Расчет тепловой завесы excel

  • Файлы

  • Академическая и специальная литература

  • Топливно-энергетический комплекс

  • Теплотехника

  • Программное обеспечение

Расчет тепловой завесы

  • Файл формата
    zip
  • размером 299,48 КБ
  • содержит документ формата
    xls
  • Добавлен пользователем Maestro1984 19.04.2012 17:18
  • Описание отредактировано 20.04.2012 15:48

Расчет тепловой завесы

Лешкевич В.В. Расчет тепловой завесы. Эксель таблица. Содержит таблицу, в которую, подставляя исходные данные, получаем результат, а также вспомогательные таблицы с данными для расчета в виде листов эксель книги.

  • Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
  • Регистрация
  • Узнайте сколько стоит уникальная работа конкретно по Вашей теме:
  • Сколько стоит заказать работу?

Режим работы

9:00 — 18:00

Ваш город: Москва

Новосибирск

Казань

Воронеж

Краснодар

Самара

Барнаул

Пермь

Корзина

  • Каталог
    Каталог

    • Тепловые завесы

      • Электрические
      • Водяные
      • Без нагрева
    • Тепловентиляторы

      • Электрические
      • Водяные
    • Аксессуары

      • Пульты управления
      • Терморегуляторы и клапаны
      • Автоматика для воздушных завес
      • Смесительные узлы для водяных завес
    • Овощесушилки

    • Сушильные шкафы

    • Тепловые завесы

      • Электрические
      • Водяные
      • Без нагрева
    • Тепловентиляторы

      • Электрические
      • Водяные
    • Сушильные шкафы

    • Овощесушилки

    • Аксессуары

      • Пульты управления
      • Терморегуляторы и клапаны
      • Автоматика для воздушных завес
      • Смесительные узлы для водяных завес

  • Где купить
  • О компании
  • Контакты
  1. Главная


  2. Калькулятор

Калькулятор подбора тепловых завес!

Дверной проем без завес

Завесы которые вам могут подойти

Задать вопрос

  1. Главная
  2. Места установки
  3. Air Curtains App
  4. Программа для выбора и настройки конфигурации воздушных завес

Программа для выбора воздушных завес

  • Выбор
  • Покрытия
  • Пульты
  • Аксессуары
  • Техническая Информация
  • Конфигурация

Установка

Горизонтально

Вертикально

Вращающаяся дверь

 
   mm    mm
mm

Типы

Наружные

Встраеваемые


С нагревом

Электрический нагрев

Водяной нагрев

С тепловым насосом

Без нагрева

Только Вентилирование

Места установки

Разделение воздушных сред

Холодильная камера

Против насекомых


Disinfection

Without Disinfection

FC Technology

OH + FC Technology



Название*

Эл. почта*

Компания

Ссылка


Покрытия

* Для специальных цветов таких как жемчужный или флуоресцентный действуют специальные цены, пожалуйста проконсультируйтесь.

Номинальная Температура Воды на ВХОДЕ/ВЫХОДЕ

ºC

20ºC

Другая Температура Воды

(Скорость :info) Путём вычисления.


Множественная конфигурация

Изменения Электрической Батареи

Температура Воздуха на Входе  ºC

Modal title

Перейти к основному содержанию

Расчетные программы систем вентиляции, кондиционирования

 В данном разделе представлены простейшие  расчетные программы по вентиляции, кондиционировании.

Программы могут быть полезны проектировщикам, менеджерам, инженерам. В основном, для пользования программами достаточно Microsoft Excel.  Многие авторы программ не известны. Хочется отметить труд этих людей, кто на базе Excel смог подготовить такие полезные расчетные программы. Расчетные программы по вентиляции и кондиционировании бесплатны для скачивания. 

Но, не забывайте! Нельзя абсолютно верить программе, проверяйте её данные. 

С уважением, администрация сайта Вентпортал  

Быстрая вентиляция (Quick_Vent)

Автор программы:

ДАНИЛИН Андрей Викторович, Коломна

Подсчет воздуховодов 

Расчет площади воздухводов

 Аэродинамический расчет воздуховодов 

Труд неизвестного автора заслуживает уважения.

 Аэродинамика воздуховодов

 Воздухообмен Незаменимая программа для начинающих проектантов, у которых значения кратностей воздухообмена еще не отложились в подкорке головного мозга.

 Расчет солнечной радиации

 Тепловые нагрузки зданий   Программа расчитывает тепловые нагрузки зданий, есть возможность задать известные.
Определяет зональность всех систем здания.
Выбирает оборудование ИТП (ЦТП) (От теплообменников до болтов с гайками)
Генерирует спецификации.
Считает общую стоимость всего оборудования (по спецификациям)

 Тепловоздушный баланс (магазины)

 Тепловоздушный баланс (офисы)

 Подбор воздушных завес  Программа позволяет осуществлять подбор воздушных завес.

 Расчет подбор воздуховодов Программа для расчета воздуховодов позволяет подобрать сечения

 Расчет воздухообменов

Программа по расчету воздухообменов

 Подбор шумоглушителей.

Осуществляет подбор шумоглушителей.

Расчет влагопоступления в бассейне.

Используется современная методика расчета и формула Бязина-Крумме

Расчет дымоудаления

Расчет теплопоступлений и необходимого воздухообмена

 Расчет гидравлики двухтрубной системы

Бланк для определения тепловой нагрузки на помещение

Определение объема бака запаса воды

Емкостные водонагреватели (баки-бойлеры)

ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТРУБОПРОВОДОВ

ОПРЕДЕЛЕНИЕ ОБЪЕМА ГИДРОАККУМУЛЯТОРА 

Кожухотрубный подогреватель

Расчет масс различных тел

РАСЧЕТ МЕМБРАННОГО РАСШИРИТЕЛЬНОГО БАКА

РАСЧЕТ ОДНОТРУБНОЙ СИСТЕМЫ ОТОПЛЕНИЯ

ТЕПЛОВОЙ РАСЧЕТ РАДИАТОРОВ (ДВУХТРУБНАЯ СИСТЕМА)

Теплоизоляция (плоские стенки)

Теплоизоляция (трубы)

Теплопередача и теплоизоляция

АКУСТИЧЕСКИЙ РАСЧЁТ

Программа аэродинамического расчета 

Программа расчета теплопритоков

Расчет теплопритоков

Диаграмма i-d

следующая страница

Язык
Русский

О тепловой энергии простым языком!

Опубликовано 13 Окт 2013
Рубрика: Теплотехника | 117 комментариев

Передача тепловой энергии от огня чайникуЧеловечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,…

…энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов.  Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях. Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

Зависимость температуры от количества подведенной теплоты

1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2Q1.

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп, затрачивая на это количество теплоты равное Q3Q2.

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4Q3.

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2. При этом затраты количества теплоты составят Q5Q4. (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве Q5, переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5, пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до  температуры Т1. Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

Q=m*c*(Т2Т1)

Здесь и далее:

mмасса вещества в кг

судельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

Q=m*λ

λудельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

Q=m*r

rудельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

2.1. При сгорании топлива:

Q=m*q

qудельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

Q=t*I*U=t*R*I^2=(t/R)*U^2

tвремя в с

Iдействующее значение тока в А

Uдействующее значение напряжения в В

Rсопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c, λ, r, q) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

N=Q/t

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

Расчет в Excel прикладной задачи.

В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…

Условия задачи:

В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)

Расчет выполним в программе MS Excel или в программе OOo Calc.

С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге». 

Исходные данные:

1. Названия веществ пишем:

в ячейку D3: Сталь

в ячейку E3: Лед

в ячейку F3: Лед/вода

в ячейку G3: Вода

в ячейку G3: Воздух

2. Названия процессов заносим:

в ячейки D4, E4, G4, G4: нагрев

в ячейку F4: таяние

3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем  для стали, льда, воды и воздуха соответственно

в ячейку D5: 460

в ячейку E5: 2110

в ячейку G5: 4190

в ячейку H5: 1005

4. Удельную теплоту плавления  льда λ в Дж/кг вписываем

в ячейку F6: 330000

5. Массу веществ m в кг вписываем соответственно для стали и льда

в ячейку D7: 3000

в ячейку E7: 20

Так как при превращении льда в воду масса не изменяется, то

в ячейках F7 и G7: =E7=20

Массу воздуха находим произведением объема помещения на удельный вес

в ячейке H7: =24*15*7*1,23=3100

6. Время процессов t в мин пишем только один раз для стали

в ячейку D8: 60

Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно

в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8)=9,7

в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8)=41,0

в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8)=9,4

Воздух также должен прогреться за это же самое отведенное время, читаем

в ячейке H8: =D8=60,0

7. Начальную температуру всех веществ T1 в ˚C заносим

в ячейку D9: -37

в ячейку E9: -37

в ячейку F9: 0

в ячейку G9: 0

в ячейку H9: -37

8. Конечную температуру всех веществ T2 в ˚C заносим

в ячейку D10: 18

в ячейку E10: 0

в ячейку F10: 0

в ячейку G10: 18

в ячейку H10: 18

Думаю, вопросов по п.7 и п.8 быть недолжно.

Программа расчета тепловой энергии и тепловой мощности в Excel

Результаты расчетов:

9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем

для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000=75900

для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000= 1561

для плавления льда в ячейке F12: =F7*F6/1000= 6600

для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000= 1508

для нагрева воздуха в ячейке H12: =H7*H5*(H10-H9)/1000= 171330

Общее количество необходимой для всех процессов тепловой энергии считываем

в объединенной ячейке D13E13F13G13H13: =СУММ(D12:H12) = 256900

В ячейках D14, E14, F14, G14, H14,  и объединенной ячейке D15E15F15G15H15 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).

10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается

для нагрева стали в ячейке D16: =D12/(D8*60)=21,083

для нагрева льда в ячейке E16: =E12/(E8*60)= 2,686

для плавления льда в ячейке F16: =F12/(F8*60)= 2,686

для нагрева воды в ячейке G16: =G12/(G8*60)= 2,686

для нагрева воздуха в ячейке H16: =H12/(H8*60)= 47,592

Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается

в объединенной ячейке D17E17F17G17H17: =D13/(D8*60) = 71,361

В ячейках D18, E18, F18, G18, H18,  и объединенной ячейке D19E19F19G19H19 тепловая мощность приведена в дугой единице измерения – в Гкал/час.

На этом расчет в Excel завершен.

Выводы:

Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.

При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).

Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.

Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост и понятен.

Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

Понравилась статья? Поделить с друзьями:
  • Расчет теодолитного хода excel
  • Расчет тендера в excel
  • Расчет тендер в excel
  • Расчет температурного графика тепловой сети в excel
  • Расчет темпа роста excel