий этап состоит в том, чтобы выбрать корректный для применения в данной ситуации статистический критерий.
  4. Четвертый этап это логичный этап применения интерпретации любой формулы, какие результаты мы получили.
  5. Пятый этап это создание, синтез выводов относительно первого, второго, третьего, четвертого, пятого этапа, то есть что же получили и что же это в реальности значит.

Пример использования т-критерия Стьюдента

А пример будет достаточно простой: мне интересно, стали ли люди выше за последние 100 лет. Для этого нужно подобрать некоторые данные. Я обнаружил интересную информацию в достаточно известной статье The Guardian (Tall storys men and women have grown taller over last century, Study Shows (The Guardian, July 2016), которая сравнивает средний возраст человека в разных странах в 1914 году и в аналогичных странах в 2014 году.

Там приведены данные практически по всем государствам. Однако, я взял лишь 5 стран для простоты вычислений: это Россия, Германия, Китай, США и ЮАР, соответственно 1914 год и 2014 год.

Общее количество наблюдений – 5 в 1914 году в группе 1914 года и общее значение также 5 в 2014 году. Будем думать опять же для простоты, что эти данные сопоставимы, и с ними можно работать.

Дальше нужно выбрать критерии – критерии, по которым мы будем давать ответ. Равны ли средние по росту в 1914 году x̅1914 и в 2014 году x̅2014. Я считаю, что нет. Поэтому моя гипотеза это то, что они не равны (x̅1914≠x̅2014). Соответственно альтернативная гипотеза моему предположению, так называемая нулевая гипотеза (нулевая гипотеза консервативна, обратная вашей, часто говорит об отсутствии статистически значимых связей/зависимостей) будет говорить о том, что они между собой на самом деле равны (x̅1914=x̅2014), то есть о том, что все эти находки случайны, и я, по сути, не прав.

Для чего используется t-критерий Стьюдента?

t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата). В последнем случае рассчитывается парный t-критерий Стьюдента

В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение. Также имеет значение равенство дисперсий (распределения) сравниваемых групп (гомоскедастичность). При неравных дисперсиях применяется t-критерий в модификации Уэлча (Welch’s t).

При отсутствии нормального распределения сравниваемых выборок вместо t-критерия Стьюдента используются аналогичные методы непараметрической статистики, среди которых наиболее известными является U-критерий Манна — Уитни.

Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n1 и n2). Находим число степеней свободы f по следующей формуле:

f = (n1 + n2) – 2

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже).

Сравниваем критическое и рассчитанное значения критерия:

  • Если рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами.
  • Если значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы.

Внесите исходные данные группы

Вы можете внести данные для расчета критерия Т-Стьюдента поочередно вручную или скопировать их из вашего Excel файла.

Внесите исходные данные группы

Вы можете внести данные поочередно вручную или скопировать их из вашего Excel файла.

Критические точки распределения Стьюдента

Число степеней свободы
k
Уровень значимости α (двусторонняя критическая область)
0.10 0.05 0.02 0.01 0.002 0.001
1 6.31 12.7 31.82 63.7 318.3 637.0
2 2.92 4.30 6.97 9.92 22.33 31.6
3 2.35 3.18 4.54 5.84 10.22 12.9
4 2.13 2.78 3.75 4.60 7.17 8.61
5 2.01 2.57 3.37 4.03 5.89 6.86
6 1.94 2.45 3.14 3.71 5.21 5.96
7 1.89 2.36 3.00 3.50 4.79 5.40
8 1.86 2.31 2.90 3.36 4.50 5.04
9 1.83 2.26 2.82 3.25 4.30 4.78
10 1.81 2.23 2.76 3.17 4.14 4.59
11 1.80 2.20 2.72 3.11 4.03 4.44
12 1.78 2.18 2.68 3.05 3.93 4.32
13 1.77 2.16 2.65 3.01 3.85 4.22
14 1.76 2.14 2.62 2.98 3.79 4.14
15 1.75 2.13 2.60 2.95 3.73 4.07
16 1.75 2.12 2.58 2.92 3.69 4.01
17 1.74 2.11 2.57 2.90 3.65 3.95
18 1.73 2.10 2.55 2.88 3.61 3.92
19 1.73 2.09 2.54 2.86 3.58 3.88
20 1.73 2.09 2.53 2.85 3.55 3.85
21 1.72 2.08 2.52 2.83 3.53 3.82
22 1.72 2.07 2.51 2.82 3.51 3.79
23 1.71 2.07 2.50 2.81 3.59 3.77
24 1.71 2.06 2.49 2.80 3.47 3.74
25 1.71 2.06 2.49 2.79 3.45 3.72
26 1.71 2.06 2.48 2.78 3.44 3.71
27 1.71 2.05 2.47 2.77 3.42 3.69
28 1.70 2.05 2.46 2.76 3.40 3.66
29 1.70 2.05 2.46 2.76 3.40 3.66
30 1.70 2.04 2.46 2.75 3.39 3.65
40 1.68 2.02 2.42 2.70 3.31 3.55
60 1.67 2.00 2.39 2.66 3.23 3.46
120 1.66 1.98 2.36 2.62 3.17 3.37
1.64 1.96 2.33 2.58 3.09 3.29
0.05 0.025 0.01 0.005 0.001 0.0005
Уровень значимости α (односторонняя критическая область)

Условия применения t-критерия Стьюдента

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Больше всего t-критерий «боится» выбросов, т.е. аномальных отклонений. Возьмем 20 тыс. нормальных выборок по 15 наблюдений и в часть из них добавим по одному случайном выбросу.

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП – «классическое» левостороннее t-распределение Стьюдента. На вход подается значение t-критерия, количество степеней свободы и опция (0 или 1), определяющая, что нужно рассчитать: плотность или значение функции. На выходе получаем, соответственно, плотность или вероятность того, что случайная величина окажется меньше указанного в аргументе t-критерия, т.е. левосторонний p-value.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия (по модулю), т.е. фактический уровень значимости (p-value).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-value.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α, а для правого 1 — α.

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α. Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-value.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

H0: μ = 50 кг

Ha: μ ≠ 50 кг

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двусторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей для критерия Стьюдента (есть в любом учебнике по статистике).

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двусторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-value попробовать найти, но он будет приближенным. А, как правило, именно p-value используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двусторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-value, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

P-value равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-value оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.


Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-value (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Источники

  • https://exceltable.com/funkcii-excel/raspredeleniya-styudenta-styudraspobr
  • https://lumpics.ru/calculation-student-test-in-excel/
  • https://lit-review.ru/biostatistika/t-kriterijj-styudenta-za-12-minut/
  • https://medstatistic.ru/methods/methods.html
  • https://statpsy.ru/t-student/onlajn-raschet-kriteriya-t-styudenta-dlya-nezavisimyh-vyborok/
  • https://math.semestr.ru/corel/table-student.php
  • https://statanaliz.info/statistica/proverka-gipotez/raspredelenie-t-kriteriya-styudenta-dlya-proverki-gipotezy-i-rascheta-doveritelnogo-intervala-v-ms-excel/

Функция СТЮДРАСПОБР предназначена для расчета значения квантиля уровня, соответствующего известной вероятности (указывается в качестве первого аргумента), распределения Стьюдента для известных степеней свободы и возвращает обратное t-распределение.

Распределение Стьюдента и нормальное распределение в Excel

Рассматриваемая функция возвращает значение t, соответствующее условию P(|x|>t)=p. Здесь x является значением некоторой случайной величины с распределением Стьюдента, у которого число степеней свобод соответствует k (второй аргумент функции СТЮДРАСПОБР).

Примечания:

  1. Распределение Стьюдента является одним из видов распределения случайной величины, близкое к нормальному распределению с характерным отличием – сниженная концентрацией отклонений в средней части распределения. Иное название – t-распределение.
  2. Квантилем считается некоторое значение, которое с определенной вероятностью (фиксированной) не будет превышено случайной величиной.
  3. Функция СТЮДРАСПОБР считается устаревшей начиная с версии MS Office 2010. Она оставлена для обеспечения совместимости с другими табличными редакторами и документами, созданными в более старых версиях табличного редактора. В новых версиях следует использовать усовершенствованные аналоги: СТЬЮДЕНТ.ОБР.2Х или СТЬЮДЕНТ.ОБР.

Подробнее о нормальном распределении читайте: НОРМСТРАСП функция стандартного нормального распределения в Excel.

Ниже рассмотрим примеры использования функции СТЮДРАСПОБР в Excel.



Определение одностороннего и двустороннего t распределение Стьюдента

Пример 1. Определить односторонне и двустороннее t-значения для распределения Стьюдента, характеризующееся вероятностью 0,17 и числом степени свобод 16.

Вид таблицы данных:

Пример 1.

Для расчета двустороннего t-значения используем функцию:

=СТЬЮДРАСПОБР(B2;B1)

Результат вычислений:

СТЬЮДРАСПОБР.

Для двустороннего t используем удвоенное значение вероятности:

=СТЬЮДРАСПОБР(2*B2;B1)

В результате получим:

Определение двустороннего t распределение.

Число степеней свободы в распределении Стьюдента

Пример 2. Сгенерировать 8 случайных чисел с использованием функции СЛЧИС, для которых распределение Стьюдента имеет 4 степени свободы.

Поскольку вероятность того, что случайна величина примет как отрицательное, так и положительное значение является одинаковой и равна 0,5 (распределение Стьюдента симметрично относительно вертикальной оси графика), используем функцию ЕСЛИ для проверки значений.

Выделим 8 ячеек и запишем следующую функцию (вводить как формулу массива CTRL+SHIFT+Enter):

То есть, если случайное значение вероятности, сгенерированное функцией СЛЧИС меньше 0,5, будет сгенерировано отрицательное t-значение, иначе – положительное.

Результат вычислений:

4 степени свободы.

Как пользоваться функцией распределения Стьюдента СТЮДРАСПОБР В EXCEL

Функция имеет следующий синтаксис:

=СТЬЮДРАСПОБР(вероятность;степени_свободы)

Описание аргументов:

  • вероятность – обязательный для заполнения, принимает числовое значение вероятности для двустороннего распределения Стьюдента из диапазона от 0 (не включительно) до 1.
  • степени_свободы – обязательный для заполнения, принимает числовое значение степеней свободы, которые определяют исследуемое распределение.

Примечания:

  1. Если один из аргументов функции указан в виде значения нечислового типа данных, результатом выполнения рассматриваемой функции будет код ошибки #ЗНАЧ!. Логические значения, имена и текстовые строки, преобразуемые в числа, не приводят к возникновению ошибки. Например, функция =СТЮДРАСПОБР(“0,4”;ИСТИНА) вернет значение 1,32638.
  2. Если аргумент вероятность задан числом, не находящимся в промежутке от 0 (не включительно) до 1, функция СТЮДРАСПОБР вернет код ошибки #ЧИСЛО!. Аналогичная ошибка возникает, если аргумент степени_свободы задан числом, которое меньше 1.
  3. Для расчета односторонней t-величины следует в качестве аргумента вероятность указать значение удвоенной вероятности.

Большинству из нас хорошо знакома колоколообразная кривая нормального распределения. Она отлично работает, когда выборки большие, но занижает значения на «хвостах», когда выборки малые. Для описания статистики малых выборок была разработана t-статистика Стьюдента. Она также симметрична и подчиняется колоколообразному распределению, но дает лучшую оценку для малых выборок. В отличие от нормального распределения t-статистика не одна, а представлена целым семейством распределений. Дополнительный параметр – размер выборки или число степеней свободы.

Рис. 1. Нормальная кривая и кривые t-распределения; df – число степеней свободы (от англ. degrees of freedom); gif-файл создан с помощью бесплатного сервиса ezgif.com, на который меня навела Евгения Крюкова

Скачать заметку в формате Word или pdf, примеры в формате Excel

Подход пивовара

В начале XX века Уильяму Сили Госсету, химику и статистику ирландской пивоваренной компании Guinness, потребовалось установить, какой из двух сортов ячменя дает лучшее пиво с большим выходом.[1] Ранее была разработана статистика нормального распределения, позволяющая находить доверительный интервал на основе случайной выборки, состоящей из не менее чем 30 объектов. К сожалению, у Госсета не было возможности протестировать большое число партий пива, изготовленных из каждого сорта ячменя. Однако он не отказался от своей затеи измерить то, что как будто не поддавалось оценке, и решил вывести новый вид распределения для крайне малых выборок. К 1908 г. Госсет разработал новый эффективный метод, который назвал t-статистикой, и захотел опубликовать результаты своей работы.

Однако у Guinness уже были проблемы с разглашением коммерческой тайны, и служащим компании было запрещено публиковать любую информацию о бизнес-процессах. Госсет понимал значение своей работы. Ему сильнее хотелось рассказать о своей идее, чем добиться немедленного признания. Поэтому он опубликовал статью под псевдонимом Стьюдент. И хотя истинный автор давно известен, практически во всех работах по статистике метод называется t-статистикой Стьюдента.

От физических значений к z-статистике

Колоколообразная кривая нормального распределения описывается формулой:

где f(X) – вероятность значения Х; f(X) откладывается по оси ординат; е — основание натурального логарифма; μ — математическое ожидание генеральной совокупности, σ — стандартное отклонение генеральной совокупности, X — произвольное значение непрерывной случайной величины; X откладывается по оси абсцисс; –∞ < X < +∞ (о вычислении μ и σ подробнее см. Определение среднего значения, вариации и формы распределения. Описательные статистики).

Формула (1) довольно сложная, и в докомпьютерную эру статистики использовали заранее рассчитанные таблицы. Поскольку составление таблиц для всего разнообразия Х, μ и σ дело неподъемное, была придумана стандартизация, которая состоит в приведении физических величин к z-единицам, путем простой арифметической подстановки

В этом случае всё многообразие нормальных кривых сводится к единому стандартизованному распределению:

где математическое ожидание (среднее) стандартизованного нормального распределения μ = 0, а стандартное отклонение σ = 1. Фактически, z – это десятичное число, для которого σ = 1, μ = 0.

Сейчас функция в Excel НОРМ.РАСП(x;среднее;стандартное_откл;интегральная) значительно упростила работу с формулой (1). Однако, заложенная традиция сохранилась, и статистики обсуждают особенности распределения, критические границы и т.п. в терминах стандартного нормального распределения (рис. 2). Для последнего в Excel используется функция НОРМ.СТ.РАСП(z;интегральная).

Рис. 2. Формула (3) реализована в Excel с помощью функции НОРМ.СТ.РАСП(); по оси абсцисс – z-единицы, по оси ординат – вероятность.

Для перехода от стандартного распределения к физическим величинам нужно применить обратное преобразование:

Допустим вы изучаете время загрузки некой Web-страницы, и выясняете, что оно распределено нормально, причем математическое ожидание равно μ = 7с, а стандартное отклонение σ = 2с. Как показывает рис. 3, каждому значению переменной X соответствует нормированное значение Z, полученное с помощью формулы преобразования (2). Следовательно, время загрузки, равное 9с, на одну стандартную единицу превышает математическое ожидание: Z = (9 – 7) / 2 = +1, а время загрузки равное 1с на три z-единицы (стандартных отклонения) меньше математического ожидания: Z = (1 – 7) / 2 = –3.

Рис. 3. Преобразование физических значений в z-значения для μ = 7, σ = 2

Описанные выше z-единицы используют для индивидуальных оценок, т.е. для измерений, приписываемых отдельным элементам выборки (например, рост каждого ученика школы). Если в качестве точек кривой нормального распределения берутся средние значения выборок (например, средний рост учеников различных классов), используют термин z-значение или z-статистика:[2]

где X̅ – среднее значение выборки (средний рост учеников 5А класса), μ – среднее значение генеральной совокупности (средний рост всех учеников школы),  – стандартная ошибка средних (стандартное отклонение среднего роста учеников отдельных классов от среднего роста всех учеников школы). Последняя рассчитывается по формуле:

где σ – стандартная ошибка индивидуальных значений, n – размер выборки (число учеников в классе).

t-значение

Допустим, вы предполагаете, что дизельные двигатели автомобилей определенной модели выбрасывают в атмосферу больше оксида азота, чем заявлено в рекламных объявлениях. Вы знаете, что стандарт устанавливает ограничение на выбросы – не более 0,4 грамма на милю пробега. Вы хотели бы сравнить эмпирически полученные результаты не со средним по генеральной совокупности, а с этим стандартом – 0,4 г/милю. Это целевое значение, а не параметр генеральной совокупности. Вы тестируете пять автомобилей данной модели и измеряете уровень выброса оксида азота в дорожных условиях. Далее вы вычисляете среднее количество выбросов оксида азота для пяти автомобилей и находите стандартное отклонение. Наконец, вы находите величину:

где X̅ – средний уровень выбросов диоксида азота для пяти автомобилей; μ = 0,4 – установленный стандартом граничный уровень выбросов оксида азота;[3] s — стандартное отклонение уровня выбросов оксида азота по результатам для пяти автомобилей.

Это отношение очень похоже на формулу (2) для z-значения, но в действительности это t-значение. z- и t-значения отличаются тем, что для нахождения t-значения используется стандартное отклонение, полученное на основе выборочных результатов s, а не известное значение параметра генеральной совокупности σ. Использование латинской буквы s вместо греческой буквы σ для обозначения стандартного отклонения напоминает о том, что в данном случае значение стандартного отклонения является выборочной оценкой (статистикой), а не известным параметром.

Плотность распределения t-значений рассчитывается не с помощью формулы (3), а существенно сложнее. Я не привожу её здесь, поскольку сейчас в лоб ее никто не считает. Все используют готовые функции в статистических пакетах.

В Excel есть ряд функций, работающих с t-статистикой (рис. 4). Функции, имена которых включают часть РАСП, принимают t-значение в качестве аргумента и возвращают вероятность. Функции, имена которых включают часть ОБР, принимают значение вероятности в качестве аргумента и возвращают t-значение. Две последние функции на рис. 4 устарели и оставлены для обратной совместимости с более ранними версиями Excel.

Рис. 4. Семейство функций в Excel, работающих с t-статистикой Стьюдента

Степени свободы

Кривая t-распределения аналогична стандартной нормальной кривой, но ее форма немного меняется в зависимости от количества наблюдений, использованных для ее построения. В общем случае количество степеней свободы df = n – k, где n — количество наблюдений в выборке, а k — количество статистик, фиксированных для выборки. Например, если мы просто изучаем выборку, то k = 1, так как мы зафиксировали только среднее значение выборки. Если мы изучаем регрессионную зависимость от одной переменной, то k = 2; зафиксированы две статистики: среднее по выборке и наклон регрессионной кривой. Каждая дополнительная независимая переменная в регрессионной зависимости уменьшает число степеней свободы на единицу.

Во все функции Excel, предназначенные для работы с t-распределением, вторым аргументом входит количество степеней свободы df. Этот параметр необходим Excel для того, чтобы правильно вычислить форму кривой плотности t-распределения и вернуть корректное значение вероятности t-значения, заданного с помощью первого аргумента. Так для одного и того же z-значения = t-значению = 2,5 вероятность встретить его зависит от размера выборки (числа степеней свободы; рис. 5).

Рис. 5. Вероятность появления z- или t-значения зависит от того, какое распределение используется

То, насколько толстыми или тяжелыми являются хвосты t-распределения можно выразить количественно (рис. 6). Так, например, в пределах одного стандартного отклонение от среднего при нормальном распределении находится 68,27% значений. Для t-распределения с двумя степенями свободы такая вероятность существенно меньше – 57,74%.

Рис. 6. Сравнение нормального и t-распределений

Функции Excel для работы с t-распределением

Рассмотрим работу функций Excel подробнее. Функция =СТЬЮДЕНТ.РАСП(t-значение;df;интегральная) возвращает левостороннее t-распределение Стьюдента (рис. 7). t-значение должно быть стандартизовано согласно формуле (7), т.е., выражено в долях стандартного отклонения σ при математическом ожидание генеральной совокупности µ = 0. Последний аргумент функции СТЬЮДЕНТ.РАСП() является логическим значением. Если он равен ЛОЖЬ, возвращается функция плотности распределения, т.е., вероятность для одного t-значения – Р(Х=t). Если он равен ИСТИНА, функция возвращает интегральное (накопленное) значение, т.е., вероятность попасть в интервал от минус бесконечности до t-значения – Р(Х≤t).

Рис. 7. Левостороннее t-распределение Стьюдента, функция Excel СТЬЮДЕНТ.РАСП()

Если функцию СТЬЮДЕНТ.РАСП() дополнить простыми арифметическими действиями, можно решить множество задач, связанных с t-распределением. Некоторые из них представлены ниже (рис. 8; во всех случаях df = 20):

  • какова вероятность найти значение за пределами диапазона ±2,4σ от среднего значения Р(|Х|≥2,4)? =СТЬЮДЕНТ.РАСП(-2,4;20;ИСТИНА)*2
  • какова вероятность найти значение внутри диапазона ±1,8σ от среднего значения Р(|Х|≤1,8)? =СТЬЮДЕНТ.РАСП(1,8;20;ИСТИНА)-СТЬЮДЕНТ.РАСП(-1,8;20;ИСТИНА) или, учитывая симметричность t-распределения, =(0,5-СТЬЮДЕНТ.РАСП(-1,8;20;ИСТИНА))*2
  • какова вероятность найти значение справа от 2σ Р(Х≥2)?
    =1-СТЬЮДЕНТ.РАСП(2;20;ИСТИНА)
  • какова вероятность среднего значения Р(Х=0)?
    =СТЬЮДЕНТ.РАСП(0;20;ЛОЖЬ)

Рис. 8. Функция Excel СТЬЮДЕНТ.РАСП() позволяет решать основные задачи с t-распределением

Функция СТЬЮДЕНТ.РАСП.ПХ() возвращает правостороннее t-распределение, причем только интегральное. Т.е., она показывает накопленную вероятность, начиная с правой точки +∞ при движении влево – Р(X≥t).[4] У функции только два аргумента: t-значение и число степеней свободы. Она чуть более удобна, чем СТЬЮДЕНТ.РАСП() в задачах, где нас интересует вероятность обнаружить то или иное значение правого хвоста. Для примера (в) выше (см. также рис. 8в) формула будет такой: =СТЬЮДЕНТ.РАСП.ПХ(2;20).

Функция СТЬЮДЕНТ.РАСП.2Х() возвращает двустороннее t-распределение Стьюдента – P(|X|≥t) или P(X≥t или X≤-t). Как и функция СТЬЮДЕНТ.РАСП.ПХ(), она имеет два аргумента (t-значение и число степеней свободы), и возвращает только интегральное значение. Функция СТЬЮДЕНТ.РАСП.2Х() показывает накопленную вероятность для двух симметричных хвостов. Она чуть более удобна, чем СТЬЮДЕНТ.РАСП() в задачах, где нас интересует вероятность обнаружить два хвоста сразу. При этом задать нужно t-значение правого хвоста (отрицательные t-значения функция не принимает). Для примера (а) выше (см. также рис. 9а) формула будет такой: =СТЬЮДЕНТ.РАСП.2Х(2,4;20).

t-критерий

Одно из важных применений t-статистики связано с ответом на вопрос, насколько выборка характерна для генеральной совокупности? Например, если в генеральной совокупности среднее μ, а в выборке – х̅, какова вероятность, что выборка сделана из этой генеральной совокупности, а не из другой?

Рассмотрим пример (рис. 9). Исследуется зависимость веса от роста. Функция массива ЛИНЕЙН() (ячейки D2:E6), возвращает, в частности, наклон регрессионной кривой, он же коэффициент регрессии (ячейка D2) и стандартную ошибку коэффициента регрессии (ячейка D3). На рис. 9 данные роста и веса помещены на точечную диаграмму. На ней изображена регрессионная прямая (пунктирная линия; чтобы вывести ее, кликните в области диаграммы правой кнопкой мыши, и выберите опцию Добавить линию тренда…). Выведена также и формула регрессионной кривой y = 2,0922x – 3,5905 (естественно, коэффициент при х равен значению в ячейке D2).

t-критерий параметра = значение параметра, деленное на стандартную ошибку параметра

В нашем случае t-критерий коэффициента регрессии = коэффициент регрессии / стандартная ошибка коэффициента регрессии = 2,0922 / 0,8177 = 2,559 (ячейка Е8).

Рис. 9. Коэффициент регрессии = 2,0922 и t-критерий коэффициента регрессии = 2,559

Допустим, в генеральной совокупности вес не зависит от роста (нулевая гипотеза; на рис. 9 изображена сплошной прямой). Это значит, что коэффициент регрессии генеральной совокупности равен 0. В нашей выборке из 20 человек, мы обнаружили линейную зависимость веса от роста с коэффициентом регрессии (коэффициентом при х) = 2,0922. Если нормировать эту величину на стандартную ошибку, мы получим безразмерную величину = 2,559. Т.е., подсчитанный нами коэффициент регрессии в выборке на 2,559 сигм отстоит от нуля.

Насколько невероятно (или вероятно) получить такое отклонение в выборке, если в генеральной совокупности коэффициент регрессии = 0? Можно ли дать определение того, какое событие можно считать «невероятным». Считать ли его таковым, если оно происходит один раз в серии из 20 испытаний? Или в серии из 100 испытаний? А может быть, из 1000 испытаний? Как правило, событие считают «невероятным», если оно может произойти не чаще, чем в одном случае из двадцати.

Итак, в качестве нулевой гипотезы можно принять, что вес не зависит от роста. В качестве альтернативной гипотезы мы предположим, что вес положительно коррелирован с ростом (чем больше рост, тем больше вес). Мы отклоним нулевую гипотезу, только если t-значение коэффициента регрессии попадет в правый хвост распределения в область, соответствующую 5% всей площади под кривой (α = 0,05). Это, как раз, произойдет не чаше, чем один раз на двадцать выборок (рис. 10).

Рис. 10. Расположение t-значения коэффициента регрессии (2,559) на кривой t-распределения Стьюдента (df = 18) показывает, что его вероятность около 1% не превышает α-уровень = 5%. Нулевая гипотеза может быть отвергнута. Статистики выборки говорят о зависимости веса от роста.

Расчет t-значения, соответствующего заданному уровню значимости

Проблема выбора «уровня невероятности», т.е. уровня статистической значимости, или α-уровня, десятилетиями будоражила статистиков. Найти ответы на подобные вопросы зачастую очень трудно, и многие исследователи лишь пожимают плечами и выбирают для альфа-уровня одно из общепринятых значений: р < 0,05 или р < 0,01. Почему именно такие значения?

Главная причина — это то, что в течение многих лет исследователи должны были полагаться на справочные таблицы, позволяющие найти такое t-значение, которое можно было бы считать «статистически значимым» на уровне 0,05 или 0,01 (таблиц для других α-значений практически не было). В наше время определение критического значения t-статистики при любом заданном уровне значимости не составляет труда.

В Excel есть две функции для расчета t-критерия по уровню значимости (вероятности). СТЬЮДЕНТ.ОБР(вероятность;степени_свободы) возвращает левостороннее обратное t-распределение. В качестве первого аргумента функция принимает накопленную вероятность, начиная с –∞. Как правило, используется для односторонних тестов. В случае использования в двустороннем тесте α-значение следует разделить на 2. Например, t-значение для 5%-ного уровня значимости на рис. 10 можно найти с помощью формул =–СТЬЮДЕНТ.ОБР(0,05;18) или =СТЬЮДЕНТ.ОБР(1–0,05;18). В обоих случаях ответ 1,7341. В первом случае СТЬЮДЕНТ.ОБР(0,05;18) возвращает значение –1,7341, соответствующее 5%, накопленным от –∞ до –1,7341 (рис. 11а). Для получения окончательного ответа нужно воспользоваться свойством симметрии кривой распределения, и добавить знак минус перед функцией. Во втором случае СТЬЮДЕНТ.ОБР(1–0,05;18) возвращает значение 1,7341, соответствующее 95%, накопленным от –∞ до 1,7341 (рис. 11б).

Рис. 11. Односторонний t-критерий с уровнем значимости α = 5%

Вторая функция =СТЬЮДЕНТ.ОБР.2Х() используется в двусторонних тестах, когда мы допускаем, что исследуемое значение может отклоняться в обе стороны от среднего. В формулу следует подставить α-уровень значимости, функция сама разобьет его на две части и вернет значение, соответствующее двум симметричным хвостам (рис. 12; сравните с рис. 11а).

Рис. 12. Двусторонний t-критерий с уровнем значимости α = 5%

Ошибка первого рода

Предположим, перед вами стоит задача увеличить трафик нескольких веб-сайтов. Вы договариваетесь с владельцем популярного рекламного сайта о том, чтобы на его страницах отображались ссылки на 16 сайтов, случайным образом выбираемых из списка сайтов, контролируемых вашей компанией. Другие ваши 16 сайтов, также выбираемые случайным образом, не будут продвигаться в течение месяца.

Вы намереваетесь сравнить между собой средние показатели посещений сайтов, ссылки на которые специально продвигаются поставщиком рекламных услуг, и остальных сайтов. Вы останавливаете свой выбор на направленной гипотезе с альфа-уровнем 0,05: только если специально продвигаемые сайты характеризуются большим средним количеством посещений и только если различие между двумя группами сайтов настолько велико, что при многократном повторении данного испытания оно может случайно встретиться не чаще, чем в одном случае из 20, вы будете отбрасывать гипотезу о том, что специальное продвижение сайта не влияет на среднее количество его посещений.

Через месяц вы получаете свои данные и обнаруживаете, что средний показатель для вашей контрольной группы – сайтов, не получающих специального продвижения, – составляет 45 посещений в час, а для продвигаемых сайтов – 55 посещений в час. Стандартная ошибка среднего равна 5.

Итак, у нас имеется контрольная группа из 16 сайтов (df = 15), правосторонний однонаправленный тест с α-уровнем = 0,05. t-значение определяется по формуле =-СТЬЮДЕНТ.ОБР(0,05;15) и равно 1,7531. Критическое значение посещаемости определяется по формуле (4) и равно: t-значение * стандартное отклонение выборки + среднее по выборке = 1,7531 * 5 + 45 = 53,8. Среднее по экспериментальной группе (55) больше критического t-значения (55 > 53,8). Мы можем отвергнуть нулевую и принять альтернативную гипотезу – продвижение сайтов влияет на посещаемость (рис. 13).

Рис. 13. Попадание среднего значения внутрь α-уровня позволяет отвергнуть нулевую гипотезу

Но, значение альфа-уровня полностью контролируется нами — это наше правило принятия решений. Если бы мы установили для альфа-уровня значение 0,01, мы бы не отвергли нулевую гипотезу (рис. 14). Мы могли бы сказать, что среднее экспериментальной группы происходит из той же генеральной совокупности, что и среднее контрольной группы. Итак, статистическая ошибка I рода: мы отвергаем нулевую гипотезу, когда она верна.

Рис. 14. Для α-уровня = 0,01 среднее экспериментальной группы не позволяет отвергнуть нулевую гипотезу

Что же мешает установить α-уровень достаточно маленьким, и не отвергать нулевую гипотезу, когда она верна? …Ошибка II рода, заключающаяся в том, что мы не принимаем альтернативную гипотезу, хотя она верна.

Ошибка второго рода

Представьте, что существуют две генеральные совокупности: одна из них состоит из сайтов, не получающих специального продвижения, вторая — из сайтов, получающих продвижение. Если вы повторите свое месячное исследование сотни или даже тысячи раз, то, возможно, получите две колоколообразные кривые (рис. 15).

Рис. 15. Ошибка второго рода при α-уровне = 0,05

Иногда среднее значение экспериментальной группы будет происходить из правого хвоста левой кривой распределения исключительно из-за выборочной ошибки. Поскольку в данном случае среднее экспериментальной группы превышает среднее контрольной группы более чем на 1,75 стандартной ошибки (попадает в область α-уровня = 0,05), вы должны отвергнуть нулевую гипотезу, даже если обе генеральные совокупности в действительности имеют одно и то же среднее. Такое неверное отбрасывание нулевой гипотезы, когда в действительности она является истинной, мы назвали ошибкой I рода. В терминах рис. 15 ошибка I рода – приписывание среднего результата экспериментальной выборки, равное 55, правой кривой, а не хвосту левой кривой.

Кривая слева представляет генеральную совокупность веб-сайтов, не получающих специального продвижения. На протяжении месяца частота посещений для некоторых из этих сайтов (очень немногих) составит всего 25 посещений в час, тогда как для других, столь же немногочисленных, – 62 посещения в час. Но 90% всех средних показателей выборок лежат в диапазоне 36,2–53,8 посещений в час.

Кривая справа представляет специально продвигаемые сайты. Как правило, показатели для них примерно на 10 посещений в час выше, чем для сайтов, представленных кривой слева. Их общее среднее составляет 55 посещений в час. Однако большая часть этой информации скрыта от вас. У вас отсутствуют данные о генеральной совокупности, и вы располагаете только результатами двух извлеченных вами выборок, но и этого вам будет вполне достаточно.

Рассмотрим правую кривую на рис. 15. Площадь под этой кривой от минимальных до критического значения (равного 53,8) выделена ярко голубым. Она определяет вероятность ошибки II рода. Средние выборок, проистекающие из этой области, мы относим к левой кривой, а не к правой. Для количественной оценки вероятности ошибки II рода найдем t-значение границы для правой кривой по формуле (7):

Вероятность того, что значение относится к правой кривой и лежит в диапазоне t-значений от –∞ до –0,247 определяется формулой =СТЬЮДЕНТ.РАСП(-0,247;15;ИСТИНА) = 0,404. Т.е., при выбранном нами α-уровне = 0,05 с вероятностью 40,4% мы отклоним альтернативную гипотезу, хотя она верна!

Что произойдет, если мы выберем α-уровень = 0,01, как на рис. 14? Вероятность ошибки II рода увеличится до 72,2% (рис. 16).

Рис. 16. Ошибка второго рода при α-уровне = 0,01

Статистическая мощность

Вероятность, количественно определяющую величину ошибки второго рода, называют β (на рис. 16 β = 72,2%). А вероятность р = (1 – β) – статистической мощностью (рис. 17).

Рис. 17. Статистическая мощность исследования при α-уровне = 0,05

Чем выше статистическая мощность, тем больше вероятность того, что мы отклоним нулевую гипотезу и примем альтернативную гипотезу. На мощность влияют четыре основных фактора:

  1. Тип теста (переход от двунаправленного теста к однонаправленному увеличивает мощность).
  2. Уровень α, то есть вероятность ошибки I рода: более высокая α увеличивает мощность.
  3. Разница между средними значениями выборок (мощность выше при большей разнице).
  4. Стандартная ошибка среднего (чем ниже ошибка, тем мощность выше).

Давайте на нашем примере рассмотрим, как каждый из указанных факторов изменяет мощность, считая, что факторы меняться по одному (рис 18; расчеты и формулы можно найти в файле Excel).

Рис. 18. Методы увеличения статистической мощности: а) базовый вариант; б) ненаправленная гипотеза; в) увеличение α с 0,05 до 0,1; г) увеличение разницы между средними экспериментальной и контрольной групп с 10 до 13 посещений в час; д) увеличение размера групп с 16 до 24 сайтов.

Первый метод повышения статистической мощности связан с подготовкой эксперимента. Если вместо ненаправленной гипотезы (двуххвостовой тест) использовать направленную (однохвостовой тест), вся величина α-уровня отнесется к одному хвосту распределения (сравните рис. 18а и 18б). В результате критическое значение сместится в сторону среднего значения распределения. Чем ближе критическое значение к среднему, тем более вероятно, что вы получите результат, превышающий критическое значение, что увеличивает статистическую мощность тестов. В нашем примере, мощность возрастет с 44,9% до 59,6%.

Второй метод повышения мощности теста предлагает ослабить α-уровень. Например, увеличивая α от 0,05 до 0,10, вы увеличиваете вероятность совершения ошибки I рода, но уменьшаете вероятность совершения ошибки II рода (сравните рис. 18а и 18в). В нашем примере, мощность возросла с 59,6% до 74%.

Оставшиеся два метода повышения статистической мощности основаны на формуле расчета t-статистики:

где t – t-значение для среднего выборки (а не для индивидуального значения), X̅ – среднее значение выборки, μ – среднее значение генеральной совокупности (или среднее значение контрольной выборки),  – стандартная ошибка средних по выборкам (а не индивидуальных значений), равная:

где s – стандартная ошибка индивидуальных значений, n – размер выборки.

Для увеличения t-статистики (и, как следствие, статистической мощности) нужно, либо увеличить числитель, либо уменьшить знаменатель в формуле (8). Для увеличения разности X̅ – μ требуется внесение изменений в проведение эксперимента. Как это сделать, непростой вопрос, решаемый в каждом конкретном случае. В нашем примере, увеличение с 55 до 58 посещений в час при неизменном μ = 45, приведет к росту статистической мощности с 59,6% до 79,5% (рис. 18г).

И, наконец, уменьшение величины знаменателя тестовой статистики в формуле (8), есть не что иное, как уменьшение стандартной ошибки . Одним из способов уменьшения стандартной ошибки   является увеличение размера выборки, n. В соответствии с формулой (9), чем больше n, тем меньше . В нашем примере, при неизменной стандартной ошибке индивидуальных значений s, увеличение контрольной и экспериментальной групп с 16 до 24 сайтов приведет к уменьшению  с 5 до 4,1 и росту мощности с 59,6% до 76,5% (рис. 18д).

Один из хороших способов познакомиться с влиянием разных факторов на мощность – это поэкспериментировать с графическим калькулятором мощности, например, здесь.

Основные положения заметки

t-статистика Стьюдента используется вместо нормального распределения: а) для малых выборок; б) если стандартное отклонение генеральной совокупности σ не известно.

t-распределение представлено семейством распределений; дополнительный параметр – размер выборки или число степеней свободы.

Число степеней свободы равно размеру выборки минус число фиксированных статистик выборки (среднее, коэффициент регрессии, …)

Чем больше степеней свободы, тем ближе t-распределение к нормальному.

Функции в Excel, имена которых включают часть РАСП, принимают t-значение в качестве аргумента и возвращают вероятность. Функции, имена которых включают часть ОБР, принимают значение вероятности в качестве аргумента и возвращают t-значение.

Для подстановки в функции Excel значения предварительно должны быть стандартизованы.

Ошибка I рода: отбрасывание нулевой гипотезы, когда в действительности она является истинной. Ошибка II рода: не принятие альтернативной гипотезы, хотя она верна. Чем больше ошибка первого рода, тем меньше ошибка второго рода.

Критерий отнесения события к маловероятному является произвольным. Традиционно маловероятным считают событие, происходящее не чаще, чем 1 раз из 20 попыток.

Один из основных методов уменьшения ошибки второго рода – увеличение элементов в выборке.

[1] При написании замети использованы материалы книг: Дуглас Хаббард. Как измерить всё, что угодно, Левин и др. Статистика для менеджеров, Сара Бослаф. Статистика для всех, Конрад Карлберг. Регрессионный анализ в Microsoft Excel.

[2] На самом деле, можно встретить довольно много различных терминов в отношении нормированных значений z. Ориентируйтесь не на названия, а на суть понятий.

[3] Могут высказать справедливое замечание, что не следует обозначать граничный уровень так же, как и математическое ожидание генеральной совокупности µ. Соглашусь, но всё же использую обозначение, поскольку, в иных задачах здесь часто фигурирует именно математическое ожидание генеральной совокупности µ.

[4] Некоторые авторы указывают знак меньше или равно для левостороннего распределения Р(Х≤t), и больше для правостороннего Р(X>t). Однако, для t=0 значения СТЬЮДЕНТ.РАСП(0;df;ИСТИНА) = СТЬЮДЕНТ.РАСП.ПХ(0;df) = 0,5 для любого значения df. На мой взгляд, Excel при интегральном расчете трактует границу, как исчезающе малую. Поэтому, нет разницы, использовать знак или >.

Excel для Microsoft 365 Excel для Microsoft 365 для Mac Excel для Интернета Excel 2021 Excel 2021 для Mac Excel 2019 Excel 2019 для Mac Excel 2016 Excel 2016 для Mac Excel 2013 Excel Web App Excel 2010 Excel для Mac 2011 Excel Starter 2010 Еще…Меньше

Возвращает левостороннее t-распределение Стьюдента. T-распределение используется для проверки гипотез при малом объеме выборки. Данную функцию можно использовать вместо таблицы критических значений t-распределения.

Синтаксис

СТЬЮДЕНТ.РАСП(x;степени_свободы;интегральная)

Аргументы функции СТЬЮДЕНТ.РАСП описаны ниже.

  • X     Обязательный. Числовое значение, для которого требуется вычислить распределение.

  • Степени_свободы     Обязательный. Целое, указывающее число степеней свободы.

  • Интегральная     — обязательный аргумент. Логическое значение, определяющее форму функции. Если аргумент «интегральная» имеет значение ИСТИНА, функция СТЬЮДЕНТ.РАСП возвращает интегральную функцию распределения; если этот аргумент имеет значение ЛОЖЬ, возвращается функция плотности распределения.

Замечания

  • Если какой-либо из аргументов не является числом, то Т.#VALUE! значение ошибки #ЗНАЧ!.

  • Если значение аргумента «степени_свободы» < 1, функция СТЬЮДЕНТ.РАСП возвращает значение ошибки. Значение «степени_свободы» не может быть меньше 1.

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Формула

Описание

Результат

=СТЬЮДЕНТ.РАСП(60;1;ИСТИНА)

Левостороннее t-распределение СТЬЮДЕНТА для 60, возвращаемое как интегральная функция распределения с 1 степенью свободы.

0,99469533

=СТЬЮДЕНТ.РАСП(8;3;ЛОЖЬ)

Левостороннее t-распределение СТЬЮДЕНТА для 8, возвращаемое как весовая функция распределения с 3 степенями свободы.

0,00073691

К началу страницы

Нужна дополнительная помощь?

Проверка статистической гипотезы позволяет сделать строгий вывод о характеристиках генеральной совокупности на основе выборочных данных. Гипотезы бывают разные. Одна из них – это гипотеза о средней (математическом ожидании). Суть ее в том, чтобы на основе только имеющейся выборки сделать корректное заключение о том, где может или не может находится генеральная средняя (точную правду мы никогда не узнаем, но можем сузить круг поиска).

Распределение Стьюдента

Общий подход в проверке гипотез описан здесь, поэтому сразу к делу. Предположим для начала, что выборка извлечена из нормальной совокупности случайных величин X с генеральной средней μ и дисперсией σ2. Средняя арифметическая из этой выборки, очевидно, сама является случайной величиной. Если извлечь много таких выборок и посчитать по ним средние, то они также будут иметь нормальное распределение с математическим ожиданием μ и дисперсией

Генеральная дисперсия средней

Тогда случайная величина

Нормированное отклонение выборочное средней

имеет стандартное нормальное распределение со всеми вытекающими отсюда последствиями. Например, с вероятностью 95% ее значение не выйдет за пределы ±1,96.

Однако такой подход будет корректным, если известна генеральная дисперсия. В реальности, как правило, она не известна. Вместо нее берут оценку – несмещенную выборочную дисперсию:

Оценка дисперсии средней

где

Выборочная несмещенная дисперсия

Возникает вопрос: будет ли генеральная средняя c вероятностью 95% находиться в пределах ±1,96s. Другими словами, являются ли распределения случайных величин

Нормированное отклонение выборочное средней

и

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

эквивалентными.

Впервые этот вопрос был поставлен (и решен) одним химиком, который трудился на пивной фабрике Гиннесса в г. Дублин (Ирландия). Химика звали Уильям Сили Госсет и он брал пробы пива для проведения химического анализа. В какой-то момент, видимо, Уильяма стали терзать смутные сомнения на счет распределения средних. Оно получалось немного более размазанным, чем должно быть у нормального распределения.

Собрав математическое обоснование и рассчитав значения функции обнаруженного им распределения, химик из Дублина Уильям Госсет написал заметку, которая была опубликована в мартовском выпуске 1908 года журнала «Биометрика» (главред – Карл Пирсон). Гиннесс строго-настрого запретил выдавать секреты пивоварения, и Госсет подписался псевдонимом Стьюдент.

Несмотря на то что, К. Пирсон уже изобрел распределение Хи-квадрат, все-таки всеобщее представление о нормальности еще доминировало. Никто не собирался думать, что распределение выборочных оценок может быть не нормальным. Поэтому статья У. Госсета осталась практически не замеченной и забытой. И только Рональд Фишер по достоинству оценил открытие Госсета. Фишер использовал новое распределение в своих работах и дал ему название t-распределение Стьюдента. Критерий для проверки гипотез, соответственно, стал t-критерием Стьюдента. Так произошла «революция» в статистике, которая шагнула в эру анализа выборочных данных. Это был краткий экскурс в историю.

Посмотрим, что же мог увидеть У. Госсет. Сгенерируем 20 тысяч нормальных выборок из 6-ти наблюдений со средней () 50 и среднеквадратичным отклонением (σ) 10. Затем нормируем выборочные средние, используя генеральную дисперсию:

Нормирование средней с использование генеральной дисперсии

Получившиеся 20 тысяч средних сгруппируем в интервалы длинной 0,1 и подсчитаем частоты. Изобразим на диаграмме фактическое (Norm) и теоретическое (ENorm) распределение частот выборочных средних.

Распределение средней арифметической

Точки (наблюдаемые частоты) практически совпадают с линией (теоретическими частотами). Оно и понятно, ведь данные взяты из одной и то же генеральной совокупности, а отличия – это лишь ошибки выборки.

Проведем новый эксперимент. Нормируем средние, используя выборочную дисперсию.

Нормирование средней с использование выборочной дисперсии

Снова подсчитаем частоты и нанесем их на диаграмму в виде точек, оставив для сравнения линию стандартного нормального распределения. Обозначим эмпирическое частоты средних, скажем, через букву t.

Отличие распределения средних от нормального закона

Видно, что распределения на этот раз не очень-то и совпадают. Близки, да, но не одинаковы. Хвосты стали более «тяжелыми».

У Госсета-Стьюдента не было последней версии MS Excel, но именно этот эффект он и заметил. Почему так получается? Объяснение заключается в том, что случайная величина

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

зависит не только от ошибки выборки (числителя), но и от стандартной ошибки средней (знаменателя), которая также является случайной величиной.

Давайте немного разберемся, какое распределение должно быть у такой случайной величины. Вначале придется кое-что вспомнить (или узнать) из математической статистики. Есть такая теорема Фишера, которая гласит, что в выборке из нормального распределения:

1. средняя и выборочная дисперсия s2 являются независимыми величинами;

2. соотношение выборочной и генеральной дисперсии, умноженное на количество степеней свободы, имеет распределение χ2(хи-квадрат) с таким же количеством степеней свободы, т.е.

Теорема Фишера

где k – количество степеней свободы (на английском degrees of freedom (d.f.))

Вернемся к распределению средней. Разделим числитель и знаменатель выражения

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

на σ. Получим

Вывод t-критерия

Числитель – это стандартная нормальная случайная величина (обозначим ξ (кси)). Знаменатель выразим из теоремы Фишера.

Вывод t-критерия 2

Тогда исходное выражение примет вид

t-критерий Стьюдента

Это и есть t-критерий Стьюдента в общем виде (стьюдентово отношение). Вывести функцию его распределения можно уже непосредственно, т.к. распределения обеих случайных величин в данном выражении известны. Оставим это удовольствие математикам.

Функция t-распределения Стьюдента имеет довольно сложную для понимания формулу, поэтому не имеет смысла ее разбирать. Вероятности и квантили t-критерия приведены в специальных таблицах распределения Стьюдента и забиты в функции разных ПО вроде Excel.

Итак, вооружившись новыми знаниями, вы сможете понять официальное определение распределения Стьюдента.
Случайной величиной, подчиняющейся распределению Стьюдента с k степенями свободы, называется отношение независимых случайных величин

t-критерий Стьюдента

где ξ распределена по стандартному нормальному закону, а χ2k подчиняется распределению χ2 c k степенями свободы.

Таким образом, формула критерия Стьюдента для средней арифметической

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

есть частный случай стьюдентова отношения

t-критерий Стьюдента

Из формулы и определения следует, что распределение т-критерия Стьюдента зависит лишь от количества степеней свободы.

Зависимость t-распределения Стьюдента от количества степеней свободы

При k > 30 t-критерий практически не отличается от стандартного нормального распределения.

В отличие от хи-квадрат, t-критерий может быть одно- и двусторонним. Обычно пользуются двусторонним, предполагая, что отклонение может происходить в обе стороны от средней. Но если условие задачи допускает отклонение только в одну сторону, то разумно применять односторонний критерий. От этого немного увеличивается мощность критерия.

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Распределение хи-квадрат

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Относительная устойчивость t-распределения к ненормальности исходных данных

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Больше всего t-критерий «боится» выбросов, т.е. аномальных отклонений. Возьмем 20 тыс. нормальных выборок по 15 наблюдений и в часть из них добавим по одному случайном выбросу.

Влияние аномальных выбросов на распределение средней

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП – «классическое» левостороннее t-распределение Стьюдента. На вход подается значение t-критерия, количество степеней свободы и опция (0 или 1), определяющая, что нужно рассчитать: плотность или значение функции. На выходе получаем, соответственно, плотность или вероятность того, что случайная величина окажется меньше указанного в аргументе t-критерия, т.е. левосторонний p-value.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия (по модулю), т.е. фактический уровень значимости (p-value).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-value.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α, а для правого 1 — α.

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α. Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-value.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

H0: μ = 50 кг

Ha: μ ≠ 50 кг

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двусторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Фактический t-критерий при 9-ти наблюдениях

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей для критерия Стьюдента (есть в любом учебнике по статистике).

Таблица t-распределения Стьюдента

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двусторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-value попробовать найти, но он будет приближенным. А, как правило, именно p-value используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Расчет t-критерия Стьюдента в Excel

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двусторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Сравнение расчетного и табличного значения t-критерия Стьюдента

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-value, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

Расчет p-value для t-критерия

P-value равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-value оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.

Расчет t-критерия для выборки из 25 наблюдений
Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Отклонения гипотезы

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-value (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Расчет доверительного интервала для математического ожидания с помощью t-распределения Стьюдента в Excel

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов. Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α, стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Проверка гипотезы через доверительные интервалы

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия
2. Более современным, рассчитав p-value, добавив степень уверенности при отклонении гипотезы.
3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия). Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю видеоролик о том, как рассчитать критерий Стьюдента и проверить гипотезу о генеральной средней в Excel.

Иногда просят объяснить, как делаются такие наглядные диаграммы с распределением. Ниже можно скачать файл, где проводились расчеты для этой статьи.

Скачать файл с примером.

Всего доброго, будьте здоровы.

Поделиться в социальных сетях:

Microsoft’s Excel is useful in performing basic calculations in statistics. Sometimes it is helpful to know all of the functions that are available to work with a particular topic. Here we will consider the functions in Excel that are related to the Student’s t-distribution. In addition to doing direct calculations with the t-distribution, Excel can also calculate confidence intervals and perform hypothesis tests.

Functions Concerning the T-Distribution

There are several functions in Excel that work directly with the t-distribution. Given a value along the t-distribution, the following functions all return the proportion of the distribution that is in the specified tail.

A proportion in the tail can also be interpreted as a probability. These tail probabilities can be used for p-values in hypothesis tests.

  • The T.DIST function returns the left tail of Student’s t-distribution. This function can also be used to obtain the y-value for any point along the density curve.
  • The T.DIST.RT function returns the right tail of Student’s t-distribution.
  • The T.DIST.2T function returns both tails of Student’s t-distribution.

These functions all have similar arguments. These arguments are, in order:

  1. The value x, which denotes where along the x axis we are along the distribution
  2. The number of degrees of freedom.
  3. The T.DIST function has a third argument , which allows us to choose between a cumulative distribution (by entering a 1) or not (by entering a 0). If we enter a 1, then this function will return a p-value. If we enter a 0 then this function will return the y-value of the density curve for the given x.

Inverse Functions

All of the functions T.DIST, T.DIST.RT and T.DIST.2T share a common property. We see how all of these functions start with a value along the t-distribution and then return a proportion. There are occasions when we would like to reverse this process. We start with a proportion and wish to know the value of t that corresponds to this proportion. In this case we use the appropriate inverse function in Excel.

  • The function T.INV returns the left tailed inverse of Student’s T-distribution.
  • The function T.INV.2T returns the two tailed inverse of Student’s T-distribution.

There are two arguments for each of these functions. The first is the probability or proportion of the distribution. The second is the number of degrees of freedom for the particular distribution that we are curious about.

Example of T.INV

We will see an example of both the T.INV and the T.INV.2T functions. Suppose we are working with a t-distribution with 12 degrees of freedom. If we want to know the point along the distribution that accounts for 10% of the area under the curve to the left of this point, then we enter =T.INV(0.1,12) into an empty cell. Excel returns the value -1.356.

If instead we use the T.INV.2T function, we see that entering =T.INV.2T(0.1,12) will return the value 1.782. This means that 10% of the area under the graph of the distribution function is to the left of -1.782 and to the right of 1.782.

In general, by the symmetry of the t-distribution, for a probability P and degrees of freedom d we have T.INV.2T(P, d) = ABS(T.INV(P/2,d), where ABS is the absolute value function in Excel.

Confidence Intervals

One of the topics on inferential statistics involves estimation of a population parameter. This estimate takes the form of a confidence interval. For example the estimate of a population mean is a sample mean. The estimate also possesses a margin of error, which Excel will calculate. For this margin of error we must use the CONFIDENCE.T function.

Excel’s documentation says that the function CONFIDENCE.T is said to return the confidence interval using Student’s t-distribution. This function does return the margin of error. The arguments for this function are, in the order that they must be entered:

  • Alpha – this is the level of significance. Alpha is also 1 – C, where C denotes the confidence level. For example, if we want 95% confidence, then we must enter 0.05 for alpha.
  • Standard deviation – this is the sample standard deviation from our data set.
  • Sample size.

The formula that Excel uses for this calculation is:

M = t*s/ √n

Here M is for margin, t* is the critical value that corresponds to the level of confidence, s is the sample standard deviation and n is the sample size.

Example of Confidence Interval

Suppose that we have a simple random sample of 16 cookies and we weigh them. We find that their mean weight is 3 grams with a standard deviation of 0.25 grams. What is a 90% confidence interval for the mean weight of all cookies of this brand?

Here we simply type the following into an empty cell:

=CONFIDENCE.T(0.1,0.25,16)

Excel returns 0.109565647. This is the margin of error. We subtract and also add this to our sample mean, and so our confidence interval is 2.89 grams to 3.11 grams.

Tests of Significance

Excel will also perform hypothesis tests that are related to the t-distribution. The function T.TEST returns the p-value for several different tests of significance. The arguments for the T.TEST function are:

  1. Array 1, which gives the first  set of sample data.
  2. Array 2, which gives the second set of sample data
  3. Tails, in which we can enter either 1 or 2.
  4. Type — 1 denotes a paired t-test, 2 a two-sample test with the same population variance, and 3 a two-sample test with different population variances.

Здравствуйте на этой странице я собрала теорию и практику с примерами решения задач по предмету эконометрика в программе Microsoft Excel с решением по каждой теме, чтобы вы смогли освежить знания!

Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Эконометрика

Становление эконометрики как научной дисциплины представляет значительный интерес с точки зрения как определения объектов исследования, так и формирования набора методов. Сам термин «эконометрика» сформировался из двух частей: «эконо-» – от «экономика» и «-метрика» – от «измерение». Поэтому статистический анализ экономических данных называется эконометрикой, что буквально означает «наука об экономических измерениях».

Эконометрика – это наука, связанная с эмпирическим выводом экономических законов.

Статистические ряды данных

Методы систематизации, обработки и использования статистических данных, выявление закономерностей являются основой эконометрических исследований. Пусть требуется исследовать какой-нибудь признак, свойственный большой группе однородных объектов. Напомним основные понятия и характеристики статистических данных.

Возможно эта страница вам будет полезна:

Генеральной совокупностью (генеральной выборкой) называется совокупность значений признака всех объектов данного типа, а их число Решение задач по эконометрике в Excel объемом совокупности. При этом предполагается, что число Решение задач по эконометрике в Excel большое, такое, что исследование физически невозможно. Тогда из всей совокупности выбирают ограниченное число объектов и подвергают их изучению.

Выборочной совокупностью (выборкой) называется совокупность случайно отобранных объектов, а её объем обозначается Решение задач по эконометрике в Excel.

Статистические исследования позволяют распространить выводы, сделанные на основе случайной выборки, на всю генеральную совокупность исследуемых случайных величин. Это является основой выборочного метода.

Графическое представление статистических данных

Пусть из генеральной совокупности извлекается выборка объема Решение задач по эконометрике в Excel, причем значение признака Решение задач по эконометрике в Excelнаблюдается Решение задач по эконометрике в Excel раз, где сумма Решение задач по эконометрике в Excel равна объему выборки Решение задач по эконометрике в Excel.

Статистическим распределением выборки называется перечень наблюдаемых значений и соответствующих им частот Решение задач по эконометрике в Excel или относительных частот (частостей)

Решение задач по эконометрике в Excel

Упорядоченный в порядке возрастания или убывания ряд значений признака с соответствующими ему частотами называют вариационным рядом.

В целях наглядности строятся различные графики статистического распределения.

Полигоном частот (относительных частот) называется ломаная линия, которая соединяет точки с координатами Решение задач по эконометрике в Excel или Решение задач по эконометрике в Excel.

Для построения гистограммы частот (относительных частот) необходимо найти границы интервалов признаков. Если данные наблюдений представляют в виде рядов с равными интервалами, то их величина находится по формуле Стэрд-жесса:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — объем выборки;

Решение задач по эконометрике в Excel — наибольшее и наименьшее значения вариантов выборки. Гистограмма представляет собой столбчатую диаграмму.

По оси абсцисс откладываются границы интервалов так, чтобы они покрыли все значения вариационного ряда, а по оси ординат откладываются абсолютная плотность распределения Решение задач по эконометрике в Excel или относительную плотность Решение задач по эконометрике в Excel.

Аналогом функции распределения Решение задач по эконометрике в Excel для вариационного ряда является функция накопленных частот, её обозначают Решение задач по эконометрике в Excel а график строят по следующему правилу:

по оси абсцисс откладывают значения признака, а по оси ординат — накопленные частоты или частости. Такую кривую иногда называют кумулятой: по данным интервального ряда на оси абсцисс откладывают точки, являющиеся верхними границами интервалов, а на оси ординат накопленные частоты (частости) соответствующих интервалов. Часто добавляют ещё одну точку, абсцисса которой соответствует левой границе первого интервала, а ордината равна нулю.

Числовые характеристики статистических распределений

Для описания статистических распределений обычно используют три вида характеристик:

  1. средние, или характеристики центральной тенденции;
  2. характеристики изменения вариант (рассеяния);
  3. характеристики, отражающие дополнительные особенности распределений, в частности их форму.

Все эти характеристики вычисляются по результатам наблюдений и построенных вариационных рядов.

Основным видом средних характеристик является средняя арифметическая (среднее выборочное значение), определяемая по формуле:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — значение признака в вариационном ряде (дискретном или интервальном); Решение задач по эконометрике в Excel — соответствующая ему частота;

Довольно часто в статистическом анализе применяют структурные или порядковые средние:

Решение задач по эконометрике в Excel

1) медиана Решение задач по эконометрике в Excel — значение признака, разделяющее вариационный ряд на две численно равные группы, такие, что элементы первой группы строго меньше медианы, второй строго больше её значения. Можно определить графически с помощью кумуляты, так как Решение задач по эконометрике в Excel;

2) мода Решение задач по эконометрике в Excel — значение признака, которому соответствует большая частота.

Величины моды и медианы определяются по интерполяционным формулам, непосредственно из их определения, которые можно найти в дополнительной литературе.

Средние характеристики должны быть дополнены изменением вариации признака (рассеянием). Для этого рассчитываются квадраты отклонений вариант от среднего арифметического значения. Средний квадрат отклонений по данной выборке называется дисперсией и вычисляется по формуле:

Решение задач по эконометрике в Excel

На базе дисперсии вводятся две характеристики:

1) среднее квадратическое отклонение Решение задач по эконометрике в Excel;

2) коэффициент вариации, равный процентному отношению среднего квадратического отклонения к значению средней арифметической исследуемой случайной величины, помогает решить вопрос об однородности выборки:

Решение задач по эконометрике в Excel

Величина о является чаще всего применяемой характеристикой рассеяния. Для характеристики формы распределения вводятся моменты к-того порядка, впервые предложенные Чебышсвым П. Л.:

Решение задач по эконометрике в Excel

которые называются центральными моментами к-того порядка. Чем больше моментов для данного признака вычислено, тем точнее можно описать свойства распределения. Однако с ростом К растет влияние случайных погрешностей, поэтому на практике используются моменты до четвертого порядка.

Центральный момент третьего порядка называется асимметрией Решение задач по эконометрике в Excel распределения, а четвертого — эксцесс Решение задач по эконометрике в Excel.

Инструмент анализа описательная статистика и гистограмма в Excel

Наиболее полный анализ статистических данных позволяет выполнить пакет Анализ данных из меню Сервис. Если команда Анализ данных отсутствует в меню Сервис, выберите Надстройки и в появившемся списке отметьте Analysis ToolPak (Пакет анализа). В случае отсутствия этого пункта в Надстройках, вам придется установить его вручную с помощью Microsoft Excel Setup (меню Сервис > Надстройки > подключите Пакет Анализа).

При выполнении этой лабораторной работы будут использоваться инструменты Описательная статистика и Гистограмма из Анализа данных. Надо сказать, что в Excel есть набор встроенных статистических функций, которыми можно пользоваться, если нет необходимости во всех характеристиках исследуемых данных. Для вызова нужной функции необходимо выполнить действия: из меню Вставка и выбрать команду Функция и перейти к категории Статистические.

Возможно эта страница вам будет полезна:

Пример с решением №1.1.

При обследовании 50 семей получены данные о количестве детей, которые имеют БИНОМРАСЩ) с числом испытаний равным 10 и вероятностью успеха 0,3 (сгенерировать с помощью пакета Анализа данных). Определите средний размер семьи. Охарактеризуйте колеблемость размера семьи с помощью показателя вариации. Постройте гистограмму и функцию распределения.

Данные для решения примера задают изначально в виде таблиц и их надо поместить на лист Excel; или можно воспользоваться инструментом Анализа данных Генерация случайных чисел.

Генерация случайных чисел позволяет быстро получить нужное количество значений одной или нескольких вариант, имеющих одно из распределений: Равномерное, Нормальное, Бернулли, Биномиальное, Пуассона и другие. Надо помнить, что каждое распределение имеет свои параметры, которые задаются пользователем. Достоверность полученных выводов в этом случае мала.

  1. В меню Сервис выберите Анализ данных, а затем выделите инструмент анализа Генерация случайных чисел (найти его можно с помощью линейки прокрутки). Выделите в диалоговом окне нужный инструмент и нажмите ОК (рис. 1.1).
  2. Заполните поля диалогового окна так же как на рис. 1.2 и нажмите ОК. Результатом является набор из пятидесяти чисел, которые располагаются в столбце В рис 1.3.
  3. Примените инструмент Описательная статистика для поиска числовых характеристик выборочных данных, расположенных в диапазоне В2:В51. Для этого выберите инструмент анализа Описательная статистика в диалоговом окне Анализ данных рис. 1.1. В одноименном диалоговом окне надо указать: входной интервал (В2:В51), ячейку левого верхнего угла для вывода итогов D1, обязательно включите опцию Итоговая Статистика. Результат применения инструмента Описательная статистика показан на рис. 1.3. в диапазоне D1:Е18.

Значения в диапазоне Е2: Е18 не обновляются в случае изменения исходных данных В2:В51.

Решение задач по эконометрике в Excel

В столбце Решение задач по эконометрике в Excel рис. 1.3. приводятся встроенные функции Excel, которые позволяют получить те же результаты, что и при использовании инструмента Описательная статистика. Функции листа следует использовать, если необходим автоматический перерасчет значений числовых характеристик выборки или нет необходимости во всех значениях Описательной статистики.

Решение задач по эконометрике в Excel

Построение гистограммы и функции распределения можно выполнить, выбрав инструмент, Гистограмма (рис. 1.1). Перед использованием этого инструмента надо решить вопрос об интервале разбиения (Решение задач по эконометрике в Excel — Excel называет это значение карманом, а список всех границ интервалов — интервал карманов). Вы можете найти его сами по формуле Стэрджесса или разрешить Excel разбить на равные интервалы (тогда заполнять поле Интервал карманов не надо). Включите опцию вывод графика.

Решение задач по эконометрике в Excel

Описание результатов.

Описательная статистика содержит три результата средней характеристики исследования числа детей в пятидесяти семьях: Среднее (3,34), Моду (3) и Медиану (3). Найдем значение коэффициента вариации по формуле (1.4):

Решение задач по эконометрике в Excel

Так как 43% > 35%, можно сделать вывод, что изучаемая совокупность семей является неоднородной, чем и объясняется высокая колеблемость количества детей в семьях. В виду неоднородности семей, попавших в выборку, можно в качестве среднего использовать моду или медиану

Стандартное отклонение (1,44) — наиболее широко используемая характеристика изменения данных — измеряется в тех же единицах, что и исходные данные.

Стандартная ошибка является характеристикой достоверности среднего выборочного значения и используется в статистических исследованиях (0,20).

Эксцесс и Асснметрнн позволяют сделать вывод о незначительных отклонениях гистограммы частостей от нормально распределенной случайной величины, характеризующей количество детей в семьях с средним равным 3,34 и средним квад-ратическим отклонением 1,44.

Напомним, что эталоном этих величин являются нормальное распределение (рис. 1.5), для которого Ассиметрия равна нулю, а центральный момент четвертого порядка (1.5) равен трем.

Ассиметрия имеет отрицательное значение. Это означает, что гистограмма не симметрична по отношению к среднему значению выборки и имеет скос вправо, то есть количество семей имеющих менее трех детей больше, чем семей количество детей в которых больше трех.

Эксцесс тоже имеет отрицательное значение. То есть значение гистограммы в точке Решение задач по эконометрике в Excel ниже аналогичного нормального распределения.

Математическая статистика статистические оценки

Имеется случайная величина Решение задач по эконометрике в Excel, закон распределения которой известен и зависит от параметров Решение задач по эконометрике в Excel. Требуется на основании наблюдаемых данных оценить значения этих параметров.

Числовые характеристики генеральной совокупности, как правило, неизвестны. Их называют параметрами генеральной совокупности (среднее, дисперсия, среднее квадратическое отклонение, доля признака генеральной совокупности объема Решение задач по эконометрике в Excel).

Из генеральной совокупности извлекается выборка объёма Решение задач по эконометрике в Excel. По данным выборки рассчитывают числовые характеристики, которые называют статистиками (выборочное среднее, выборочная дисперсия и выборочное среднее квадратическое отклонение). Статистики, полученные по различным выборкам, могут отличаться друг от друга, поэтому они являются только оценками неизвестных параметров генеральной совокупности и обозначают Решение задач по эконометрике в Excel.

Обозначим через Решение задач по эконометрике в Excel выбранные значения наблюдаемой случайной величины (СВ) Решение задач по эконометрике в Excel. Пусть на основе данных выборки получена статистика Решение задач по эконометрике в Excel, которая является оценкой параметра Решение задач по эконометрике в Excel. Наблюдаемые значения Решение задач по эконометрике в Excel случайные величины, каждая из которых распределена по тому же закону, что и случайная величина Решение задач по эконометрике в Excel. Поэтому Решение задач по эконометрике в Excel тоже является величиной случайной, закон распределения которой зависит от распределения СВ Решение задач по эконометрике в Excel и объема выборки Решение задач по эконометрике в Excel. Для того, чтобы Решение задач по эконометрике в Excel имела практическую ценность, она должна обладать свойствами несмещенности, состоятельности и эффективности.

Несмещенной называют оценку, для которой выполняется условие:

Решение задач по эконометрике в Excel

Состоятельной называется оценка, удовлетворяющая условию:

Решение задач по эконометрике в Excel

Для выполнения условия 2.2 достаточно, чтобы:

Решение задач по эконометрике в Excel

Эффективной считается оценка, которая при заданном объеме выборки имеет наименьшую возможную дисперсию.

Выборочная средняя является несмещенной и состоятельной оценкой генеральной средней и вычисляется по формуле (1.1).

Выборочная дисперсия найденная по формуле (1.2) является смещенной оценкой для дисперсии генеральной совокупности.

Вводится понятие исправленной выборочной дисперсии, которая является несмещенной оценкой генеральной дисперсии и вычисляется по формуле:

Решение задач по эконометрике в Excel

Исправленное выборочное средне квадратическое отклонение будет равно:

Решение задач по эконометрике в Excel

Теоретическое обоснование использования этих выборочных оценок для определения характеристик генеральной совокупности дают закон больших чисел и предельные теоремы.

Основные виды распределения и функции excel, позволяющие проводить статистическое оценивание

Чтобы построить модели статистических закономерностей возникает необходимость использовать известные виды распределения. Каждое распределение характеризует некоторую случайную величину — результат определенного вида испытаний. С функциями, задающими эти распределения, а также их параметрами можно познакомиться в любом учебнике по теории вероятностей. Выбранное распределение может рассматриваться только как теоретическое (генеральное), а результат опыта — как статистическое (выборочное) распределение. Последнее, в силу ограниченности числа наблюдений, будет лишь приближенно характеризовать теоретическое распределение.

По виду гистограммы и полученным числовым характеристикам выборки делается предположение о теоретическом виде распределения исследуемого признака. Если это удается, то можно найти оценки числовых характеристик и сделать выводы о параметрах генеральной совокупности. Если закон распределения не возможно установить, то подбирается кривая, наилучшим образом сглаживающая данные статистического ряда. Распределения делятся на дискретные и непрерывные.

Дискретные распределения описываются конечные набором чисел и соответствующими им частотами. Например, оценки, которые может получить студент на экзамене, описываются множеством (2, 3, 4, 5). Поэтому случайная величина Решение задач по эконометрике в Excel -получить определенную оценку на экзамене будет иметь дискретное распределение

Непрерывные распределения описывают случайные величины с непрерывной областью значений. Для непрерывных распределений вероятность сопоставляется не с отдельным значением, а интервалом чисел. Непрерывные распределения в теории вероятностей задаются функцией плотности распределения Решение задач по эконометрике в Excel, которую называют плотность вероятности или функцией распределения Решение задач по эконометрике в Excel.

Площадь фигуры, ограниченной Решение задач по эконометрике в Excel и прямыми Решение задач по эконометрике в Excel, осью Решение задач по эконометрике в Excel определяет вероятность попадания случайной величины Решение задач по эконометрике в Excel в интервал Решение задач по эконометрике в Excel, которую обозначим Решение задач по эконометрике в Excel. Так как вероятность в точке для непрерывного распределения равна нулю, то имеет место равенство:

Решение задач по эконометрике в Excel

Нормальное распределение

Чаще других в статистических исследованиях применяется нормальное распределение. Теоретическим основанием к его применению служит центральная предельная теорема Ляпунова. Оно имеет два параметра: среднее (а) и стандартное отклонение Решение задач по эконометрике в Excel. В дальнейшем будем использовать сокращенную запись для обозначения этого распределения Решение задач по эконометрике в Excel.

Синтаксис функции:

Решение задач по эконометрике в Excel

Значение функции распределения случайной величины Решение задач по эконометрике в Excel, распределенной по нормальному закону распределения, получится, если аргумент интегральная равен ИСТИНА (1). Если аргумент интегральная имеет значение ЛОЖЬ (0), то получите значение плотности вероятности нормального распределения Решение задач по эконометрике в Excel.

Графики плотности распределения и функции распределения случайной величины Решение задач по эконометрике в Excel построенные в Excel изображены на рис. 2.1.

Вероятность попадания случайной величины Решение задач по эконометрике в Excel в интервал (с, d) определяется по формуле:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Если случайная величина нормально распределена и имеет среднее арифметическое равное нулю и среднее квадратическое отклонение равное единицы, то её называют стандартизованной а для вычисления вероятности попадания в интервал таких случайных величин в Excel существует функция:

Решение задач по эконометрике в Excel

которая возвращает интегральное стандартное распределение.

Решение задач по эконометрике в Excel называют интегральной функцией Лапласа. Для ее вычисления созданы специальные таблицы.

При статистических исследованиях оценок довольно часто приходится решать обратную задачу: находить значение варианты Решение задач по эконометрике в Excel по заданной вероятности. Для этого в Excel имеются обратные функции, позволяющие её решить: НОРМОБР (вероятность;Решение задач по эконометрике в Excel) и НОРМСТОБР (вероятность).

Распределения, связанные с нормальным распределением

Несмотря на широкое распространение нормального распределения, в некоторых случаях при построении статистических моделей возникает необходимость в использовании других распределений. Приведем примеры некоторых функций в Excel.

Логнормальное распределение

Свидетельством близости распределения к логнормальному является значительная ассиметрия, обусловленная ограничением Решение задач по эконометрике в Excel. Например, может использоваться для описания распределения доходов банковских вкладов, месячной заработной платы, посевных площадей и т.д.

Функция ЛОГНОРМРАСП(Решение задач по эконометрике в Excel; среднее; стандартное откл) используется для анализа данных, которые были логарифмически преобразованы. Возвращает интегральное логарифмическое нормальное распределение для Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excel является нормально распределенным с параметрами среднее и стандартное откл.

Хи-квадрат распределение

Чаще всего это распределение используется для определения критического значения статистики с заданным уровнем значимости Решение задач по эконометрике в Excel, для которого выполняется равенство Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel — значение, для которого требуется вычислить распределение, степени свободы — число слагаемых минус число линейных связей между элементами совокупности.

Если задано значение вероятности, то функция ХИ20БР позволяет найти значение Решение задач по эконометрике в Excel, для которого справедливо равенство

Решение задач по эконометрике в Excel

В функции ХИ20БР для поиска применяется метод итераций. Если поиск не закончится после 100 итераций, функция возвращает сообщение об ошибке #Н/Д.

Распределение стьюдента t

Это распределение имеет важное значение для статистических выводов. Функция СТЬЮДРАСП возвращает вероятностную меру «хвостов» распределения. Её синтаксис:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel — численное значение, для которого требуется вычислить распределение; степени свободы — целое, указывающее число степеней свободы; хвосты — число возвращаемых хвостов распределения.

Если «хвосты» = 1, то функция СТЬЮДРАСП возвращает одностороннее распределение (вероятность правого хвоста).

Если «хвосты» = 2, то функция СТЬЮДРАСП возвращает двухстороннее распределение.

При этом значение Решение задач по эконометрике в Excel не должно быть отрицательным.

Так как функция симметричная относительно нуля, то справедливо следующие равенства:

Решение задач по эконометрике в Excel

Функция СТЬЮДРАСПОБР(вероятность; степени свободы) является обратной для распределения Стьюдента и соответствует положительному значению Решение задач по эконометрике в Excel для которого задана вероятность суммы двух «хвостов».

РАСПРЕДЕЛЕНИЕ ФИШЕРА Эту функцию можно использовать, чтобы определить, имеют ли два множества данных различные степени разброса результатов. Например, можно проанализировать результаты тестирования старшеклассников и определить, различается ли разброс результатов для мальчиков и девочек.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel— значение, для которого вычисляется функция; степени свободы1— число степеней свободы числителя; степенисвободы2—число степеней свободы знаменателя.

Обратное значение для Решение задач по эконометрике в Excel-распределения вероятностей возвращает функция

Решение задач по эконометрике в Excel

Распределения дискретной случайной величины в excel биномиальное распределение

Распределение используется для моделирования случайной величины с конечным числом испытанной. В каждом испытании случайная величина может принимать только два значения: успех или неуспех (0 или 1). Вероятность успеха постоянна и не зависит от результатов других испытаний. Биномиальное распределение описывает общее число успехов при указанном числе испытаний. Данное распределение требует указать два параметра: число испытаний Решение задач по эконометрике в Excel и вероятность успеха Решение задач по эконометрике в Excel.

Пример с решением №2.1.

Группа из 20 студентов сдает экзамен. Вероятность сдать экзамен по данным прошлых лет равна 0,3. Отобрано 5 человек составьте закон распределения случайной величины Решение задач по эконометрике в Excel — числа студентов, сдавших экзамен.

В ячейку В7 помещена функция БИНОМРАСЩА7; SBS1; $В$2; 0) (рис 2.3.). Скопируйте формулу для остальных ячеек столбца В, как показано на рис. 2.2. Чтобы получить данные столбца С надо в качестве аргумента интегральная поставить единицу.

С помощью функции БИНОМРАСП можно получить только вероятности равные числу успеха к (интегральная равна нулю) или не большие к (интегральная равна единицы). Для вычисления других вероятностей надо воспользуйтесь значениями столбцов Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. Значения в столбцах Решение задач по эконометрике в Excel находятся по формулам:

Решение задач по эконометрике в Excel

Для построение диаграммы биномиального распределения выделите ячейки В7:В12 и нажмите кнопку мастер диаграмм на стандартной панели инструментов. Отформатируйте её как показано на рис. 2.2.

В качестве обратной функции к БИНОМРАСП в Exccl рассматривается функция КРИТБИНОМ. Её синтаксис:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Гипергеометрическое распределение

Распределение возвращает вероятность заданного количества успехов в выборке, если заданы: размер выборки Решение задач по эконометрике в Excel, количество успехов в генеральной совокупности Решение задач по эконометрике в Excel и размер генеральной совокупности Решение задач по эконометрике в Excel. Функция ГИПЕРГЕОМЕТ используется для задач с конечным числом элементов генеральной совокупностью, где каждое наблюдение — это успех или неудача, а каждое подмножество заданного размера (Решение задач по эконометрике в Excel) выбирается с вероятностью равной

Решение задач по эконометрике в Excel

Синтаксис:

ГИПЕРГЕОМЕТ (числоуспеховввыборке; размер выборки; числоуспеховвсовокупности; размерсовокумности)

Распределение Пуассона

Обычное применение распределения Пуассона состоит в предсказании количества событий, происходящих за определенное время, например: количество машин, появляющихся за 1 минуту на станции техобслуживания.

Синтаксис: ПУАССОН(Решение задач по эконометрике в Excel; среднее; интегральная)

Решение задач по эконометрике в Excel — количество событий.

среднее — ожидаемое численное значение.

интегральная — логическое значение, определяющее форму возвращаемого распределения вероятностей.

Если аргумент «интегральная» имеет значение ИСТИНА, то функция ПУАССОН возвращает интегральное распределение Пуассона, то есть вероятность того, что число случайных событий будет от 0 до Решение задач по эконометрике в Excel включительно.

Если этот аргумент имеет значение ЛОЖЬ, то вычисляется значение функции плотности распределения Пуассона, то есть вероятность того, что событий появится равно Решение задач по эконометрике в Excel раз.

Интервальные оценки

Величина оценки Решение задач по эконометрике в Excel, найденная по выборке, является лишь приближенным значением неизвестного параметра Решение задач по эконометрике в Excel. Вопрос о точности оценки в математической статистике устанавливается с помощью соотношения:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — доверительная вероятность или надежность интервальной оценки (принимает значения 90%, 91%,…99%, 99,9%);

Решение задач по эконометрике в Excel — предельная ошибка (точность) оценки. Для случайной величины, имеющей нормальное распределенние

Решение задач по эконометрике в Excel

Значение Решение задач по эконометрике в Excel вычисляется с помощью функции Лапласа, если Решение задач по эконометрике в Excel задано в условии по формуле Решение задач по эконометрике в Excel.

Если стандартное отклонение находится по выборке, то рассматривают два случая:

1) Решение задач по эконометрике в Excel используется функция Стьюдента:

Решение задач по эконометрике в Excel

2) Решение задач по эконометрике в Excel используется функция Лапласа Решение задач по эконометрике в Excel

Если раскрыть модуль в уравнении (2.7), то получим неравенство:

Решение задач по эконометрике в Excel

Числа Решение задач по эконометрике в Excel называют доверительными границами, а интервал Решение задач по эконометрике в Excel — доверительным интервалом или интервальной оценкой параметра Решение задач по эконометрике в Excel.

Границы доверительного интервала симметричны относительно точечной оценки Решение задач по эконометрике в Excel. Поэтому точность оценки Решение задач по эконометрике в Excel. иногда называют половиной длины доверительного интервала.

Так как Решение задач по эконометрике в Excel величина случайная, то границы доверительного интервала могут меняться, кроме того, они будут меняться с изменением доверительной вероятности, поэтому соотношение (2.7) следует читать так: «со статистической надежностью Решение задач по эконометрике в Excel-100% доверительный интервал Решение задач по эконометрике в Excel содержит параметр генеральной совокупности Решение задач по эконометрике в Excel».

Рассмотрим на примерах, как строятся доверительные интервалы для математического ожидания, дисперсии и среднего квадратического отклонения нормально распределенного количественного признака Решение задач по эконометрике в Excel.

Доверительный интервал для математического ожидания с известной дисперсией

При построении доверительного интервала используется функция НОРМОБР для Решение задач по эконометрике в Excel. Границы доверительного интервала можно определить из уравнений:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel называют уровнем значимости.

Пример с решением №2.2.

Спонсоры телевизионных программ хотят знать, сколько времени дети проводят за экраном телевизора. После опроса 100 человек оказалось, что среднее число часов в неделю соответствует 27,5 часов, а средне квадратическое отклонение равно 8,0 часов. Найдите 95% доверительный интервал для оценки среднего количества часов в неделю, которое дети проводят за просмотром телепередач

На основании исследований с 95% вероятностью можно утверждать, что за просмотром телевизора дети проводят от 25,93 до 28,65 часов. Формулы для вычисления приведены на рис 2.4.

Решение задач по эконометрике в Excel

Доверительный интервал для математического ожидания с неизвестной дисперсией

Как правило, дисперсия оцениваемого параметра является величиной неизвестной. Тогда находят исправленную выборочную дисперсию, а доверительный интервал строится с помощью Решение задач по эконометрике в Excel-распределения (Стьюдента).

Функция СТЬЮДРАСПОБРО возвращает значение Решение задач по эконометрике в Excel, для которого:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — это случайная величина, соответствующая распределению Стьюдента и

Решение задач по эконометрике в Excel

Пример с решением №2.3.

Владелец таксопарка хочет спрогнозировать свои расходы на следующий год. Основной статьей расходов является покупка топлива. Так как бензин стоит дорого, владелец стал использовать газ. Были выбраны восемь такси, и оказалось, что число миль на галлон соответственно равно 28,1, 33,6, 41,1, 37,5, 27,6,36,8, 39,0 и 29,4. Оцените с доверительной вероятностью 95% средний пробег на один галлон газа для всех такси в парке, предполагая, что он распределен нормально.

Решение задач по эконометрике в Excel

После исследования оказалось, что средний пробег на один галлон для всех такси в парке находится между 29,71 и 38,81 миль на галлон. Формулы для вычисления приведены на рис.2.5.

Доверительный интервал для дисперсии и среднего квадратического отклонения

Рассмотрим нормально распределенную случайную величину, дисперсия Решение задач по эконометрике в Excel которой неизвестна. По результатам Решение задач по эконометрике в Excel наблюдений: Решение задач по эконометрике в Excel можно определить среднее значение Решение задач по эконометрике в Excel (1.1) и исправленную выборочную дисперсию Решение задач по эконометрике в Excel (2.4).

Теперь с доверительной вероятностью Решение задач по эконометрике в Excel определим половину длины доверительного интервала Решение задач по эконометрике в Excel для которого выполняется условие:

Решение задач по эконометрике в Excel

Доверительный интервал для дисперсии запишется в виде неравенства:

Решение задач по эконометрике в Excel

Выборочня исправленная дисперсия несмещенная оценка генеральной дисперсии равна:

Решение задач по эконометрике в Excel

Так как Решение задач по эконометрике в Excel — результаты независимых наблюдений нормально распределенной СВ, значит сумма квадратов

Решение задач по эконометрике в Excel

имеет Решение задач по эконометрике в Excel распределение с Решение задач по эконометрике в Excel степенью свободы. Выразив Решение задач по эконометрике в Excel через Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel, получим:

Решение задач по эконометрике в Excel

Тогда уравнение 2.9 примет вид:

Решение задач по эконометрике в Excel

из которого доверительный интервал для Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

С помощью функции ХИ20БР можно найти верхнюю и нижнюю границы Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel для Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Подставив найденные значения в уравнения:

Решение задач по эконометрике в Excel

получим верхнюю и нижнюю границы доверительного интервала для дисперсии:

Решение задач по эконометрике в Excel

Доверительный интервал для среднего выборочного значения а получится, если извлечь корень из каждой части предыдущего неравенства.

Доверительный интервал для доли признака генеральной совокупности

Проводится серия из Решение задач по эконометрике в Excel испытаний, в каждом из которых наблюдается событие Решение задач по эконометрике в Excel (событие может произойти или нет). Пусть событие произошло Решение задач по эконометрике в Excel раз, тогда Решение задач по эконометрике в Excel называют частотой появления события Решение задач по эконометрике в Excel или выборочной долей признака.

Если Решение задач по эконометрике в Excel вероятность с которой событие может произойти (называют генеральной долей распределения количественного признака) в каждом из испытаний, то частота Решение задач по эконометрике в Excel является точечной несмещенной оценкой вероятности Решение задач по эконометрике в Excel.

Зададим доверительную вероятность Решение задач по эконометрике в Excel и найдем такие числа Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel для которых выполняется соотношение

Решение задач по эконометрике в Excel

Интервал Решение задач по эконометрике в Excel является доверительным интервалом для Решение задач по эконометрике в Excel, отвечающий надежности Решение задач по эконометрике в Excel.

При большом числе испытаний Бернулли Решение задач по эконометрике в Excel выборочная доля является нормально распределенной случайной величиной

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel является дисперсией выборочной доли признака,

a Решение задач по эконометрике в Excel её математическим ожиданием.

Тогда доверительный интервал генеральной доли признака можно найти, используя функцию Лапласа:

Решение задач по эконометрике в Excel

Откуда

Решение задач по эконометрике в Excel

Рассматривают два случая: большое количество проведенных испытаний и малое. В случае малого объема выборки найти Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel можно с помощью специальных таблиц распределения Бернулли.

Проверка статистических гипотез о числовых значениях параметров нормального распределения

Данные выборочных обследований часто являются основой для принятия одного из нескольких решений. При этом любое суждение о генеральной совокупности будет сопровождаться случайной погрешностью и поэтому может рассматриваться лишь как предположительное.

Под статистической гипотезой понимается всякое высказывание о виде неизвестного распределения, или параметрах генеральной совокупности известных распределений, или о равенстве параметров двух распределений, или о независимости выборок, которое можно проверить статистически, то есть опираясь на результаты случайных наблюдений.

Наиболее часто формулируются и проверяются гипотезы о числовых значениях параметров генеральной совокупности, подчиняющихся одному из известных законов распределения: нормальному, Стьюдента, Фишера и др.

Основные понятия статистической гипотезы

Подлежащая проверке гипотеза называется основной (нулевой) обозначают её Решение задач по эконометрике в Excel. Содержание гипотезы записывается после двоеточия Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

Каждой основной гипотезе противопоставляется альтернативная (конкурирующая) гипотеза Решение задач по эконометрике в Excel. Как правило, основной гипотезе можно противопоставить несколько альтернативных гипотез. Если выборочные данные противоречат гипотезе Решение задач по эконометрике в Excel, то гипотеза отклоняется, в противном случае принимается.

Статистическая проверка гипотез, основанная на результатах выборки, связана с риском, принять ложное решение. Если по выборочным данным основная гипотеза отвергнута, в то время как для генеральной совокупности она справедлива, то говорят об ошибке первого рода. Вероятность допустить такую ошибку принято называть уровнем значимости и обозначать а (10%, 9%,… 1%).

Рассматривается и ошибка второго рода, когда основная гипотеза принимается, в действительности же верной оказывается альтернативная гипотеза. В таком случае говорят об ошибке второго рода, а вероятность допустить эту ошибку обозначают Решение задач по эконометрике в Excel, величину 1- Решение задач по эконометрике в Excel называют мощностью критерия.

Поскольку ошибки первого и второго рода исключить невозможно, то в каждом конкретном случае пытаются минимизировать потери от этих ошибок. Увеличение объема выборки является одним из таких путей.

Критерии проверки. Критическая область

Вывод о соответствии выборочных данных с проверяемой гипотезой делается на основе некоторого критерия. Критерий проверки гипотезы реализуют с помощью некоторой статистики Решение задач по эконометрике в Excel (статистической характеристики определяемой по выборочным данным). Эту величину принято обозначать: Решение задач по эконометрике в Excel — если она нормально распределена с Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel — если она нормально распределена с Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel — если она распределена по закону Стьюдента, Решение задач по эконометрике в Excel — если она распределена по закону Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel — если она имеет распределение Фишера.

После выбора критерия множество всех его возможных значений разбивают на два непересекающихся подмножества. Одно содержит значения критерия, при которых нулевая гипотеза отклоняется, это множество значений называют критической областью. Другое, называют областью принятия гипотезы — содержит совокупность значений, при которых нулевая гипотеза принимается.

Вычисленное по выборке значение критерия (Решение задач по эконометрике в Excel) может принадлежать одному из этих множеств и в зависимости от этого нулевая гипотеза принимается, если Решение задач по эконометрике в Excel принадлежит области принятия гипотезы и отвергается в противном случае. Точки, разделяющие эти две области, называют критическими и обозначают Решение задач по эконометрике в Excel. Различают три вида критических областей: левосторонняя Решение задач по эконометрике в Excel правосторонняя Решение задач по эконометрике в Excel и двухсторонняя Решение задач по эконометрике в Excel

Если Решение задач по эконометрике в Excel попадает в критическую область, то надо говорят, что основная гипотеза отвергается в пользу альтернативной при заданном уровне значимости.

Общая схема проверки гипотезы

Проверка гипотезы с помощью уровня значимости.

  1. Формулируется нулевая гипотеза и альтернативная ей.
  2. Выбирается уровень значимости.
  3. Определяется критическая область и область принятия гипотезы.
  4. Выбирают критерий, и находят его расчетное значение по выборочным данным.
  5. Вычисляют критические точки.
  6. Принимается решение.

Другим способом проверки гипотезы является вывод р-значения (значения вероятности). В этом случае не указывается уровень значимости и не принимается решения об отбрасывании нулевой гипотезы. Вместо этого проверяем насколько правдоподобно, что полученная оценка соответствует значению генеральной совокупности. При левостороннем или правостороннем критерии рассчитываются вероятности попадания статистики 0 в критическую область. Если применяется двухсторонний критерий, то оценивается разность между выборочным средним и предполагаемым средним совокупности по модулю. Если р-значснис мало, то выборочное среднее значительно отличается от среднего совокупности.

Проверка гипотезы о математическом ожидании нормально распределенной (m0) случайной величины при известной дисперсии

Пусть генеральная совокупность имеет нормальное распределение, причем её математическое ожидание равно Решение задач по эконометрике в Excel, а дисперсия равна Решение задач по эконометрике в Excel. По выборочным данным найдено Решение задач по эконометрике в Excel. Есть основания утверждать, что Решение задач по эконометрике в Excel?

Решение задач по эконометрике в Excel

На рис. 2.6. приведены возможные варианты проверки нулевой гипотезы. Результаты проверки включают в себя решение о принятии нулевой или альтернативной гипотез, основанные на уровне значимости альфа и р-значении.

Пример с решением №2.4.

Клиенты банка в среднем снимают со своего счета 100$ при среднем квадратическом отклонении Решение задач по эконометрике в Excel = 50$. Если выплаты отдельным клиентам независимы, то, сколько денег должно быть зарезервировано в банке на выплаты клиентам, чтобы их хватило на 100 человек с вероятностью 0,95? Каков при этом будет остаток денег, гарантированный с той же надежностью, если для выплат зарезервировано 16000$?

На каждого клиента банк резервирует сумму в 160$. По выборочным данным эта сумма составляет 100$.

Проверим гипотезу, может ли банк снизить свои резервы, то есть основная гипотеза может быть записана

Решение задач по эконометрике в Excel

В качестве альтернативной гипотезы рассмотрим ситуацию: «банк сможет обеспечить клиентов, если расчетная сумма выплат для каждого клиента будет снижена до 100$», тогда

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Принимается гипотеза Решение задач по эконометрике в Excel (рис2.7)., что означает: банк может снизить сумму резервов до 10000$. Используя р-значения можно сделать вывод, если альтернативная гипотеза верна (в среднем клиент берет 100S и меньше), то с вероятностью 100%, случайная величина Решение задач по эконометрике в Excel( 100$, 50$).

С надежностью 95% можно гарантировать, что у банка имеется остаток более 6000$.

Проверка гипотезы о математическом ожидании при неизвестной дисперсии

Пусть генеральная совокупность имеет нормальное распределение, причем её дисперсия неизвестна. Данная ситуация более реалистична, чем предыдущая. Пусть есть основания утверждать, что Решение задач по эконометрике в Excel.

По результатам выборки найдем Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel.Сформулируем основную гипотезу:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — нормативное значение. Введем статистику:

Решение задач по эконометрике в Excel

которая имеет распределение Стьюдента с Решение задач по эконометрике в Excel степенью свободы. Зададим уровень значимости альфа и найдем критическую область. На рис. 2.8 приведены формулы левостороннего, правостороннего или двухстороннего критериев проверки среднего выборки с использованием распределения Стьюдента.

Решение задач по эконометрике в Excel

Пример с решением №2.5.

Производитель выпускает стальные стержни. Для улучшения качества планируется внедрить новую технологию, которая получить стержни по средней прочности лучшие на излом. Текущий стандарт прочности на излом составлял 500 фунтов.

Характеристики прочности стержней, произведенных по новой технологии, представлены в D3:D14 рис. 2.9. сформулируем гипотезу об увеличении прочности стержней.

Если

Решение задач по эконометрике в Excel

Возьмем выборочное среднее Решение задач по эконометрике в Excel и проверим правосторонний критерий. Результаты приведены на рис. 2.9.

Новая технология позволит улучшить среднюю прочность стержней. Так как Решение задач по эконометрике в Excel, то можно с уверенностью сказать, что новая технология дает статистически существенные изменения показателя прочности на излом.

Решение задач по эконометрике в Excel

Построим сравнительные графики новой технологии и стандарта (рис2.10).

Решение задач по эконометрике в Excel

Большинство наблюдений превышает стандартную прочность излома стержней. Такая ситуация практически невозможна, если случайная величина имеет нормальное распределение со средним значением 500 фунтов следовательно по данным выборки можно предположить, что новая технология дает увеличение прочности.

Проверка гипотезы относительно доли признака

Рассматривается два основных типа задач:

1) сравнение выборочной доли признака Решение задач по эконометрике в Excel с генеральной долей Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Для проверки этой гипотезы используют статистику :

Решение задач по эконометрике в Excel

которая имеет нормальное распределение Решение задач по эконометрике в Excel.

Критическое значение этой статистики можно найти по заданному уровню значимости Решение задач по эконометрике в Excel с помощью функции НОРМСТОБР см. рис.2.6.

2) для сравнения долей признака двух выборок Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel выдвигается гипотеза: что две выборки из одной совокупности с долей признака Решение задач по эконометрике в Excel, а полученное расхождение есть результат случайностей, сопровождаемых отбором.

Решение задач по эконометрике в Excel

Для больших выборок вводится статистика Решение задач по эконометрике в Excel имеющая

Решение задач по эконометрике в Excel

Используют функцию НОРМРАСПОБР для поиска критического значения по уровню значимости альфа, и сравнивают с расчетным значением

Решение задач по эконометрике в Excel

Малые выборки (Решение задач по эконометрике в Excel — малые числа) не могут быть исследованы с помощью нормального распределения.

Оценка среднего по двум выборкам

При анализе экономических показателей довольно часто приходится сравнивать две генеральные совокупности. Например, можно сравнить два варианта инвестирования по размерам средних дивидендов, качество знаний студентов двух университетов — по среднему баллу на комплексном тестовом экзамене. Если дисперсии известны, то можно использовать Двухвыборочный z-тест для средних. Кроме этого существуют три варианта Двухвыборочный t-тестов. Эти три средства допускают следующие условия: равные дисперсии генерального распределения, дисперсии выборок не равны, а также представление двух выборок до и после наблюдения по одному и тому же субъекту.

Для запуска этих инструментов анализа данных надо выполнить действия меню Сервис/Анализ данных выберите из списка нужный вам пункт.

Для выполнения таких проверок инструментами анализа Excel требуется наличие двух выборок, оценка полагаемой разницы между средними значениями выборок и альфа — уровень значимости. Все перечисленные критерии предполагают, что рассматриваемые совокупности нормально распределены, и выборки получены случайно.

Случай равных дисперсий

Рассмотрим данный критерий на примере.

Пример с решением №4.1.

На заводе проводится эксперимент по оценке новой технологии сборки устройств. Рабочие делятся на две группы; одна обучается новой технологии, другая — стандартной. В конце обучения измеряется время (в минутах), необходимое рабочему для сборки устройства. Результаты приведены в диапазоне A L:В10 рис 4.1. Можно ли сделать вывод, исходя из данных выборок, что время сборки по новой технологии меньше, чем по стандартной.

На листе Exccl постройте графики для выборок Стандартная и Новая. Разброс (дисперсии равны) данных практически одинаковый, этот вывод можно сделать, изучив амплитуды колебания графиков (рис. 4.1). Маркеры графика Новая расположены ниже, поэтому можно предположить, что среднее время сбора устройств по новой технологии меньше.

Выдвигаем гипотезу: «Среднее время сборки по новой технологии не изменилось», . эту гипотезу можно записать в виде:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel альтернативная гипотеза, утверждающая «Новая технология сокращает время сборки». Необходимо проверить левосторонний критерий для основной гипотезы.

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

В диалоговом окне Анализ данных и выберите Двухвыборочный t-тест с одинаковыми дисперсиями. Заполните поля, как показано на рис.3.2. и нажмите кнопку ОК. результат появится на листе Excel в диапазоне D4: F16, как на рис 3.3.

Решение задач по эконометрике в Excel

Описание полученных результатов сравнения средних двух выборок (рис.3.3).

Объединенная дисперсия — это взвешенное среднее выборочных дисперсий, со степенями свободы каждой дисперсии в качестве весов (8). Она является оценкой общей дисперсии двух выборок и используется для определения стандартной ошибки разности средних.

Решение задач по эконометрике в Excel— число степеней свободы критерия (18-2).

Решение задач по эконометрике в Excel-статистика вычисляется как отношение разности средних к стандартной ошибке.

Решение задач по эконометрике в Excel одностороннее является односторонним Решение задач по эконометрике в Excel-значением, если Решение задач по эконометрике в Excel если Решение задач по эконометрике в Excel то Решение задач по эконометрике в Excel. Двухстороннее Решение задач по эконометрике в Excel-значение равно удвоенному одностороннему Решение задач по эконометрике в Excel-значению.

Найденное расчетное значение Решение задач по эконометрике в Excel-статистика= 1,649 и Решение задач по эконометрике в Excel-критическое равное 1,746 сравниваем с учетом, что рассматривалась правосторонняя критическая область, делаем вывод: «Решение задач по эконометрике в Excel принимается». С 5% уровнем значимости мы не можем отвергнуть предположение о равенстве средних значений выборки.

Если бы рассматривалась левосторонняя гипотеза, то:

Решение задач по эконометрике в Excel

Можно построить доверительный интервал для разности средних значений выборок (результат в диапазоне Н3:18 рис. 3.4).

Среднее разности находится как разность ЕЗ — F3,

Решение задач по эконометрике в Excel — статистика для разности равна Решение задач по эконометрике в Excel критическому двухстороннему (Е14), стандартная ошибка найдена делением (13 -Е8)/ ЕЮ.

Половина длины равна произведению Решение задач по эконометрике в Excel на стандартную ошибку.

Решение задач по эконометрике в Excel

Доверительный интервал для разности средних значений равен (-1,046; 8,379) с вероятностью 95%.

Случай разных дисперсий

В данном случае не предполагается равенство дисперсий выборок, но сохраняется требование их нормальности и независимости.

Для принятия решения в таких случаях надо использовать Двухвыборочный t-тест с различными дисперсиями.

Пример с решением №3.2.

Для производства нового продукта предлагается две схемы размещения рабочих. Шесть случайно отобранных рабочих собирают изделие по схеме А, а другие восемь — по схеме В. Время сборки записывается соответственно в столбец А и В рис 3.5. Можно ли сделать вывод с 5% уровнем значимости, что время сборки различаются в схемах, при условии, что они нормальные.

Построим диаграммы данных выборок и сравним среднее время сборки и разброс.

Решение задач по эконометрике в Excel

Сравнивая графики для схем Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel можно сделать вывод, что разброс данных в схеме Решение задач по эконометрике в Excel больше, однако среднее время сборки меньше.

Выдвинем гипотезу: «Размещение рабочих не влияет на время сборки изделий:

Решение задач по эконометрике в Excel

В качестве альтернативной гипотезы выдвинем предположение: «время сборки изделий по схеме Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel не равны».

Для проверки этой гипотезы следует применить двухсторонний критерий. Инструкции по использованию Решение задач по эконометрике в Excel-теста те же, что и в примере 4.1. Результаты применения критерия приведены на рис.3.6.

Сравнивая расчетное значение Решение задач по эконометрике в Excel-статистики и Решение задач по эконометрике в Excel-критическое двухстороннее можно сделать вывод, что принимается гипотеза Решение задач по эконометрике в Excel, то есть размещение рабочих не влияет на время сборки изделий.

Используя Решение задач по эконометрике в Excel-значение 0,180 (18%) можно сделать вывод, что с вероятностью 18% можно получить выборку со средним отличающимся на 1,6 мин в любом направлении. Доверительный интервал для разности средних составил (-4,138; 0,938).

Решение задач по эконометрике в Excel

Парный выборочный критерий

Критерий используется в случае, когда одна и та же группа наблюдается дважды. Обычно это происходит при измерении характеристик до и после эксперимента. Например, студенты могут тестироваться дважды до и после курса по некоторой дисциплине. Можно использовать критерий и для других естественных пар наблюдений.

Пример с решением №3.3.

Исследователь хочет определить, имеется ли разница в успешности автомобильных сделок при их проведении продавцами женского и мужского пола. Для этого были выбраны восемь продавщиц и определена комиссия, заработанная каждой в прошедшем году. Так как опытность влияет на размер комиссии, то исследователь записала и стаж работы для каждой из восьми женщин. Данные приведены в столбцах Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel рис. 3.7. Для проверки предположения были взяты продавцы с тем же стажем работы, что и женщины; значения комиссий мужчин приведены в столбце С рис.4.7. Можем ли мы с уровнем значимости 5% утверждать, что женщины имеют существенно другие показатели, по сравнению с продавцами мужчинами?

Решение задач по эконометрике в Excel

Нулевая гипотеза состоит в том, что разность средних совокупностей равна нулю. Однако по результатам выборок получено среднее значение разности и она равна 2,25 тыс. рублей. Тогда в качестве альтернативной гипотезы рассмотрим утверждение, что продавцы различных полов имеют различные показатели. Для проверки гипотез применим Двухвыборочных парный t-тест для средних. После его запуска в диапазоне F1 :Н 14 будут помещены результаты применения этого критерия. Они практически ничем не отличаются от предыдущих результатов (пример 4.1, пример 4.2), только в ячейке G7 содержится коэффициент корреляции.

Принимая решение, для данного теста мы вынуждены принять гипотезу о равенстве средних значений комиссии у продавцов мужчин и женщин. Об этом говорят значения Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel: -2,365<1,895<2,365.

В случае проверки с гипотезы с помощью Решение задач по эконометрике в Excel-значения (Решение задач по эконометрике в Excel=14%) можно с вероятностью 14% получить выборку с разностью меньшей чем -2,25 тыс. рублей или большей, чем 2,25 тыс. рублей.

В диапазоне J1:K7 представлены вычисления 95% доверительного интервала для разности средних выборок.

Анализ дисперсий

Решение задач по эконометрике в Excel-распределение может быть использовано для проверки нулевой гипотезы о равенстве дисперсий двух выборок. Критерий предполагает, что выборки из генеральной совокупности независимы и нормально распределены.

Двухсторонний критерий применяется в случае, если альтернативная гипотеза состоит в том, что дисперсии выборок различны. Для этого составляется отношение дисперсий, которое сравнивается с единицей.

Если альтернативная гипотеза проверяет утверждение о том, что дисперсия одной выборки строго больше дисперсии другой выборки, применяется односторонний критерий.

Напомним, что заданный уровень значимости альфа для двухстороннего критерия делится пополам.

В примере 3.2. проверялась гипотеза о равенстве средних значений выборок, представляющих две схемы размещения рабочих мест. При этом предполагалось, что дисперсии этих выборок не равны. Воспользуемся данными этого примера и проверим гипотезу о равенстве дисперсий. Применим двухсторонний Решение задач по эконометрике в Excel тест для 10% уровня значимости (5% на каждый хвост распределения) для проверки нулевой гипотезы о равенстве дисперсий. В качестве альтернативной гипотезы рассматривается утверждение, что дисперсии не равны. На рис. 4.1. приведены данные Решение задач по эконометрике в Excel-теста. Значение Решение задач по эконометрике в Excel-статистики записано в ячейке Е8 и равно 3,060. в ячейке Е9 приведены данные р-значения, которое является правосторонней вероятностью получить значение большее или равное Решение задач по эконометрике в Excel-статистики. Критическое значение для правосторонней области находится в ячейке ЕЮ и равно 3,972. такое же значение будет иметь правая граница двухсторонней области с уровнем значимости 10%. На рис. 4.1. в столбце I найдено критическое значение для левой границы. Так как Решение задач по эконометрике в Excel=3,060 меньше Решение задач по эконометрике в Excel=3,972, мы не можем отвергнуть нулевую гипотезу равенства дисперсий.

Решение задач по эконометрике в Excel

Можно не использовать двухвыборочный Решение задач по эконометрике в Excel-тест для проверки гипотезы о равенстве дисперсий, а воспользоваться функцией FPACTIOBP, которая имеет синтаксис РРАСПОБР(всроятность;степенисвоб1; степенисвоб2), т.е.

Решение задач по эконометрике в Excel

Значение статистики Решение задач по эконометрике в Excel тоже легко находится с использованием встроенных функций Excel.

Критерий хи-квадрат (критерий согласия)

Этот критерий используют для проверки гипотезы о виде распределения выборки. Её проверка состоит в том, чтобы на основе сравнения фактических и теоретических частот сделать вывод о соответствии фактического распределения аредполагаемому. В критерии используется статистика:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — число групп, на которое разбито распределение;

Решение задач по эконометрике в Excel — теоретическая частота, рассчитанная по предполагаемому распределению;

Решение задач по эконометрике в Excel — наблюдаемая (фактическая) частота признака в Решение задач по эконометрике в Excel-той группе.

Статистика 6.1 подчиняется ХИ-квадрат распределению с Решение задач по эконометрике в Excel степенями свободы, где Решение задач по эконометрике в Excel — число параметров генерального распределения, вычисляемых по выборочным данным. В таблице 6.1. указывается значение Решение задач по эконометрике в Excel для основных видов распределения.

Решение задач по эконометрике в Excel

В некоторых случаях сравнение может проводиться с заранее данным распределением, или с распределением у которого часть параметров указана (а не рассчитывается по выборочным данным). В этом случае число к (параметров генерального распределения) уменьшается.

Для применения критерия ХИ-квадрат требуется выполнение условий:

  1. экспериментальные данные должны быть независимыми;
  2. объем выборки должен быть достаточно большим (не менее 50);
  3. частота в каждой группе должна быть не менее 5. Если это условие не выполняется, то проводят объединение малочисленных интервалов, при этом частоты объединенных интервалов суммируются.

При полном совпадении теоретического и фактического распределений Решение задач по эконометрике в Excel, в противном случае Решение задач по эконометрике в Excel. Проверка гипотезы о равенстве распределений Решение задач по эконометрике в Excel осуществляется с помощью

Решение задач по эконометрике в Excel

которое находится по заданному уровню значимости. Гипотеза Решение задач по эконометрике в Excel принимается, если Решение задач по эконометрике в Excel, в противном случае отвергается

Основанием для выдвижения гипотезы о виде распределения генеральной совокупности могут служить:

  1. формальные свойства числовых характеристик выборочных данных:

a. равенство нулю ассиметрии и эксцесса является признаком нормального распределения;

b. дисперсия и среднее значение выборки равны является признаком распределения Пуассона и т.д;

  1. графический анализ выборочных данных: полигон, гистограмма, функция накопленных частот их сравнение с теоретическими функциями известных распределений.

Если статистический ряд не является интервальным, то его данные подвергаются группировке и представляются в виде q интервалов равной длины. Далее находят количество вариант, попавших в каждый частичный интервал. Если значения статистического ряда являются равноотстоящими вариантами с заданными частотами, то данные можно и не группировать.

Проверка гипотезы о нормальном распределении генеральной совокупности

В предыдущих примерах мы пользовались тем, что значения выборки распределены по нормальному закону распределения. Рассмотрим применение критерия согласия, проверяющего справедливость гипотезы о наличии нормального распределения в совокупности на примере.

Пример с решением №5.1.

Чтобы установить гарантийный срок на товар, производитель хочет проверить является ли срок службы выпускаемого товара нормально распределенным. Случайным образом отобранные 200 единиц товара при проверке распределились следующим образом по количеству отработанных часов:

Решение задач по эконометрике в Excel

Запишем нулевую и альтернативную гипотезы:

Решение задач по эконометрике в Excel: Совокупность сроков службы нормально распределена.

Решение задач по эконометрике в Excel: Совокупность сроков службы имеет другое распределение.

Проверку будем проводить с помощью встроенных функций Excel. Для этого внесем данные, как показано на рис. 5.1 в ячейки А7:В11.

Решение задач по эконометрике в Excel

ШАГ 1. Найдите среднее значение и дисперсию интервального ряда по формулам 1.1 и 1.2. Для этого в ячейки D15:D19 занесите середины интервалов. Середина первого интервала определяется по формуле:

Решение задач по эконометрике в Excel

где пять половина длины следующего интервала. Аналогично вычисляется середина последнего интервала, только учитывается половина длины предшествующего интервала. В диапазон Е15:Е19 скопируйте фактические частоты. В ячейку Е20 запишите формулу: =СУММ(Е15:Е19).

В ячейку F15 поместите произведениех^ =D15*E15 и скопируйте в остальные ячейки диапазона F15:F 19. Теперь можете воспользоваться формулой 1.1 для определения среднего, значение которого поместите в ячейку В4.

Дисперсию найдите самостоятельно, для этого лучше воспользоваться формулой:

Решение задач по эконометрике в Excel

Сначала выполните следующие действия в ячейках G 15:G19 найдите Решение задач по эконометрике в Excel, а в Н15:Н 19 — Решение задач по эконометрике в Excel. Результаты оформите как показано в таблице 6.2: В ячейке С4 (рис.6.1) находится среднее квадратическое отклонение, которое определяется по формуле 1.3

Решение задач по эконометрике в Excel

ШАГ 2. В столбце «Вероятность» (рис.5.1) находится вероятность попадания случайной величины в соответствующий интервал. Для вычисления этих значений использовалась функция НОРМРАСП. Для первого интервала левым концом является минус бесконечность, поэтому в ячейку С8 запишите формулу:

Решение задач по эконометрике в Excel

Для последнего интервала находим

Решение задач по эконометрике в Excel

поэтому вычисление проводится по формуле:

Решение задач по эконометрике в Excel

Для вычисления вероятности попадания в интервал Решение задач по эконометрике в Excel воспользуйтесь формулой 2.6:

Решение задач по эконометрике в Excel

ШАГ 3. Диапазон «Ожидаемая частота» вычисляется как произведение соответствующих значений столбца «Вероятность» на объем выборки (200). ШАГ 4. Столбец Решение задач по эконометрике в Excel представляет собой слагаемые формулы 6.1, вычисляемые по формуле:

Решение задач по эконометрике в Excel

В примере рассматривается пять интервалов, а количество параметров предполагаемого распределения два (среднее и стандартное отклонение) рассчитывается по выборке, поэтому число степеней свободы (СС) равно двум (5-2-1=2). В ячейки А14:В19 введите формулы согласно рис. 5.2.

Решение задач по эконометрике в Excel

В ячейке В19 делается вывод, что распределение часов работы, выпускаемого товара нормальное, это же подтверждает и р-значение.

Проверка гипотезы о распределении генеральной совокупности но закону Пуассона

Параметром этого распределения является Решение задач по эконометрике в Excel -среднее значение. Поэтому по выборочным данным надо найти Решение задач по эконометрике в Excel и взять его в качестве оценки параметра Решение задач по эконометрике в Excel. Напомним, что дискретная случайная величина, имеющая распределение Пуассона, может принимать неотрицательные целые значения. Рассмотрим использование критерия Хи-квадрат для проверки гипотезы о распределении случайной величины по закону Пуассона на примере.

Пример с решением №5.2.

Проведено наблюдение за числом вызовов такси в праздничные дни. Для этого анализировалось 100 случайно выбранных одно минутных интервалов времени. Число вызовов такси в минуту распределилось следующим образом:

Решение задач по эконометрике в Excel

Проверить, используя критерий Хи-квадрат, гипотезу о том, что число вызовов согласуется с законом Пуассона с уровнем значимости Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

ШАГ 1. Внесите данные на лист Excel и найдите теоретические частоты (диапазон D2:D7), как показано на рис 5.3.

ШАГ2. Найдите слагаемые формулы 5.1. Для этого скопируйте значения фактических и теоретических частот, как показано на рис. 5.4, в ячейку С12 запишите формулу:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Можно сделать вывод о том, что число вызовов такси в праздничные дни имеет распределение Пуассона.

Проверка гипотезы о распределении генеральной совокупности но равномерному закону

Пусть случайная величина Решение задач по эконометрике в Excel распределена равномерно на отрезке Решение задач по эконометрике в Excel выборочные данные сгруппируйте по частичным интервалам одинаковой длины и найдите соответствующие частоты. Для каждого интервала вычислите вероятность попадания Решение задач по эконометрике в Excel, а затем теоретические частоты по формуле пр,.

Пример с решением №6.3.

На рис.6.5 приведена частота появление на остановке автобусов определенного маршрута, имеющих интервал движения, пять минут Решение задач по эконометрике в Excel. Проверьте гипотезу о равномерном законе распределения.

Решение задач по эконометрике в Excel

При проверке гипотезы, так же как и в случае нормального распределения найдено критическое значение (рис. 5.2) и р-значение, которое характеризует вероятность выполнения гипотезы Решение задач по эконометрике в Excel: можно утверждать, что она выполняется для 90% выборочных данных. В ячейке В15 сделан вывод о том, что гипотеза о равномерном распределении движения автобусов принимается.

Проверка гипотезы о распределении генеральной совокупности но показательному закону

Как и в предыдущих проверках, выборочные данные сгруппируйте и запишите в виде последовательности частичных интервалов и соответствующих им частот. Найдите выборочное среднее значение Решение задач по эконометрике в Excel. Параметр показательного распределения Решение задач по эконометрике в Excel (таблица 6.1) замените оценкой:

Решение задач по эконометрике в Excel

Вероятности попадания случайной величины в интервалы определите с помощью функции ЭКСПРАСП.

Выполните расчеты как показано на рис. 5.6. Столбцы Е, F заполните как в примере 5.1. В столбце вероятность:

В ячейку D4 запишите =ЭКСПРАСП(В4;$Р$19;1);

В ячейку D5 поместите =ЭКСПРАСП(В5;$Р$ 19; 1 )-ЭКСГ1РАСП(A5;$F$ 19; 1), скопируйте её в остальные ячейки столбца D.

Сравнивая критическое и расчетное значение статистики ХИ-квадрат при 5% уровне значимости, можно сделать вывод, что нет оснований отвергать гипотезу Решение задач по эконометрике в Excel можно считать данные выборки (рис 5.6) распределены по показательному (экспоненциальному) закону распределения.

Решение задач по эконометрике в Excel

Проверка гипотезы о распределении генеральной совокупности но биномиальному закону распределения

Пример с решением №5.4.

В библиотеке отобрано 200 партий по пять книг для обучения студентов в семестре. Каждому студенту было предложено заполнить опросный лист числа повреждений в книге. В итоге был получен вариационный ряд:

Решение задач по эконометрике в Excel

При уровне значимости 5% проверьте гипотезу о биномиальном распределении числа повреждений в книгах.

Биномиальное распределение имеет один неизвестный параметр — Решение задач по эконометрике в Excel, который надо оценить Решение задач по эконометрике в Excel по выборочным данным. Проведем все расчеты в Excel (рис. 5.7).

Решение задач по эконометрике в Excel

Выделенные ячейки следует объединить в одну группу, тогда количество рассматриваемых интервалов равно четырем.

Относительная частота находится по формуле

Решение задач по эконометрике в Excel

Прежде чем перейти к столбцу вероятность найдите оценку Решение задач по эконометрике в Excel параметра Решение задач по эконометрике в Excel, используя формулы рис. 5.8.

Решение задач по эконометрике в Excel

Столбец вероятность заполните с помощью формул :

Решение задач по эконометрике в Excel

Остальные ячейки заполняем, копируя полученную формулу.

Вывод: можно считать число повреждений в книге подчиняется биномиальному закону распределения.

Использование статистики ХИ-квадрат для изучения зависимостей двух переменных

Одним из приложений критерия Решение задач по эконометрике в Excel является его использование при анализе таблиц сопряженности двух переменных для установления факта наличия и уровня значимости их взаимосвязи. Для этого выдвигается нулевая гипотеза: связи между рассматриваемыми переменными нет, в противном случае связь между переменными существует с уровнем значимости альфа.

Пример с решением №5.5.

Компания продает четыре сорта колы в Москве. Чтобы определить, будет ли успешным тот же способ распространения в Ростове и Краснодаре, фирма анализирует связь между предпочтениями и городом потребителя. Аналитик распределяет покупателей на четыре класса по предпочтениям сортов колы: обычная, без кофеина и сахара, только без кофеина, только без сахара. Опрашивают 250 случайно выбранных потребителей колы из трех городов и записывают их предпочтения. В результате получается таблица частот.

Решение задач по эконометрике в Excel

Так как аналитик определяет связь между городом и предпочтением определенного вида колы, то нулевая и альтернативная гипотезы следующие: Решение задач по эконометрике в Excel: Классификации статистически независимы.

Решение задач по эконометрике в Excel Классификации зависимы.

На лист Excel поместим данные о распространении сортов кофе в диапазон В5:Е7 (рис 6.8). Расчет ожидаемых частот проводится в предположении, что нулевая гипотеза выполняется, то есть переменные независимые, а значит вероятность их произведения равна произведению вероятностей каждой их них. Поэтому таблица ожидаемых частот строится по формуле:

Решение задач по эконометрике в Excel

Ожидаемые частоты поместите в диапазон В12:Е 14. Для их вычисления, воспользуйтесь смешанной и абсолютной ссылками на ячейки сумма по строке, сумма по столбцу, общая сумма. Результаты вычисления приведены на рис. 6.9.

Для сравнения ожидаемых и фактических частот воспользуемся ХИ2ТЕСТОМ (рис. 5.8). В ячейку В17 внесите формулу:

Решение задач по эконометрике в Excel

Получите р-значение равное 0,00000013, которое определяет вероятность выполнения нулевой гипотезы. Можно сделать вывод, что нулевая гипотеза отвергается, то есть люди из разных городов предпочитают различные сорта колы.

Проверим эту же гипотезу с помощью статистики ХИ-квадрат. Слагаемые формулы 6.1 найдем с помощью Фактических и Ожидаемых частот. Для этого в ячейку В21 введите формулу:

Решение задач по эконометрике в Excel

и скопируйте её для всего диапазона B21:F23 (рис.5.9).

Решение задач по эконометрике в Excel
  • Сумму слагаемых ХИ-квадрат поместите в ячейку В25 (рис.5.9).
  • В ячейке В27 задайте уровень значимости (альфа равно 0,01).
  • Число степеней свободы (СС) найдите по формуле:
Решение задач по эконометрике в Excel
  • Критическое значение (В29) найдем с помощью
Решение задач по эконометрике в Excel
  • В ячейку ВЗО помести функцию:
Решение задач по эконометрике в Excel

Так как ХИ-квадрат больше критического значения, то принимается гипотеза Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Критерии Колмогорова-Смирнова

Этот критерий является альтернативой критерию ХИ-квадрат. Его применение не требует вычисления ожидаемых частот и может использоваться для малых выборок. Данные должны представлять случайную выборку и обязательно должна быть сформулирована гипотеза о распределении генеральной совокупности. Нулевая гипотеза утверждает, что генеральная совокупность имеет выбранное распределение с определенным уровнем значимости.

Применение критерия Колмогорова-Смирнова основано на оценке разности функции накопленных частот Решение задач по эконометрике в Excel и функции распределения Решение задач по эконометрике в Excel, найденной в предположении, что нулевая гипотеза верна. Статистика критерия вычисляется по формуле:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — функция накопленных частот для Решение задач по эконометрике в Excel-того значения или интервала; Решение задач по эконометрике в Excel — функция распределения в точке Решение задач по эконометрике в Excel.

Если D больше критического значения, взятого из таблицы соответствующего критерия для объема выборки п и уровня значимости Решение задач по эконометрике в Excel, то нулевая гипотеза отклоняется. В противном случае нулевая гипотеза принимается. Для большого объема выборки используется предельное распределение критерия.

Если необходимо проверить нулевую гипотезу о принадлежности двух выборок (объема Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel) одной и той же генеральной совокупности, то строится статистика:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — функции накопленных частот, построенные по первой и второй выборкам соответственно;

Решение задач по эконометрике в Excel

Статистика сравнивается с критическим значением Решение задач по эконометрике в Excel значения которой находятся по таблице критических точек распределения Колмогорова:

Решение задач по эконометрике в Excel

Пример с решением №6.1.

Получена случайная выборка о среднем дневном заработке, руб/день, для пяти работников: 288, 231, 249, 146, 291. можно ли считать на 10% уровне значимости, что выборка проведена из нормально распределенной генеральной совокупности со средним значением

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel: выборка взята из нормально распределенной генеральной совокупности с Решение задач по эконометрике в Excel Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel нет оснований утверждать, что выборка взята из нормально распределенной генеральной совокупности с Решение задач по эконометрике в Excel. Вычисления проведем в Excel, как показано на рис.6.1.

Решение задач по эконометрике в Excel

ШАГ 1. Заполните диапазон А5:А9 выборочными данными и отсортируйте их по возрастанию.

ШАГ 2. Найдите относительные частоты для перечисленных вариант и поместите их в столбец В.

ШАГ 3. Для определения значений функции накопленных частот в ячейку С5 внесите формулу: = В5, в ячейку С6 запишите: =С5+В6 и скопируйте её для ячеек диапазона С7:С9.

ШАГ 3. Для заполнения столбца D, внесите в ячейку D5 формулу:

Решение задач по эконометрике в Excel

и скопируйте её на остальные ячейки диапазона D6: D9.

ШАГ 4. В ячейку Е5 внесите формулу: =ABS(C5-D5) и скопируйте для остальных ячеек диапазона Е5:Е9

ШАГ 5. Найдите максимальное значение статистики D и сравните с критическим, взятым из таблицы при уровне значимости 10% и числе степеней свободы равном пяти. Сравнивая эти можно сделать вывод, что выборка взята из нормально распределенной генеральной совокупности с

Решение задач по эконометрике в Excel

Линейная регрессия и корреляция

Регрессия и корреляция широко используется при анализе связей между явлениями. Прежде всего, в экономике — исследование зависимости объемов производства от целого ряда факторов: размера основных фондов, обеспеченности предприятия квалифицированным персоналом и других; зависимости спроса или потребления населения от уровня дохода, цен на товары и т.д. Экономические показатели являются многомерными случайными величинами.

В большинстве случаев между переменными, характеризующими экономические величины, существуют зависимости, отличающиеся от функциональных. Она возникает, когда один из факторов зависит не только от другого, но и от ряда случайных условий, оказывающих влияние на один или оба фактора. В этом случае ее называют стохастической (корреляционной) и говорят, что переменные коррелируют. Виды стохастических связей между факторами могут быть линейными и нелинейными, положительными или отрицательными. Возможна такая ситуация, когда между факторами невозможно установить какую-либо зависимость.

Однако при изучении влияния одного явления на другое удобно работать именно с функциями, связывающими эти явления. Задачи построения функциональной зависимости между факторами, анализа полученных результатов и прогнозирования решаются с помощью регрессионного анализа.

В пособии приводятся решения задач содержащих небольшое количество данных, для того чтобы пользователь мог быстро ввести значения в таблицу Excel. Каждое решение содержит подробную инструкцию. Сначала рассмотрите пример и проверьте результаты. Затем примените пошаговые инструкции к собственному множеству данных.

Корреляционная зависимость

Для изучения зависимости между двумя числовыми переменными (Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel) сначала строят графики рассеяния. В Excel данный вид графиков называется точечной диаграммой. Используя графическое представление, можно сделать вывод о корреляционной зависимости или независимости рассматриваемых данных. Если в массиве данных присутствуют «выбросы», то их следует исключить из рассмотрения, если это возможно сделать, или усреднить, используя соседние элементы.

Теперь можно выдвинуть предположение о существовании линейной или нелинейной зависимости между переменными. Для этого найдите коэффициент корреляции и проверьте его значимость.

Тесноту линейной зависимости изучаемых явлений оценивает линейный коэффициент парной корреляции Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel обозначают смешенный момент второго порядка (1.5), который называется ковариацией.

Ковариация является мерой взаимосвязи случайных величин и может служить для определения направления их изменения:

если Решение задач по эконометрике в Excel, то случайные величины изменяются в одном направлении;

если Решение задач по эконометрике в Excel, то случайные величины изменяются в разных направлениях.

Очевидными свойствами ковариации являются:

Коэффициент корреляции (1.1) является величиной безразмерной. Случайные величины Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel называют некоррелированными, если Решение задач по эконометрике в Excel (отсутствует линейная зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel), в противном случаем можно говорить о линейной зависимости между величинами Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel, а величины называю коррелированными. Свойства коэффициента корреляции:

Решение задач по эконометрике в Excel

В пакете Анализ данных есть инструменты Ковариации и Корреляция, позволяющие сделать вывод о линейной зависимости случайных величин.

Пример с решением №7.1.

Для анализа зависимости объема потребления Решение задач по эконометрике в Excel (у.е.) хозяйств от располагаемого ежемесячного дохода Решение задач по эконометрике в Excel (у.е.) отобрана выборка Решение задач по эконометрике в Excel, представленная таблицей.

Решение задач по эконометрике в Excel

Постройте график рассеяния и сделайте вывод о виде функциональной зависимости между объемом потребления и ежемесячным доходом в семье.
Инструкции по выполнению задания

  1. Расположите данные в столбцах таблицы так, чтобы значения х были слева, а у справа (рис. 1.1).
  2. Выделите диапазон ячеек.
  3. Щелкните мышью по кнопке Мастер диаграмм и выберите тип Точечная. Для форматирования диаграммы удобно использовать контекстное меню, которое вызывается щелчком правой кнопки мыши на форматируемом объекте.
  4. Дайте название диаграмме Корреляционное поле.
  5. Расположите диаграмму на листе, содержащем данные, как показано на рис.

Применим встроенную функцию КОРРЕЛ(диапазон Решение задач по эконометрике в Excel; диапазонРешение задач по эконометрике в Excel) для установления линейной зависимости между переменными (рис. 1.1). Найденный коэффициент корреляции 0,99 свидетельствует о сильной линейной зависимости между объёмом потребления и уровнем доходов в семье.

Проверим значимость коэффициента корреляции. Для этого сформулируем основную и альтернативную гипотезы:

Решение задач по эконометрике в Excel: Решение задач по эконометрике в Excel, коэффициент незначимый;

Решение задач по эконометрике в Excel, коэффициент значимый.

Для проверки гипотезы воспользуемся Решение задач по эконометрике в Excel-критерием и уровнем значимости 5%,

Решение задач по эконометрике в Excel

Сравнивая эти значения, сделаем вывод о том, что основная гипотеза отклоняется в пользу альтернативной, т.е. коэффициент корреляции значим. По расположению точек на рис. 1.1 можно предположить, что между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel существует линейная зависимость:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Корреляционный анализ данных

При выполнении многомерного анализа данных изучают корреляцию между каждой парой переменных. Эти результаты представляют в виде корреляционной матрицы. Инструмент анализа Корреляция позволяет определить парные корреляции для многих переменных. После его запуска получится нижняя треугольная часть матрицы, на диагонали которой будут стоять единицы Решение задач по эконометрике в Excel. Верхняя часть матрицы является зеркальным отражением нижней ее части, поскольку Решение задач по эконометрике в Excel.

Если надо изучить зависимость между переменными при условии управления одной или несколькими переменными, то находят коэффициенты частной корреляции. Частные коэффициенты корреляции могут оказаться полезными при определении ложных связей.

Например, изучается зависимость Решение задач по эконометрике в Excel. Коэффициенты парной корреляции между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel высокие, однако зависимость будет считаться ложной, если Решение задач по эконометрике в Excel линейно зависит от Решение задач по эконометрике в Excel. Если исключить влияние переменной Решение задач по эконометрике в Excel, то корреляционная зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel может исчезнуть,

Надо найти частные коэффициенты корреляции, т.е. элиминировать один из факторов (устранить его влияние). В случае трех факторов корреляцию между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel при элиминированном факторе Решение задач по эконометрике в Excel можно найти по формуле:

Решение задач по эконометрике в Excel

Подобным образом находят и остальные коэффициенты частной корреляции.

Пример с решением №7.2.

Формируется три портфеля из десяти акций. Первый состоит из 10 акций вида Решение задач по эконометрике в Excel, второй содержит по 5 акций Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel; а третий включает 5 акций вида Решение задач по эконометрике в Excel, 3 вида Решение задач по эконометрике в Excel и 2 вида Решение задач по эконометрике в Excel. Данные о прибыли по каждому виду акций за десять месяцев представлены на рис 1.3.

Имеется ли зависимость между акциями Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel? Отличаются ли данные портфели по доходности и риску?

Инструкции по выполнению задания

  1. Введите данные в ячейки A1: C11, как показано на рис. 1.2.
  2. В меню сервис выберите Анализ данных / инструмент Корреляция. Заполните поля диалогового окна, как показано на рис. 1.3. и нажмите ОК.
  3. Аналогично найдите матрицу парных ковариаций.

Решение задач по эконометрике в Excel

Описание результатов

Коэффициенты корреляции не очень высокие:

Решение задач по эконометрике в Excel

Акции плохо коррелируют между собой, то есть между дивидендами по акциям существует слабая линейная зависимость.

Так как коэффициент ковариации для дивидендов по акциям Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel отрицательный, то прибыль по ним будет изменяться в разных направлениях (при увеличении дивидендов по акциям Решение задач по эконометрике в Excel дивиденды по акциям Решение задач по эконометрике в Excel будут уменьшаться). Правда, эти изменения не очень велики, около 10%.

Решение задач по эконометрике в Excel

Если рынок ценных бумаг устойчивый, то желательно исключить акции вида Решение задач по эконометрике в Excel из портфеля, так как Решение задач по эконометрике в Excel наибольшая, а значит риск в их вложение высокий.

Акции Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel коррелируют слабо Решение задач по эконометрике в Excel, поэтому есть основания считать, что вложение капитала в равных долях в эти акции будет наименее рискованным. Для более правильного вывода надо вычислить дисперсии для каждого портфеля и сравнить их.

Дисперсии для первого портфеля :

Решение задач по эконометрике в Excel

Для второго:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Третий портфель имеет дисперсию:

Решение задач по эконометрике в Excel

Вывод: наименьший риск получается при покупке акций Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel в равных долях.

Чтобы принять окончательное решение надо построить множество Парето, характеризующее зависимость доходности портфеля от его риска, т.е. математического ожидания и дисперсии:

Решение задач по эконометрике в Excel

Построение тренда для двух рядов данных

Задача построения функциональной зависимости может быть выполнена с помощью команды Добавить линию тренда. В этом случае необходимо визуально исследовать зависимость между х и у и выбрать график элементарной функции, который даст лучшее приближение к экспериментальным данным. Форматирование графиков выполняется с помощью меню Диаграмма. Напомним, что форматируемый объект должен быть выделен.

Существуют и другие способы форматирования: контекстное меню — вызывается для объекта с помощью правой клавиши мыши.

Прежде всего, надо исследовать корреляционное поле и сделать вывод о характере зависимости между переменными. Затем выполните действия (тренд построен для данных примера 1.1):

  1. На диаграмме (рис. 1.1) выделите маркеры, щелкнув по любой из точек данных.
  2. В меню диаграмма выберите Добавить линию тренда (можно воспользоваться контекстным меню).
  3. Перейдите на вкладку Тип диалогового окна Линия тренда, как показано на рис. 1.5 и выделите пиктограмму Линейный.
  4. Откройте вкладку Параметры (рис. 1.6) включите опции Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации Решение задач по эконометрике в Excel.
Решение задач по эконометрике в Excel

На вкладке параметры имеются и другие типы функциональных зависимостей. Предлагается самостоятельно построить остальные виды тренда и записать их уравнения. Не забывайте включать опции из пункт 4, приведенной выше инструкции.

Инструмент анализа регрессия

Дает возможность провести более полный анализ, полученного уравнения линейного тренда с использованием методов математической статистики.

Коэффициенты уравнения линейной регрессии находятся по выборочным данным и являются величинами случайными, поэтому надо провести анализ их значимости (значимости). Надо определить значимость всего уравнения регрессии и самое главное построить прогноз по построенному уравнению, а затем провести его оценку значимости.

При построении линейного тренда предполагается, что линейная модель наилучшим образом характеризует зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel параметры модели; Решение задач по эконометрике в Excel — случайная величина (возмущение), характеризующая влияние неучтенных факторов.

Уравнение прямой (1.2), коэффициенты которого находят по выборочным данным, называют уравнением регрессии и обозначают Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Коэффициенты регрессии Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel находят по методу наименьших квадратов. Они являются только оценками параметров модели (соответственно Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel). Для получения наилучших оценок необходимо, чтобы выполнялся ряд предпосылок относительно случайного отклонения

Решение задач по эконометрике в Excel

индекс Решение задач по эконометрике в Excel означает значение факторов в одноименном испытании. Это условия Гаусса-Маркова (Приложение 1), а так же предположения:

• случайные отклонения имеют нормальный закон распределения;

• отсутствуют ошибки спецификации;

• число наблюдений достаточно большое: как минимум в шесть раз превышает число объясняющих факторов и другие.

Оценку Решение задач по эконометрике в Excel называют коэффициентом регрессии. Ее значение показывает среднее изменение результата у с изменением фактора х на одну единицу.

Можно установить зависимость между коэффициентом регрессии и коэффициентом корреляции:

Решение задач по эконометрике в Excel

В качестве меры рассеивания фактического значения у относительно теоретического значения Решение задач по эконометрике в Excel (находится по уравнению регрессии) используется стандартная ошибка уравнения регрессии, которая определяется по формуле:

Решение задач по эконометрике в Excel

Оценка качества полученного уравнения регрессии содержит следующие пункты:

  • Оценка значимости коэффициентов регрессии;
  • Построение доверительных интервалов для каждого коэффициента;
  • Оценка значимости всего уравнения регрессии;
  • Построение прогнозного значения и доверительного интервала к ним. Для определения статистической значимости коэффициентов регрессии и корреляции необходимо рассчитать Решение задач по эконометрике в Excel-статистики Стьюдента лучше всего это сделать с помощью встроенной функции СТЬДРАСПОБР [1].

Оценка значимости коэффициентов регрессии и корреляции

Устанавливает надежность полученных результатов. Случайные ошибки коэффициента корреляции и оценок параметров линейной модели вычисляются по формулам:

Решение задач по эконометрике в Excel

стандартное отклонение коэффициента Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

стандартное отклонение коэффициента Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

стандартное отклонение коэффициента корреляции.

Любое стандартное отклонение иногда называют стандартной ошибкой соответствующего коэффициента.

Рассматривается основная гипотеза о равенстве параметров регрессии нулю.

Решение задач по эконометрике в Excel — коэффициент незначим; Решение задач по эконометрике в Excel — коэффициент значимый По выборке находятРешение задач по эконометрике в Excel-статистики Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Критическое значение Решение задач по эконометрике в Excel для Решение задач по эконометрике в Excel-статистик находят с помощью распределения Стьюдента. Для этого надо знать объем выборки и задать уровень значимости Решение задач по эконометрике в Excel. Например, для

Решение задач по эконометрике в Excel

Выдвинутая гипотеза:

Часто при проверке качества коэффициентов используют «грубое правило»:

• если Решение задач по эконометрике в Excel то коэффициент статистически незначим;

• если Решение задач по эконометрике в Excel, то коэффициент относительно слабо значим, рекомендуется воспользоваться таблицей критических точек распределения Стьюдента;

• если Решение задач по эконометрике в Excel, то коэффициент значим (это утверждение считается гарантированным при Решение задач по эконометрике в Excel);

• если Решение задач по эконометрике в Excel, то коэффициент считается сильно значимым (вероятность ошибки при достаточном числе наблюдений не превосходит 0,001).

Каждая оценка дополняется доверительным интервалом. Для этого определяют предельную ошибку [1] для каждого коэффициента:

Решение задач по эконометрике в Excel

откуда границы доверительных интервалов находятся по формуле:

Решение задач по эконометрике в Excel

Коэффициент детерминации для парной регрессии совпадает с квадратом коэффициента корреляции Решение задач по эконометрике в Excel и характеризует долю дисперсии результативного признака Решение задач по эконометрике в Excel, объясняемую регрессией в общей дисперсии результативного при-знака. Соответственно величина Решение задач по эконометрике в Excel характеризует долю дисперсии у, вызванную влиянием неучтенных факторов в общей дисперсии признака Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Разделив обе части уравнения на общую сумму квадратов отклонений, получим:

Решение задач по эконометрике в Excel

Таким образом, коэффициент детерминации Решение задач по эконометрике в Excel является мерой, позволяющей определить, в какой степени найденная прямая регрессии дает лучший результат для объяснения поведения зависимой переменной Решение задач по эконометрике в Excel, чем горизонтальная прямая Решение задач по эконометрике в Excel. Очевидно, что Решение задач по эконометрике в Excel. Откуда следует, что чем ближе он к единице, тем больше уравнение регрессии объясняет поведение фактических значений Решение задач по эконометрике в Excel. Поэтому хотелось бы стремятся построить регрессию с наибольшим значением Решение задач по эконометрике в Excel.

Корень квадратный из коэффициента детерминации называется индексом корреляции и обозначают Решение задач по эконометрике в Excel.

Для проверки общего качества уравнения регрессии выдвигается предположение, что коэффициенты Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel одновременно равны нулю, тогда уравнение считают незначимым, в противном случае значимым. Данная гипотеза проверяется на основе дисперсионного анализа, при этом сравниваются объясненная и остаточная дисперсии:

Решение задач по эконометрике в Excel — уравнение незначимо,

Решение задач по эконометрике в Excel — уравнение значимо. Строится Решение задач по эконометрике в Excel-статистика:

Решение задач по эконометрике в Excel

При выполнении условий МНК статистика имеет распределение Фишера с числом степеней свободы Решение задач по эконометрике в Excel. При уровне значимости Решение задач по эконометрике в Excel находят критичекую точку Решение задач по эконометрике в Excel с помощью функции FHOBP и сравнивают его с наблюдаемым значением Решение задач по эконометрике в Excel. Так как рассматриваемая гипотеза правосторонняя [1], то:

■ если Решение задач по эконометрике в Excel то гипотеза Решение задач по эконометрике в Excel отклоняется в пользу Решение задач по эконометрике в Excel что означает объясненная дисперсия существенно больше остаточной, следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной от объясняющей.

■ если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excel принимается, т.е. объясненная дисперсия соизмерима с остаточной дисперсией, вызванной случайными факторами. Это позволяет считать влияние объясняющих переменных модели несущественным, а следовательно, общее качество уравнения регрессии невысоким.

В случае линейной регрессии проверка нулевой гипотезы для Решение задач по эконометрике в Excel-статистики равносильна проверке нулевой гипотезы для Решение задач по эконометрике в Excel-статистики для коэффициента корреляции:

Решение задач по эконометрике в Excel

Можно доказать равенство:

Решение задач по эконометрике в Excel

Самостоятельную значимость коэффициент Решение задач по эконометрике в Excel приобретает в случае множественной регрессии.

Поиск прогнозного значения и его оценка

Прогнозное значение Решение задач по эконометрике в Excel определяется, если в уравнение регрессии подставить значение Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Границы доверительного интервала для параметра Решение задач по эконометрике в Excel будут равны:

Решение задач по эконометрике в Excel

Чтобы найти стандартную ошибку Решение задач по эконометрике в Excel прогнозного значения Решение задач по эконометрике в Excel можно использовать два подхода: либо рассматривать параметр Решение задач по эконометрике в Excel как отдельное значение переменной Решение задач по эконометрике в Excel; или разброс Решение задач по эконометрике в Excel найти как условное среднее значение при известном значении Решение задач по эконометрике в Excel.

Доверительный интервал для отдельного значения Решение задач по эконометрике в Excel учитывает источники рассеяния: для коэффициентов регрессии (1.5, 1.6) и всего уравнения регрессии (1.4). В этом случае стандартная ошибка прогноза Решение задач по эконометрике в Excel вычисляется по формуле:

Решение задач по эконометрике в Excel

Доверительный интервал для условного среднего не учитывает дисперсию для всего уравнения регрессии (1.4), поэтому формула для вычисления ошибки прогноза имеет вид:

Решение задач по эконометрике в Excel

Пример с решением №7.3.

Воспользуемся данными примера 1.1 для выполнения следующих заданий:

  1. по данным выборок постройте линейную модель Решение задач по эконометрике в Excel;

a. оценить параметры уравнения регрессии Решение задач по эконометрике в Excel;

b. оценить статистическую значимость коэффициентов регрессии;

c. оценить силу линейной зависимости между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel;

d. спрогнозируйте потребление при доходе Решение задач по эконометрике в Excel.

  1. постройте модель, не содержащую свободный член Решение задач по эконометрике в Excel.

a. найдите коэффициент регрессии Решение задач по эконометрике в Excel,

b. оценить статистическую значимость коэффициента Решение задач по эконометрике в Excel;

c. оценить силу общее качество уравнения регрессии;

  1. значимо или нет различаются коэффициенты Решение задач по эконометрике в Excel на?
  2. какую модель вы выбираете?

Инструкции для выполнения примера с помощью инструмента Регрессия пакета анализ.

Для задания 1.

  1. Наберите исходные данные на лист Excel, как и раньше по столбцам (рис 1.1).
  2. Найдите инструмент Регрессия в пакете Анализ данных и нажмите ОК. появится диалоговое окно (рис. 1.8)
  3. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной Решение задач по эконометрике в Excel, включая метки диапазона.
  4. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной Решение задач по эконометрике в Excel, включая метки диапазона.
  5. Включите опцию Метки.
  6. Включите опцию Уровень надежности и введите в поле значение 98.
  7. Установите параметр вывода результатов, имя ячейки.
  8. Включите опцию вывод остатков для получения теоретических значений Решение задач по эконометрике в Excel.
  9. Нажмите ОК.
  10. Появятся итоговые результаты (рис 1.9).
  11. Выделите диапазон Вывод остатков и перенесите его, как показано на рис. 1.9.

Все оценки по умолчанию проводятся в excel с уровнем значимости Решение задач по эконометрике в Excel

Описание результатов поданным примера 1.1

Рисунок 1.9. состоит из четырех блоков: Регрессионная статистика, Дисперсионный анализ, данных для коэффициентов регрессии и их оценок, вывод остатков. Опишем более подробно полученные результаты.

Регрессионная статистика содержит строки, характеризующие построенное уравнение регрессии:

Для парной регрессии Множественный Решение задач по эконометрике в Excel равен коэффициенту корреляции Решение задач по эконометрике в Excel. По его значению 0,9952 можно сказать, что между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel существует сильная линейная зависимость.

Строка Решение задач по эконометрике в Excel-квадрат равна коэффициенту корреляции в квадрате. Нормированный Решение задач по эконометрике в Excel-квадрат рассчитывается с учетом степеней свободы числителя Решение задач по эконометрике в Excel и знаменателя Решение задач по эконометрике в Excel по формуле 1.11. Более подробно свойства этого коэффициента будут рассмотрены в разделе множественная линейная регрессия. Стандартная ошибка Решение задач по эконометрике в Excel регрессии вычисляется по формуле 1.4. Последняя строка содержит количество выборочных данных Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Дисперсионный анализ

Он позволяет исследовать общую дисперсию у (строка ИТОГО), дисперсию для теоретических данных (строка Регрессия) и остаточную дисперсию (строка Остаток).

Второй столбец Решение задач по эконометрике в Excel содержит число степеней свободы для каждой из сумм формулы 1.11*.

В третьем столбе Решение задач по эконометрике в Excel находятся суммы квадратов (1.11*).

Четвертый столбец Решение задач по эконометрике в Excel содержит средние значения Решение задач по эконометрике в Excel для регрессии и остатков.

В пятом столбце вычисляется по выборочным данным значение статистика Решение задач по эконометрике в Excel (1.12). Последний столбец, содержит Решение задач по эконометрике в Excel-значение равное

Решение задач по эконометрике в Excel

с уровнем значимости 0,05. С его помощью можно оценить значимость всего уравнения регрессии. Это значение можно считать вероятностью выполнения гипотезы Решение задач по эконометрике в Excel. В нашем случае она практически равна нулю, следовательно, построенное уравнение дает хорошее приближение к исходным данным.

Построение уравнения регрессии и оценка значимости ее коэффициентов

Этот блок состоит из трех строк:

названия столбцов — первая строка

Решение задач по эконометрике в Excel — пересечение — содержит все характеристики для коэффициента Решение задач по эконометрике в Excel; третья строка Решение задач по эконометрике в Excel содержит все характеристики для коэффициента Решение задач по эконометрике в Excel. В столбце коэффициенты находятся их значения

Решение задач по эконометрике в Excel

используя их можно записать уравнение линейной регрессии:

Решение задач по эконометрике в Excel

Столбец Стандартная ошибка содержит значения

Решение задач по эконометрике в Excel

В столбце Решение задач по эконометрике в Excel-статистики находятся значения, вычисленные по выборочным данным:

Решение задач по эконометрике в Excel

По «грубому правилу» можно сделать вывод, что Решение задач по эконометрике в Excel сильно значимый коэффициент, а Решение задач по эконометрике в Excel незначим.

Подтвердить эти выводы можно с помощью данных столбца Решение задач по эконометрике в Excel-значение. В этом столбе вычисляются вероятности

Решение задач по эконометрике в Excel

которое можно считать вероятностью выполнения гипотезы Решение задач по эконометрике в Excel. Эта вероятность для Решение задач по эконометрике в Excel равна нулю, что подтверждает вывод, сделанный по грубому правилу. Для коэффициента Решение задач по эконометрике в Excel с надежностью 43% случаев можно говорить о его незначимости.

Доверительные интервалы строятся для коэффициентов по умолчанию с доверительной вероятностью 95%. Границы интервалов находятся в столбцах Нижнее 95%, Верхнее 95%:

Решение задач по эконометрике в Excel

Так как нами была включена опция уровень надежности 98%, то получены доверительные интервалы и для этого значения Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Описания, приведенные выше, практически позволили ответить на все вопросы задания 1, кроме построения прогнозного значения и доверительного интервала для него. Выполнить это задание можно с помощью блока вывод остатков и функции ТЕНДЕЦИЯ() или непосредственно по формулам (1.14-1.18).

Прогнозируемое потребление при доходе Решение задач по эконометрике в Excel составит для данной модели:

Решение задач по эконометрике в Excel

Границы доверительного интервала условного среднего значения Решение задач по эконометрике в Excel (1.17):

Решение задач по эконометрике в Excel

Таким образом, среднее потребление при доходе 160 у.е. с надежностью 95% будет находиться в интервале (152,8993; 15464624).

Для определения границ интервала, в котором сосредоточено не менее 95% возможных объемов потребления при неограниченно большом числе наблюдений и уровне дохода Решение задач по эконометрике в Excel=160, воспользуемся формулой (1.16):

Решение задач по эконометрике в Excel

Получим границы интервала для прогнозного значения (151,4791; 155,61409). Нетрудно заметить, что он включает в себя интервал для среднего потребления.

Коэффициент Решение задач по эконометрике в Excel может трактоваться как предельная склонность к потреблению. Фактически он показывает, на какую величину изменится объем потребления, если предполагаемый доход возрастет на единицу.

Свободный член Решение задач по эконометрике в Excel уравнения регрессии определяет прогнозируемое значение Решение задач по эконометрике в Excel при величине располагаемого дохода Решение задач по эконометрике в Excel, равной нулю (т.е. автономное потребление). В нашем примере Решение задач по эконометрике в Excel=2,9992 говорит о том, что при нулевом располагаемом доходе расходы на потребление составят 2,99992 у.е. Это можно объяснить для отдельных хозяйств (каждое может тратить накопленные или одолженные деньги), но для совокупности хозяйств коэффициент теряет смысл.

Следует помнить, что полученное уравнение регрессии отражает лишь общую тенденцию в поведении рассматриваемых переменных. Индивидуальные значения могут отклоняться от модельных.

Решение задач по эконометрике в Excel

Задание2.

Рассмотрим модельное уравнение, не содержащее свободного члена:

Решение задач по эконометрике в Excel

тогда соответствующее ему уравнение регрессии:

Решение задач по эконометрике в Excel

Проведем исследование этого уравнения, так же как и в задании 1. Запустим инструмент Регрессия. Для заполнения полей диалогового окна (рис. 1.8) повторите действия 3 — 6 из задания 1; обязательно включите опцию Константа ноль и измените параметры выходного интервала так, чтобы вывод итогов задания 1 и задания 2 не пересекались.

Вывод итогов в этом случае представлен на рис 1.12. Строка, соответствующая свободному члену уравнения, содержит запись #Н/Д, так как он отсутствует в уравнении.

Проведите описание результатов самостоятельно для полученного уравнения регрессии Решение задач по эконометрике в Excel также как в задании 1.

Обратите внимание, что столбцы Верхнее 95% и Нижнее 95% повторяются, так как опция уровень надежности отключена.

Задание 3.

Проверим значимо или нет, различаются коэффициенты Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. Для этого сформулируем гипотезу о равенстве математических ожиданий:

Решение задач по эконометрике в Excel — коэффициенты совпадают, значимого различия нет; Решение задач по эконометрике в Excel — коэффициенты различаются значимо.

Для проверки гипотезы построим статистику

Решение задач по эконометрике в Excel

Сравним наблюдаемое значение с критическим при уровне значимости Решение задач по эконометрике в Excel и числом степеней свободы Решение задач по эконометрике в Excel.

Найдем критическое значение с помощью встроенной функции Стьюдента Решение задач по эконометрике в Excel. Поскольку Решение задач по эконометрике в Excel, то нет оснований для отклонения нулевой гипотезы. Это дает основания утверждать, что различия в коэффициентах незначимо.

Задание 4.

Необходимо сравнить коэффициенты детерминации двух уравнений, значения которых возьмите из отчетов Вывод Итогов (рис. 1.9, рис. 1.10):

для первого уравнения

Решение задач по эконометрике в Excel

для второго уравнения

Решение задач по эконометрике в Excel

Так как для первого уравнения это значение больше, чем для второго, то можно предположить, что первое уравнение

Решение задач по эконометрике в Excel

описывает поведение зависимой переменной лучше, чем второе

Решение задач по эконометрике в Excel

так как её коэффициент детерминации больше. Сравнение двух уравнений регрессии с помощью Решение задач по эконометрике в Excel-статистики будет рассмотрено в разделе множественная линейная регрессия.

Решение задач по эконометрике в Excel

Множественная линейная регрессия

Как правило, на изучаемый фактор Решение задач по эконометрике в Excel оказывает влияние не один, а несколько факторов Решение задач по эконометрике в Excel. Например, спрос зависит не только от цены товара, но и от доходов потребителей, а также от цены на замещающие его товары и других факторов.

Пусть зависимая переменная Решение задач по эконометрике в Excel в Решение задач по эконометрике в Excel наблюдениях определяется m объясняющими факторами Решение задач по эконометрике в Excel, а функциональная зависимость между ними имеет вид линейной модели:

Решение задач по эконометрике в Excel

или для индивидуальных наблюдений Решение задач по эконометрике в Excel,где Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Уравнение регрессии для индивидуальных наблюдений:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel— вектор неизвестных параметров,

Решение задач по эконометрике в Excel — вектор оценочных параметров,

Решение задач по эконометрике в Excel вектор значений зависимой переменной,

Решение задач по эконометрике в Excel — матрица значений независимых переменных, где Решение задач по эконометрике в Excel — значение переменной

Решение задач по эконометрике в Excel в Решение задач по эконометрике в Excel-том наблюдении, Решение задач по эконометрике в Excel — случайные возмущения,

Решение задач по эконометрике в Excel случайный вектор отклонений теоретических значений Решение задач по эконометрике в Excel от фактических Решение задач по эконометрике в Excel.

Тогда уравнение (1.18) можно записать в матричном виде:

Решение задач по эконометрике в Excel

а так же уравнение (1.20):

Решение задач по эконометрике в Excel

Чтобы найти коэффициенты линейной регрессии (1.20), надо решить уравнение (1.22) относительно матрицы В. Для этого умножают обе части матричного уравнения (1.22) на транспонированную матрицу Решение задач по эконометрике в Excel и из полученного уравнения:

Решение задач по эконометрике в Excel

Полученное решение справедливо для уравнений регрессии с произвольным количеством объясняющих факторов Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excel обратная матрица к матрице Решение задач по эконометрике в Excel.

Решение (1.23) уравнения регрессии (1.22) можно найти:

  1. с использованием методов матричной алгебры;
  2. с помощью встроенных функций Excel для работы с массивами: МОБР(), ТРАНСП(), МУМНОЖ();
  3. применить инструмент анализа Регрессия.

Первый способ изучается в курсе Математика и для его реализации необходимо записать все матрицы, характеризующие уравнение 1.23.

Для реализации второго способа коэффициенты этих матриц надо занести на лист Excel, а затем применить правила работы с массивами данных. Необходимо помнить, что матрицы для этих методов имеют вид:

Решение задач по эконометрике в Excel

Матрица Решение задач по эконометрике в Excel в первом столбце содержит единицы, которые являются коэффициентом при неизвестном Решение задач по эконометрике в Excel линейной регрессии 1.20.

Наиболее простым является последний способ поиска коэффициентов регрессии 1.20. Рассмотрим его применение на примере.

Пример с решением №7.4.

Анализируется объем сбережений Решение задач по эконометрике в Excel населения за 10 лет. Предполагается, что его размер Решение задач по эконометрике в Excel в текущем году зависит от величины Решение задач по эконометрике в Excel располагаемого дохода Решение задач по эконометрике в Excel в предыдущем году и от величины Решение задач по эконометрике в Excel реальной процентной ставки Решение задач по эконометрике в Excel в рассматриваемом году. Статистические данные приведены в таблице:

Решение задач по эконометрике в Excel

Задание:

1) найдите коэффициенты линейной регрессии Решение задач по эконометрике в Excel

2) оцените статистическую значимость найденных коэффициентов регрессии Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

3) оцените силу влияния факторов на объем сбережений населения;

4) постройте 95% -е доверительные интервалы для найденных коэффициентов;

5) вычислите коэффициент детерминации Решение задач по эконометрике в Excel и оценить его статистическую значимость при Решение задач по эконометрике в Excel;

6) рассчитайте коэффициенты частной корреляции;

7) определите, какой процент разброса зависимой переменной объясняется данной регрессией;

8) найдите скорректированным коэффициент детерминации Решение задач по эконометрике в Excel и сравните его с коэффициент детерминации Решение задач по эконометрике в Excel.

9) оцените предельную склонность граждан к сбережению. Существенно ли отличается она от 0,5?

10) определите, увеличивается или уменьшается объем сбережений с ростом процентной ставки; будет ли ответ статистически обоснованным;

11) спрогнозируйте средний объем сбережений в 2011 году, если предполагаемый доход составит 270 тыс. руб., а процентная ставка будет равна 5,5%.

12) выводы по качеству построенной модели;

Все расчеты выполним с помощью ППП Excel.

Инструкции для выполнения

  1. Наберите исходные данные на лист Excel, как и раньше по столбцам (рис 1.13).
  2. Найдите инструмент Регрессия в пакете Анализ данных и нажмите Решение задач по эконометрике в Excel, появится диалоговое окно (рис. 1.8)
  3. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной в столбце Решение задач по эконометрике в Excel, включая метки диапазона.
  4. Входной интервал Решение задач по эконометрике в Excel: введите ссылки на значения переменной в столбцах Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel, включая метки диапазона.
  5. Включите опцию Метки.
  6. Включите опцию Уровень надежности и введите в поле значение 99.
  7. Установите параметр вывода результатов, имя ячейки.
  8. Включите опцию вывод остатков для получения теоретических значений Решение задач по эконометрике в Excel.
  9. Нажмите Решение задач по эконометрике в Excel.
  10. Появятся итоговые результаты (рис 1.14).
Решение задач по эконометрике в Excel

Описание результатов уравнение линейной регрессии

Используя столбец Коэффициенты, запишем уравнение регрессии:

Решение задач по эконометрике в Excel

При изменении доходов в предшествующем году на одну тысячу рублей сбережения увеличатся на 120 рублей, если экономическая ситуация будет стабильной. При увеличении процентной ставки на 1% сбережения могут увеличиться на 350 рублей.

Решение задач по эконометрике в Excel

Значимость коэффициентов регрессии

Значение Решение задач по эконометрике в Excel— статистик находятся в столбце с одноименным названием:

Решение задач по эконометрике в Excel

Используя «грубое правило», можно сделать вывод, что коэффициенты Решение задач по эконометрике в Excel значимы, так как они превышают значение три. Коэффициент Решение задач по эконометрике в Excel относительно слабо значим. Убедится в этих выводах можно используя СТЬЮДРАСПОБР(), с помощью которой найдите критические точки и постройте двухстороннюю критическую область. Для различных уровней значимости:

Решение задач по эконометрике в Excel

Этот же вывод получите, если исследуете показания столбца Решение задач по эконометрике в Excel-значение. Коэффициент Решение задач по эконометрике в Excel существенного влияния на переменную Решение задач по эконометрике в Excel не оказывает, т.е. может быть исключен из модели. Однако, учитывая, что в экономике, свободный член отражает экзогенную среду, лучше его оставить в уравнении регрессии, так как наличие свободного члена в линейном уравнении может только уточнить вид зависимости.

Значение Решение задач по эконометрике в Excel-статистики для коэффициента Решение задач по эконометрике в Excel-пересечение обычно не используется.

Сравнение коэффициентов регрессии

Простое сопоставление коэффициентов регрессии по модулю не может оценить силу влияния факторов на признак у: такое сопоставление лишено смысла. Однако их можно нормировать (стандартизировать), используя формулу:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — коэффициент регрессии после нормирования, Решение задач по эконометрике в Excel— стандартная ошибка переменной Решение задач по эконометрике в Excel; Решение задач по эконометрике в Excel — стандартная ошибка переменной Решение задач по эконометрике в Excel.

Нормированные коэффициенты можно сравнивать и делать вывод о влиянии факторов на переменную Решение задач по эконометрике в Excel. Факторы с наименьшим по модулю значением Решение задач по эконометрике в Excel оказывают на Решение задач по эконометрике в Excel наименьшее влияние.

Уравнение регрессии в стандартизованном масштабе имеет вид:

Решение задач по эконометрике в Excel

это означает, что влияние процентной ставки Решение задач по эконометрике в Excel на объем вкладов Решение задач по эконометрике в Excel меньше, чем влияние уровня доходов за предшествующий период Решение задач по эконометрике в Excel.

Доверительные интервалы для коэффициентов

Находятся в столбцах нижнее/верхнее 95%:

Решение задач по эконометрике в Excel

Можно построить доверительные интервалы с уровнем надежности 97% (Рис. 1.14).

Коэффициент детерминации

Коэффициент детерминации находится по формуле (1.11):

Решение задач по эконометрике в Excel

Он характеризует долю разброса значений зависимой переменной Решение задач по эконометрике в Excel, объясненной уравнением регрессии. В нашем примере, 98% разброса переменной Решение задач по эконометрике в Excel объясняется построенным уравнением регрессии.

Скорректированный коэффициент детерминации

В случае множественной регрессии коэффициент детерминации является неубывающей функцией числа объясняющих переменных, т.е. добавление новой переменной увеличивает значение Решение задач по эконометрике в Excel. Поэтому при расчете коэффициента детерминации для получения несмещенных оценок в числителе и знаменателе формулы 1.11 делается поправка на число степеней свободы. Найденное значение называется скорректированным коэффициентом детерминации:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel — является несмещенной оценкой остаточной дисперсии, т.е. дисперсией случайных отклонений точек наблюдений от линии регрессии. Ее число степеней свободы равно Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excel степень свободы связана с необходимостью решения системы Решение задач по эконометрике в Excel линейного уравнения;

Решение задач по эконометрике в Excel — является несмещенной оценкой общей дисперсии, т.е. дисперсией отклонения Решение задач по эконометрике в Excel от Решение задач по эконометрике в Excel, где одна степень теряется при вычислении Решение задач по эконометрике в Excel.

Заметим, что несмещенная оценка объясненной дисперсии Решение задач по эконометрике в Excel, т.е. дисперсии отклонения точек Решение задач по эконометрике в Excel от Решение задач по эконометрике в Excel, имеет Решение задач по эконометрике в Excel степеней свободы.

Все суммы можно найти в столбце Решение задач по эконометрике в Excel дисперсионного анализа, их средние значения в столбце Решение задач по эконометрике в Excel, а число степеней свободы в столбце Решение задач по эконометрике в Excel этого же блока.

Для нашего примера Решение задач по эконометрике в Excel находится в блоке регрессионная статистика в строке нормированный.

Можно получить формулу, устанавливающую связь между скорректированным коэффициентом детерминации и коэффициентом детерминации:

Решение задач по эконометрике в Excel

Очевидно, что:

Решение задач по эконометрике в Excel для Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel только при Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel может принимать отрицательные значения (например, если Решение задач по эконометрике в Excel)

Коэффициент корректируется с ростом числа объясняющих переменных. Доказано, что скорректированный коэффициент корреляции увеличивается при добавлении новой переменной тогда и только тогда, когда Решение задач по эконометрике в Excel— статистика этой переменной по модулю больше единицы. Поэтому добавление в модель новых переменных осуществляется до тех пор, пока он растет.

В пакете Анализ данных приводятся значения Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. Значимость коэффициента детерминации и скорректированного коэффициента при исследовании уравнения регрессии большая, однако, не абсолютная. При неправильной спецификации модели можно получить очень высокие значения этих коэффициентов, поэтому Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel рассматриваются как один из ряда показателей, которые нужно проанализировать, чтобы уточнить строящуюся модель.

Индекс множественной корреляции

Теснота линейной взаимосвязи в линейной регрессии выполняется с помощью индекса корреляции:

Решение задач по эконометрике в Excel

Если Решение задач по эконометрике в Excel — неслучайная величина, то Решение задач по эконометрике в Excel характеризует качество подбора уравнения регрессии. Если же Решение задач по эконометрике в Excel — случайная переменная, то индекс корреляции является мерой тесноты линейной взаимосвязи между Решение задач по эконометрике в Excel и набором факторов Решение задач по эконометрике в Excel.

Для нашего примера Решение задач по эконометрике в Excel находим в строке Множественный рис 1.18.

Коэффициенты частной корреляции

Используются для выделения определяющего фактора и второстепенных. Необходимо определить частные зависимости между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel, при условии, что воздействие остальных факторов исключено (элиминировано). В случае трех переменных Решение задач по эконометрике в Excel можно получить коэффициенты парной корреляции Решение задач по эконометрике в Excel по формулам:

Решение задач по эконометрике в Excel

Воспользуйтесь инструкциями примера 1.2. и найдите коэффициенты парной корреляции для вычисления коэффициентов частной корреляции.

Решение задач по эконометрике в Excel

Анализируя, полученные данные можно сказать, что факторы Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel дублируют друг друга Решение задач по эконометрике в Excel. Сравнивая их влияние на фактор Решение задач по эконометрике в Excel можно сделать вывод об исключении переменной Решение задач по эконометрике в Excel из уравнения регрессии, так как Решение задач по эконометрике в Excel. Постройте уравнение регрессии, не содержащее фактор Решение задач по эконометрике в Excel. Сравните коэффициенты детерминации двух уравнений и сделайте вывод: следует исключать фактор Решение задач по эконометрике в Excel или оставить его при построении уравнения регрессии.

Доверительный интервал прогноза

Если уравнение регрессии имеет вид:

Решение задач по эконометрике в Excel

то прогнозное значение вычисляется так же как в случае парной регрессии. Необходимо подставить заданные значения прогноза

Решение задач по эконометрике в Excel

в уравнение регрессии.

Найдем средний объем сбережений в 2011 году, если предполагаемый доход в 2010 году составит 270 тыс. рублей, а процентная ставка вырастет до 5,5%. Подставив эти значения в уравнение регрессии, получим средний объем сбережений в 2011 году: Решение задач по эконометрике в Excel

Точечная оценка объема сбережений в 2011 году может быть дополнена интервальной оценкой, полученной по формуле 1.15:

Решение задач по эконометрике в Excel

где

Решение задач по эконометрике в Excel

Используя встроенные функции Excel, найдем матричное произведение:

Решение задач по эконометрике в Excel

Подставив все значения в 1.28, найдем интервальные оценки среднего сбережения населения в 2011 году:

Решение задач по эконометрике в Excel

Склонность населения к сбережению в данной модели отражается через коэффициент Решение задач по эконометрике в Excel, определяющий на какую величину вырастет объем сбережений Решение задач по эконометрике в Excel при росте располагаемого дохода на одну единицу.

Для анализа, существенно или нет коэффициент Решение задач по эконометрике в Excel отличается от 0,5, проверим гипотезу:

Решение задач по эконометрике в Excel

Построим Решение задач по эконометрике в Excel статистику, которая имеет распределение Стьюдента. Зададим уровень значимости Решение задач по эконометрике в Excel, число степеней свободы Решение задач по эконометрике в Excel тогда:

Решение задач по эконометрике в Excel

Так как

Решение задач по эконометрике в Excel

то Решение задач по эконометрике в Excel должна быть отклонена. Действительно 50% склонность населения к сбережениям явно завышена по сравнению с модельным значением в 12,4%.

Рост процентной ставки увеличивает объем сбережений

Эта зависимость характеризуется коэффициентом Решение задач по эконометрике в Excel. Так как коэффициент статистически значим, то ответ будет статистически обоснованным.

Анализ качества уравнения регрессии

Первое построенное по выборке уравнение редко является удовлетворительным по тем или иным характеристикам. Поэтому следующей задачей эконометрического анализа является проверка качества уравнения регрессии. Эта проверка проводится по следующим этапам:

■ проверка статистической значимости коэффициентов регрессии;

■ проверка общего качества уравнения регрессии;

■ проверка свойств данных: проверка выполнимости МНК.

По всем показателям нашего примера 1.3 модель может быть признана удовлетворительной:

■ высокие Решение задач по эконометрике в Excel-статистики;

■ коэффициент детерминации близок к единице;

Это означает, что модель может быть использована для целей анализа и прогнозирования. Мы не проверили выполнимость МНК и значимость коэффициента детерминации.

Анализ значимости Решение задач по эконометрике в Excel

Проверяется гипотеза об одновременном равенстве нулю всех объясняющих переменных — уравнение считается незначимым:

Решение задач по эконометрике в Excel

Если данная гипотеза не отклоняется, то делается вывод, что совокупное влияние всех m объясняющих переменных на зависимую переменную Решение задач по эконометрике в Excel можно считать статистически незначимым, а общее качество уравнения регрессии невысоким.

Проверка данной гипотезы проводится на основе дисперсионного анализа, при этом сравниваются объясненная и остаточная дисперсии.

Решение задач по эконометрике в Excel

Для проверки гипотезы строится Решение задач по эконометрике в Excel-статистика:

Решение задач по эконометрике в Excel

которая при выполнении МНК имеет распределение Фишера с числом степеней свободы

Решение задач по эконометрике в Excel

Критическое значение находится с помощью:

Решение задач по эконометрике в Excel

при уровне значимости Решение задач по эконометрике в Excel.

■ Если Решение задач по эконометрике в Excel то гипотеза Решение задач по эконометрике в Excel отклоняется в пользу Решение задач по эконометрике в Excel что означает объясненная дисперсия существенно больше остаточной, следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной от объясняющей.

■ Если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excel принимается, т.е. объясненная дисперсия соизмерима с остаточной дисперсией, вызванной случайными факторами. Это позволяет считать влияние объясняющих переменных модели несущественным, а следовательно, общее качество уравнения регрессии невысоким.

На практике вместо указанной гипотезы проверяется, связанная с ней гипотеза о статистической значимости коэффициента детерминации Решение задач по эконометрике в Excel.

Решение задач по эконометрике в Excel

Очевидно, что если Решение задач по эконометрике в Excel, а линия регрессии Решение задач по эконометрике в Excel является наилучшей по МНК, т.е. величина Решение задач по эконометрике в Excel линейно не зависит от Решение задач по эконометрике в Excel. Анализ статистики Решение задач по эконометрике в Excel позволяет сделать вывод о том, что для принятия гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии коэффициент детерминации Решение задач по эконометрике в Excel не должен существенно отличаться от нуля. Его критическое значение уменьшается при росте числа наблюдений и может стать сколь угодно малым.

Для проверки этой гипотезы числитель и знаменатель формулы 1.29 поделим на общую сумму квадратов отклонений Решение задач по эконометрике в Excel и получим:

Решение задач по эконометрике в Excel

Вернемся к результатам нашего примера 1.3. (рис. 1.14).Найдем по таблице распределения Фишера критическую точку для уровня значимости Решение задач по эконометрике в Excel. Сравнивая критическое и наблюдаемое значения Решение задач по эконометрике в Excel, можно сделать вывод, что коэффициент детерминации статистически значим. Это означает, что совокупное влияние переменных Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel на переменную Решение задач по эконометрике в Excel существенно. Этот же вывод можно сделать по столбцу значимость Решение задач по эконометрике в Excel, который характеризует вероятность выполнения гипотезы Решение задач по эконометрике в Excel.

Проверка качества двух коэффициентов детерминации

Статистику Решение задач по эконометрике в Excel можно использовать и для обоснования случая исключения или добавления в уравнение регрессии Решение задач по эконометрике в Excel объясняющих переменных. Добавлять (исключать) переменные надо по одному.

Использовать лучше Решение задач по эконометрике в Excel так как Решение задач по эконометрике в Excel всегда растет при добавлении новой объясняющей переменной. Зависимая переменная должна быть представлена в том же виде, что и уже существующие в исследуемом уравнении регрессии. Число наблюдений для обеих моделей должно быть одинаковым.

Пусть первоначально построенное по п наблюдениям уравнение регрессии имело вид:

Решение задач по эконометрике в Excel

и скорректированный коэффициент детерминации равен Решение задач по эконометрике в Excel.

Исключим из уравнения Решение задач по эконометрике в Excel переменных, оказывающих наименьшее влияние на Решение задач по эконометрике в Excel По Решение задач по эконометрике в Excel наблюдениям построим новое уравнение регрессии:

Решение задач по эконометрике в Excel

скорректированный коэффициент детерминации, для которого равен Решение задач по эконометрике в Excel.

Необходимо определить существенно ли ухудшилось качество описания зависимой переменной Решение задач по эконометрике в Excel. Для этого выдвинем гипотезы:

Решение задач по эконометрике в Excel — ничего не изменилось

Решение задач по эконометрике в Excel — уравнение ухудшилось, если разность больше нуля. По выборочным данным найдите статистику:

Решение задач по эконометрике в Excel

которая имеет распределения Фишера с числом степеней свободы

Решение задач по эконометрике в Excel

где

Решение задач по эконометрике в Excel — потеря качества уравнения в результате того, что Решение задач по эконометрике в Excel переменных было отброшено. В результате появляется Решение задач по эконометрике в Excel дополнительных степеней свободы; Решение задач по эконометрике в Excel — остаточная дисперсия первоначального уравнения.

Сравним критическое значение Решение задач по эконометрике в Excel и с наблюдаемым при уровне значимости Решение задач по эконометрике в Excel:

■ Если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excel отклоняется в пользу Решение задач по эконометрике в Excel, что означает, одновременное исключение Решение задач по эконометрике в Excel объясняющих переменных существенно повлияет на качество первоначального уравнения.

■ Если Решение задач по эконометрике в Excel, то гипотеза Решение задач по эконометрике в Excel принимается, т.е. разность Решение задач по эконометрике в Excel; незначительная. Это позволяет считать, что исключение Решение задач по эконометрике в Excel объясняющих переменных модели допустимым, так как общее качество уравнения регрессии изменится несущественно.

Аналогично проверяется гипотеза о добавлении к объясняющих переменных в уравнение регрессии. В этом случае составляется статистика:

Решение задач по эконометрике в Excel

Исключим фактор Решение задач по эконометрике в Excel из уравнения регрессии примера 1.3. построим зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. с помощью инструмента Регрессия получим уравнение:

Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel

Коэффициенты и все остальные характеристики для этого уравнения регрессии можно посмотреть на рис 1.16. Сравним новое уравнений с уравнением полученным ранее.

Решение задач по эконометрике в Excel

В ячейке N18 находится значение Решение задач по эконометрике в Excel-статистики вычисленное по формуле 1.31. Критическое значение (ячейка N19) находится с помощью встроенной функции Excel при уровне значимости 0,05:

Решение задач по эконометрике в Excel

Сравнивая эти два значения делаем вывод, что гипотеза Решение задач по эконометрике в Excel отклоняется в пользу гипотезы Решение задач по эконометрике в Excel то есть новое уравнение ухудшило качество приближения к выборочным данным.

Проверка качества двух коэффициентов детерминации

Необходимо сравнить два уравнения регрессии для отдельных групп наблюдений, т.е. будет одним и тем же уравнение регрессии для этих выборок. Для проверки этой гипотезы используется тест Чоу.

Пусть имеются две выборки объемом Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel. Для каждой из этих выборок получено уравнение регрессии:

Решение задач по эконометрике в Excel

Суммы квадратов отклонений Решение задач по эконометрике в Excel от линий регрессии обозначим Решение задач по эконометрике в Excel для первого и Решение задач по эконометрике в Excel для второго уравнения регрессии.

Выдвинем гипотезу о равенстве соответствующих коэффициентов регрессии

Решение задач по эконометрике в Excel

Объединим обе выборки в одну. Для выборки объема Решение задач по эконометрике в Excel найдем еще одно уравнение регрессии, сумму квадратов отклонений которой обозначим Решение задач по эконометрике в Excel. Тогда для проверки гипотезы Решение задач по эконометрике в Excel строится статистика:

Решение задач по эконометрике в Excel

которая имеет распределение Фишера с числом степеней свободы Решение задач по эконометрике в ExcelРешение задач по эконометрике в Excel

Если Решение задач по эконометрике в Excel, то значение Решение задач по эконометрике в Excel-статистики приближается к нулю, а это значит, что уравнения регрессии обеих выборок практически одинаковые. А дальше сравним наблюдаемое и критическое значения Решение задач по эконометрике в Excel и делаете вывод принимается или отклоняется гипотеза Решение задач по эконометрике в Excel.

Данные исследования отвечают на вопрос, можно ли за рассматриваемый период времени построить единое уравнение регрессии или же нужно разбить его на части и для каждого временного интервала построить свое уравнение регрессии.

Проверка выполнимости мнк. Автокорреляция остатков. Статистика дарбина-уотсона

Все предыдущие рассуждения основаны на том, что выполняются предпосылки МНК: мы предполагали, что случайные отклонения являются независимыми случайными величинами со средней, равной нулю. При работе с фактическими данными, такое допущение не всегда выполняется. Например, если вид функции выбран неудачно, то отклонения от регрессии вряд ли будут независимыми. В этом случае замечается концентрация положительных или отрицательных отклонений от регрессии и можно сомневаться в их случайном характере.

Если последовательные значения Решение задач по эконометрике в Excel коррелируют (зависят) между собой, то говорят, что имеет место автокорреляция остатков.

МНК в случае автокорреляции дает несмещенные и состоятельные оценки, однако полученные в этом случае доверительные интервалы имеют мало смысла в силу своей ненадежности. Значительная автокорреляция говорит о том, что спецификация модели неправильная. Проверка остатков на автокорреляцию должна выполняться обязательно. Наиболее простым приемом обнаружения автокорреляции является метод Дарбина-Уотсона (Решение задач по эконометрике в Excel). Идея, которого состоит в том, что проверяются на коррелированность не любые, а только соседние величины Решение задач по эконометрике в Excel. Соседними обычно считаются соседние по возрастанию объясняющей переменной Решение задач по эконометрике в Excel ( в случае перекрестной выборки) или по времени (в случае временных рядов) значения Решение задач по эконометрике в Excel.

Статистика Решение задач по эконометрике в Excel рассчитывается по формуле:

Решение задач по эконометрике в Excel

При условии что Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel большое число можно предположить

Решение задач по эконометрике в Excel

тогда после преобразования получим:

Решение задач по эконометрике в Excel

Очевидно, что Решение задач по эконометрике в Excel так как коэффициент корреляции

Решение задач по эконометрике в Excel, если Решение задач по эконометрике в Excel — автокорреляция отсутствует;

Решение задач по эконометрике в Excel -полная положительная автокорреляция;

Решение задач по эконометрике в Excel -полная отрицательная автокорреляция.

Решение задач по эконометрике в Excel

Возникает вопрос, какие значения Решение задач по эконометрике в Excel можно считать близкими к 2? Для обнаружения границ наблюдений статистики Решение задач по эконометрике в Excel существуют специальные таблицы. Для заданных Решение задач по эконометрике в Excel— уровня значимости; Решение задач по эконометрике в Excel— числа наблюдений и Решение задач по эконометрике в Excel -числа объясняющих переменных указывается два числа: Решение задач по эконометрике в Excel— нижняя граница и Решение задач по эконометрике в Excel— верхняя граница. Не обращаясь к таблице критических точек DW можно воспользоваться правилом, если l,5<Решение задач по эконометрике в Excel<2,5, автокорреляция отсутствует. Изобразим на рисунке числовой отрезок , используемый для проверки гипотезы об отсутствии автокорреляции.

Статистику Решение задач по эконометрике в Excel для примера 1.3 находим по формуле (1.35):

Решение задач по эконометрике в Excel

Для вычисления этой статистики запустите инструмент Регрессия, включив опции Остатки и График остатков, как показано на рис. 1.18. В результате получите значение случайных отклонений е, и их графики, которые Excel строит для каждой независимой переменной, как показано на рис. 1.20 и 1.21. Чтобы найти Решение задач по эконометрике в Excel, можно использовать функции СУММКВРАЗН и СУММКВ.

Если зависимость между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel линейная, то график остатков должен иметь случайный вид. На рис. 1.21 видим систематический рисунок, поэтому скорее всего между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel существует нелинейная зависимость, а значит надо изменить модель, включая в нее нелинейную зависимость.

Решение задач по эконометрике в Excel

Для проверки статистической значимости Решение задач по эконометрике в Excel надо воспользоваться таблицей критических точек Дарбина-Уотсона, например, при уровне значимости Решение задач по эконометрике в Excel и числе наблюдений

Решение задач по эконометрике в Excel

Можно считать, что автокорреляция отсутствует, так как найденная статистика попадает в критический интервал: 1,604<Решение задач по эконометрике в Excel<2,396, что является подтверждением высокого качества модели.

Решение задач по эконометрике в Excel

Мультиколлинеарность

Увеличение числа переменных в уравнении множественной регрессии повышает точность описания взаимосвязи, однако при этом должно выполняться условие, что Решение задач по эконометрике в Excel — объясняющие переменные, линейно независимые величины.

Под мулыиколлинеарностью понимают взаимосвязь объясняющих переменных регрессии. Если между переменными Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel существует функциональная зависимость Решение задач по эконометрике в Excel, то говорят о строгой мультиколлинеарности. Чаще всего между переменными существует довольно сильная корреляционная зависимость — в этом случае мультиколлинеарность называют нестрогой.

При строгой мультиколлинеарности решение матричного уравнения 1.22 становится невозможным, так как матрица Решение задач по эконометрике в Excel вырожденная — её определитель равен нулю.

Если же мультиколлинеарность нестрогая, то решение матричного уравнения формально можно найти, однако все оценки мало надежны.

Чтобы обнаружить мультиколлинеарность надо найти определитель матрицы Решение задач по эконометрике в Excel. Вместо этого проверяется определитель матрицы межфакторной корреляции, которую получают с помощью инструмента КОРРЕЛ.

Устранение мультиколлинеарности заключается в исключении одной из двух, находящихся во взаимосвязи переменных, либо путем пересмотра структуры уравнения регрессии. Для оценки влияния факторов на результирующий фактор Решение задач по эконометрике в Excel в случае используются показатели частной корреляции (1.26). Если число переменных больше трех, то для их определения удобно пользоваться формулой:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel коэффициенты матрицы обратной к матрице парных коэффициентов корреляции.

Гомоскедастичность (постоянство дисперсии случайных отклонений)

Для применения МНК требуется, чтобы дисперсия остатков была величиной постоянной. Невыполнимость этого условия называется гетероскедастичностью и влечёт смещенность дисперсий оценок, так как стандартная ошибка регрессии (1.4) становится смещенной.

Обнаружение гетероскедастичности является сложной задачей потому что необходимо знать распределение Решение задач по эконометрике в Excel, соответствующее выбранному значению переменной Решение задач по эконометрике в Excel. В тесте Голфелда-Квандта предполагается, что стандартное отклонение пропорционально значению Решение задач по эконометрике в Excel переменной Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel нормально распределены, автокорреляция остатков отсутствует. Проверка на гомоскедастичность по этому тесту содержит следующие шаги:

  1. Все Решение задач по эконометрике в Excel наблюдений упорядочивают по величине.
  2. Упорядоченная выборка разбивается на три подвыборки размерностью Решение задач по эконометрике в Excel, Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel соответственно.
  3. Центральные наблюдения исключаются из дальнейшего рассмотрения.
  4. Строят регрессии для первой и последней групп и находят остаточные суммы квадратов Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel соответственно. Если условие гомоскедастичности выполняется, то Решение задач по эконометрике в Excel , в противном случае Решение задач по эконометрике в Excel.
  5. Построенная Решение задач по эконометрике в Excel-статистика, имеет распределение Фишера с Решение задач по эконометрике в Excel степенями свободы, где Решение задач по эконометрике в Excel число объясняющих переменных в уравнении регрессии.
  6. Чем больше Решение задач по эконометрике в Excel превышает значение Решение задач по эконометрике в Excel, тем более нарушена предпосылка о равенстве остаточных дисперсий.
  7. НЕЛИНЕЙНАЯ РЕГРЕССИЯ

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих функций:

Решение задач по эконометрике в Excel

a) квадратичная функция (полином любой степени);

b) равносторонняя гипербола;

c) степенная;

d) показательная и др.

Кроме указанных функций для описания связи двух переменных можно использовать и другие типы кривых:

Решение задач по эконометрике в Excel

Различают два класса нелинейных уравнений:

1) регрессии, нелинейные относительно включенных объясняющих переменных,

но линейные по оцениваемым параметрам;

2) регрессии, нелинейные по оцениваемым параметрам.

К первому классу — нелинейные по переменным — относятся кривые а и b (рис 2.1). Нелинейными по параметрам (второй класс) являются зависимости c и d на рис. 2.1.

Линейные по параметру

Такие модели легко приводятся к линейному виду — линеаризуются. Для линейных но параметру моделей вводят новую переменную (таблица 2.1) и переходят к построению линейной регрессии по преобразованным данным. Применяя инструмент Регрессия, к преобразованным данным можно найти все оценки параметров преобразованных моделей и оценить их качество.

Качество исходной модели можно оценить, используя индекс корреляции (1.26). Оценка статистической значимости индекса корреляции проводится с помощью Решение задач по эконометрике в Excel— статистики, так же как и коэффициента детерминации (1.29). Довольно часто в экономических исследованиях для оценки качества построенного уравнения используют среднюю ошибку аппроксимации, которая вычисляется по формуле:

Решение задач по эконометрике в Excel

и оценивает по модулю величину отклонений расчетных значений от фактических. Допустимый предел значений средней ошибки аппроксимации не более 8-10%.

Приведем примеры использования нелинейных моделей, перечисленных в таблице 2.1.

Полиномиальная модель (1) может отражать зависимость между объемом выпуска Решение задач по эконометрике в Excel и издержками производства Решение задач по эконометрике в Excel; или расходами на рекламу Решение задач по эконометрике в Excel и прибылью Решение задач по эконометрике в Excel и т.д. В экономике наиболее часто используют многочлен второй степени реже третьей степени. Ограничения в применении многочленов более высоких степеней связано с требованием однородности исследуемой совокупности: чем выше степень многочлена, тем больше изгибов имеет кривая и соответственно меньше однородность по результативному признаку. Надо помнить, что графики многочленов имеют промежутки монотонности и точки экстремумов, поэтому параметры применения этих моделей не всегда могут быть логически истолкованы. Поэтому, если такая зависимость четко не определена графически (параболическая), то её лучше заменить другой нелинейной функцией.

Гиперболическая модель (2) — классическим примером этой модели является кривая Филлипса Решение задач по эконометрике в Excel, характеризующая соотношение между уровнем безработицы Решение задач по эконометрике в Excel и процентом прироста заработной платы Решение задач по эконометрике в Excel. При Решение задач по эконометрике в Excel кривая характеризуется нижней асимптотой Решение задач по эконометрике в Excel. Соответственно можно определить уровень безработицы, при котором заработная плата стабильна и темп её прироста равен нулю. При Решение задач по эконометрике в Excel гиперболическая функция будет медленно расти для Решение задач по эконометрике в Excel и имеет горизонтальную асимптоту Решение задач по эконометрике в Excel. Такие кривые называют кривыми Энгеля, который сформулировал закономерность: с ростом доходов Решение задач по эконометрике в Excel доля доходов, расходуемых на продовольствие Решение задач по эконометрике в Excel уменьшается.

Решение задач по эконометрике в Excel

Полулогарифмические модели (3) используются, когда необходимо определить темп роста или прироста экономических показателей. Например, при анализе банковского вклада по процентной ставке, при исследовании зависимости прироста объема выпуска продукции от процентного увеличения затрат на расходы, бюджетного дефицита от темпа роста ВВП, темп роста инфляции от объема денежной массы и т.д.

Нелинейные по параметру

Уравнения нелинейные по параметру можно разделить на:

  1. внутренне линейные — можно привести к линейному виду путем преобразований;
  2. внутренне нелинейные, которые не могут быть сведены к линейной модели.

Степенная модель:

Решение задач по эконометрике в Excel

Если прологарифмировать обе части уравнения 2.2, получится модель, легко приводящаяся к линейному виду:

Решение задач по эконометрике в Excel

Надо сделать замену:

Решение задач по эконометрике в Excel

получим линейную модель (1.1).

Коэффициент модели Решение задач по эконометрике в Excel определяет эластичность переменной Решение задач по эконометрике в Excel по переменной Решение задач по эконометрике в Excel, то есть процентное изменение Решение задач по эконометрике в Excel при изменении Решение задач по эконометрике в Excel на 1%. Степенная модель имеет постоянную эластичность, это легко увидеть, если продифференцировать обе части уравнения (2.3):

Решение задач по эконометрике в Excel

Так как Решение задач по эконометрике в Excel константа, то модель 2.3 называют моделью постоянной эластичности.

В случае парной регрессии использование обоснование использования степенной модели достаточно просто. Надо построить корреляционное поле для точек Решение задач по эконометрике в Excel, если их расположение соответствует прямой линии, то произведенная замена хорошая и можно использовать степенную модель.

Данная модель легко обобщается на большее число переменных. Наиболее известная — производственная функция Кобба-Дугласа: Решение задач по эконометрике в Excel, где Решение задач по эконометрике в Excel — объем выпуска; Решение задач по эконометрике в Excel — затраты капитала; Решение задач по эконометрике в Excel — затраты труда.

Лог-линейные модели широко используются в банковском и финансовом анализе:

Решение задач по эконометрике в Excel

где Решение задач по эконометрике в Excel — первоначальный банковский вклад, Решение задач по эконометрике в Excel — процентная ставка, Решение задач по эконометрике в Excel — размер вклада на момент Решение задач по эконометрике в Excel.

Прологарифмируем обе части этой модели

Решение задач по эконометрике в Excel

Введя замену

Решение задач по эконометрике в Excel

получим полулогарифмическую модель:

Решение задач по эконометрике в Excel

Коэффициент Решение задач по эконометрике в Excel в уравнении 2.6 имеет смысл темпа прироста переменной Решение задач по эконометрике в Excel по переменной Решение задач по эконометрике в Excel, то есть характеризует относительное изменение Решение задач по эконометрике в Excel к абсолютному изменению Решение задач по эконометрике в Excel. Продифференцируем 2.6 по Решение задач по эконометрике в Excel, получим:

Решение задач по эконометрике в Excel

Умножив Решение задач по эконометрике в Excel на 100%, получим темп прироста Решение задач по эконометрике в Excel. Надо сказать, что коэффициент

Решение задач по эконометрике в Excel

определяет мгновенный темп прироста, а

Решение задач по эконометрике в Excel

характеризует темп прироста сложного процента.

Показательные модели используются, когда анализируется изменение переменной Решение задач по эконометрике в Excel с постоянным темпом прироста во времени Решение задач по эконометрике в Excel:

Решение задач по эконометрике в Excel

Если провести логарифмирование, то получится уравнение аналогичное 2.5 В общем виде показательная модель имеет вид:

Решение задач по эконометрике в Excel

но в силу равенства

Решение задач по эконометрике в Excel

сводится к уравнению 2.8.

Коэффициент эластичности

Рассматривая степенную модель, мы ввели понятие эластичности функции: предел отношения относительных приращений независимой переменной и зависимой называется эластичностью функции

Решение задач по эконометрике в Excel

показывает на сколько процентов изменится в среднем результат, если фактор х изменится на 1%.

Для других форм связи Э зависит от значения фактора Решение задач по эконометрике в Excel и не является величиной постоянной, поэтому рассчитывается средний коэффициент эластичности, который показывает, на сколько процентов в среднем по совокупности изменится результат Решение задач по эконометрике в Excel от своей средней величины, если фактор Решение задач по эконометрике в Excel изменится на 1% от своего среднего значения. Формула для расчета:

Решение задач по эконометрике в Excel

Несмотря на широкое использование в экономике коэффициентов эластичности, возможны случаи, когда они не имеют экономического смысла. Составьте таблицу коэффициентов эластичности для всех рассмотренных нелинейных моделей самостоятельно.

2.4. ПОСТРОЕНИЕ НЕЛИНЕЙНЫХ РЕГРЕССИЙ

Можно воспользоваться командой Добавить линию тренда, так же как в случае линейного тренда (раздел 1.3): необходимо построить корреляционное поле Решение задач по эконометрике в Excel и выбрать одну из зависимостей на вкладке параметры: полиномиальный, логарифмический, показательный и экспоненциальный. Такой способ удобен для случая двух переменных.

Использовать инструмент Регрессия можно только для преобразованных данных. Этот способ дает много не нужной информации.

Пример 3.1. По семи территориям Южного федерального округа за 2001 год известны значения двух признаков:

Решение задач по эконометрике в Excel

Задание

  1. Постройте уравнения регрессии для модели:

a) линейной;

b) степенной;

c) экспоненциальной;

d) логарифмической; гиперболы.

  1. Оцените каждую модель через среднюю ошибку аппроксимации Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel-критерий Фишера.

Решение задач по эконометрике в Excel

Проще всего построить поле корреляции, а затем добавить линии тренда (см. параграф 1.З.). Для полученных уравнений надо найти коэффициент аппроксимации и проверить Решение задач по эконометрике в Excel-критерий.

1а. Уравнение линейной регрессии:

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Вариация результата на 12% объясняется вариацией фактора Решение задач по эконометрике в Excel — статистику найдем по формуле 1.13

Решение задач по эконометрике в Excel

Так как

Решение задач по эконометрике в Excel

то параметры линейного уравнения и показатель тесноты связи между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel статистически незначимы и гипотеза о линейности уравнения регрессии отклоняется. Самостоятельно вычислите величину средней ошибки аппроксимации:

Решение задач по эконометрике в Excel

l.b. Степенная модель

Решение задач по эконометрике в Excel
Решение задач по эконометрике в Excel

Подставляя в уравнение регрессии фактические значения Решение задач по эконометрике в Excel, получим Решение задач по эконометрике в Excel. По этим значениям, используя формулу для индекса корреляции (1.26), получим

Решение задач по эконометрике в Excel

и среднюю ошибку аппроксимации:

Решение задач по эконометрике в Excel

Характеристики степенной модели указывают, что она не намного лучше линейной функции описывает связь между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel.

1с. Аналогично l.b. для показательной модели

Решение задач по эконометрике в Excel

сначала нужно выполнить линеаризацию

Решение задач по эконометрике в Excel

и после замены переменных

Решение задач по эконометрике в Excel

рассмотрим линейное уравнение:

Решение задач по эконометрике в Excel

Используя столбцы для Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel из предыдущей таблицы, получим коэффициенты:

Решение задач по эконометрике в Excel

и уравнение

Решение задач по эконометрике в Excel

После потенциирования запишем уравнение в обычной форме:

Решение задач по эконометрике в Excel

Все эти расчеты можно не делать, если воспользоваться для вычисления параметров Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel модели Решение задач по эконометрике в Excel встроенной статистической функцией ЛГРФПРИБЛ. Выполните самостоятельно и сравните результаты. Убедитесь, что значения вычисленные по формулам и полученные с помощью функции ЛГРФПРИБЛ() совпадают (рис.2.4)

Решение задач по эконометрике в Excel

Тесноту связи оценим с помощью индекса корреляции

Решение задач по эконометрике в Excel

который вычисляется по формуле (1.26). Связь между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel небольшая. Коэффициент аппроксимации, вычисленный по формуле (3.3) Решение задач по эконометрике в Excel=8% говорит о повышенной ошибке приближения, но в допустимых пределах. Сравнивая, показатели степенной и показательной функций можно сделать вывод, что степенная функция чуть лучше описывает связь между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel чем показательная.

l.d. Аналогичные расчеты надо провести и для равносторонней гиперболы Решение задач по эконометрике в Excel, которая линеаризуется заменой Решение задач по эконометрике в Excel.

Для этого уравнения в таблицу исходных значений надо добавить столбец Решение задач по эконометрике в Excel, а все остальные вычисления проведите, используя один из описанных выше способов:

Решение задач по эконометрике в Excel

Получена наибольшая оценка тесноты связи по сравнению с линейной, степенной и показательной регрессиями, а Решение задач по эконометрике в Excel остается в пределах допустимого значения, это означает, что для описания зависимости расходов на покупку продовольственных товаров в общих расходах (Решение задач по эконометрике в Excel в %) от среднедневной заработной платы одного работающего (Решение задач по эконометрике в Excel в руб.) необходимо из предложенных моделей выбрать гиперболическую.

  • Введем гипотезу Решение задач по эконометрике в Excel: уравнение регрессии статистически незначимо и рассмотрим статистику (1.30):
Решение задач по эконометрике в Excel

Решение задач по эконометрике в Excel при уровне значимости Решение задач по эконометрике в Excel смотри в пункте l.a.

Гипотеза Решение задач по эконометрике в Excel о статистической незначимости параметров уравнения принимается. Результат можно объяснить небольшим числом наблюдений и сравнительно невысокой теснотой гиперболической зависимости между Решение задач по эконометрике в Excel и Решение задач по эконометрике в Excel.

Возможно эти страницы вам будут полезны:

  • Курсовая работа по эконометрике
  • Заказать работу по эконометрике
  • Лабораторная работа по эконометрике
  • Помощь по эконометрике
  • Системы эконометрических уравнений

Понравилась статья? Поделить с друзьями:
  • Распознать скан pdf в word онлайн
  • Распределение столбца по столбцам excel
  • Распознать рисунок в word онлайн бесплатно
  • Распределение ряда данных в excel
  • Распознать пдф онлайн в excel