Теплотехнический расчет стены
Опубликовано 24 Июл 2016
Рубрика: Теплотехника | 13 комментариев
Стены зданий, защищают нас от ветра, осадков и часто служат несущими конструкциями для крыши. И все-таки главной функцией стен, как ограждающих конструкций, является защита человека от не комфортных температур (в основном низких) воздуха окружающего пространства.
Теплотехнический расчет стены определяет необходимые толщины слоев примененных материалов, обеспечивающие тепловую изоляцию помещений с точки зрения обеспечения комфортных санитарно-гигиенических условий для нахождения человека в здании и требований законодательства по энергосбережению.
Чем сильнее утеплены стены, тем меньше будущие эксплуатационные затраты на отопление здания, но при этом больше затраты на приобретение материалов при строительстве. До какой степени разумно утеплять ограждающие конструкции зависит от предполагаемого срока эксплуатации здания, целей, преследуемых инвестором строительства, и считается на практике в каждом случае индивидуально.
Санитарно-гигиенические требования определяют минимально допустимые сопротивления теплопередаче сечения стен, способные обеспечить комфорт в помещении. Эти требования следует обязательно выполнить при проектировании и строительстве! Обеспечение требований по энергосбережению позволит вашему проекту не только пройти экспертизу и потребует дополнительных разовых затрат при строительстве, но и обеспечит сокращение дальнейших затрат на отопление при эксплуатации.
Теплотехнический расчет в Excel многослойной стены.
Включаем MS Excel и начинаем рассмотрение примера теплотехнического расчета стены здания, строящегося в регионе — г. Москва.
Перед началом работы скачайте: СП 23-101-2004, СП 131. 13330.2012 и СП 50.13330.2012. Все перечисленные Своды Правил находятся в свободном доступе в Интернете.
В расчетном файле Excel в примечаниях к ячейкам со значениями параметров представлена информация, откуда следует брать эти значения, причем не только указаны номера документов, но и, зачастую, номера таблиц и даже столбцов.
Задавшись размерами и материалами слоев стены, мы проверим её на соответствие санитарно-гигиеническим нормам и нормам энергосбережения, а также вычислим расчетные температуры на границах слоев.
Исходные данные:
1…7. Ориентируясь на ссылки в примечаниях к ячейкам D4-D10, заполняем первую часть таблицы исходными данными для вашего региона строительства.
8…15. Во вторую часть исходных данных в ячейки D12-D19 вносим параметры слоев наружной стены – толщины и коэффициенты теплопроводности.
Значения коэффициентов теплопроводности материалов вы можете запросить у продавцов, найти по ссылкам в примечаниях к ячейкам D13, D15, D17, D19 или просто поиском в Сети.
В рассматриваемом примере:
первый слой — листы гипсовые обшивочные (сухая штукатурка) с плотностью 1050 кг/м3;
второй слой — кирпичная кладка из сплошного глиняного обыкновенного кирпича (1800 кг/м3) на цементно-шлаковом растворе;
третий слой — плиты минераловатные из каменного волокна (25-50 кг/м3);
четвертый слой — полимерцементная штукатурка с сеткой из стекловолокна.
Результаты:
Теплотехнический расчет стены будем выполнять, основываясь на предположении, что примененные в конструкции материалы сохраняют теплотехническую однородность в направлении распространения теплового потока.
Расчет ведется по ниже представленным формулам:
16. ГСОП=(tвр—tн ср)*Z
17. R0этр=0,00035*ГСОП+1,4
Формула применима для теплотехнического расчета стен жилых зданий, детских и лечебно-профилактических учреждений. Для зданий иного назначения коэффициенты «0,00035» и «1,4» в формуле следует выбрать иными согласно Таблице 3 СП 50.13330.2012.
18. R0стр=(tвр—tнр)/(Δtв*αв)
19. R0=1/αв+δ1/λ1+δ2/λ2+δ3/λ3+δ4/λ4+1/αн
Должны выполняться условия: R0>R0стр и R0>R0этр.
Если не выполняется первое условие, то ячейка D24 автоматически будет залита красным цветом, сигнализируя пользователю о недопустимости применения выбранной конструкции стены. Если не выполняется только второе условие, то ячейка D24 окрасится розовым цветом. Когда расчетное сопротивление теплопередачи больше нормативных значений, ячейка D24 окрашена в светло-желтый цвет.
20. t1=tвр— (tвр— tнр)/R0*1/αв
21. t2=tвр— (tвр— tнр)/R0*(1/αв+δ1/λ1)
22. t3=tвр— (tвр— tнр)/R0*(1/αв+δ1/λ1+δ2/λ2)
23. t4=tвр— (tвр— tнр)/R0*(1/αв+δ1/λ1+δ2/λ2+δ3/λ3)
24. t5=tвр— (tвр— tнр)/R0*(1/αв+δ1/λ1+δ2/λ2+δ3/λ3+δ4/λ4)
Теплотехнический расчет стены в Excel завершен.
Важное замечание.
Окружающий нас воздух содержит внутри себя воду. Чем выше температура воздуха, тем большее количество влаги он способен удерживать.
При 0˚С и 100% относительной влажности промозглый воздух ноября в наших широтах содержит в одном кубическом метре менее 5 граммов воды. В то же время раскаленный воздух в пустыне Сахара при +40˚С и всего 30% относительной влажности, удивительно, но удерживает внутри себя в 3 раза больше воды — более 15 г/м3.
Остывая и становясь холоднее, воздух не может удерживать внутри себя то количество влаги, что мог в более нагретом состоянии. В результате воздух выбрасывает из себя на прохладные внутренние поверхности стен капли влаги. Чтобы этого не происходило внутри помещений, следует при проектировании сечения стены обеспечить невозможность выпадения росы на внутренних поверхностях стен.
Так как средняя относительная влажность воздуха жилых помещений составляет 50…60%, то точка росы при температуре воздуха +22˚С составляет +11…14˚С. В нашем примере температура внутренней поверхности стены +20,4˚С обеспечивает невозможность образования росы.
Но роса может при достаточной гигроскопичности материалов образовываться внутри слоев стены и, особенно, на границах слоев! Замерзая, вода расширяется и разрушает материалы стен.
В рассмотренном выше примере точка с температурой 0˚С находится внутри слоя утеплителя и достаточно близко к наружной поверхности стены. В этой точке на схеме в начале статьи, отмеченной желтым цветом, температура меняет свое значение с положительного на отрицательное. Получается, что кирпичная кладка никогда в своей жизни не будет находиться под воздействием отрицательных температур. Это будет способствовать обеспечению долговечности стен здания.
Если мы поменяем в примере местами второй и третий слои – утеплим стену изнутри, то получим не одну, а две границы слоев в области отрицательных температур и наполовину промороженную кирпичную кладку. Убедитесь в этом самостоятельно, выполнив теплотехнический расчет стены. Напрашивающиеся выводы очевидны.
Ссылка на скачивание файла: teplotekhnicheskij-raschet-steny (xls 106,0KB).
Другие статьи автора блога
На главную
Статьи с близкой тематикой
Отзывы
Расчет теплопотерь
Расшифровка расчетов по формулам с примерами расчета. Будет видео и расчет в Excel.
В этой статье я в деталях расскажу, как сделать расчет теплопотерь дома для жилого здания по государственным стандартам в России. Учтите, что здание должно быть утеплено согласно СП 50.13330.2012 (бывший СНиП 23-02-2003 ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ).
Найдем максимальные теплопотери здания для того, чтобы подобрать котел необходимой мощности.
Найдем теплопотери отдельного помещения.
Рассмотрим для примера место проживания: Свердловская область, город Екатеринбург.
Теплопотери дома:
1. Ограждения: Стены, пол, крыша, окна.
2. Вентиляция = инфильтрация.
3. Другие тепловые притоки, которые учитываются в редких случаях: Например, оборудование, которое выделяет тепло, человек выделяет своим телом около 100 Вт в час и другое.
Пример таблицы в Excel: Скачать файл Excel!
Подробнее о видеокурсе: Видеокурс: Расчет теплопотерь дома
Наружная температура воздуха
Расчетную температуру наружного воздуха следует принимать по средней температуре наиболее холодной пятидневки с обеспеченностью 0,92 согласно СНиП 23-01.
Показатель обеспеченности 0,92 означает коэффициент вероятности. То есть указанная температура в СНиП 23-01 рассчитана до 92%, а остальные 8% означают экстремальные температуры, которые не стоит брать в расчет. В природе существуют экстремально низкие температуры воздуха, которые происходят редко(раз в 100 лет), поэтому не следует рассчитывать теплопотери здания на экстремально низкие температуры, это приведет к удорожанию материалов на утепление здания и экономический показатель будет снижен. Попросту деньги, потраченные на утепляющий материал будут долго себя окупать.
Значения в СНиП 23-01 были вычислены наиболее холодные температуры в году, в период с 1925 по 1980 года, и за расчет берется только обеспеченность в 92%. Подробный расчет об этом написан в справочном пособии Е. Г. Малявина Теплопотери здания в пункте 1.2.
Поскольку по статистике в России стены массивные (кирпичные, бетонные и тому подобное) они имеют большую тепловую инерцию. В следствии этого, температура в помещении остывает не быстро. И было принято решение, что наиболее холодную температуру правильнее находить среднюю за 5 суток.
Если у Вас легкие стены типа (дерева или просто ваты или пенопласта покрытой жестким ребром дерева), то выбирать нужно расчетную наружную наиболее холодную температуру в сутках. То есть Температуру воздуха наиболее холодных суток.
Температура наиболее холодной пятидневки находится в СНиП 23-01-99 Строительная климатология
Свежие данные по температурам находятся в СП 131.13330.2018
Если Вы хотите найти ваш город на карте и узнать температуру, то воспользуйтесь картой тут: map.teploov.ru
Выбираем из таблицы -35 градусов Цельсия
Температура воздуха в помещении
Температура помещений определяется согласно: ГОСТ 30494-2011, САНПИН 2.1.2.2645-10
В СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование» в П 5.1 написано, что выбирать температуру по минимальному значению оптимальной температуры. То есть для расчета жилой комнаты следует принять температуру 20 градусов в холодный период года.
Свежие правила указаны в СП 60.13330.2016
Холодный период года – это время когда среднесуточная температура воздуха на улице +10 и ниже градусов Цельсия.
Теплый период года выше +10 градусов.
Среднесуточная температура воздуха на улице определяется по формуле
Где n – количество снимаемых показаний температуры. Если показания температуры снимать каждый час, то показаний должно быть 24. Если каждые два часа, то показаний должно быть 12. То есть нельзя заходить на следующий час следующих суток, будет искажение результата.
Т1,т2,т3 –конкретное показание температуры в определенный час времени. Т1 в первый час времени. Т2 во второй час времени и т.д.
Вы можете снимать показания каждый час или каждые 2-3 часа. Точность будет выше, если снимать каждый час.
Влажность воздуха. Необходимо для расчета термического сопротивления ограждающих стенок.
Определить зону из трех категорий:
1 – Влажный
2 – Нормальный
3 – Сухой или мокрый
Карта зон влажности:
Карта зон влажности указан в СНиП 23-01-99 Строительная климатология. Вы можете попытаться найти зону влажности визуально, а можете воспользоваться онлайн сервисом, в котором введете ваш город, и он вам скажет зону влажности тут: map.teploov.ru
Например, в городе Екатеринбурге зона 3 – сухая. В Москве 2 — нормальная.
Инфильтрация = Вентиляция воздуха
Вентиляция = инфильтрация. Теплопотери на вентиляцию одно и тоже, что теплопотери на инфильтрацию. Кто-то выражается термином инфильтрация, а кто-то просто называет вентиляцией. Два разных термина характеризуют количество поступаемого воздуха в помещение, но отличие между инфильтрацией и вентиляцией следующее:
Инфильтрация — это процесс проникновения воздуха в помещение через наружное ограждение. То есть наружный воздух с улицы, проникающий через окна и двери или другие щели в стенах.
Вентиляция – это специально организованная система для проникновения воздуха в помещение. Вентиляция может быть естественной или механической(с помощью вентиляторов).
Инфильтрация это по СНиП — процесс проникновения воздуха в помещение, а обратное явление называют эксфильтрацией.
Для расчета вентиляции необходимо знать, сколько воздуха будет поступать в помещение. Для каждого типа помещения необходимо найти расход воздуха поступаемого в помещение.
Вентиляция для жилых зданий (Жилые коттеджи и многоквартирные дома)
В СП 54.13330.2016 (бывший СНиП 31-01-2003 ЗДАНИЯ ЖИЛЫЕ МНОГОКВАРТИРНЫЕ ПРАВИЛА ПРОЕКТИРОВАНИЯ) на стр.33 в пункте 9.2 написано:
Расчетные параметры воздуха в помещениях многоквартирного здания следует принимать по СП 60.13330 (бывший СНиП 41-01-2003. Отопление, вентиляция и кондиционирование воздуха) и с учетом ГОСТ 30494. Кратность воздухообмена в помещениях в режиме обслуживания следует принимать в соответствии с таблицей 9.1.
Расход воздуха в многоквартирных домах. Таблица.
Расход воздуха для жилых одноквартирных зданий (для частных домов) указан в СП 55.13330.2016 (бывший СНиП 31-02-2001 «ЗДАНИЯ ЖИЛЫЕ ОДНОКВАРТИРНЫЕ»)
Расчет вентиляции для других типов помещений вы найдете в специальных документах:
СНиП 31-02-2001 «ЗДАНИЯ ЖИЛЫЕ ОДНОКВАРТИРНЫЕ» Свежая версия СП 55.13330.2016
СНиП 31-06-2009 «Общественные здания и сооружения»; Cвежая версия СП 118.13330.2012*
СНиП 31-01-2003 «Здания жилые многоквартирные»; Cвежая версия СП 54.13330.2016
СНиП 31-03-2001 «Производственные здания»; Свежая версия СП 56.13330.2011
СНиП 41-01-2003 «Отопление, вентиляция и кондиционирование воздуха». Свежая версия СП 60.13330.2016
Количество инфильтрующегося воздуха может быть указано в точных значениях расхода воздуха в м3/час или кратности воздухообмена (ч-1).
Кратность (ч-1) – это единица количество объема помещения. То есть если кратность равна 1,0 то объем протекающего воздуха будет равным объему помещения. Объем помещения будет равен площади помноженное на высоту помещения(от пола до потолка). Например, если площадь пола равна 10 кв.м, а высота от пола до потолка 2,5 метра, то объем помещения будет равен: 10 х 2,5 = 25 м3. Расход воздуха будет равен 25м3/час. Если кратность равна 0,5 то расход будет равен: 25 м3 х 0,5 = 12,5 м3/час.
Для спальной комнаты кратность будет равна единице, тогда расход воздуха в этой комнате будет равен объему помещения. То есть комната размерами 10м2 х 2,5(высота) = 25 м3/час.
Для кабинета кратность будет равна 0,5, тогда расход воздуха в этой комнате будет равен объему помещения помноженный на 0,5. То есть кабинет размерами (5м х 4м) х 2,5м(высота) х 0,5 = 25 м3/час.
Учтите, что расчетный расход может отличаться от практических расходов из-за воздушного сопротивления воздухопроводов. Бывает, что воздухопровод установлен в ванной, туалете и кухне. То есть воздух прибывает в помещение через окна, форточки и другие специальные приточки, а уходит через вентиляционные воздухопроводы кухонь и ванных комнат.
Теплопотери на инфильтрацию рассчитываются, если этот воздух поступает в помещение не нагретый какими либо приборами. То есть воздух поступаемый с улицы.
В СП 60.13330.2016 в приложение И в таблице И.1 Указаны минимальные значения расхода воздуха:
Приточный воздух может поступать из жилых помещений
Это значит, что воздух, зашедший через окно в жилую комнату, потом перетекает в кухню и там уходит в вентиляционный канал.
То есть для расчета общего расхода всей квартиры или дома нужно учесть то, что один и тот же воздух может быть использован повторно для ванной комнаты. Между суммами расходов притока и вытяжки выбираем наибольшее значение расхода для расчета тепловых потерь на инфильтрацию. То есть для расчета тепловых потерь на нагрев воздуха выбираем наибольшее значение из сумм расходов притока или вытяжки.
Расход воздуха в помещениях общественных зданий. Таблица
Расчет расхода воздуха в помещениях
В СП 60.13330.2016 в приложение Ж указаны формулы расчета воздуха для расчета по нормам из таблицы:
Формула расчета расхода теплоты на инфильтрацию указана в СНиП 2.04.05-91* ОТОПЛЕНИЕ, ВЕНТИЛЯЦИЯ И КОНДИЦИОНИРОВАНИЕ, приложение 10. Измененный СНиП 41-01-2003. И свежая версия СП 60.13330.2016
Имхо… Считаю коэффициент учета влияния встречного теплового потока в конструкциях для окон относится к старым деревянным двухрамочным окнам, где расстояние между стеклами 10-20 см. Соответственно воздух попадая через форточку перемешивается с воздухом находящимся между стеклами. Получается некая рекуперация. Воздух приходящий с улицы нагревается тепловым притоком с помещения. По поводу стен, имеется ввиду, что стены якобы тоже пропускают воздух, и воздух проходя сквозь толщу стены успевает нагреваться на определенное значение. Поэтому воздух поступает в помещение немного нагретый на величину коэффициента 0,7 – 1,0 вызванный встречным тепловым потоком. Тепловой поток, это не только воздух, но и поток вызванный теплопроводностью стенок, а также поток вызванный тепловыми лучами.
Имхо… По моему мнению этот коэффициент учета влияния встречного теплового потока должен быть равным единице или его вообще исключить из расчета. Потому что на сегодняшний день стены имеют хорошую пароизоляцию. И окна тоже не обладают процессами перемешивания воздуха. Разве что воздух, поднимаясь вверх от стенок стекла, успел нагреться на незначительное значение.
Для расчета поступаемого воздуха в помещение можно использовать два способа:
1. Точное указание поступаемого воздуха в помещение.
2. Расчет воздуха через окна и двери из-за разности давлений наружного и внутреннего воздуха.
Первый способ будет наиболее простой и точнее второго, если в помещении проживают или работают люди, которые контролируют поступление воздуха через окна и форточки. То есть если будет холодно в помещении, то люди закроют окно ровно на столько, насколько это комфортно. И поэтому такой расчет будет более точным.
Второй способ будет учитывать разность давления наружного и внутреннего воздуха для разной высоты окон. Такой способ расчета будет вести к тому, что чем ниже этаж, тем больше приток воздуха в помещение. Чем больше этажей в здании, тем выше разница расходов воздуха в помещение между первым и последним этажах. На первом этаже расход воздуха будет больше. Также давление наружного и внутреннего воздуха будет зависеть от ветра.
Если у Вас старые деревянные окна и двери, и есть щели в соединениях стекол и дверей, и присутствуют еще щели в проемах окон и дверей то, конечно считать нужно по второму способу. На сегодняшний день появились пластиковые окна, и они настолько герметичны, что о расчете воздуха по второму способу можно забыть. Расчет воздуха имеет очень большую погрешность. Статистику проникания воздуха сложно предугадать из-за разного рода людей находящихся в помещениях. Поэтому лучшим расчетом будет уложиться в нормы потребления по первому способу.
Если вы решили сделать расчет по второму способу, то согласно нормам нужно все равно заложить приток воздуха в помещение согласно нормам. И этот расход должен быть не ниже нормируемого значения. То есть, если расход воздуха по второму способу показал меньше нормируемого значения, то закладываем расход воздуха не ниже нормируемого значения. Поэтому как не крути, а первый способ расчета наиболее актуален на сегодняшний день из-за герметичности пластиковых окон.
Пример расчета инфильтрации при точном подсчете воздуха в помещение.
Дано:
Расход воздуха в помещении 25 м3/час. Температура помещения 20 градусов. Температура на улице -35 градусов.
При расчете инфильтрации не учитывается влажность воздуха, потому что разница будет ничтожно малой. Теплоемкость воздуха принимается равным 1,006 кДж/(кг°С); Единственное, что следует учесть это плотность воздуха для помещения. Расход уличного воздуха в объемах значительно меньше, чем расход воздуха в помещении. То есть один и тот же объем воздуха на улице будет меньше, чем в помещении.
Решение:
плотность воздуха находим по таблице ниже
Ответ: Теплопотери на инфильтрации 471,24 Вт в час.
Как мы теряем тепло обычным воздухом?
Пример расчета инфильтрации. Расчет воздуха через окна и двери из-за разности давлений наружного и внутреннего воздуха.
Подробнее о расчетах описано в СНиП 2.04.05-91* приложение 10.
Также написано в справочном пособии Е. Г. Малявина Глава 6. Воздухопроницание в здание.
Необходимо найти расход поступаемый через окна и двери. Конечно, воздух может поступать в сквозь стены, но это значение настолько ничтожно, что расчет проникновения воздуха через стены не учитывают.
Расход будет зависеть от разности давления наружного и внутреннего воздуха, и поэтому необходимо рассчитать перепад давления через окно и дверь для разных высот. И еще необходимо учесть ветер, который тоже может добавить давление.
Расчет сопротивления через инфильтрацию реализован в программном обеспечении.
Необходимо каждому окну или двери задать сопротивление воздухопроницанию м2⋅ч /кг и перепад давления Па. И алгоритм расчета за вас выполнит расчеты.
Что такое воздухопроницаемость можно найти в СНиП II-3-79* Строительная теплотехника п. 5. СОПРОТИВЛЕНИЕ ВОЗДУХОПРОНИЦАНИЮ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ.
Перед расчетом нужно указать:
В графе как считать поступаемый воздух: Воздухопроницаемость окон и дверей
Рассчитать направление ветра: Не направленный ветер
Средняя скорость ветра: Значение находится для каждого города в СП 131.13330.2018 (бывший СНиП 23-01-99 Строительная климатология).
Подробнее о программе.
Ограждения: Стена, пол, крыша, окно.
Расчет теплопотерь через одну стену
Следует понять, что тепловые потери через стену уходят теплопроводностью воздуха и тепловым излучением. То есть поверхность стены в помещении нагревается воздухом и тепловым излучением других предметов в помещении. Далее тепловая энергия передается теплопроводностью через стену на наружную поверхность стены. И наружная поверхность стены отдает тепловую энергию воздуху и тепловым излучением другим материалам на улице.
Коэффициенты теплоотдачи наружной и внутренней поверхности включают в себя сумму тепловых потерь: Теплопроводность воздуха через конвекцию и тепловое излучение. То есть это полное значение тепловых потерь пограничного слоя наружной поверхности. Эти коэффициенты были найдены опытным путем.
Некоторая информация теплоотдачи поверхности:
Написано в справочном пособии Е. Г. Малявина Теплопотери здания стр 58. п.3.4.4.
Чтобы найти теплопроводность λ стены из различных материалов необходимо воспользоваться СНиП II-3-79* Строительная теплотехника, таблица материалов находится в приложении 3.
Для расчета теплопотерь ограждения используют законченную формулу:
Написано в справочном пособии Е. Г. Малявина Теплопотери здания стр 88. п.7.1
Также формула указана в СНиП 2.04.05-91* в приложении 9 на стр.54
То есть добавочные коэффициенты учитывающие: Сторону света(юг, север, запад , восток), добавка на угловое помещение, добавка на не обогреваемый пол и другое, смотри ниже раздел: Добавочные теплопотери через ограждения.
Добавочные теплопотери через ограждения β
Теплопотери, рассчитанные по формуле выше без учета добавочных потерь (при β = 0), называются основными. Основные трансмиссионные теплопотери часто оказываются меньше действительных, т.к. в формуле не отображены некоторые факторы. Дополнительные теплопотери учитываются добавками к основным, задаваемыми в долях единицы. Выраженные коэффициентом β добавки подразделяются на несколько видов:
Расчет площади ограждений для расчета теплопотерь
Написано в справочном пособии Е. Г. Малявина Теплопотери здания стр 88. п.7.1
Для показа трансмиссионных потерь используют таблицу
Пример таблицы в Excel: Скачать файл Excel!
Пример расчета одной стенки
Дано:
Стенка из железобетона толщиной 200 мм. И площадью 4 кв.м.
t_вн= 20 °С.
t_нар= -35 °С.
L= 200мм.=0,2м.
Решение
Теплопроводность материалов вычисляется по таблице из СНиП II-3-79* Строительная теплотехника.
Полный список материалов находится в СНиП II-3-79* Строительная теплотехника, в приложении 3.
Категория А и Б вычисляется в СНиП 23-02-2003 ТЕПЛОВАЯ ЗАЩИТА ЗДАНИЙ
Для расчета А и Б необходимо: Вычислить влажность и сверить с таблицей 1 и 2.(см выше)
Вычислить влажность для помещений указано в справочном пособии у Е. Г. Малявина Теплопотери здания, в пункте 2.4.
Расчет А или B для Москвы:
Зона влажности 2 – нормальная
Влажность жилого помещения 55%
По таблице 1 — при температуре 20 градусов, влажностный режим будет нормальный
По таблице 2 — условие эксплуатации Б. И выбираем категории Б для вычисления теплопроводность по таблице из СНиП II-3-79* Строительная теплотехника. (Смотри выше таблицу теплопроводности)
Расчет теплопотерь многослойной стены
Расчет многослойной стены рассчитывается так же как и расчет одной стены, различие в том, что необходимо вычислить сумму термического сопротивления всех слоев стенки.
Пример расчета многослойной стенки
Дано:
Слой1 – Пенополистирол, толщиной 50 мм, теплопроводностью 0.04 Вт/(м• °С)
Слой2 – Кирпич, толщиной 120 мм, теплопроводностью 0.64 Вт/(м• °С)
Слой3 – Штукатурка, толщиной 20 мм, теплопроводностью 0.81 Вт/(м• °С)
Стена площадью 4 кв.м.
Решение
Расчет теплопотерь через воздушную прослойку воздуха
Для расчета воздушной прослойки необходимо добавить термическое сопротивление этой самой замкнутой воздушной прослойки воздуха, как это делается для расчета многослойной стенки. Замкнутая прослойка воздуха означает, что воздух в этом пространстве не перемешивается с каким либо другим воздухом с улицы или помещения. То есть воздух не перемешивается с другими воздушными пространствами.
Данные взяты в СП 50.13330.2012 в таблице Е.1. (бывший СНиП 23-02-2003 Тепловая защита зданий)
Тепловой поток, проходящий через воздушную прослойку, складывается из потоков, передаваемых теплопроводностью, конвекцией и излучением. При этом доля потока, передаваемого излучением, самая большая.
Берем из таблицы значение термического сопротивления воздушной прослойки воздуха для определенной толщины воздушной прослойки и используем для расчета многослойной стенки. Воздушная прослойка будет являться еще одним слоем для многослойной стенки. Расчет многослойной стенки смотри выше.
Для вертикальных стен используется столбец: Горизонтально при потоке теплоты снизу вверх или вертикальный.
Для крыши и полов перекрытия используется столбец: Горизонтально при потоке теплоты снизу вверх или вертикальный, только если нижняя стенка теплее, чем верхняя. То есть нижняя стенка теплее, чем верхняя. В таком случае тепловой поток идет снизу вверх.
Если нижняя стенка холоднее чем верхняя, то тепловой поток идет сверху вниз, тогда столбец: Горизонтально при потоке теплоты сверху вниз.
Воздушная прослойка на крыше всегда подразумевает тепловой поток снизу вверх, если конечно вы не защищаетесь от жары сверху.
Если Вы хотите произвести расчет вентилируемой воздушной прослойки воздуха, которая контактирует с наружным воздухом, то используется коэффициент теплоотдачи наружной поверхности 12. Это соответствует пониманию вентилируемого фасада. Подробнее описано в видеокурсе по расчету теплопотерь дома тут: Видеокурс: Расчет теплопотерь дома
Теплопотери через окна
Расчет теплопотерь через окно имеет самые высокие погрешности в расчете из-за того, что термическое сопротивление окон сильно отличаются от материалов и конструкции окна.
Рекомендую ознакомится с пластиковыми окнами по ГОСТ 30674-99 «Блоки оконные из ПВХ профилей», таблица 2, где описаны детали о том, как выбрать термическое сопротивление для расчета теплопотерь через окна.
Значение 4М1-16Аг-К4 расшифровывается как 4мм стекла марки М, далее 16 мм расстояние между стеклами заполненным аргоном и внутреннее стекло толщиной 4 мм с твердым теплоотражающим покрытием.
Подробную расшифровку других марок ищите в ГОСТ 30674-99 «Блоки оконные из ПВХ профилей».
Если известна точная модель окна, то найти термическое сопротивление можно в поисковом сервисе Яндекс. Вводите текст в виде: Модель окна ОП В2 1840-1220, термическое сопротивление. Или вводите текст: Модель окна ОП В2 1840-1220 паспортные данные, характеристики и тому подобное.
Расчет теплопотерь окна не требует прибавлять коэффициент теплоотдачи внутренней и наружной поверхности, как это делается для стен, пола и крыши.
В таблице выше указано термическое сопротивление всего окна с включением рамок. То есть и стеклопакет и рамки уже учтены в площадь всего окна.
Если некогда искать информацию, то можно выбрать минимальные значения:
Дополнительная информация по окнам
В таблице учтено среднее термическое сопротивление всего окна, включая рамы всей конструкции. Поэтому площадь окна берется включая рамы и прочие конструкции. То есть для расчета теплопотерь берется площадь проема окна.
Площадь самих стекол учитывается при расчете теплопоступления через окна, от солнечной радиации в течение отопительного периода. Расчет теплопоступлений исключительно через солнечную радиацию вы найдете в справочном пособии Е. Г. Малявина Теплопотери здания на странице 133.
Формула расчета теплопотерь окна
Пример расчета теплопотерь окна
Дано:
t_вн= 20 °С.
t_нар= -35 °С.
Модель окна: 4М1-16Аг-К4
R_окно = 0,54 (м2• °С)/Вт. Взято из таблице выше.
Площадь окна высотой 1840 мм, шириной 1220 мм. 1,84 х 1,22 = 2.24 м2.
A = 2.24 м2.
Решение
Формула расчета теплопотерь двери и ворот
Пример расчета теплопотерь двери
Дано:
t_вн= 20 °С.
t_нар= -35 °С.
R_дверь = 1,5 (м2• °С)/Вт.
Площадь двери высотой 2000 мм, шириной 1000 мм. 2 х 1 = 2 м2.
A = 2 м2.
Решение
Теплопотери через крышу
Теплопотреи через крышу (угловую или горизонтальную) рассчитываются также, как и теплопотери через вертикальные стены, но только в том случае, если указана внутренняя температура в помещении через ограждение крыши (без чердака или другого пространства между помещением и крышей)
Но бывает, что существует не отапливаемое пространство между ограждением крыши и потолком последнего этажа. Или например подвального помещения, которое тоже не отапливается. В таких помещениях температура неизвестна. В таком случае необходимо найти среднюю температуру не отапливаемого пространства. А если в не отапливаемом пространстве происходит вентиляция, то ее тоже следует учитывать.
Расчет не отапливаемых помещений реализован в программном обеспечении.
Методом итерации подбирается температура в не отапливаемом помещении, которая удовлетворяет теплопотерям равным нулю. То есть, каждое ограждение нужно посчитать на выбранную температуру и сумма тепловых потерь всех ограждений включая инфильтрацию должны быть равными нулю. Это реализовано в программном обеспечении.
Добавочный коэффициент на сторону света не учитывается на горизонтальные крыши и на угловые ограждения от вертикала более 60 градусов.
Для расчета ограждений (перекрытия между подвалом и помещением первого этажа) существует коэффициент положения ограждения относительно наружного воздуха, смотри выше.
Теплопотери через стены и пол по грунту
Расчет приведен в справочном пособии Е. Г. Малявина Теплопотери здания в пункте 5.3
Для расчета стен и пола по грунту используется простейшая методика, она не является точным расчетом, но применяется как стандарт расчета для России.
Пол и стены под землей делятся на зоны 1,2,3,4. Ширина каждой зоны по 2 метра, кроме 4 зоны . 4 зона может иметь любое значение, так как является последней отдаленной зоной. И для каждой зоны установлено определенное термическое сопротивление. Пол и стена по грунту рассматривается как многослойная стенка, которая имеет в себе слой грунта в глубину на неопределенное значение. То есть, к примеру – это многослойная стенка со слоем грунта, который тоже обладает термическим сопротивлением.
На рисунке выше обозначены зоны. Чаще всего дома строятся с фундаментом и на рисунке б) обозначены зоны по вертикале фундамента.
зона I — RI = 2,1 м2•°С/Вт;
зона II — RII = 4,3 м2•°С/Вт;
зона III — RIII = 8,6 м2•°С/Вт;
зона IV — RIV = 14,2 м2•°С/Вт.
Для не утепленного фундамента и плиты перекрытия(пола) термическое сопротивление не учитывается, если теплопроводность λ >= 1,2 Вт/(м•°С). То есть теплопроводность выше или равно 1,2 Вт/(м•°С).
Для утепленной стены просто к термическому сопротивлению прибавляется термическое сопротивление утепленного слоя. Ниже будет пример расчета.
Для расчета пола по грунту не учитывается коэффициент теплоотдачи внутренней поверхности ограждающих конструкций, потому что сопротивление слоя грунта достаточно велико.
Пример расчета теплопотерь пола и стены по грунту
Дано:
Решение:
Если Вы утеплили фундамент и пол пенополистиролом толщиной 50 мм., то вычисляем термическое сопротивление всех слоев стенки.
Теплопотери через пол по лагам
Расчет приведен в справочном пособии Е. Г. Малявина Теплопотери здания в пункте 5.4
В расчете пола через лаги используются три зоны.
Если Вам нужен расчет по лагам, то Вы можете обратиться за помощью в расчете сюда.
Пример расчета утепленных полов на лагах
Утепленные полы на лагах имеют не однородную теплопроводность по всей площади пола. Поэтому для такого расчета необходимо вычислить среднее термическое сопротивление всего пола на лагах. Подробный расчет нахождения среднего термического сопротивления описан в справочном пособии Е. Г. Малявина Теплопотери здания в пункет 5.1.3. Пример определения приведенного термического сопротивления неоднородной конструкции методом сложения проводимостей
Рассмотрим пример расчета термического сопротивления неоднородной конструкции ограждения
Расчет теплопотерь каждого помещения
Для расчета теплопотерь помещения пользуются формулой:
Сумма тепловых потерь Qогр. складывается из теплопотерь ограждений таких как: стена, пол, потолок, окно, дверь.
Тепловые выделения приборов Qбыт. таких как: холодильник, стиральная машина, плита, чайник, микроволновка, пылесос, телевизор и пр. Эти электроприборы, потребляя электроэнергию, вырабатывают тепло, которое попадает в помещение, и его нагревает. Почти вся потребляемая электроэнергия (более 90%) превращается в тепло. То есть даже пылесос, которому нужна механическая энергия все равно как побочное явление будет вырабатывать тепло. Не исключено, что компьютер, как ЭВМ для электронных вычислений тоже будет вырабатывать тепло. Тепловая энергия почти равна электрической энергии.
В различных инженерных документах Qбыт для жилых помещений с постоянным пребыванием людей находится в диапазоне от 10 до 20 вт. на кв.метр. То есть считают упрощенно по формуле:
В справочных пособиях по проектированию пишут, что 10 Вт/м2 это минимальное значение. В проектных документах по расчету встречал 21 Вт/м2.
Значение Wпом Указано в СП 50.13330.2012 (тепловая защита зданий) в приложении Г.5. на стр. 35.
Рассмотрим реальный расчет целого дома и покажу расчет в Excel
Видео: Расчет теплопотерь дома по СНиП
Подробнее о программе.
Если Вам нужен грамотный расчет, то готов для Вас составить таблицу со всеми формулами расчета по СНиП для жилого здания. Обратиться за расчетом.
Расчет теплопотерь
Расчет утеплителя
Из-за чего шумит радиатор? Как избавиться от шума в радиаторах?
Петля Тихельмана не греют средние радиаторы
Гравитационное отопление рабочие схемы
Гравитационное отопление схема однотрубная горизонтальная
Расчет теплопотерь теплицы
Температурный перепад радиатора отопления
9 схем подключения твердотопливного котла для естественной циркуляции
Комментарии
Комментарии могут оставлять только зарегистрированные
участники
Авторизоваться
Комментарии 1-4 из 4
vladas
, 05 марта 2009 в 08:56
#1
Хм, остается определить что такое ТКП и возможность применения утилиты для России.
РастОК
, 10 марта 2009 в 19:19
#2
Только не забывайте, что в вашем хотя-бы примере пустотная плита не сплошная а с пустотами а это многое значит для того-же теплорасчёта. Всё ясно, что для теплорасчёта берётся вес объёмный (сплошного элемента), но всё-же правильнее наверное будет брать плиту как два слоя бетона и между ними слой воздуха (пустоты). Толщина слоёв бетона и пустот см. по серии плит. А так получается, что вы считаете сплошную бетонную плиту толщиной 220мм.
Строймодернизация
, 13 марта 2009 в 01:29
#3
РастОК…у
Для многопустотной плиты (или т.п., в первой строке)вводится R и D по справочникам или по предварительному расчету как для неоднородной конструкции, а не характеристики материалов.
ААА
, 07 ноября 2012 в 22:26
#4
По идее необходимо проводить расчет по самому холодному месту плиты — а значит пустоты не учитывать
Теплотехнический расчет стены
Блог Александра Воробьева
Стены зданий, защищают нас от ветра, осадков и часто служат несущими конструкциями для крыши. И все-таки главной функцией стен, как ограждающих конструкций, является защита человека от не комфортных температур (в основном низких) воздуха окружающего пространства.
Теплотехнический расчет стены определяет необходимые толщины слоев примененных материалов, обеспечивающие тепловую изоляцию помещений с точки зрения обеспечения комфортных санитарно-гигиенических условий для нахождения человека в здании и требований законодательства по энергосбережению.
Чем сильнее утеплены стены, тем меньше будущие эксплуатационные затраты на отопление здания, но при этом больше затраты на приобретение материалов при строительстве. До какой степени разумно утеплять ограждающие конструкции зависит от предполагаемого срока эксплуатации здания, целей, преследуемых инвестором строительства, и считается на практике в каждом случае индивидуально.
Санитарно-гигиенические требования определяют минимально допустимые сопротивления теплопередаче сечения стен, способные обеспечить комфорт в помещении. Эти требования следует обязательно выполнить при проектировании и строительстве! Обеспечение требований по энергосбережению позволит вашему проекту не только пройти экспертизу и потребует дополнительных разовых затрат при строительстве, но и обеспечит сокращение дальнейших затрат на отопление при эксплуатации.
Теплотехнический расчет в Excel многослойной стены.
Включаем MS Excel и начинаем рассмотрение примера теплотехнического расчета стены здания, строящегося в регионе — г. Москва.
Перед началом работы скачайте: СП 23-101-2004, СП 131. 13330.2012 и СП 50.13330.2012. Все перечисленные Своды Правил находятся в свободном доступе в Интернете.
В расчетном файле Excel в примечаниях к ячейкам со значениями параметров представлена информация, откуда следует брать эти значения, причем не только указаны номера документов, но и, зачастую, номера таблиц и даже столбцов.
Задавшись размерами и материалами слоев стены, мы проверим её на соответствие санитарно-гигиеническим нормам и нормам энергосбережения, а также вычислим расчетные температуры на границах слоев.
Исходные данные:
1…7.Ориентируясь на ссылки в примечаниях к ячейкам D4-D10, заполняем первую часть таблицы исходными данными для вашего региона строительства.
8…15.Во вторую часть исходных данных в ячейки D12-D19 вносим параметры слоев наружной стены – толщины и коэффициенты теплопроводности.
Значения коэффициентов теплопроводности материалов вы можете запросить у продавцов, найти по ссылкам в примечаниях к ячейкам D13, D15, D17, D19 или просто поиском в Сети.
В рассматриваемом примере:
первый слой — листы гипсовые обшивочные (сухая штукатурка) с плотностью 1050 кг/м3;
второй слой — кирпичная кладка из сплошного глиняного обыкновенного кирпича (1800 кг/м3) на цементно-шлаковом растворе;
третий слой — плиты минераловатные из каменного волокна (25-50 кг/м3);
четвертый слой — полимерцементная штукатурка с сеткой из стекловолокна.
Результаты:
Теплотехнический расчет стены будем выполнять, основываясь на предположении, что примененные в конструкции материалы сохраняют теплотехническую однородность в направлении распространения теплового потока.
Расчет ведется по ниже представленным формулам:
Состав теплотехнических расчетов включает теплотехнический расчет теплозащитных свойств ограждающих конструкции, определение потребностей в теплоте каждого помещения (теплопотери), определение типоразмеров и количества нагревательных приборов, потребных для размещения в каждом помещении. Количество помещений обусловливается назначением здания, этажностью, место расположения здания в городе, архитектурно-строительным его решением, пожеланиями заказчика и т.п. Кроме того, теплопотери помещения зависят от расположения помещения в здании: подвал, цокольный, первый, последний этажи, с экерами и без, и мансардные.
Что касается применения нагревательных приборов, то это, помимо назначения помещения и проходящих в нем технологических процессов, в значительной степени зависит от эстетических предпочтений заказчиков. Такое количество факторов, влияющих на выбор нагревательных приборов, существенно увеличивает объемы расчетных работ, а уровень добросовестности их выполнения сказывается на качестве проекта.
Ранее теплотехнические и гидравлические расчеты делались при помощи логарифмической линейки, а в учебных целях проводились с использованием шаблонных таблиц, которые, несколько облегчая расчетный процесс, обеспечивали возможность подробного анализа поэтапных результатов расчетов и позволяли осуществлять соответствующую корректировку как планировочных, так и инженерных решений.
В наше время, при широком внедрении персональных компьютеров, процесс расчетов значительно формализовался и ускорился, что практически полностью исключило фактор инженерного творчества и влияния проектировщика в расчетном процессе с целью поиска альтернативных инженерных решений. Затрудняется дифференцированное изменение типоразмеров и количеств нагревательных приборов, учет корректировок в процессе проектирования ограждающих конструкций, температурного режима и т.п.
Использование Excel-таблиц позволяет обеспечить автоматизацию вычислительных процессов, сократив трудоемкость работы, и вернуть разумные элементы инженерного творчества, свойственные таблично-шаблонному процессу. Электронные таблицы Microsoſt Excel, при заблаговременной подготовке и установлении требуемых функциональных связей между отдельными листами, ячейками и т.п., можно продуктивно использовать вместо распространяемых в настоящее время специализированных программных продуктов.
Несомненно только одно, что составленные расчетные таблицы как шаблоны должны быть тщательно продуманы и защищены от несанкционированного вмешательства и специально копироваться для каждого конкретного случая применения. Такое обращение с таблицами-шаблонами дает возможность проводить детальный анализ результатов расчета и вносить желаемые изменения в ручном режиме.
Гидравлический расчет — серьезный фактор, гарантирующий работоспособность системы отопления и качество обогрева помещений. Именно им обеспечивается количественный и скоростной режимы распределения теплоносителя по нагревательным приборам, определяется напор побудителя движения теплоносителя, подбираются гидравлические характеристики регулирующих устройств, диаметры трубопроводов и т.п.
Основные понятия и определения
Анализ систем водяного отопления позволил установить, что любую систему отопления можно представить в общем случае как сочетание формализованных самостоятельных конструктивных элементов:
- разводящих магистралей — подающих и обратных трубопроводов, соединяющих тепловые пункты с отопительными кольцами;
- отопительных колец, т.е. систем подающих и обратных трубопроводов, обеспечивающих подачу теплоносителя непосредственно к потребителям и состоящих из следующих отопительных конструктивных элементов — магистралей (подающих и обратных трубопроводов, соединяющих стояки), стояков и подводок к нагревательным приборам.
В качестве формализованных конструктивных элементов для составления в дальнейшем расчетных таблиц принимаем: разводящие магистрали, магистрали, стояки и подводки к нагревательным приборам. Конкретизация каждого элемента осуществляем следующим образом. Разводящие магистрали — все участки трубопроводов между тепловым пунктом и отопительными кольцами. Общие участки обозначаются «ПАД» и «ОБР», участки после первого разветвления «П-1-2», «П-3-4», «О-1-2», «О-3-4», где цифры обозначают номера отопительных колец, для которых предназначено данное ответвление.
Последующие разветвления, которые, как правило, осуществляются для присоединения к магистралям отопительных колец, именуются «П-1», «П-2», «П-3», «П-4», «О-1», «О-2», «О-3», «О-4». Четная цифра в данном обозначении указывает только на то, что ответвление по ходу подающего теплоносителя направлено вправо. Технологически на каждом таком ответвлении необходимо устанавливать запорную арматуру, а также балансировочный клапан или дроссельную шайбу.
После них трубопроводы отопительных колец классифицируются как магистрали. Укажем также, что на участках разводящих магистралей «П-1-2», «П-3-4», «О-1-2» и «О-3-4» следует монтировать, по крайней мере, балансировочные краны или дроссельные шайбы — для гидравлической согласованности различных разветвлений. Далее формализуем магистрали отопительных колец. После запорной арматуры участков «П-1», «П-2», «П-3», «П-4», «О-1», «О-2», «О-3» и «О-4» идут магистрали, к которым присоединены стояки.
Расчетными гидравлическими участками являются участки между точками присоединения стоков к магистрали. Обозначение участков по магистрали осуществляем по номерам стояков, причем против движения теплоносителя по подающей магистрали. Первый участок — это трубопровод, подсоединенный к первому стояку, и отвод. Стояки — это трубопроводы транспортирующие теплоноситель между магистралями по этажам через нагревательные приборы.
Стояки, с точки зрения формализации гидравлического расчета, представляют собой системы трубопроводов, расположенных между подводками к нагревательным приборам смежных этажей. Расчетные гидравлические участки обозначаются по порядковому номеру этажа с индексами «П» и «О». Подводки к нагревательным приборам — это система трубопроводов через нагревательный прибор от подающего стояка до обратного трубопровода. На каждой подводке между прибором и стояком установлены краны.
Терморегулирующие вентиля подлежат определению при гидравлическом расчете. Нагревательные приборы могут располагаться как с двух сторон стояка, так и с одной. Для создания Excel-таблицы выбран принцип двухстороннего присоединения нагревательных приборов, причем при взгляде на стояк подводки подразделяются на левую и правую. Для наглядности на рис. 1–4 дана графическая интерпретация. Из рисунков видно, что все разнообразие конструктивного исполнения рассмотренных выше элементов может быть отмечено типом разводки и стояков.
Они по характеру транспортировки по ним теплоносителя различаются на элементы с попутным (П) и тупиковым (Т) движением теплоносителя. В связи с этим, в общем случае системы отопления по гидравлическим особенностям движения теплоносителя по трубопроводам можно подразделить на системы: с попутным движением в магистралях и стояках («П-П»); с попутным движением в магистралях и тупиковым в стояках («П-Т»); с тупиковым движением в магистралях и стояках («Т-Т»); с тупиковым движением в магистралях и попутным в стояках («Т-П»). Разводящие магистрали по характеру движения теплоносителя для всех систем отопления практически одинаковы.
Местные сопротивления
Анализ конструктивного выполнения элементов системы отопления с точки зрения наличия местных сопротивлений показывает, что местные сопротивления складываются из сопротивлений двух видов: типовых элементарных сопротивлений, присущих в любом случае, и характеристических, свойственных конкретному исполнению системы (например, какие либо повороты, нестандартное размещение задвижек, различные обходы конструкций зданий).
Учет местных сопротивлений производится на специальных листах, дифференцировано, по каждому гидравлическому участку для упомянутых выше конструктивных элементов системы. Первый вид местных сопротивлений (КМС) может быть учтен сразу и занесен в расчетные Excel-таблицы. Второй вид местных сопротивлений (КМС) подлежит учету индивидуально на конкретном участке, где они возникают.
При желании использовать Excel-таблицы с учетом ранее занесенных значений типовых КМС возникает некоторая особенность в использовании этой таблицы. Так, необходимо при любой системе отопления первым этажом считать этаж, принятый в Excel-таблице подвальным («п»), а последним этажом считать 30 этаж. Обязательно при расчетах магистралей должны быть использованы стояки 1 и 50.
Персональное определение КМС позволяет отказаться от перечисленных ограничений. Но в этом случае увеличивается объем работ по определению количеств КМС, хотя, используя указанную классификацию КМС, можно значительно облегчить эту работу. Итак, Excel-таблицы составлены:
- для зданий до 30 этажей, подвалом и цокольным этажом (последние можно также считать этажами, тогда здание 32-этажное);
- для систем отопления до четырех сочетаний движений теплоносителя: «П-П», «П-Т», «Т-Т», «Т-П»;
- четырьмя отопительными кольцами;
- с отопительным кольцом, содержащим до 50 стояков;
- с двухсторонним присоединением нагревательных приборов.
Excel-таблицы включают листы (рис. 5): исходных данных; результатов расчета; гидравлического расчета разводящих магистралей; гидравлического расчета магистралей; гидравлического расчета стояков; гидравлического расчета подводок к нагревательным приборам; соответственно листам гидравлических расчетов — листы подсчета КМС; на подающих и обратных участках трубопроводов. В лист «Исходные данные…» заносятся:
- температурные параметры теплоносителя, на которые рассчитывается система отопления, допустимые скорости теплоносителя в магистралях и в трубопроводах стояков, превышение которых нежелательно;
- тепловая нагрузка нагревательных приборов, привязанная к стоякам рассчитываемой системы отопления, Вт;
- длина трубопроводных подводок [м] от подающего стояка через нагревательный прибор до обратного стояка;
- длины гидравлических участков подающих и обратных стояков, м;
- длины гидравлических участков подающих и обратных трубопроводов магистралей, м;
- длины гидравлических участков подающих и обратных трубопроводов раздающих магистралей, м;
- отсутствие этажа, нагревательного прибора, гидравлического участка отмечается «0».
Если в дальнейшем предполагается воспользоваться типовыми КМС, и количество этажей и стояков отлично от табличных, то необходимо заполнение таблиц исходных данных осуществлять с учетом оговоренных выше указаний. Тогда на этом ввод данных считается законченным, и пользователь может перейти на лист «Результаты расчета…», получив окончательные данные. При наличии местных сопротивлений, не подпадающих под типовые, необходимо внести соответствующие коррективы в таблицы КСМ соответствующих элементов системы отопления, и только после этого обратиться к листу «Результаты расчета…». Лист «Результаты расчета…» представляет собой итоги гидравлического расчета и содержит:
- диаметры трубопроводов гидравлических участков, их длину, скорость теплоносителя, гидравлическое сопротивление, гидравлические характеристики устанавливаемых вентилей или диаметров дросселирующих шайб;
- гидравлическое сопротивление всей системы отопления.
Листы гидравлических расчетов в общем случае могут быть скрыты, т.к. они, выполнив свои функции, не нужны, однако для проектировщиков они могут представлять определенный интерес. Этот интерес обусловливается профессиональной квалификацией проектировщика и позволяет проводить детальный анализ, проводя ручную корректировку: направленного местного изменения скоростного режима, диаметров трубопроводов, местных сопротивлений, подбор желаемого гидравлического сопротивления системы отопления и т.п.
Так, например, используя свойства, предоставляемые Excel, можно установить, что сопротивления стояков для нагревательных приборов разных этажей сильно различаются между собой и могут составлять величину, соизмеримую с общим сопротивлением всей системы отопления. Анализируя скоростной режим теплоносителя по участкам, нетрудно правильно решить вопросы обезвоздушивания стояка и системы в целом.
Кроме того, возможность практически одновременно получить результаты расчетов четырех систем отопления позволяет проектировщику дать оценку энергетической эффективности каждой системы, и позволяет применить наиболее целесообразную. В процессе проектирования систем отопления составляются поэтажные планы с размещением нагревательных приборов, стояков, прокладки трубопроводов. Неотъемлемой частью проектной части является схема системы отопления.
Расчеты в Excel предоставляют возможность значительно повысить информационную насыщенность проектной документации. Для этого поэтажные планы следует снабдить таблицами подбора нагревательных приборов, которые содержат экспликацию помещений с указанием типов и количеств устанавливаемых нагревательных приборов и их тепловой нагрузки.
Аксонометрические схемы следует обогатить представлением на чертежах таблиц из «Результатов расчета…», которые содержат необходимые при наладке расчетные значения скоростного режима теплоносителя, диаметров трубопровод на каждом участке, требуемые гидравлические характеристики регулирующих гидравлический режим устройств. Как раз это, в ряде случаев, позволяет отказаться от графической интерпретации схемы отопления.
Кроме того, как для монтажа и наладки систем отопления, так и при ее эксплуатации, должное значение имело бы наличие портативного носителя информации (например, «флэшки») с расчетами, в особенности гидравлического расчета.
Теплотехнический расчет
Пример таких таблиц, составленных авторами, приведен выше, на второй страницы данной статьи. Таблицы составлены для условного здания, состоящего из 100 помещений. Таблицы состоят из листов: экспликация помещений и конструкции ограждающих конструкций; теплотехнический расчет ограждающих конструкций; расчет теплопотерь помещениями; подбор нагревательных приборов по помещениям.
На листе «Экспликация помещений и конструкции…» производится перенос экспликации помещений из архитектурных чертежей в систему таблиц, также в этот лист в определенные графы заносятся ограждающие конструкции, в зависимости от предъявляемых к расчету требованиям, т.е. либо расчет величин коэффициентов теплопередачи определенной конструкции ограждения, или определение толщины слоя теплоутеплителя в ограждении с последующим установлением коэффициента теплопередачи, или простое использование нормативных значений коэффициентов теплопередачи.
На листе «Теплотехнический расчет ограждающих конструкций…» осуществляется подбор теплотехнических характеристик материалов, образующих ограждающие конструкции, определяются коэффициенты теплопередачи, которые следует использовать в дальнейшей работе. Лист «Расчет теплопотерь помещениями…» содержит электронную таблицу-шаблон, рассчитанную для обсчета 100 помещений, каждое из которых может включать: четыре зоны потери теплоты через полы на грунте, на лагах, утепленных и неутепленных; два перекрытия; два наружных ограждения; два световых проемов.
Для пользования этими таблицами необходимо дополнить их расчетными климатическими параметрами наружного и внутреннего воздуха, выбрать коэффициенты теплопередачи, ориентацию, геометрические размеры элементов ограждений и т.п. Результаты автоматически переносятся в лист «Подбор нагревательных приборов по помещениям…». Здесь имеются данные по теплотехническим характеристикам различных нагревательных приборов.
Используя эти данные, и определившись с количеством приборов, которое желательно разместить в помещении, и их типом, находим номенклатурный размер и тепловую нагрузку. Данный лист можно поместить как информацию в рабочие чертежи.