Расчет регрессия на примере в excel


Простая линейная регрессия — это метод, который мы можем использовать для понимания взаимосвязи между объясняющей переменной x и переменной отклика y.

В этом руководстве объясняется, как выполнить простую линейную регрессию в Excel.

Пример: простая линейная регрессия в Excel

Предположим, нас интересует взаимосвязь между количеством часов, которое студент тратит на подготовку к экзамену, и полученной им экзаменационной оценкой.

Чтобы исследовать эту взаимосвязь, мы можем выполнить простую линейную регрессию, используя часы обучения в качестве независимой переменной и экзаменационный балл в качестве переменной ответа.

Выполните следующие шаги в Excel, чтобы провести простую линейную регрессию.

Шаг 1: Введите данные.

Введите следующие данные о количестве часов обучения и экзаменационном балле, полученном для 20 студентов:

Необработанные данные в Excel

Шаг 2: Визуализируйте данные.

Прежде чем мы выполним простую линейную регрессию, полезно создать диаграмму рассеяния данных, чтобы убедиться, что действительно существует линейная зависимость между отработанными часами и экзаменационным баллом.

Выделите данные в столбцах A и B. В верхней ленте Excel перейдите на вкладку « Вставка ». В группе « Диаграммы » нажмите « Вставить разброс» (X, Y) и выберите первый вариант под названием « Разброс ». Это автоматически создаст следующую диаграмму рассеяния:

Диаграмма рассеяния в Excel

Количество часов обучения показано на оси x, а баллы за экзамены показаны на оси y. Мы видим, что между двумя переменными существует линейная зависимость: большее количество часов обучения связано с более высокими баллами на экзаменах.

Чтобы количественно оценить взаимосвязь между этими двумя переменными, мы можем выполнить простую линейную регрессию.

Шаг 3: Выполните простую линейную регрессию.

В верхней ленте Excel перейдите на вкладку « Данные » и нажмите « Анализ данных».Если вы не видите эту опцию, вам необходимо сначала установить бесплатный пакет инструментов анализа .

Опция анализа данных в Excel

Как только вы нажмете « Анализ данных», появится новое окно. Выберите «Регрессия» и нажмите «ОК».

Параметр регрессии в пакете инструментов анализа данных Excel

Для Input Y Range заполните массив значений для переменной ответа. Для Input X Range заполните массив значений для независимой переменной.

Установите флажок рядом с Метки , чтобы Excel знал, что мы включили имена переменных во входные диапазоны.

В поле Выходной диапазон выберите ячейку, в которой должны отображаться выходные данные регрессии.

Затем нажмите ОК .

Регрессия в Excel

Автоматически появится следующий вывод:

Вывод простой линейной регрессии в Excel

Шаг 4: Интерпретируйте вывод.

Вот как интерпретировать наиболее релевантные числа в выводе:

R-квадрат: 0,7273.Это известно как коэффициент детерминации. Это доля дисперсии переменной отклика, которая может быть объяснена объясняющей переменной. В этом примере 72,73 % различий в баллах за экзамены можно объяснить количеством часов обучения.

Стандартная ошибка: 5.2805.Это среднее расстояние, на которое наблюдаемые значения отходят от линии регрессии. В этом примере наблюдаемые значения отклоняются от линии регрессии в среднем на 5,2805 единиц.

Ф: 47,9952.Это общая F-статистика для регрессионной модели, рассчитанная как MS регрессии / остаточная MS.

Значение F: 0,0000.Это p-значение, связанное с общей статистикой F. Он говорит нам, является ли регрессионная модель статистически значимой. Другими словами, он говорит нам, имеет ли независимая переменная статистически значимую связь с переменной отклика. В этом случае p-значение меньше 0,05, что указывает на наличие статистически значимой связи между отработанными часами и полученными экзаменационными баллами.

Коэффициенты: коэффициенты дают нам числа, необходимые для написания оценочного уравнения регрессии. В этом примере оцененное уравнение регрессии:

экзаменационный балл = 67,16 + 5,2503*(часов)

Мы интерпретируем коэффициент для часов как означающий, что за каждый дополнительный час обучения ожидается увеличение экзаменационного балла в среднем на 5,2503.Мы интерпретируем коэффициент для перехвата как означающий, что ожидаемая оценка экзамена для студента, который учится без часов, составляет 67,16 .

Мы можем использовать это оценочное уравнение регрессии для расчета ожидаемого экзаменационного балла для учащегося на основе количества часов, которые он изучает.

Например, ожидается, что студент, который занимается три часа, получит на экзамене 82,91 балла:

экзаменационный балл = 67,16 + 5,2503*(3) = 82,91

Дополнительные ресурсы

В следующих руководствах объясняется, как выполнять другие распространенные задачи в Excel:

Как создать остаточный график в Excel
Как построить интервал прогнозирования в Excel
Как создать график QQ в Excel

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

Регрессия бывает:

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx2);
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Зарплата сотрудников.

Модель линейной регрессии имеет следующий вид:

У = а0 + а1х1 +…+акхк.

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

  1. Нажимаем кнопку «Офис» и переходим на вкладку «Параметры Excel». «Надстройки».
  2. Надстройки.

  3. Внизу, под выпадающим списком, в поле «Управление» будет надпись «Надстройки Excel» (если ее нет, нажмите на флажок справа и выберите). И кнопка «Перейти». Жмем.
  4. Управление.

  5. Открывается список доступных надстроек. Выбираем «Пакет анализа» и нажимаем ОК.

Пакет анализа.

После активации надстройка будет доступна на вкладке «Данные».

Анализ данных.

Теперь займемся непосредственно регрессионным анализом.

  1. Открываем меню инструмента «Анализ данных». Выбираем «Регрессия».
  2. Регрессия.

  3. Откроется меню для выбора входных значений и параметров вывода (где отобразить результат). В полях для исходных данных указываем диапазон описываемого параметра (У) и влияющего на него фактора (Х). Остальное можно и не заполнять.
  4. Параметры регрессии.

  5. После нажатия ОК, программа отобразит расчеты на новом листе (можно выбрать интервал для отображения на текущем листе или назначить вывод в новую книгу).

Результат анализа регрессии.

В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.



Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Время и стоимость.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» — первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» — второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Функция КОРРЕЛ.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционная матрица.

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

Пример:

Объем продаж и цена.

  1. Строим корреляционное поле: «Вставка» — «Диаграмма» — «Точечная диаграмма» (дает сравнивать пары). Диапазон значений – все числовые данные таблицы.
  2. Поле корреляции.

  3. Щелкаем левой кнопкой мыши по любой точке на диаграмме. Потом правой. В открывшемся меню выбираем «Добавить линию тренда».
  4. Добавить линию тренда.

  5. Назначаем параметры для линии. Тип – «Линейная». Внизу – «Показать уравнение на диаграмме».
  6. Линейная линия тренда.

  7. Жмем «Закрыть».

Линейная корреляция.

Теперь стали видны и данные регрессионного анализа.


Регрессия позволяет прогнозировать зависимую переменную на основании значений фактора. В

MS

EXCEL

имеется множество функций, которые возвращают не только наклон и сдвиг линии регрессии, характеризующей линейную взаимосвязь между факторами, но и регрессионную статистику. Здесь рассмотрим простую линейную регрессию, т.е. прогнозирование на основе одного фактора.


Disclaimer

: Данную статью не стоит рассматривать, как пересказ главы из учебника по статистике. Статья не обладает ни полнотой, ни строгостью изложения положений статистической науки. Эта статья – о применении MS EXCEL для целей

Регрессионного анализа.

Теоретические отступления приведены лишь из соображения логики изложения. Использование данной статьи для изучения

Регрессии

– плохая идея.

Статья про

Регрессионный анализ

получилась большая, поэтому ниже для удобства приведены ее разделы:

  • Немного теории и основные понятия
  • Предположения линейной регрессионной модели
  • Задачи регрессионного анализа
  • Оценка неизвестных параметров линейной модели (используя функции MS EXCEL)
  • Оценка неизвестных параметров линейной модели (через статистики выборок)
  • Оценка неизвестных параметров линейной модели (матричная форма)
  • Построение линии регрессии
  • Коэффициент детерминации
  • Стандартная ошибка регрессии
  • Стандартные ошибки и доверительные интервалы для наклона и сдвига
  • Проверка значимости взаимосвязи переменных
  • Доверительные интервалы для нового наблюдения Y и среднего значения
  • Проверка адекватности линейной регрессионной модели


Примечание

: Если прогнозирование переменной осуществляется на основе нескольких факторов, то имеет место

множественная регрессия

.

Чтобы разобраться, чем может помочь MS EXCEL при проведении регрессионного анализа, напомним вкратце теорию, введем термины и обозначения, которые могут отличаться в зависимости от различных источников.


Примечание

: Для тех, кому некогда, незачем или просто не хочется разбираться в теоретических выкладках предлагается сразу перейти к вычислительной части —

оценке неизвестных параметров линейной модели

.

Немного теории и основные понятия

Пусть у нас есть массив данных, представляющий собой значения двух переменных Х и Y. Причем значения переменной Х мы можем произвольно задавать (контролировать) и использовать эту переменную для предсказания значений зависимой переменной Y. Таким образом, случайной величиной является только переменная Y.

Примером такой задачи может быть производственный процесс изготовления некого волокна, причем

прочность этого волокна

(Y) зависит только от

рабочей температуры процесса

в реакторе (Х), которая задается оператором.

Построим

диаграмму рассеяния

(см.

файл примера лист Линейный

), созданию которой

посвящена отдельная статья

. Вообще, построение

диаграммы рассеяния

для целей

регрессионного анализа

де-факто является стандартом.


СОВЕТ

: Подробнее о построении различных типов диаграмм см. статьи

Основы построения диаграмм

и

Основные типы диаграмм

.

Приведенная выше

диаграмма рассеяния

свидетельствует о возможной

линейной взаимосвязи

между Y от Х: очевидно, что точки данных в основном располагаются вдоль прямой линии.


Примечание

: Наличие даже такой очевидной

линейной взаимосвязи

не может являться доказательством о наличии причинной взаимосвязи переменных. Наличие

причинной

взаимосвязи не может быть доказано на основании только анализа имеющихся измерений, а должно быть обосновано с помощью других исследований, например теоретических выкладок.


Примечание

: Как известно, уравнение прямой линии имеет вид

Y

=

m

*

X

+

k

, где коэффициент

m

отвечает за наклон линии (

slope

),

k

– за сдвиг линии по вертикали (

intercept

),

k

равно значению Y при Х=0.

Предположим, что мы можем зафиксировать переменную Х (

рабочую температуру процесса

) при некотором значении Х

i

и произвести несколько наблюдений переменной Y (

прочность нити

). Очевидно, что при одном и том же значении Хi мы получим различные значения Y. Это обусловлено влиянием других факторов на Y. Например, локальные колебания давления в реакторе, концентрации раствора, наличие ошибок измерения и др. Предполагается, что воздействие этих факторов имеет случайную природу и для каждого измерения имеются одинаковые условия проведения эксперимента (т.е. другие факторы не изменяются).

Полученные значения Y, при заданном Хi, будут колебаться вокруг некого

значения

. При увеличении количества измерений, среднее этих измерений, будет стремиться к

математическому ожиданию

случайной величины Y (при Х

i

) равному μy(i)=Е(Y

i

).

Подобные рассуждения можно привести для любого значения Хi.

Чтобы двинуться дальше, воспользуемся материалом из раздела

Проверка статистических гипотез

. В статье о

проверке гипотезы о среднем значении генеральной совокупности

в качестве

нулевой

гипотезы

предполагалось равенство неизвестного значения μ заданному μ0.

В нашем случае

простой линейной регрессии

в качестве

нулевой

гипотезы

предположим, что между переменными μy(i) и Хi существует линейная взаимосвязь μ

y(i)

=α* Х

i

+β. Уравнение μ

y(i)

=α* Х

i

+β можно переписать в обобщенном виде (для всех Х и μ

y

) как μ

y

=α* Х +β.

Для наглядности проведем прямую линию соединяющую все μy(i).

Данная линия называется

регрессионной линией генеральной совокупности

(population regression line), параметры которой (

наклон

a и

сдвиг β

) нам не известны (по аналогии с

гипотезой о среднем значении генеральной совокупности

, где нам было неизвестно истинное значение μ).

Теперь сделаем переход от нашего предположения, что μy=a* Х +

β

, к предсказанию значения случайной переменной Y в зависимости от значения контролируемой переменной Х. Для этого уравнение связи двух переменных запишем в виде Y=a*X+β+ε, где ε — случайная ошибка, которая отражает суммарный эффект влияния других факторов на Y (эти «другие» факторы не участвуют в нашей модели). Напомним, что т.к. переменная Х фиксирована, то ошибка ε определяется только свойствами переменной Y.

Уравнение Y=a*X+b+ε называют

линейной регрессионной моделью

. Часто Х еще называют

независимой переменной

(еще

предиктором

и

регрессором

, английский термин

predictor

,

regressor

), а Y –

зависимой

(или

объясняемой

,

response

variable

). Так как

регрессор

у нас один, то такая модель называется

простой линейной регрессионной моделью

(

simple

linear

regression

model

). α часто называют

коэффициентом регрессии.

Предположения линейной регрессионной модели перечислены в следующем разделе.

Предположения линейной регрессионной модели

Чтобы модель линейной регрессии Yi=a*Xi+β+ε

i

была адекватной — требуется:

  • Ошибки ε

    i

    должны быть независимыми переменными;
  • При каждом значении Xi ошибки ε

    i

    должны быть иметь нормальное распределение (также предполагается равенство нулю математического ожидания, т.е. Е[ε

    i

    ]=0);
  • При каждом значении Xi ошибки ε

    i

    должны иметь равные дисперсии (обозначим ее σ

    2

    ).


Примечание

: Последнее условие называется

гомоскедастичность

— стабильность, гомогенность дисперсии случайной ошибки e. Т.е.

дисперсия

ошибки σ

2

не должна зависеть от значения Xi.

Используя предположение о равенстве математического ожидания Е[ε

i

]=0 покажем, что μy(i)=Е[Yi]:

Е[Yi]= Е[a*Xi+β+ε

i

]= Е[a*Xi+β]+ Е[ε

i

]= a*Xi+β= μy(i), т.к. a, Xi и β постоянные значения.


Дисперсия

случайной переменной Y равна

дисперсии

ошибки ε, т.е. VAR(Y)= VAR(ε)=σ

2

. Это является следствием, что все значения переменной Х являются const, а VAR(ε)=VAR(ε

i

).

Задачи регрессионного анализа

Для проверки гипотезы о линейной взаимосвязи переменной Y от X делают выборку из генеральной совокупности (этой совокупности соответствует

регрессионная линия генеральной совокупности

, т.е.  μy=a* Х +β). Выборка будет состоять из n точек, т.е. из n пар значений {X;Y}.

На основании этой выборки мы можем вычислить оценки наклона a и сдвига β, которые обозначим соответственно

a

и

b

. Также часто используются обозначения â и b̂.

Далее, используя эти оценки, мы также можем проверить гипотезу: имеется ли линейная связь между X и Y статистически значимой?

Таким образом:


Первая задача

регрессионного анализа

– оценка неизвестных параметров (

estimation

of

the

unknown

parameters

). Подробнее см. раздел

Оценки неизвестных параметров модели

.


Вторая задача

регрессионного анализа

Проверка адекватности модели

(

model

adequacy

checking

).


Примечание

: Оценки параметров модели обычно вычисляются

методом наименьших квадратов

(МНК),

которому посвящена отдельная статья

.

Оценка неизвестных параметров линейной модели (используя функции MS EXCEL)

Неизвестные параметры

простой линейной регрессионной модели

Y=a*X+β+ε оценим с помощью

метода наименьших квадратов

статье про МНК подробно описано этот метод

).

Для вычисления параметров линейной модели методом МНК получены следующие выражения:

Таким образом, мы получим уравнение прямой линии Y=

a

*X+

b

, которая наилучшим образом аппроксимирует имеющиеся данные.


Примечание

: В статье про

метод наименьших квадратов

рассмотрены случаи аппроксимации

линейной

и

квадратичной функцией

, а также

степенной

,

логарифмической

и

экспоненциальной функцией

.

Оценку параметров в MS EXCEL можно выполнить различными способами:

  • с помощью функций

    НАКЛОН()

    и

    ОТРЕЗОК()

    ;
  • с помощью функции

    ЛИНЕЙН()

    ; см. статью

    Функция MS EXCEL ЛИНЕЙН()

  • формулами через статистики выборок

    ;

  • в матричной форме

    ;

  • с помощью

    инструмента Регрессия надстройки Пакет Анализа

    .

Сначала рассмотрим функции

НАКЛОН()

,

ОТРЕЗОК()

и

ЛИНЕЙН()

.

Пусть значения Х и Y находятся соответственно в диапазонах

C

23:

C

83

и

B

23:

B

83

(см.

файл примера

внизу статьи).


Примечание

: Значения двух переменных Х и Y можно сгенерировать, задав тренд и величину случайного разброса (см. статью

Генерация данных для линейной регрессии в MS EXCEL

).

В MS EXCEL наклон прямой линии

а

(

оценку

коэффициента регрессии

), можно найти по

методу МНК

с помощью функции

НАКЛОН()

, а сдвиг

b

(

оценку

постоянного члена

или

константы регрессии

), с помощью функции

ОТРЕЗОК()

. В английской версии это функции SLOPE и INTERCEPT соответственно.

Аналогичный результат можно получить с помощью функции

ЛИНЕЙН()

, английская версия LINEST (см.

статью об этой функции

).

Формула

=ЛИНЕЙН(C23:C83;B23:B83)

вернет наклон

а

. А формула =

ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);2)

— сдвиг

b

. Здесь требуются пояснения.

Функция

ЛИНЕЙН()

имеет 4 аргумента и возвращает целый массив значений:

ЛИНЕЙН(известные_значения_y; [известные_значения_x]; [конст]; [статистика])

Если 4-й аргумент

статистика

имеет значение ЛОЖЬ или опущен, то функция

ЛИНЕЙН()

возвращает только оценки параметров модели:

a

и

b

.


Примечание

: Остальные значения, возвращаемые функцией

ЛИНЕЙН()

, нам потребуются при вычислении

стандартных ошибок

и для

проверки значимости регрессии

. В этом случае аргумент

статистика

должен иметь значение ИСТИНА.

Чтобы вывести сразу обе оценки:

  • в одной строке необходимо выделить 2 ячейки,
  • ввести формулу в

    Строке формул

  • нажать

    CTRL

    +

    SHIFT

    +

    ENTER

    (см. статью про

    формулы массива

    ).

Если в

Строке формул

выделить формулу =

ЛИНЕЙН(C23:C83;B23:B83)

и нажать

клавишу F9

, то мы увидим что-то типа {3,01279389265416;154,240057900613}. Это как раз значения

a

и

b

. Как видно, оба значения разделены точкой с запятой «;», что свидетельствует, что функция вернула значения «в нескольких ячейках одной строки».

Если требуется вывести параметры линии не в одной строке, а одном столбце (ячейки друг под другом), то используйте формулу =

ТРАНСП(ЛИНЕЙН(C23:C83;B23:B83))

. При этом выделять нужно 2 ячейки в одном столбце. Если теперь выделить новую формулу и нажать клавишу F9, то мы увидим что 2 значения разделены двоеточием «:», что означает, что значения выведены в столбец (функция

ТРАНСП()

транспонировала строку в столбец

).

Чтобы разобраться в этом подробнее необходимо ознакомиться с

формулами массива

.

Чтобы не связываться с вводом

формул массива

, можно

использовать функцию ИНДЕКС()

. Формула =

ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);1)

или просто

ЛИНЕЙН(C23:C83;B23:B83)

вернет параметр, отвечающий за наклон линии, т.е.

а

. Формула

=ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83);2)

вернет параметр

b

.

Оценка неизвестных параметров линейной модели (через статистики выборок)

Наклон линии, т.е. коэффициент

а

, можно также вычислить через

коэффициент корреляции

и

стандартные отклонения выборок

:

=

КОРРЕЛ(B23:B83;C23:C83) *(СТАНДОТКЛОН.В(C23:C83)/ СТАНДОТКЛОН.В(B23:B83))

Вышеуказанная формула математически эквивалентна отношению

ковариации

выборок Х и Y и

дисперсии

выборки Х:

=

КОВАРИАЦИЯ.В(B23:B83;C23:C83)/ДИСП.В(B23:B83)

И, наконец, запишем еще одну формулу для нахождения сдвига

b

. Воспользуемся тем фактом, что

линия регрессии

проходит через точку

средних значений

переменных Х и Y.

Вычислив

средние значения

и подставив в формулу ранее найденный наклон

а

, получим сдвиг

b

.

Оценка неизвестных параметров линейной модели (матричная форма)

Также параметры

линии регрессии

можно найти в матричной форме (см.

файл примера лист Матричная форма

).

В формуле символом β обозначен столбец с искомыми параметрами модели: β0 (сдвиг

b

), β1 (наклон

a

).

Матрица Х равна:

Матрица

Х

называется

регрессионной матрицей

или

матрицей плана

. Она состоит из 2-х столбцов и n строк, где n – количество точек данных. Первый столбец — столбец единиц, второй – значения переменной Х.

Матрица

Х

T

– это

транспонированная матрица

Х

. Она состоит соответственно из n столбцов и 2-х строк.

В формуле символом

Y

обозначен столбец значений переменной Y.

Чтобы

перемножить матрицы

используйте функцию

МУМНОЖ()

. Чтобы

найти обратную матрицу

используйте функцию

МОБР()

.

Пусть дан массив значений переменных Х и Y (n=10, т.е.10 точек).

Слева от него достроим столбец с 1 для матрицы Х.

Записав формулу

=

МУМНОЖ(МОБР(МУМНОЖ(ТРАНСП(B7:C16);(B7:C16))); МУМНОЖ(ТРАНСП(B7:C16);(D7:D16)))

и введя ее как

формулу массива

в 2 ячейки, получим оценку параметров модели.

Красота применения матричной формы полностью раскрывается в случае

множественной регрессии

.

Построение линии регрессии

Для отображения

линии регрессии

построим сначала

диаграмму рассеяния

, на которой отобразим все точки (см.

начало статьи

).

Для построения прямой линии используйте вычисленные выше оценки параметров модели

a

и

b

(т.е. вычислите

у

по формуле

y

=

a

*

x

+

b

) или функцию

ТЕНДЕНЦИЯ()

.

Формула =

ТЕНДЕНЦИЯ($C$23:$C$83;$B$23:$B$83;B23)

возвращает расчетные (прогнозные) значения ŷi для заданного значения Хi из столбца

В2

.


Примечание

:

Линию регрессии

можно также построить с помощью функции

ПРЕДСКАЗ()

. Эта функция возвращает прогнозные значения ŷi, но, в отличие от функции

ТЕНДЕНЦИЯ()

работает только в случае одного регрессора. Функция

ТЕНДЕНЦИЯ()

может быть использована и в случае

множественной регрессии

(в этом случае 3-й аргумент функции должен быть ссылкой на диапазон, содержащий все значения Хi для выбранного наблюдения i).

Как видно из диаграммы выше

линия тренда

и

линия регрессии

не обязательно совпадают: отклонения точек от

линии тренда

случайны, а МНК лишь подбирает линию наиболее точно аппроксимирующую случайные точки данных.


Линию регрессии

можно построить и с помощью встроенных средств диаграммы, т.е. с помощью инструмента

Линия тренда.

Для этого выделите диаграмму, в меню выберите

вкладку Макет

, в

группе Анализ

нажмите

Линия тренда

, затем

Линейное приближение.

В диалоговом окне установите галочку

Показывать уравнение на диаграмме

(подробнее см. в

статье про МНК

).

Построенная таким образом линия, разумеется, должна совпасть с ранее построенной нами

линией регрессии,

а параметры уравнения

a

и

b

должны совпасть с параметрами уравнения отображенными на диаграмме.


Примечание:

Для того, чтобы вычисленные параметры уравнения

a

и

b

совпадали с параметрами уравнения на диаграмме, необходимо, чтобы тип у диаграммы был

Точечная, а не График

, т.к. тип диаграммы

График

не использует значения Х, а вместо значений Х используется последовательность 1; 2; 3; … Именно эти значения и берутся при расчете параметров

линии тренда

. Убедиться в этом можно если построить диаграмму

График

(см.

файл примера

), а значения

Хнач

и

Хшаг

установить равным 1. Только в этом случае параметры уравнения на диаграмме совпадут с

a

и

b

.

Коэффициент детерминации R

2


Коэффициент детерминации

R

2

показывает насколько полезна построенная нами

линейная регрессионная модель

.

Предположим, что у нас есть n значений переменной Y и мы хотим предсказать значение yi, но без использования значений переменной Х (т.е. без построения

регрессионной модели

). Очевидно, что лучшей оценкой для yi будет

среднее значение

ȳ. Соответственно, ошибка предсказания будет равна (yi — ȳ).


Примечание

: Далее будет использована терминология и обозначения

дисперсионного анализа

.

После построения

регрессионной модели

для предсказания значения yi мы будем использовать значение ŷi=a*xi+b. Ошибка предсказания теперь будет равна (yi — ŷi).

Теперь с помощью диаграммы сравним ошибки предсказания полученные без построения модели и с помощью модели.

Очевидно, что используя

регрессионную модель

мы уменьшили первоначальную (полную) ошибку (yi — ȳ)  на значение (ŷi — ȳ)  до величины (yi — ŷi).

(yi — ŷi) – это оставшаяся, необъясненная ошибка.

Очевидно, что все три ошибки связаны выражением:

(yi — ȳ)= (ŷi — ȳ) + (yi — ŷi)

Можно показать, что в общем виде справедливо следующее выражение:

Доказательство:

или в других, общепринятых в зарубежной литературе, обозначениях:


SST

=

SSR

+

SSE

Что означает:


Total Sum of Squares

=

Regression Sum of Squares

+

Error Sum of Squares


Примечание

: SS — Sum of Squares — Сумма Квадратов.

Как видно из формулы величины SST, SSR, SSE имеют размерность

дисперсии

(вариации) и соответственно описывают разброс (изменчивость):

Общую изменчивость

(Total variation),

Изменчивость объясненную моделью

(Explained variation) и

Необъясненную изменчивость

(Unexplained variation).

По определению

коэффициент детерминации

R

2

равен:

R

2

=

Изменчивость объясненная моделью / Общая изменчивость.

Этот показатель равен квадрату

коэффициента корреляции

и в MS EXCEL его можно вычислить с помощью функции

КВПИРСОН()

или

ЛИНЕЙН()

:

=

ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);3)

R

2

принимает значения от 0 до 1 (1 соответствует идеальной линейной зависимости Y от Х). Однако, на практике малые значения R2 вовсе не обязательно указывают, что переменную Х нельзя использовать для прогнозирования переменной Y. Малые значения R2 могут указывать на нелинейность связи или на то, что поведение переменной Y объясняется не только Х, но и другими факторами.

Стандартная ошибка регрессии


Стандартная ошибка регрессии

(

Standard Error of a regression

) показывает насколько велика ошибка предсказания значений переменной Y на основании значений Х. Отдельные значения Yi мы можем предсказывать лишь с точностью +/- несколько значений (обычно 2-3, в зависимости от формы распределения ошибки ε).

Теперь вспомним уравнение

линейной регрессионной модели

Y=a*X+β+ε. Ошибка ε имеет случайную природу, т.е. является случайной величиной и поэтому имеет свою функцию распределения со

средним значением

μ и

дисперсией

σ

2

.

Оценив значение

дисперсии

σ

2

и вычислив из нее квадратный корень – получим

Стандартную ошибку регрессии.

Чем точки наблюдений на диаграмме

рассеяния

ближе находятся к прямой линии, тем меньше

Стандартная ошибка.


Примечание

:

Вспомним

, что при построении модели предполагается, что

среднее значение

ошибки ε равно 0, т.е. E[ε]=0.

Оценим

дисперсию σ

2

. Помимо вычисления

Стандартной ошибки регрессии

эта оценка нам потребуется в дальнейшем еще и при построении

доверительных интервалов

для оценки параметров регрессии

a

и

b

.

Для оценки

дисперсии

ошибки ε используем

остатки регрессии

— разности между имеющимися значениями

yi

и значениями, предсказанными регрессионной моделью ŷ. Чем лучше регрессионная модель согласуется с данными (точки располагается близко к прямой линии), тем меньше величина остатков.

Для оценки

дисперсии σ

2

используют следующую формулу:

где SSE – сумма квадратов значений ошибок модели ε

i

=yi — ŷi (

Sum of Squared Errors

).

SSE часто обозначают и как SSres – сумма квадратов остатков (

Sum

of

Squared

residuals

).

Оценка

дисперсии

s

2

также имеет общепринятое обозначение MSE (Mean Square of Errors), т.е. среднее квадратов

ошибок

или MSRES (Mean Square of Residuals), т.е. среднее квадратов

остатков

. Хотя правильнее говорить сумме квадратов остатков, т.к. ошибка чаще ассоциируется с ошибкой модели ε, которая является непрерывной случайной величиной. Но, здесь мы будем использовать термины SSE и MSE, предполагая, что речь идет об остатках.


Примечание

: Напомним, что когда

мы использовали МНК

для нахождения параметров модели, то критерием оптимизации была минимизация именно SSE (SSres). Это выражение представляет собой сумму квадратов расстояний между наблюденными значениями yi и предсказанными моделью значениями ŷi, которые лежат на

линии регрессии.

Математическое ожидание

случайной величины MSE равно

дисперсии ошибки

ε, т.е.

σ

2

.

Чтобы понять почему SSE выбрана в качестве основы для оценки

дисперсии

ошибки ε, вспомним, что

σ

2

является также

дисперсией

случайной величины Y (относительно

среднего значения

μy, при заданном значении Хi). А т.к. оценкой μy является значение ŷi =

a

* Хi +

b

(значение

уравнения регрессии

при Х= Хi), то логично использовать именно SSE в качестве основы для оценки

дисперсии

σ

2

. Затем SSE усредняется на количество точек данных n за вычетом числа 2. Величина n-2 – это количество

степеней свободы

(

df



degrees

of

freedom

), т.е. число параметров системы, которые могут изменяться независимо (вспомним, что у нас в этом примере есть n независимых наблюдений переменной Y). В случае

простой линейной регрессии

число степеней свободы

равно n-2, т.к. при построении

линии регрессии

было оценено 2 параметра модели (на это было «потрачено» 2

степени свободы

).

Итак, как сказано было выше, квадратный корень из s

2

имеет специальное название

Стандартная ошибка регрессии

(

Standard Error of a regression

) и обозначается SEy. SEy показывает насколько велика ошибка предсказания. Отдельные значения Y мы можем предсказывать с точностью +/- несколько значений SEy (см.

этот раздел

). Если ошибки предсказания ε имеют

нормальное распределение

, то примерно 2/3 всех предсказанных значений будут на расстоянии не больше SEy от

линии регрессии

. SEy имеет размерность переменной Y и откладывается по вертикали. Часто на

диаграмме рассеяния

строят

границы предсказания

соответствующие +/- 2 SEy (т.е. 95% точек данных будут располагаться в пределах этих границ).

В MS EXCEL

стандартную ошибку

SEy можно вычислить непосредственно по формуле:

=

КОРЕНЬ(СУММКВРАЗН(C23:C83; ТЕНДЕНЦИЯ(C23:C83;B23:B83;B23:B83)) /( СЧЁТ(B23:B83) -2))

или с помощью функции

ЛИНЕЙН()

:

=

ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);3;2)


Примечание

: Подробнее о функции

ЛИНЕЙН()

см.

эту статью

.

Стандартные ошибки и доверительные интервалы для наклона и сдвига

В разделе

Оценка неизвестных параметров линейной модели

мы получили точечные оценки наклона

а

и сдвига

b

. Так как эти оценки получены на основе случайных величин (значений переменных Х и Y), то эти оценки сами являются случайными величинами и соответственно имеют функцию распределения со

средним значением

и

дисперсией

. Но, чтобы перейти от

точечных оценок

к

интервальным

, необходимо вычислить соответствующие

стандартные ошибки

(т.е.

стандартные отклонения

).


Стандартная ошибка коэффициента регрессии

a

вычисляется на основании

стандартной ошибки регрессии

по следующей формуле:

где Sx – стандартное отклонение величины х, вычисляемое по формуле:

где Sey –

стандартная ошибка регрессии,

т.е. ошибка предсказания значения переменой Y

(

см. выше

).

В MS EXCEL

стандартную ошибку коэффициента регрессии

Se можно вычислить впрямую по вышеуказанной формуле:

=

КОРЕНЬ(СУММКВРАЗН(C23:C83; ТЕНДЕНЦИЯ(C23:C83;B23:B83;B23:B83)) /( СЧЁТ(B23:B83) -2))/  СТАНДОТКЛОН.В(B23:B83) /КОРЕНЬ(СЧЁТ(B23:B83) -1)

или с помощью функции

ЛИНЕЙН()

:

=

ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);2;1)

Формулы приведены в

файле примера на листе Линейный

в разделе

Регрессионная статистика

.


Примечание

: Подробнее о функции

ЛИНЕЙН()

см.

эту статью

.

При построении

двухстороннего доверительного интервала

для

коэффициента регрессии

его границы определяются следующим образом:

где  —

квантиль распределения Стьюдента

с n-2 степенями свободы. Величина

а

с «крышкой» является другим обозначением

наклона

а

.

Например для

уровня значимости

альфа=0,05, можно вычислить с помощью формулы

=СТЬЮДЕНТ.ОБР.2Х(0,05;n-2)

Вышеуказанная формула следует из того факта, что если ошибки регрессии распределены нормально и независимо, то выборочное распределение случайной величины

является

t-распределением Стьюдента

с n-2 степенью свободы (то же справедливо и для наклона

b

).


Примечание

: Подробнее о построении

доверительных интервалов

в MS EXCEL можно прочитать в этой статье

Доверительные интервалы в MS EXCEL

.

В результате получим, что найденный

доверительный интервал

с вероятностью 95% (1-0,05) накроет истинное значение

коэффициента регрессии.

Здесь мы считаем, что

коэффициент регрессии

a

имеет

распределение Стьюдента

с n-2

степенями свободы

(n – количество наблюдений, т.е. пар Х и Y).


Примечание

: Подробнее о построении

доверительных интервалов

с использованием t-распределения см. статью про построение

доверительных интервалов

для среднего

.


Стандартная ошибка сдвига

b

вычисляется по следующей формуле:

В MS EXCEL

стандартную ошибку сдвига

Seb можно вычислить с помощью функции

ЛИНЕЙН()

:

=

ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);2;2)

При построении

двухстороннего доверительного интервала

для

сдвига

его границы определяются аналогичным образом как для

наклона

:

b

+/- t*Seb.

Проверка значимости взаимосвязи переменных

Когда мы строим модель Y=αX+β+ε мы предполагаем, что между Y и X существует линейная взаимосвязь. Однако, как это иногда бывает в статистике, можно вычислять параметры связи даже тогда, когда в действительности она не существует, и обусловлена лишь случайностью.

Единственный вариант, когда Y не зависит X (в рамках модели Y=αX+β+ε), возможен, когда

коэффициент регрессии

a

равен 0.

Чтобы убедиться, что вычисленная нами оценка

наклона

прямой линии не обусловлена лишь случайностью (не случайно отлична от 0), используют

проверку гипотез

. В качестве

нулевой гипотезы

Н

0

принимают, что связи нет, т.е. a=0. В качестве альтернативной гипотезы

Н

1

принимают, что a <>0.

Ниже на рисунках показаны 2 ситуации, когда

нулевую гипотезу

Н

0

не удается отвергнуть.

На левой картинке отсутствует любая зависимость между переменными, на правой – связь между ними нелинейная, но при этом

коэффициент линейной корреляции

равен 0.

Ниже — 2 ситуации, когда

нулевая гипотеза

Н

0

отвергается.

На левой картинке очевидна линейная зависимость, на правой — зависимость нелинейная, но коэффициент корреляции не равен 0 (метод МНК вычисляет показатели наклона и сдвига просто на основании значений выборки).

Для проверки гипотезы нам потребуется:

  • Установить

    уровень значимости

    , пусть альфа=0,05;

  • Рассчитать с помощью функции

    ЛИНЕЙН()

    стандартное отклонение

    Se для

    коэффициента регрессии

    (см.

    предыдущий раздел

    );

  • Рассчитать число степеней свободы: DF=n-2 или по формуле =

    ИНДЕКС(ЛИНЕЙН(C24:C84;B24:B84;;ИСТИНА);4;2)
  • Вычислить значение тестовой статистики t

    0

    =a/S

    e

    , которая имеет

    распределение Стьюдента

    с

    числом степеней свободы

    DF=n-2;

  • Сравнить значение

    тестовой статистики

    |t0| с пороговым значением t

    альфа

    ,n-2. Если значение

    тестовой статистики

    больше порогового значения, то

    нулевая гипотеза

    отвергается (

    наклон

    не может быть объяснен лишь случайностью при заданном уровне альфа) либо
  • вычислить

    p-значение

    и сравнить его с

    уровнем значимости

    .

В

файле примера

приведен пример проверки гипотезы:

Изменяя

наклон

тренда k (ячейка

В8

) можно убедиться, что при малых углах тренда (например, 0,05) тест часто показывает, что связь между переменными случайна. При больших углах (k>1), тест практически всегда подтверждает значимость линейной связи между переменными.


Примечание

: Проверка значимости взаимосвязи эквивалентна

проверке статистической значимости коэффициента корреляции

. В

файле примера

показана эквивалентность обоих подходов. Также проверку значимости можно провести с помощью

процедуры F-тест

.

Доверительные интервалы для нового наблюдения Y и среднего значения

Вычислив параметры

простой линейной регрессионной модели

Y=aX+β+ε мы получили точечную оценку значения нового наблюдения Y при заданном значении Хi, а именно: Ŷ=

a

* Хi +

b

Ŷ также является точечной оценкой для

среднего значения

Yi при заданном Хi. Но, при построении

доверительных интервалов

используются различные

стандартные ошибки

.


Стандартная ошибка

нового наблюдения Y при заданном Хi учитывает 2 источника неопределенности:

  • неопределенность связанную со случайностью оценок параметров модели

    a

    и

    b

    ;
  • случайность ошибки модели ε.

Учет этих неопределенностей приводит к

стандартной ошибке

S(Y|Xi), которая рассчитывается с учетом известного значения Xi.

где SS

xx

– сумма квадратов отклонений от

среднего

значений переменной Х:


Примечание

: Se –

стандартная ошибка коэффициента регрессии

(

наклона

а

).

В

MS EXCEL 2010

нет функции, которая бы рассчитывала эту

стандартную ошибку

, поэтому ее необходимо рассчитывать по вышеуказанным формулам.


Доверительный интервал

или

Интервал предсказания для нового наблюдения

(Prediction Interval for a New Observation) построим по схеме показанной в разделе

Проверка значимости взаимосвязи переменных

(см.

файл примера лист Интервалы

). Т.к. границы интервала зависят от значения Хi (точнее от расстояния Хi до среднего значения Х

ср

), то интервал будет постепенно расширяться при удалении от Х

ср

.

Границы

доверительного интервала

для

нового наблюдения

рассчитываются по формуле:

Аналогичным образом построим

доверительный интервал

для

среднего значения

Y при заданном Хi (Confidence Interval for the Mean of Y). В этом случае

доверительный интервал

будет уже, т.к.

средние значения

имеют меньшую изменчивость по сравнению с отдельными наблюдениями (

средние значения,

в рамках нашей линейной модели Y=aX+β+ε, не включают ошибку ε).


Стандартная ошибка

S(Yср|Xi) вычисляется по практически аналогичным формулам как и

стандартная ошибка

для нового наблюдения:

Как видно из формул,

стандартная ошибка

S(Yср|Xi) меньше

стандартной ошибки

S(Y|Xi) для индивидуального значения

.

Границы

доверительного интервала

для

среднего значения

рассчитываются по формуле:

Проверка адекватности линейной регрессионной модели

Модель адекватна, когда все предположения, лежащие в ее основе, выполнены (см. раздел

Предположения линейной регрессионной модели

).

Проверка адекватности модели в основном основана на исследовании остатков модели (model residuals), т.е. значений ei=yi – ŷi для каждого Хi. В рамках

простой линейной модели

n остатков имеют только n-2 связанных с ними

степеней свободы

. Следовательно, хотя, остатки не являются независимыми величинами, но при достаточно большом n это не оказывает какого-либо влияния на проверку адекватности модели.

Чтобы проверить предположение о

нормальности распределения

ошибок строят

график проверки на нормальность

(Normal probability Plot).

В

файле примера на листе Адекватность

построен

график проверки на нормальность

. В случае

нормального распределения

значения остатков должны быть близки к прямой линии.

Так как значения переменной Y мы

генерировали с помощью тренда

, вокруг которого значения имели нормальный разброс, то ожидать сюрпризов не приходится – значения остатков располагаются вблизи прямой.

Также при проверке модели на адекватность часто строят график зависимости остатков от предсказанных значений Y. Если точки не демонстрируют характерных, так называемых «паттернов» (шаблонов) типа вор

о

нок или другого неравномерного распределения, в зависимости от значений Y, то у нас нет очевидных доказательств неадекватности модели.

В нашем случае точки располагаются примерно равномерно.

Часто при проверке адекватности модели вместо остатков используют нормированные остатки. Как показано в разделе

Стандартная ошибка регрессии

оценкой

стандартного отклонения ошибок

является величина SEy равная квадратному корню из величины MSE. Поэтому логично нормирование остатков проводить именно на эту величину.

SEy можно вычислить с помощью функции

ЛИНЕЙН()

:

=

ИНДЕКС(ЛИНЕЙН(C23:C83;B23:B83;;ИСТИНА);3;2)

Иногда нормирование остатков производится на величину

стандартного отклонения

остатков (это мы увидим в статье об инструменте

Регрессия

, доступного в

надстройке MS EXCEL Пакет анализа

), т.е. по формуле:

Вышеуказанное равенство приблизительное, т.к. среднее значение остатков близко, но не обязательно точно равно 0.

Содержание

  • Подключение пакета анализа
  • Виды регрессионного анализа
  • Линейная регрессия в программе Excel
  • Разбор результатов анализа
  • Вопросы и ответы

Регрессивный анализ в Microsoft Excel

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Подключение пакета анализа

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.

  1. Перемещаемся во вкладку «Файл».
  2. Переход во вкладку Файл в Microsoft Excel

  3. Переходим в раздел «Параметры».
  4. Переход в параметры в программе Microsoft Excel

  5. Открывается окно параметров Excel. Переходим в подраздел «Надстройки».
  6. Переход в надстройки в программе Microsoft Excel

  7. В самой нижней части открывшегося окна переставляем переключатель в блоке «Управление» в позицию «Надстройки Excel», если он находится в другом положении. Жмем на кнопку «Перейти».
  8. Перемещение в надстройки в программе Microsoft Excel

  9. Открывается окно доступных надстроек Эксель. Ставим галочку около пункта «Пакет анализа». Жмем на кнопку «OK».

Активация пакета анализа в программе Microsoft Excel

Теперь, когда мы перейдем во вкладку «Данные», на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных».

Блок настроек Анализ в программе Microsoft Excel

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк. В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.

  1. Кликаем по кнопке «Анализ данных». Она размещена во вкладке «Главная» в блоке инструментов «Анализ».
  2. Переход в анализ данных в программе Microsoft Excel

    Lumpics.ru

  3. Открывается небольшое окошко. В нём выбираем пункт «Регрессия». Жмем на кнопку «OK».
  4. Запуск регрессии в программе Microsoft Excel

  5. Открывается окно настроек регрессии. В нём обязательными для заполнения полями являются «Входной интервал Y» и «Входной интервал X». Все остальные настройки можно оставить по умолчанию.

    В поле «Входной интервал Y» указываем адрес диапазона ячеек, где расположены переменные данные, влияние факторов на которые мы пытаемся установить. В нашем случае это будут ячейки столбца «Количество покупателей». Адрес можно вписать вручную с клавиатуры, а можно, просто выделить требуемый столбец. Последний вариант намного проще и удобнее.

    В поле «Входной интервал X» вводим адрес диапазона ячеек, где находятся данные того фактора, влияние которого на переменную мы хотим установить. Как говорилось выше, нам нужно установить влияние температуры на количество покупателей магазина, а поэтому вводим адрес ячеек в столбце «Температура». Это можно сделать теми же способами, что и в поле «Количество покупателей».

    Ввод интервала в настройках регрессии в программе Microsoft Excel

    С помощью других настроек можно установить метки, уровень надёжности, константу-ноль, отобразить график нормальной вероятности, и выполнить другие действия. Но, в большинстве случаев, эти настройки изменять не нужно. Единственное на что следует обратить внимание, так это на параметры вывода. По умолчанию вывод результатов анализа осуществляется на другом листе, но переставив переключатель, вы можете установить вывод в указанном диапазоне на том же листе, где расположена таблица с исходными данными, или в отдельной книге, то есть в новом файле.

    Параметры вывода в настройках регрессии в программе Microsoft Excel

    После того, как все настройки установлены, жмем на кнопку «OK».

Запуск регрессивного анализа в программе Microsoft Excel

Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Результат анализа регрессии в программе Microsoft Excel

Одним из основных показателей является R-квадрат. В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты». Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Регрессионный анализ в Microsoft Excel

Регрессивный анализ в Microsoft Excel

​Смотрите также​ При значении коэффициента​ 75,5%. Это означает,​х​ нескольких независимых переменных.​ D, F.​ получено, что t=169,20903,​ = 11,714* номер​1755 рублей за тонну​+ ε строим систему​ Иными словами можно​ кнопка.​20​ того или иного​ или в отдельной​

​ В нём обязательными​степенная;​

Подключение пакета анализа

​Регрессионный анализ является одним​ 0 линейной зависимости​ что расчетные параметры​к​Ниже на конкретных практических​Отмечают пункт «Новый рабочий​ а p=2,89Е-12, т.​ месяца + 1727,54.​4​

  1. ​ нормальных уравнений (см.​​ утверждать, что на​​Теперь, когда под рукой​

    Переход во вкладку Файл в Microsoft Excel

  2. ​50000 рублей​​ параметра от одной​​ книге, то есть​

    Переход в параметры в программе Microsoft Excel

  3. ​ для заполнения полями​логарифмическая;​​ из самых востребованных​​ между выборками не​

    Переход в надстройки в программе Microsoft Excel

  4. ​ модели на 75,5%​.​ примерах рассмотрим эти​​ лист» и нажимают​​ е. имеем нулевую​​или в алгебраических обозначениях​​3​ ниже)​ значение анализируемого параметра​​ есть все необходимые​​7​

    Перемещение в надстройки в программе Microsoft Excel

  5. ​ либо нескольких независимых​ в новом файле.​ являются​​экспоненциальная;​​ методов статистического исследования.​ существует.​

Активация пакета анализа в программе Microsoft Excel

​ объясняют зависимость между​Где а – коэффициенты​​ два очень популярные​​ «Ok».​ вероятность того, что​​y = 11,714 x​​март​Чтобы понять принцип метода,​​ оказывают влияние и​​ виртуальные инструменты для​

Блок настроек Анализ в программе Microsoft Excel

Виды регрессионного анализа

​5​

  • ​ переменных. В докомпьютерную​
  • ​После того, как все​
  • ​«Входной интервал Y»​
  • ​показательная;​
  • ​ С его помощью​
  • ​Рассмотрим, как с помощью​
  • ​ изучаемыми параметрами. Чем​

​ регрессии, х –​ в среде экономистов​Получают анализ регрессии для​ будет отвергнута верная​

Линейная регрессия в программе Excel

​ + 1727,54​1767 рублей за тонну​ рассмотрим двухфакторный случай.​ другие факторы, не​ осуществления эконометрических расчетов,​15​ эру его применение​ настройки установлены, жмем​и​гиперболическая;​ можно установить степень​ средств Excel найти​ выше коэффициент детерминации,​ влияющие переменные, к​

​ анализа. А также​ данной задачи.​ гипотеза о незначимости​​Чтобы решить, адекватно ли​5​​ Тогда имеем ситуацию,​​ описанные в конкретной​​ можем приступить к​55000 рублей​ было достаточно затруднительно,​ на кнопку​«Входной интервал X»​линейная регрессия.​​ влияния независимых величин​​ коэффициент корреляции.​ тем качественнее модель.​ – число факторов.​​ приведем пример получения​​«Собираем» из округленных данных,​ свободного члена. Для​ полученное уравнения линейной​4​ описываемую формулой​​ модели.​​ решению нашей задачи.​8​

  1. ​ особенно если речь​​«OK»​​. Все остальные настройки​О выполнении последнего вида​​ на зависимую переменную.​​Для нахождения парных коэффициентов​​ Хорошо – выше​​В нашем примере в​

    Переход в анализ данных в программе Microsoft Excel

  2. ​ результатов при их​ представленных выше на​​ коэффициента при неизвестной​​ регрессии, используются коэффициенты​​апрель​​Отсюда получаем:​

    Запуск регрессии в программе Microsoft Excel

  3. ​Следующий коэффициент -0,16285, расположенный​ Для этого:​6​ шла о больших​​.​​ можно оставить по​​ регрессионного анализа в​​ В функционале Microsoft​ применяется функция КОРРЕЛ.​ 0,8. Плохо –​

    ​ качестве У выступает​​ объединении.​​ листе табличного процессора​ t=5,79405, а p=0,001158.​ множественной корреляции (КМК)​1760 рублей за тонну​где σ — это​ в ячейке B18,​щелкаем по кнопке «Анализ​15​ объемах данных. Сегодня,​Результаты регрессионного анализа выводятся​ умолчанию.​ Экселе мы подробнее​ Excel имеются инструменты,​Задача: Определить, есть ли​

    ​ меньше 0,5 (такой​​ показатель уволившихся работников.​​Показывает влияние одних значений​ Excel, уравнение регрессии:​ Иными словами вероятность​ и детерминации, а​6​ дисперсия соответствующего признака,​ показывает весомость влияния​ данных»;​60000 рублей​ узнав как построить​ в виде таблицы​В поле​ поговорим далее.​ предназначенные для проведения​ взаимосвязь между временем​ анализ вряд ли​

    Ввод интервала в настройках регрессии в программе Microsoft Excel

    ​ Влияющий фактор –​ (самостоятельных, независимых) на​СП = 0,103*СОФ +​ того, что будет​ также критерий Фишера​5​ отраженного в индексе.​ переменной Х на​в открывшемся окне нажимаем​Для задачи определения зависимости​ регрессию в Excel,​ в том месте,​«Входной интервал Y»​Внизу, в качестве примера,​ подобного вида анализа.​ работы токарного станка​ можно считать резонным).​ заработная плата (х).​ зависимую переменную. К​ 0,541*VO – 0,031*VK​ отвергнута верная гипотеза​ и критерий Стьюдента.​май​МНК применим к уравнению​ Y. Это значит,​

    Параметры вывода в настройках регрессии в программе Microsoft Excel

    ​ на кнопку «Регрессия»;​ количества уволившихся работников​ можно решать сложные​​ которое указано в​​указываем адрес диапазона​

Запуск регрессивного анализа в программе Microsoft Excel

Разбор результатов анализа

​ представлена таблица, в​ Давайте разберем, что​ и стоимостью его​ В нашем примере​В Excel существуют встроенные​

Результат анализа регрессии в программе Microsoft Excel

​ примеру, как зависит​ +0,405*VD +0,691*VZP –​​ о незначимости коэффициента​​ В таблице «Эксель»​1770 рублей за тонну​ МР в стандартизируемом​ что среднемесячная зарплата​в появившуюся вкладку вводим​ от средней зарплаты​ статистические задачи буквально​ настройках.​

​ ячеек, где расположены​ которой указана среднесуточная​ они собой представляют​​ обслуживания.​​ – «неплохо».​​ функции, с помощью​​ количество экономически активного​ 265,844.​ при неизвестной, равна​ с результатами регрессии​7​ масштабе. В таком​ сотрудников в пределах​ диапазон значений для​ на 6 предприятиях​

​ за пару минут.​​Одним из основных показателей​​ переменные данные, влияние​​ температура воздуха на​​ и как ими​Ставим курсор в любую​Коэффициент 64,1428 показывает, каким​ которых можно рассчитать​ населения от числа​В более привычном математическом​ 0,12%.​ они выступают под​6​

​ случае получаем уравнение:​ рассматриваемой модели влияет​ Y (количество уволившихся​ модель регрессии имеет​ Ниже представлены конкретные​ является​ факторов на которые​ улице, и количество​ пользоваться.​

​ ячейку и нажимаем​

lumpics.ru

Регрессия в Excel: уравнение, примеры. Линейная регрессия

​ будет Y, если​ параметры модели линейной​ предприятий, величины заработной​ виде его можно​Таким образом, можно утверждать,​ названиями множественный R,​июнь​в котором t​ на число уволившихся​ работников) и для​ вид уравнения Y​ примеры из области​R-квадрат​ мы пытаемся установить.​ покупателей магазина за​Скачать последнюю версию​ кнопку fx.​ все переменные в​ регрессии. Но быстрее​ платы и др.​

Виды регрессии

​ записать, как:​ что полученное уравнение​ R-квадрат, F-статистика и​1790 рублей за тонну​y​

  • ​ с весом -0,16285,​
  • ​ X (их зарплаты);​
  • ​ = а​
  • ​ экономики.​
  • ​. В нем указывается​
  • ​ В нашем случае​
  • ​ соответствующий рабочий день.​

Пример 1

​ Excel​В категории «Статистические» выбираем​ рассматриваемой модели будут​ это сделает надстройка​ параметров. Или: как​

​y = 0,103*x1 +​ линейной регрессии адекватно.​ t-статистика соответственно.​8​, t​ т. е. степень​подтверждаем свои действия нажатием​

​0​

​Само это понятие было​

​ качество модели. В​

​ это будут ячейки​

​ Давайте выясним при​

​Но, для того, чтобы​

​ функцию КОРРЕЛ.​

​ равны 0. То​

​ «Пакет анализа».​

​ влияют иностранные инвестиции,​

​ 0,541*x2 – 0,031*x3​

​Множественная регрессия в Excel​

​КМК R дает возможность​

​7​

​x​

​ ее влияния совсем​

​ кнопки «Ok».​

​+ а​

​ введено в математику​

​ нашем случае данный​

​ столбца «Количество покупателей».​

​ помощи регрессионного анализа,​

​ использовать функцию, позволяющую​

​Аргумент «Массив 1» -​

​ есть на значение​

​Активируем мощный аналитический инструмент:​

​ цены на энергоресурсы​

​ +0,405*x4 +0,691*x5 –​

​ выполняется с использованием​

​ оценить тесноту вероятностной​

​июль​

​1, …​

​ небольшая. Знак «-»​

​В результате программа автоматически​

​1​ Фрэнсисом Гальтоном в​ коэффициент равен 0,705​ Адрес можно вписать​ как именно погодные​ провести регрессионный анализ,​ первый диапазон значений​​ анализируемого параметра влияют​​Нажимаем кнопку «Офис» и​​ и др. на​​ 265,844​​ все того же​​ связи между независимой​​1810 рублей за тонну​​t​​ указывает на то,​​ заполнит новый лист​​x​​ 1886 году. Регрессия​ или около 70,5%.​​ вручную с клавиатуры,​​ условия в виде​ прежде всего, нужно​ – время работы​

​ и другие факторы,​ переходим на вкладку​ уровень ВВП.​Данные для АО «MMM»​ инструмента «Анализ данных».​ и зависимой переменными.​

Использование возможностей табличного процессора «Эксель»

​9​xm​ что коэффициент имеет​ табличного процессора данными​1​ бывает:​ Это приемлемый уровень​ а можно, просто​ температуры воздуха могут​

  • ​ активировать Пакет анализа.​ станка: А2:А14.​
  • ​ не описанные в​ «Параметры Excel». «Надстройки».​
  • ​Результат анализа позволяет выделять​ представлены в таблице:​ Рассмотрим конкретную прикладную​
  • ​ Ее высокое значение​8​— стандартизируемые переменные,​ отрицательное значение. Это​

​ анализа регрессии. Обратите​+…+а​линейной;​ качества. Зависимость менее​ выделить требуемый столбец.​ повлиять на посещаемость​

Линейная регрессия в Excel

​ Только тогда необходимые​Аргумент «Массив 2» -​ модели.​Внизу, под выпадающим списком,​ приоритеты. И основываясь​СОФ, USD​ задачу.​

  • ​ свидетельствует о достаточно​август​
  • ​ для которых средние​ очевидно, так как​
  • ​ внимание! В Excel​k​параболической;​ 0,5 является плохой.​ Последний вариант намного​
  • ​ торгового заведения.​ для этой процедуры​

​ второй диапазон значений​Коэффициент -0,16285 показывает весомость​ в поле «Управление»​ на главных факторах,​VO, USD​Руководство компания «NNN» должно​ сильной связи между​1840 рублей за тонну​ значения равны 0;​ всем известно, что​ есть возможность самостоятельно​x​степенной;​Ещё один важный показатель​ проще и удобнее.​Общее уравнение регрессии линейного​ инструменты появятся на​

Анализ результатов регрессии для R-квадрата

​ – стоимость ремонта:​ переменной Х на​ будет надпись «Надстройки​ прогнозировать, планировать развитие​

регрессия в Excel

​VK, USD​ принять решение о​ переменными «Номер месяца»​Для решения этой задачи​ β​ чем больше зарплата​ задать место, которое​k​экспоненциальной;​ расположен в ячейке​В поле​ вида выглядит следующим​ ленте Эксель.​ В2:В14. Жмем ОК.​ Y. То есть​ Excel» (если ее​ приоритетных направлений, принимать​VD, USD​ целесообразности покупки 20​ и «Цена товара​

Анализ коэффициентов

​ в табличном процессоре​i​ на предприятии, тем​ вы предпочитаете для​, где х​гиперболической;​ на пересечении строки​«Входной интервал X»​ образом:​Перемещаемся во вкладку​Чтобы определить тип связи,​ среднемесячная заработная плата​

​ нет, нажмите на​ управленческие решения.​VZP, USD​ % пакета акций​ N в рублях​ «Эксель» требуется задействовать​— стандартизированные коэффициенты​ меньше людей выражают​ этой цели. Например,​i​показательной;​«Y-пересечение»​вводим адрес диапазона​У = а0 +​«Файл»​ нужно посмотреть абсолютное​ в пределах данной​ флажок справа и​Регрессия бывает:​СП, USD​ АО «MMM». Стоимость​ за 1 тонну».​ уже известный по​

Множественная регрессия

​ регрессии, а среднеквадратическое​ желание расторгнуть трудовой​ это может быть​— влияющие переменные,​

​логарифмической.​​и столбца​​ ячеек, где находятся​​ а1х1 +…+акхк​​.​​ число коэффициента (для​​ модели влияет на​ выберите). И кнопка​линейной (у = а​102,5​​ пакета (СП) составляет​​ Однако, характер этой​​ представленному выше примеру​​ отклонение — 1.​​ договор или увольняется.​​ тот же лист,​ a​

Оценка параметров

​Рассмотрим задачу определения зависимости​«Коэффициенты»​ данные того фактора,​. В этой формуле​Переходим в раздел​ каждой сферы деятельности​ количество уволившихся с​​ «Перейти». Жмем.​​ + bx);​​535,5​​ 70 млн американских​​ связи остается неизвестным.​​ инструмент «Анализ данных».​​Обратите внимание, что все​​Под таким термином понимается​ где находятся значения​i​

множественная регрессия

​ количества уволившихся членов​. Тут указывается какое​ влияние которого на​Y​

коэффициент регрессии

​«Параметры»​

уравнение регрессии в Excel

​ есть своя шкала).​ весом -0,16285 (это​Открывается список доступных надстроек.​

​параболической (y = a​45,2​ долларов. Специалистами «NNN»​Квадрат коэффициента детерминации R2(RI)​

линейная регрессия в Excel

​ Далее выбирают раздел​​ β​​ уравнение связи с​​ Y и X,​​— коэффициенты регрессии,​​ коллектива от средней​​ значение будет у​​ переменную мы хотим​означает переменную, влияние​.​Для корреляционного анализа нескольких​​ небольшая степень влияния).​​ Выбираем «Пакет анализа»​ + bx +​41,5​

​ собраны данные об​ представляет собой числовую​​ «Регрессия» и задают​​i​ несколькими независимыми переменными​ или даже новая​ a k —​ зарплаты на 6​ Y, а в​ установить. Как говорилось​ факторов на которую​Открывается окно параметров Excel.​ параметров (более 2)​ Знак «-» указывает​

Задача с использованием уравнения линейной регрессии

​ и нажимаем ОК.​ cx2);​21,55​ аналогичных сделках. Было​ характеристику доли общего​ параметры. Нужно помнить,​в данном случае​ вида:​

​ книга, специально предназначенная​

​ число факторов.​

​ промышленных предприятиях.​

​ нашем случае, это​

​ выше, нам нужно​

​ мы пытаемся изучить.​

​ Переходим в подраздел​

​ удобнее применять «Анализ​

​ на отрицательное влияние:​

​После активации надстройка будет​

​экспоненциальной (y = a​

​64,72​

​ принято решение оценивать​

​ разброса и показывает,​

​ что в поле​

​ заданы, как нормируемые​

​y=f(x​

​ для хранения подобных​

​Для данной задачи Y​

​Задача. На шести предприятиях​

​ количество покупателей, при​

​ установить влияние температуры​

​ В нашем случае,​

​«Надстройки»​

​ данных» (надстройка «Пакет​

​ чем больше зарплата,​

​ доступна на вкладке​

​ * exp(bx));​

​Подставив их в уравнение​

​ стоимость пакета акций​

​ разброс какой части​

​ «Входной интервал Y»​

​ и централизируемые, поэтому​

​1​

​ данных.​

​ — это показатель​

​ проанализировали среднемесячную заработную​

​ всех остальных факторах​

​ на количество покупателей​

​ это количество покупателей.​.​ анализа»). В списке​ тем меньше уволившихся.​ «Данные».​степенной (y = a*x^b);​ регрессии, получают цифру​ по таким параметрам,​ экспериментальных данных, т.е.​ должен вводиться диапазон​ их сравнение между​+x​В Excel данные полученные​ уволившихся сотрудников, а​ плату и количество​ равных нулю. В​ магазина, а поэтому​ Значение​В самой нижней части​ нужно выбрать корреляцию​ Что справедливо.​Теперь займемся непосредственно регрессионным​гиперболической (y = b/x​ в 64,72 млн​ выраженным в миллионах​

​ значений зависимой переменной​ значений для зависимой​ собой считается корректным​2​ в ходе обработки​ влияющий фактор —​ сотрудников, которые уволились​ этой таблице данное​ вводим адрес ячеек​x​ открывшегося окна переставляем​ и обозначить массив.​​ анализом.​ + a);​

​ американских долларов. Это​ американских долларов, как:​ соответствует уравнению линейной​

​ переменной (в данном​

​ и допустимым. Кроме​+…x​

Анализ результатов

​ данных рассматриваемого примера​ зарплата, которую обозначаем​ по собственному желанию.​ значение равно 58,04.​ в столбце «Температура».​– это различные​ переключатель в блоке​ Все.​Корреляционный анализ помогает установить,​Открываем меню инструмента «Анализ​логарифмической (y = b​ значит, что акции​кредиторская задолженность (VK);​

​ регрессии. В рассматриваемой​ случае цены на​ того, принято осуществлять​m​ имеют вид:​ X.​ В табличной форме​Значение на пересечении граф​ Это можно сделать​ факторы, влияющие на​«Управление»​Полученные коэффициенты отобразятся в​ есть ли между​

​ данных». Выбираем «Регрессия».​ * 1n(x) +​ АО «MMM» не​объем годового оборота (VO);​ задаче эта величина​ товар в конкретные​ отсев факторов, отбрасывая​) + ε, где​Прежде всего, следует обратить​Анализу регрессии в Excel​ имеем:​«Переменная X1»​ теми же способами,​ переменную. Параметры​в позицию​

​ корреляционной матрице. Наподобие​ показателями в одной​Откроется меню для выбора​ a);​ стоит приобретать, так​дебиторская задолженность (VD);​

​ равна 84,8%, т.​ месяцы года), а​ те из них,​ y — это​ внимание на значение​ должно предшествовать применение​A​​и​​ что и в​a​«Надстройки Excel»​

​ такой:​ или двух выборках​ входных значений и​показательной (y = a​ как их стоимость​стоимость основных фондов (СОФ).​ е. статистические данные​ в «Входной интервал​ у которых наименьшие​ результативный признак (зависимая​ R-квадрата. Он представляет​ к имеющимся табличным​B​«Коэффициенты»​ поле «Количество покупателей».​являются коэффициентами регрессии.​, если он находится​На практике эти две​

​ связь. Например, между​ параметров вывода (где​ * b^x).​

Задача о целесообразности покупки пакета акций

​ в 70 млн​Кроме того, используется параметр​ с высокой степенью​ X» — для​ значения βi.​ переменная), а x​

​ собой коэффициент детерминации.​ данным встроенных функций.​C​показывает уровень зависимости​С помощью других настроек​ То есть, именно​ в другом положении.​ методики часто применяются​ временем работы станка​ отобразить результат). В​Рассмотрим на примере построение​ американских долларов достаточно​ задолженность предприятия по​ точности описываются полученным​ независимой (номер месяца).​

  • ​Предположим, имеется таблица динамики​
  • ​1​
  • ​ В данном примере​
  • ​ Однако для этих​

​1​ Y от X.​ можно установить метки,​ они определяют значимость​ Жмем на кнопку​

Решение средствами табличного процессора Excel

​ вместе.​ и стоимостью ремонта,​ полях для исходных​ регрессионной модели в​

как построить регрессию в Excel

​ завышена.​

  • ​ зарплате (V3 П)​
  • ​ УР.​
  • ​ Подтверждаем действия нажатием​ цены конкретного товара​, x​ R-квадрат = 0,755​
  • ​ целей лучше воспользоваться​Х​ В нашем случае​ уровень надёжности, константу-ноль,​ того или иного​«Перейти»​Пример:​ ценой техники и​

​ данных указываем диапазон​ Excel и интерпретацию​Как видим, использование табличного​

​ в тысячах американских​F-статистика, называемая также критерием​

регрессия примеры в Excel

Изучение результатов и выводы

​ «Ok». На новом​ N в течение​2​ (75,5%), т. е.​

​ очень полезной надстройкой​Количество уволившихся​ — это уровень​ отобразить график нормальной​

​ фактора. Индекс​.​Строим корреляционное поле: «Вставка»​

​ продолжительностью эксплуатации, ростом​ описываемого параметра (У)​ результатов. Возьмем линейный​ процессора «Эксель» и​

​ долларов.​ Фишера, используется для​

​ листе (если так​

​ последних 8 месяцев.​

​, …x​

​ расчетные параметры модели​

​ «Пакет анализа». Для​

​Зарплата​

​ зависимости количества клиентов​

​ вероятности, и выполнить​

​k​

​Открывается окно доступных надстроек​

​ — «Диаграмма» -​

​ и весом детей​

​ и влияющего на​ тип регрессии.​ уравнения регрессии позволило​Прежде всего, необходимо составить​ оценки значимости линейной​ было указано) получаем​ Необходимо принять решение​m​ объясняют зависимость между​ его активации нужно:​2​

​ магазина от температуры.​ другие действия. Но,​обозначает общее количество​ Эксель. Ставим галочку​ «Точечная диаграмма» (дает​ и т.д.​

​ него фактора (Х).​Задача. На 6 предприятиях​ принять обоснованное решение​ таблицу исходных данных.​ зависимости, опровергая или​ данные для регрессии.​ о целесообразности приобретения​

​— это признаки-факторы​

fb.ru

Корреляционно-регрессионный анализ в Excel: инструкция выполнения

​ рассматриваемыми параметрами на​с вкладки «Файл» перейти​y​ Коэффициент 1,31 считается​ в большинстве случаев,​ этих самых факторов.​ около пункта​

​ сравнивать пары). Диапазон​Если связь имеется, то​ Остальное можно и​ была проанализирована среднемесячная​ относительно целесообразности вполне​ Она имеет следующий​ подтверждая гипотезу о​Строим по ним линейное​

Регрессионный анализ в Excel

​ его партии по​ (независимые переменные).​ 75,5 %. Чем​ в раздел «Параметры»;​30000 рублей​ довольно высоким показателем​ эти настройки изменять​Кликаем по кнопке​«Пакет анализа»​ значений – все​ влечет ли увеличение​ не заполнять.​ заработная плата и​

​ конкретной сделки.​ вид:​ ее существовании.​ уравнение вида y=ax+b,​ цене 1850 руб./т.​Для множественной регрессии (МР)​

​ выше значение коэффициента​

  • ​в открывшемся окне выбрать​3​
  • ​ влияния.​ не нужно. Единственное​«Анализ данных»​
  • ​. Жмем на кнопку​ числовые данные таблицы.​
  • ​ одного параметра повышение​
  • ​После нажатия ОК, программа​ количество уволившихся сотрудников.​
  • ​Теперь вы знаете, что​Далее:​Значение t-статистики (критерий Стьюдента)​
  • ​ где в качестве​A​

​ ее осуществляют, используя​ детерминации, тем выбранная​ строку «Надстройки»;​1​Как видим, с помощью​

​ на что следует​. Она размещена во​ «OK».​Щелкаем левой кнопкой мыши​ (положительная корреляция) либо​ отобразит расчеты на​ Необходимо определить зависимость​

Зарплата сотрудников.

​ такое регрессия. Примеры​вызывают окно «Анализ данных»;​

​ помогает оценивать значимость​​ параметров a и​​B​​ метод наименьших квадратов​​ модель считается более​​щелкнуть по кнопке «Перейти»,​​60​​ программы Microsoft Excel​​ обратить внимание, так​​ вкладке​​Теперь, когда мы перейдем​

​ по любой точке​ уменьшение (отрицательная) другого.​ новом листе (можно​ числа уволившихся сотрудников​

​ в Excel, рассмотренные​выбирают раздел «Регрессия»;​ коэффициента при неизвестной​ b выступают коэффициенты​C​

​ (МНК). Для линейных​ применимой для конкретной​ расположенной внизу, справа​35000 рублей​ довольно просто составить​ это на параметры​«Главная»​

​ во вкладку​

  1. ​ на диаграмме. Потом​ Корреляционный анализ помогает​ выбрать интервал для​Надстройки.
  2. ​ от средней зарплаты.​ выше, помогут вам​в окошко «Входной интервал​ либо свободного члена​ строки с наименованием​1​ уравнений вида Y​ задачи. Считается, что​Управление.
  3. ​ от строки «Управление»;​4​ таблицу регрессионного анализа.​

Пакет анализа.

​ вывода. По умолчанию​в блоке инструментов​«Данные»​

Анализ данных.

​ правой. В открывшемся​ аналитику определиться, можно​

  1. ​ отображения на текущем​Модель линейной регрессии имеет​Регрессия.
  2. ​ в решение практических​ Y» вводят диапазон​ линейной зависимости. Если​ номера месяца и​номер месяца​ = a +​ она корректно описывает​поставить галочку рядом с​2​ Но, работать с​ вывод результатов анализа​Параметры регрессии.
  3. ​«Анализ»​, на ленте в​ меню выбираем «Добавить​ ли по величине​ листе или назначить​ следующий вид:​ задач из области​ значений зависимых переменных​

Результат анализа регрессии.

​ значение t-критерия >​ коэффициенты и строки​название месяца​

​ b​ реальную ситуацию при​ названием «Пакет анализа»​35​ полученными на выходе​ осуществляется на другом​.​ блоке инструментов​ линию тренда».​ одного показателя предсказать​ вывод в новую​У = а​ эконометрики.​ из столбца G;​ t​ «Y-пересечение» из листа​цена товара N​

​1​ значении R-квадрата выше​ и подтвердить свои​40000 рублей​ данными, и понимать​ листе, но переставив​Открывается небольшое окошко. В​«Анализ»​Назначаем параметры для линии.​ возможное значение другого.​

​ книгу).​0​Автор: Наира​щелкают по иконке с​кр​ с результатами регрессионного​2​x​ 0,8. Если R-квадрата​ действия, нажав «Ок».​5​ их суть, сможет​ переключатель, вы можете​ нём выбираем пункт​

​мы увидим новую​

Корреляционный анализ в Excel

​ Тип – «Линейная».​Коэффициент корреляции обозначается r.​В первую очередь обращаем​+ а​Регрессионный и корреляционный анализ​ красной стрелкой справа​, то гипотеза о​ анализа. Таким образом,​1​1​Число 64,1428 показывает, каким​

​Если все сделано правильно,​3​ только подготовленный человек.​ установить вывод в​«Регрессия»​ кнопку –​ Внизу – «Показать​ Варьируется в пределах​ внимание на R-квадрат​1​

​ – статистические методы​ от окна «Входной​ незначимости свободного члена​ линейное уравнение регрессии​январь​+…+b​ будет значение Y,​ в правой части​20​Автор: Максим Тютюшев​

​ указанном диапазоне на​. Жмем на кнопку​«Анализ данных»​

​ уравнение на диаграмме».​ от +1 до​

​ и коэффициенты.​х​ исследования. Это наиболее​ интервал X» и​ линейного уравнения отвергается.​

Время и стоимость.

​ (УР) для задачи​1750 рублей за тонну​m​

  1. ​ если все переменные​ вкладки «Данные», расположенном​
  2. ​45000 рублей​Регрессионный анализ — это​ том же листе,​«OK»​
  3. ​.​Жмем «Закрыть».​ -1. Классификация корреляционных​R-квадрат – коэффициент детерминации.​

Функция КОРРЕЛ.

​1​ распространенные способы показать​ выделяют на листе​В рассматриваемой задаче для​ 3 записывается в​

​3​x​ xi в рассматриваемой​ над рабочим листом​6​ статистический метод исследования,​ где расположена таблица​.​

​Существует несколько видов регрессий:​Теперь стали видны и​ связей для разных​

Корреляционная матрица.

Корреляционно-регрессионный анализ

​ В нашем примере​+…+а​ зависимость какого-либо параметра​

​ диапазон всех значений​

Объем продаж и цена.

  1. ​ свободного члена посредством​ виде:​2​m​ нами модели обнулятся.​ «Эксель», появится нужная​Поле корреляции.
  2. ​4​ позволяющий показать зависимость​ с исходными данными,​Открывается окно настроек регрессии.​параболическая;​ данные регрессионного анализа.​Добавить линию тренда.
  3. ​ сфер будет отличаться.​ – 0,755, или​к​ от одной или​Линейная линия тренда.
  4. ​ из столбцов B,C,​

Линейная корреляция.

​ инструментов «Эксель» было​Цена на товар N​

exceltable.com

​февраль​

Регрессионный анализ в Microsoft Excel

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Подключение пакета анализа

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.

    Перемещаемся во вкладку «Файл».

Открывается окно параметров Excel. Переходим в подраздел «Надстройки».

В самой нижней части открывшегося окна переставляем переключатель в блоке «Управление» в позицию «Надстройки Excel», если он находится в другом положении. Жмем на кнопку «Перейти».

Теперь, когда мы перейдем во вкладку «Данные», на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных».

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Линейная регрессия в программе Excel

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк . В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.

  1. Кликаем по кнопке «Анализ данных». Она размещена во вкладке «Главная» в блоке инструментов «Анализ».

Открывается небольшое окошко. В нём выбираем пункт «Регрессия». Жмем на кнопку «OK».

Открывается окно настроек регрессии. В нём обязательными для заполнения полями являются «Входной интервал Y» и «Входной интервал X». Все остальные настройки можно оставить по умолчанию.

В поле «Входной интервал Y» указываем адрес диапазона ячеек, где расположены переменные данные, влияние факторов на которые мы пытаемся установить. В нашем случае это будут ячейки столбца «Количество покупателей». Адрес можно вписать вручную с клавиатуры, а можно, просто выделить требуемый столбец. Последний вариант намного проще и удобнее.

В поле «Входной интервал X» вводим адрес диапазона ячеек, где находятся данные того фактора, влияние которого на переменную мы хотим установить. Как говорилось выше, нам нужно установить влияние температуры на количество покупателей магазина, а поэтому вводим адрес ячеек в столбце «Температура». Это можно сделать теми же способами, что и в поле «Количество покупателей».

С помощью других настроек можно установить метки, уровень надёжности, константу-ноль, отобразить график нормальной вероятности, и выполнить другие действия. Но, в большинстве случаев, эти настройки изменять не нужно. Единственное на что следует обратить внимание, так это на параметры вывода. По умолчанию вывод результатов анализа осуществляется на другом листе, но переставив переключатель, вы можете установить вывод в указанном диапазоне на том же листе, где расположена таблица с исходными данными, или в отдельной книге, то есть в новом файле.

После того, как все настройки установлены, жмем на кнопку «OK».

Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Одним из основных показателей является R-квадрат. В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты». Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Помимо этой статьи, на сайте еще 12680 инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Множественная регрессия в EXCEL

history 26 января 2019 г.
    Группы статей

  • Статистический анализ

Рассмотрим использование MS EXCEL для прогнозирования переменной Y на основании нескольких переменных Х, т.е. множественную регрессию.

Перед прочтением этой статьи рекомендуется освежить в памяти простую линейную регрессию – прогнозирование на основе значений только одного фактора.

Disclaimer : Данную статью не стоит рассматривать, как пересказ главы из учебника по статистике. Статья не обладает ни полнотой, ни строгостью изложения положений статистической науки. Эта статья – о применении MS EXCEL для целей Множественного регрессионного анализа. Теоретические отступления приведены лишь из соображения логики изложения. Использование данной статьи для изучения Регрессии – плохая идея.

Статья про Множественный регрессионный анализ получилась большая, поэтому ниже для удобства приведены ее разделы:

Прогнозирование единственной переменной Y на основании значений 2-х или более переменных Х называется множественной регрессией .

Множественная линейная регрессионная модель (Multiple Linear Regression Model) имеет вид Y=β 01 *X 12 *X 2 +…+β k *X k +ε. В этом случае переменная Y зависит от k поясняющих переменных Х, т.е. регрессоров . ε — случайная ошибка . Модель является линейной относительно неизвестных параметров β.

Оценка неизвестных параметров

В этой статье рассмотрим модель с 2-мя регрессорами. Сначала введем необходимые обозначения и понятия множественной регрессии.

Для описания зависимости Y от 2-х переменных линейная модель имеет вид:

Параметры этой модели β i нам неизвестны, но их можно оценить, используя случайную выборку (измеренные значения переменной Y от заданных Х). Оценки параметров модели (β 0 , β 1 , β 2 ) обычно вычисляются методом наименьших квадратов (МНК) , который минимизирует сумму квадратов ошибок прогнозирования (критерий минимизации в англоязычной литературе обозначают как SSE – Sum of Squared Errors).

Ошибка ε имеет случайную природу и имеет свою функцию распределения со средним значением =0 и дисперсией σ 2 .

Оценки b 1 и b 2 называются коэффициентами регрессии , они определяют влияние соответствующей переменной X, когда все остальные независимые переменные остаются неизменными .

Сдвиг (intercept) или постоянный член b 0 , определяет прогнозируемое значение Y, когда все поясняющие переменные Х равны 0 (часто сдвиг не имеет физического смысла в рамках модели и обусловлен лишь математическими вычислениями МНК ).

Вычислив оценки, полученные методом МНК, позволяют прогнозировать значения переменной Y:

Примечание : Для случая 2-х регрессоров, все спрогнозированные значения переменной Y будут лежать в плоскости (в плоскости регрессии ).

В качестве примера рассмотрим технологический процесс изготовления нити:

Инженер, на основе имеющегося опыта, предположил, что прочность нити Y зависит от концентрации исходного раствора1 ) и температуры реакции2 ), и соответствует модели линейной регрессии. Для нахождения комбинации переменных Х, при которых Y принимает максимальное значение, необходимо определить коэффициенты регрессии, сделав выборку.

В MS EXCEL коэффициенты множественной регрессии удобнее всего вычислить с помощью функции ЛИНЕЙН() . Это сделано в файле примера на листе Коэффициенты . Чтобы вычислить оценки:

  • выделите 3 ячейки в одной строке (т.к. мы рассматриваем случай 2-х регрессоров, то будут вычислены 2 коэффициента регрессии + величина сдвига = 3 значения, для вывода которых понадобится 3 ячейки). Пусть это будет диапазон С8:Е8 ;
  • в Строке формул введите = ЛИНЕЙН(D20:D50;B20:C50) . Предполагается, что в столбце В содержатся прогнозируемые значения Y (в нашей модели это Прочность нити), в столбцах С и D содержатся значения контролируемых параметров Х (Х1 – Концентрация в столбце С и Х2 – Температура в столбце D).
  • нажмите CTRL+SHIFT+ENTER (т.к. это формула массива ).

В левой ячейке будет рассчитано значение коэффициента регрессии b 2 для переменной Х2, в средней ячейке — значение коэффициента регрессии b 1 для переменной Х1, в правой – сдвиг . Обратите внимание, что порядок вывода коэффициентов регрессии обратный по отношению к расположению столбцов с данными соответствующих переменных Х (вычисленный коэффициент b 2 располагается левее по отношению к b 1 , тогда как значения переменной Х2 располагаются правее значений переменной Х1). Это может привести к путанице, поэтому лучше разместить коэффициенты над соответствующими столбцами с данными, как это сделано в строке 17 файла примера .

Примечание : В принципе без функции ЛИНЕЙН() можно обойтись, записав альтернативные формулы. Для этого в файле примера на листе Коэффициенты в столбцах I : K вычислены отклонения значений переменных Х 1i , Х 2i , Y i от их средних значений , т.е.:

Далее коэффициенты регрессии рассчитываются по следующим формулам (эти формулы справедливы только при прогнозировании по 2-м независимым переменным Х):

При прогнозировании по 3-м и более независимым переменным Х формулы для вычисления коэффициентов регрессии значительно усложняются, поэтому следует использовать матричный подход.

В файле примера на листе Матричная форма выполнены расчеты коэффициентов регрессии с помощью матричного подхода.

Расчет можно произвести как пошагово, так и одной формулой массива :

Коэффициенты регрессии (вектор b ) в этом случае вычисляются по формуле b =(X T X) -1 (X T Y) или в другом виде записи b =(X ’ X) -1 (X ’ Y)

Под Х подразумевается матрица, состоящая из столбцов значений переменной Х с дополнительным столбцом единиц, а под Y – вектор-столбец значений Y.

Диаграмма рассеяния

В случае простой линейной регрессии (один регрессор, т.е. одна переменная Х) для визуализации связи между прогнозируемым значением Y и переменной Х строят диаграмму рассеяния (двумерную).

В случае множественной линейной регрессии двумерную диаграмму рассеяния можно построить только для анализа влияния каждого отдельного регрессора на Y (при этом остальные Х не меняются), т.е. так называемую Матричную диаграмму рассеивания (См. файл примера лист Диагр расс (матричная) ).

К сожалению, такую диаграмму трудно интерпретировать.

Более того, матричная диаграмма может вводить в заблуждение (см. Introduction to linear regression analysis / D . C . Montgomery , E . A . Peck , G . G . Vining , раздел 3.2.5 ), демонстрируя наличие или отсутствие линейной взаимосвязи между отдельным регрессором X i и Y.

Для случая с 2-мя регрессорами можно предложить альтернативный вид матричной диаграммы рассеяния . В стандартной диаграмме рассеяния строятся проекции на координатные плоскости Х1;Х2, Y;X1 и Y;X2. Однако, если взглянуть на точки относительно плоскости регрессии , то картину, на мой взгляд, будет проще интерпретировать.

Сравним две матричные диаграммы рассеяния (см. файл примера на листе «Диагр расс (в плоск регрессии)» , построенные для одних и тех же наблюдений. Первая – стандартная,

вторая представляет собой вид сверху на плоскость регрессии и 2 вида вдоль плоскости.

На второй диаграмме становится очевидно, что разброс точек относительно плоскости регрессии совсем не большой и поэтому, скорее всего, построенная модель является полезной, а выбранные 2 переменные Х позволяют прогнозировать Y (конечно, для подтверждения этой гипотезы нужно провести процедуру F-теста ).

Несколько слов о построении альтернативной матричной диаграммы рассеяния:

  • Перед построением необходимо нормировать значения наблюдений (для каждой переменной вычесть среднее и разделить на стандартное отклонение ). В этом случае практически все точки на диаграммах будут находится в диапазоне +/-3 (по аналогии со стандартным нормальным распределением , 99% значений которого лежат в пределах +/-3 сигма). В этом случае, на диаграмме можно фиксировать мин/макс значений осей, чтобы EXCEL автоматически не модифицировал масштаб осей при изменении данных (это не всегда удобно);
  • Теперь координаты точек необходимо рассчитать в системе отсчета относительно плоскости регрессии (в которой плоскость Оху’ совпадает с плоскостью регрессии). Для этого необходимо найти матрицу вращения , например, через вращение приводящее к совмещению нормали к плоскости регрессии и вектора оси Z (0;0;1);
  • Новые координаты позволяют построить альтернативную матричную диаграмму. Кроме того, для удобства можно вращать систему координат вокруг новой оси Z, чтобы нагляднее представить себе распределение точек относительно плоскости регрессии (для этого использована Полоса прокрутки в ячейках Q31:S31 ).

Вычисление прогнозных значений Y (отдельное наблюдение и среднее значение) и построение доверительных интервалов

После того, как нами были найдены тем или иным способом коэффициенты регрессии можно приступать к вычислению прогнозных значений Y на основе заданных значений переменных Х.

Уравнение прогнозирования или уравнение регрессии в случае 2-х независимых переменных (регрессоров) записывается в виде:

Примечание: В MS EXCEL прогнозное значение Y для заданных Х 1 и Х 2 можно также предсказать с помощью функции ТЕНДЕНЦИЯ() . При этом 2-й аргумент будет ссылкой на столбцы, содержащие все значения переменных Х 1 и Х 2 , а 3-й аргумент функции должен быть ссылкой на диапазон ячеек, содержащий 2 значения Х (Х 1i и Х 2i ) для выбранного наблюдения i (см. файл примера, лист Коэффициенты, столбец G ). Функция ПРЕДСКАЗ() , использованная нами в простой регрессии, не работает в случае множественной регрессии .

Найдя прогнозное значение Y, мы, таким образом, вычислим его точечную оценку. Понятно, что фактическое значение Y, полученное при наблюдении, будет, скорее всего, отличаться от этой оценки. Чтобы ответить на вопрос о том, на сколько хорошо мы можем предсказывать новые значения Y, нам потребуется построить доверительный интервал этой оценки, т.е. диапазон в котором с определенной заданной вероятностью, скажем 95%, мы ожидаем новое значение Y.

Доверительные интервалы построим при фиксированном Х для:

  • нового наблюдения Y;
  • среднего значения Y (интервал будет уже, чем для отдельного нового наблюдения)

Как и в случае простой линейной регрессии , для построения доверительных интервалов нам потребуется сначала вычислить стандартную ошибку модели (standard error of the model) , которая приблизительно показывает насколько велика ошибка предсказания значений переменной Y на основании значений переменных Х.

Для вычисления стандартной ошибки оценивают дисперсию ошибки ε, т.е. сигма^2 (ее часто обозначают как MS Е либо MSres ) . Затем, вычислив из полученной оценки квадратный корень, получим Стандартную ошибку регрессии (часто обозначают как SEy или sey ).

где SSE – сумма квадратов значений ошибок модели ei=yi — ŷi ( Sum of Squared Errors ). MSE означает Mean Square of Errors (среднее квадратов ошибок, точнее остатков).

Величина n-p – это количество степеней свободы ( df degrees of freedom ), т.е. число параметров системы, которые могут изменяться независимо (вспомним, что у нас в этом примере есть n независимых наблюдений переменной Y, р – количество оцениваемых параметров модели). В случае простой множественной регрессии с 2-мя регрессорами число степеней свободы равно n-3, т.к. при построении плоскости регрессии было оценено 3 параметра модели b (т.е. на это было «потрачено» 3 степени свободы ).

В MS EXCEL стандартную ошибку SEy можно вычислить формулы (см. файл примера, лист Статистика ):

Стандартная ошибка нового наблюдения Y при заданных значениях Х (вектор Хi) вычисляется по формуле:

x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.

Соответствующий доверительный интервал вычисляется по формуле:

где α (альфа) – уровень значимости (обычно принимают равным 0,05=5%)

р – количество оцениваемых параметров модели (в нашем случае = 3)

n-p – число степеней свободы

– квантиль распределения Стьюдента (задает количество стандартных ошибок , в +/- диапазоне которых вероятность обнаружить новое наблюдение равно 1-альфа). Т.е. если квантиль равен 2, то диапазон шириной +/- 2 стандартных ошибок относительно прогнозного значения Y будет с вероятностью 95% содержать новое наблюдение Y (для каждого заданного Хi). В MS EXCEL вычисления квантиля производят по формуле = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) , подробнее см. в статье про распределение Стьюдента .

– прогнозное значение Yi вычисляемое по формуле Yi= b 0+ b 1* Х1i+ b 2* Х2i (точечная оценка).

Стандартная ошибка среднего значения Y при заданных значениях Х (вектор Хi) будет меньше, чем стандартная ошибка отдельного наблюдения. Вычисления производятся по формуле:

x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.

Соответствующий доверительный интервал вычисляется по формуле:

Прогнозное значение Yi (точечная оценка) используется тоже, что и для отдельного наблюдения.

Стандартные ошибки и доверительные интервалы для коэффициентов регрессии

В разделе Оценка неизвестных параметров мы получили точечные оценки коэффициентов регрессии . Так как эти оценки получены на основе случайных величин (значений переменных Х и Y), то эти оценки сами являются случайными величинами и соответственно имеют функцию распределения со средним значением и дисперсией . Но, чтобы перейти от точечных оценок к интервальным , необходимо вычислить соответствующие стандартные ошибки (т.е. стандартные отклонения ) коэффициентов регрессии .

Стандартная ошибка коэффициента регрессии b j (обозначается se ( b j ) ) вычисляется на основании стандартной ошибки по следующей формуле:

где C jj является диагональным элементом матрицы (X ’ X) -1 . Для коэффициента сдвига b 0 индекс j=1 (верхний левый элемент), для b 1 индекс j=2, b 2 индекс j=3 (нижний правый элемент).

SEy – стандартная ошибка регрессии (см. выше ).

В MS EXCEL стандартные ошибки коэффициентов регрессии можно вычислить с помощью функции ЛИНЕЙН() :

Примечание : Подробнее о функции ЛИНЕЙН() см. статью Функция MS EXCEL ЛИНЕЙН() .

Применяя матричный подход стандартные ошибки можно вычислить и через обычные формулы (точнее через формулу массива , см. файл примера лист Статистика ):

= КОРЕНЬ(СУММКВРАЗН(E13:E43;F13:F43) /(n-p)) *КОРЕНЬ (ИНДЕКС (МОБР (МУМНОЖ(ТРАНСП(B13:D43);(B13:D43)));j;j))

При построении двухстороннего доверительного интервала для коэффициента регрессии его границы определяются следующим образом:

где t – это t-значение , которое можно вычислить с помощью формулы = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) для уровня значимости 0,05.

В результате получим, что найденный доверительный интервал с вероятностью 95% (1-0,05) накроет истинное значение коэффициента регрессии b j . Здесь мы считаем, что коэффициент регрессии b j имеет распределение Стьюдента с n-p степенями свободы (n – количество наблюдений, т.е. пар Х и Y).

Проверка гипотез

Когда мы строим модель, мы предполагаем, что между Y и переменными X существует линейная взаимосвязь. Однако, как это иногда бывает в статистике, можно вычислять параметры связи даже тогда, когда в действительности она не существует, и обусловлена лишь случайностью.

Единственный вариант, когда Y не зависит X, возможен, когда все коэффициенты регрессии β равны 0.

Чтобы убедиться, что вычисленная нами оценка коэффициентов регрессии не обусловлена лишь случайностью (они не случайно отличны от 0), используют проверку гипотез . В качестве нулевой гипотезы Н 0 принимают, что линейной связи нет, т.е. ВСЕ β=0. В качестве альтернативной гипотезы Н 1 принимают, что ХОТЯ БЫ ОДИН коэффициент β <>0.

Процедура проверки значимости множественной регрессии, приведенная ниже, является обобщением дисперсионного анализа , использованного нами в случае простой линейной регрессии (F-тест) .

Если нулевая гипотеза справедлива, то тестовая F -статистика имеет F-распределение со степенями свободы k и n k -1 , т.е. F k, n-k-1 :

Проверку значимости регрессии можно также осуществить через вычисление p -значения . В этом случае вычисляют вероятность того, что случайная величина F примет значение F 0 (это и есть p-значение ), затем сравнивают p-значение с заданным уровнем значимости α (альфа) . Если p-значение больше уровня значимости , то нулевую гипотезу нет оснований отклонить, и регрессия незначима.

В MS EXCEL значение F 0 можно вычислить на основании значений выборки по вышеуказанной формуле или с помощью функции ЛИНЕЙН() :

В MS EXCEL для проверки гипотезы через p -значение используйте формулу =F.РАСП.ПХ(F 0 ;k;n-k-1) файл примера лист Статистика , где показано эквивалентность обоих подходов проверки значимости регрессии).

В MS EXCEL критическое значение для заданного уровня значимости F 1-альфа, k, n-k-1 можно вычислить по формуле = F.ОБР(1- альфа;k;n-k-1) или = F.ОБР.ПХ(альфа;k; n-k-1) . Другими словами требуется вычислить верхний альфа- квантиль F -распределения с соответствующими степенями свободы .

Таким образом, при значении статистики F 0 > F 1-альфа, k, n-k-1 мы имеем основание для отклонения нулевой гипотезы.

В программах статистики результаты процедуры F -теста выводят с помощью стандартной таблицы дисперсионного анализа . В файле примера такая таблица приведена на листе Надстройка , которая построена на основе результатов, возвращаемых инструментом Регрессия надстройки Пакета анализа MS EXCEL .

Генерация данных для множественной регрессии с помощью заданного тренда

Иногда, бывает удобно сгенерировать значения наблюдений, имея заданный тренд.

Для решения этой задачи нам потребуется:

  • задать значения регрессоров в нужном диапазоне (значения переменных Х);
  • задать коэффициенты регрессии ( b );
  • задать тренд (вычислить значения Y= b0 +b1 * Х 1 + b2 * Х 2 );
  • задать величину разброса Y вокруг тренда (варианты: случайный разброс в заданных границах или заданная фигура, например, круг)

Все вычисления выполнены в файле примера, лист Тренд для случая 2-х регрессоров. Там же построены диаграммы рассеяния .

Коэффициент детерминации

Коэффициент детерминации R 2 показывает насколько полезна построенная нами линейная регрессионная модель .

По определению коэффициент детерминации R 2 равен:

R 2 = Изменчивость объясненная моделью ( SSR ) / Общая изменчивость ( SST ).

Этот показатель можно вычислить с помощью функции ЛИНЕЙН() :

При добавлении в модель новой объясняющей переменной Х, коэффициент детерминации будет всегда расти. Поэтому, рост коэффициента детерминации не может служить основанием для вывода о том, что новая модель (с дополнительным регрессором) лучше прежней.

Более подходящей статистикой, которая лишена указанного недостатка, является нормированный коэффициент детерминации (Adjusted R-squared):

где p – число независимых регрессоров (вычисления см. файл примера лист Статистика ).

Корреляционно-регрессионный анализ в Excel: инструкция выполнения

Регрессионный и корреляционный анализ – статистические методы исследования. Это наиболее распространенные способы показать зависимость какого-либо параметра от одной или нескольких независимых переменных.

Ниже на конкретных практических примерах рассмотрим эти два очень популярные в среде экономистов анализа. А также приведем пример получения результатов при их объединении.

Регрессионный анализ в Excel

Показывает влияние одних значений (самостоятельных, независимых) на зависимую переменную. К примеру, как зависит количество экономически активного населения от числа предприятий, величины заработной платы и др. параметров. Или: как влияют иностранные инвестиции, цены на энергоресурсы и др. на уровень ВВП.

Результат анализа позволяет выделять приоритеты. И основываясь на главных факторах, прогнозировать, планировать развитие приоритетных направлений, принимать управленческие решения.

  • линейной (у = а + bx);
  • параболической (y = a + bx + cx 2 );
  • экспоненциальной (y = a * exp(bx));
  • степенной (y = a*x^b);
  • гиперболической (y = b/x + a);
  • логарифмической (y = b * 1n(x) + a);
  • показательной (y = a * b^x).

Рассмотрим на примере построение регрессионной модели в Excel и интерпретацию результатов. Возьмем линейный тип регрессии.

Задача. На 6 предприятиях была проанализирована среднемесячная заработная плата и количество уволившихся сотрудников. Необходимо определить зависимость числа уволившихся сотрудников от средней зарплаты.

Модель линейной регрессии имеет следующий вид:

Где а – коэффициенты регрессии, х – влияющие переменные, к – число факторов.

В нашем примере в качестве У выступает показатель уволившихся работников. Влияющий фактор – заработная плата (х).

В Excel существуют встроенные функции, с помощью которых можно рассчитать параметры модели линейной регрессии. Но быстрее это сделает надстройка «Пакет анализа».

Активируем мощный аналитический инструмент:

  1. Нажимаем кнопку «Офис» и переходим на вкладку «Параметры Excel». «Надстройки».
  2. Внизу, под выпадающим списком, в поле «Управление» будет надпись «Надстройки Excel» (если ее нет, нажмите на флажок справа и выберите). И кнопка «Перейти». Жмем.
  3. Открывается список доступных надстроек. Выбираем «Пакет анализа» и нажимаем ОК.

После активации надстройка будет доступна на вкладке «Данные».

Теперь займемся непосредственно регрессионным анализом.

  1. Открываем меню инструмента «Анализ данных». Выбираем «Регрессия».
  2. Откроется меню для выбора входных значений и параметров вывода (где отобразить результат). В полях для исходных данных указываем диапазон описываемого параметра (У) и влияющего на него фактора (Х). Остальное можно и не заполнять.
  3. После нажатия ОК, программа отобразит расчеты на новом листе (можно выбрать интервал для отображения на текущем листе или назначить вывод в новую книгу).

В первую очередь обращаем внимание на R-квадрат и коэффициенты.

R-квадрат – коэффициент детерминации. В нашем примере – 0,755, или 75,5%. Это означает, что расчетные параметры модели на 75,5% объясняют зависимость между изучаемыми параметрами. Чем выше коэффициент детерминации, тем качественнее модель. Хорошо – выше 0,8. Плохо – меньше 0,5 (такой анализ вряд ли можно считать резонным). В нашем примере – «неплохо».

Коэффициент 64,1428 показывает, каким будет Y, если все переменные в рассматриваемой модели будут равны 0. То есть на значение анализируемого параметра влияют и другие факторы, не описанные в модели.

Коэффициент -0,16285 показывает весомость переменной Х на Y. То есть среднемесячная заработная плата в пределах данной модели влияет на количество уволившихся с весом -0,16285 (это небольшая степень влияния). Знак «-» указывает на отрицательное влияние: чем больше зарплата, тем меньше уволившихся. Что справедливо.

Корреляционный анализ в Excel

Корреляционный анализ помогает установить, есть ли между показателями в одной или двух выборках связь. Например, между временем работы станка и стоимостью ремонта, ценой техники и продолжительностью эксплуатации, ростом и весом детей и т.д.

Если связь имеется, то влечет ли увеличение одного параметра повышение (положительная корреляция) либо уменьшение (отрицательная) другого. Корреляционный анализ помогает аналитику определиться, можно ли по величине одного показателя предсказать возможное значение другого.

Коэффициент корреляции обозначается r. Варьируется в пределах от +1 до -1. Классификация корреляционных связей для разных сфер будет отличаться. При значении коэффициента 0 линейной зависимости между выборками не существует.

Рассмотрим, как с помощью средств Excel найти коэффициент корреляции.

Для нахождения парных коэффициентов применяется функция КОРРЕЛ.

Задача: Определить, есть ли взаимосвязь между временем работы токарного станка и стоимостью его обслуживания.

Ставим курсор в любую ячейку и нажимаем кнопку fx.

  1. В категории «Статистические» выбираем функцию КОРРЕЛ.
  2. Аргумент «Массив 1» — первый диапазон значений – время работы станка: А2:А14.
  3. Аргумент «Массив 2» — второй диапазон значений – стоимость ремонта: В2:В14. Жмем ОК.

Чтобы определить тип связи, нужно посмотреть абсолютное число коэффициента (для каждой сферы деятельности есть своя шкала).

Для корреляционного анализа нескольких параметров (более 2) удобнее применять «Анализ данных» (надстройка «Пакет анализа»). В списке нужно выбрать корреляцию и обозначить массив. Все.

Полученные коэффициенты отобразятся в корреляционной матрице. Наподобие такой:

Корреляционно-регрессионный анализ

На практике эти две методики часто применяются вместе.

  1. Строим корреляционное поле: «Вставка» — «Диаграмма» — «Точечная диаграмма» (дает сравнивать пары). Диапазон значений – все числовые данные таблицы.
  2. Щелкаем левой кнопкой мыши по любой точке на диаграмме. Потом правой. В открывшемся меню выбираем «Добавить линию тренда».
  3. Назначаем параметры для линии. Тип – «Линейная». Внизу – «Показать уравнение на диаграмме».
  4. Жмем «Закрыть».

Теперь стали видны и данные регрессионного анализа.

источники:

http://excel2.ru/articles/mnozhestvennaya-regressiya-v-ms-excel

http://exceltable.com/otchety/korrelyacionno-regressionnyy-analiz

Регрессионный анализ – это набор статистических методов, позволяющих изучить влияние одной или нескольких независимых переменных на зависимую. Давайте разберемся, каким образом можно выполнить данный анализ в программе Excel.

Содержание

  • Включение функции анализа в программе
  • Линейный регрессионный анализ
  • Анализ полученных результатов
  • Заключение

Включение функции анализа в программе

Для начала нужно активировать функцию программы, с помощью которой мы будем проводить анализ. Для этого делаем следующее:

  1. Открываем меню “Файл”.Переход в меню Файл в Excel
  2. Щелкаем по пункту “Параметры”.Переход к Параметрам Excel
  3. В нижней части содержимого подраздела “Надстройки” выбираем значение “Надстройки Excel” для параметра “Управление”, после чего кликаем “Перейти”.Переход к управлению надстройками в параметрах Эксель
  4. В окне управления надстройками выбираем “Пакет анализа” и щелкаем OK.Включение надстройки Пакет анализа в Excel
  5. Переходим во вкладку “Данные”, чтобы проверить, появилась ли функция “Анализ данных” в группе инструментов “Анализ”.Функция Анализ данных в Эксель

Линейный регрессионный анализ

Выделяют несколько разновидностей регрессий: линейная, гиперболическая, множественная, логарифмически линейная, нелинейная, обратная, парная.

В рамках данной статьи мы рассмотрим линейную регрессию. В общем виде ее функция выглядит так:

y = a0+a1x1+a2x2+…anxn

В данном уравнении:

  • Y – переменная, влияние на которую нужно найти;
  • X – факторы, влияющие на переменную;
  • A – коэффициенты регрессии, определяющие значимости факторов;
  • N – общее количество факторов.

Чтобы было понятнее, давайте разберем конкретный практический пример. Допустим, у нас есть таблица, в которой представлена информация по среднесуточной температуре и количеству осадков с разбивкой по месяцам.

Таблица зависимости осадков от температуры в Эксель

Наша задача – выяснить, как температура влияет на осадки. Приступи к ее выполнению.

  1. Щелкаем по кнопке “Анализ данных”.Применение функции Анализ данных в Excel
  2. В открывшемся окошке отмечаем пункт “Регрессия”, после чего щелкаем OK.Выбор регрессии как инструмента для анализа данных в Эксель
  3. Перед нами появится окно, в котором нужно настроить параметры регрессии:
    • в поле “Входной интервал_Y” пишем координаты диапазона ячеек, в которых находятся переменные, влияние на которые нам нужно выяснить. У нас это столбец “Количество осадков, мм”. Координаты диапазона можно указать как вручную, используя клавиши на клавиатуре, так и выделив его в самой таблице с помощью зажатой левой кнопки мыши.
    • в поле “Входной интервал_X” указываем координаты диапазона ячеек с данными, влияние которых нам нужно найти. В нашем случае – это столбец “Среднесуточная температура”.
    • Остальные параметры не являются обязательными и, чаще всего, остаются незаполненными. У нас есть возможность установить метки, значения уровня надежности в процентах, константу-ноль, график нормальной вероятности и т.д. Пожалуй, самым важным здесь является способ вывода результатов анализа. Доступны следующие варианты: на новом листе (по умолчанию), в новой книге или в указанном диапазоне на этом же листе. Мы оставим все как есть и жмем кнопку OK.Настройка параметров регрессии для анализа данных в Эксель

Анализ полученных результатов

После корректного заполнения всех параметров и нажатия кнопки OK отобразятся  результаты анализа (в зависимости от выбранного способа). В нашем случае – на отдельном листе.

Результаты регрессионного анализа в Excel

Ключевым показателем здесь является R-квадрат (коэффициент детерминации), значение которого характеризует качество модели. Приемлемым считается значение не менее 0,5 (или 50%).

Также следует обратить внимание на ячейку, расположенную на пересечении строки “Y-пересечение” и столбца “Коэффициенты”. Здесь показывается, каким будет значение Y (количество осадков), если все остальные факторы будут равны нулю.

Ячейка на пересечении строки “Переменная X 1” и столбца “Коэффициенты” содержит значение, характеризующее степень зависимости Y от X.  Коэф. 0,89 в нашем случае говорит о достаточно сильной связи между переменными.

Заключение

Регрессионный анализ – сложная и трудоемкая задача, которая требует определенных математических и статистических знаний. Но с помощью стандартных инструментов Эксель ее выполнение можно значительно облегчить.

В этой статье описаны синтаксис формулы и использование функции LINEST в Microsoft Excel. Ссылки на дополнительные сведения о диаграммах и выполнении регрессионного анализа можно найти в разделе См. также.

Описание

Функция ЛИНЕЙН рассчитывает статистику для ряда с применением метода наименьших квадратов, чтобы вычислить прямую линию, которая наилучшим образом аппроксимирует имеющиеся данные и затем возвращает массив, который описывает полученную прямую. Функцию ЛИНЕЙН также можно объединять с другими функциями для вычисления других видов моделей, являющихся линейными по неизвестным параметрам, включая полиномиальные, логарифмические, экспоненциальные и степенные ряды. Поскольку возвращается массив значений, функция должна задаваться в виде формулы массива. Инструкции приведены в данной статье после примеров.

Уравнение для прямой линии имеет следующий вид:

y = mx + b

или

y = m1x1 + m2x2 +… + b

если существует несколько диапазонов значений x, где зависимые значения y — функции независимых значений x. Значения m — коэффициенты, соответствующие каждому значению x, а b — постоянная. Обратите внимание, что y, x и m могут быть векторами. Функция ЛИНЕЙН возвращает массив {mn;mn-1;…;m1;b}. Функция ЛИНЕЙН может также возвращать дополнительную регрессионную статистику.

Синтаксис

ЛИНЕЙН(известные_значения_y; [известные_значения_x]; [конст]; [статистика])

Аргументы функции ЛИНЕЙН описаны ниже.

Синтаксис

  • Известные_значения_y.    Обязательный аргумент. Множество значений y, которые уже известны для соотношения y = mx + b.

    • Если массив известные_значения_y имеет один столбец, то каждый столбец массива известные_значения_x интерпретируется как отдельная переменная.

    • Если массив известные_значения_y имеет одну строку, то каждая строка массива известные_значения_x интерпретируется как отдельная переменная.

  • Известные_значения_x.    Необязательный аргумент. Множество значений x, которые уже известны для соотношения y = mx + b.

    • Массив известные_значения_x может содержать одно или несколько множеств переменных. Если используется только одна переменная, то массивы известные_значения_y и известные_значения_x могут иметь любую форму — при условии, что они имеют одинаковую размерность. Если используется более одной переменной, то известные_значения_y должны быть вектором (т. е. интервалом высотой в одну строку или шириной в один столбец).

    • Если массив известные_значения_x опущен, то предполагается, что это массив {1;2;3;…}, имеющий такой же размер, что и массив известные_значения_y.

  • Конст.    Необязательный аргумент. Логическое значение, которое указывает, требуется ли, чтобы константа b была равна 0.

    • Если аргумент конст имеет значение ИСТИНА или опущен, то константа b вычисляется обычным образом.

    • Если аргумент конст имеет значение ЛОЖЬ, то значение b полагается равным 0 и значения m подбираются таким образом, чтобы выполнялось соотношение y = mx.

  • Статистика.    Необязательный аргумент. Логическое значение, которое указывает, требуется ли вернуть дополнительную регрессионную статистику.

    • Если статистика имеет true, то LINEST возвращает дополнительную регрессию; в результате возвращается массив {mn;mn-1,…,m1;b;sen,sen-1,…,se1;seb;r2;sey; F,df;ssreg,ssresid}.

    • Если аргумент статистика имеет значение ЛОЖЬ или опущен, функция ЛИНЕЙН возвращает только коэффициенты m и постоянную b.

      Дополнительная регрессионная статистика.

Величина

Описание

se1,se2,…,sen

Стандартные значения ошибок для коэффициентов m1,m2,…,mn.

seb

Стандартное значение ошибки для постоянной b (seb = #Н/Д, если аргумент конст имеет значение ЛОЖЬ).

r2

Коэффициент определения. Сравнивает предполагаемые и фактические значения y и диапазоны значений от 0 до 1. Если значение 1, то в выборке будет отличная корреляция— разница между предполагаемым значением y и фактическим значением y не существует. С другой стороны, если коэффициент определения — 0, уравнение регрессии не помогает предсказать значение y. Сведения о том, каквычисляется 2, см. в разделе «Замечания» далее в этой теме.

sey

Стандартная ошибка для оценки y.

F

F-статистика или F-наблюдаемое значение. F-статистика используется для определения того, является ли случайной наблюдаемая взаимосвязь между зависимой и независимой переменными.

df

Степени свободы. Степени свободы используются для нахождения F-критических значений в статистической таблице. Для определения уровня надежности модели необходимо сравнить значения в таблице с F-статистикой, возвращаемой функцией ЛИНЕЙН. Дополнительные сведения о вычислении величины df см. ниже в разделе «Замечания». Далее в примере 4 показано использование величин F и df.

ssreg

Регрессионная сумма квадратов.

ssresid

Остаточная сумма квадратов. Дополнительные сведения о расчете величин ssreg и ssresid см. в подразделе «Замечания» в конце данного раздела.

На приведенном ниже рисунке показано, в каком порядке возвращается дополнительная регрессионная статистика.

Лист

Замечания

  • Любую прямую можно описать ее наклоном и пересечением с осью y:

    Наклон (m):
    Чтобы найти наклон линии, обычно записанной как m, возьмите две точки на строке (x1;y1) и (x2;y2); наклон равен (y2 — y1)/(x2 — x1).

    Y-перехват (b):
    Y-пересечение строки, обычно записанное как b, — это значение y в точке, в которой линия пересекает ось y.

    Уравнение прямой имеет вид y = mx + b. Если известны значения m и b, то можно вычислить любую точку на прямой, подставляя значения y или x в уравнение. Можно также воспользоваться функцией ТЕНДЕНЦИЯ.

  • Если имеется только одна независимая переменная x, можно получить наклон и y-пересечение непосредственно, воспользовавшись следующими формулами:

    Наклон:
    =ИНДЕКС( LINEST(known_y,known_x’s);1)

    Y-перехват:
    =ИНДЕКС( LINEST(known_y,known_x),2)

  • Точность аппроксимации с помощью прямой, вычисленной функцией ЛИНЕЙН, зависит от степени разброса данных. Чем ближе данные к прямой, тем более точной является модель ЛИНЕЙН. Функция ЛИНЕЙН использует для определения наилучшей аппроксимации данных метод наименьших квадратов. Когда имеется только одна независимая переменная x, значения m и b вычисляются по следующим формулам:

    Уравнение

    Уравнение

    где x и y — выборочные средние значения, например x = СРЗНАЧ(известные_значения_x), а y = СРЗНАЧ(известные_значения_y).

  • Функции ЛИННЕСТРОЙ и ЛОГЪЕСТ могут вычислять наилучшие прямые или экспоненциальное кривой, которые подходят для ваших данных. Однако необходимо решить, какой из двух результатов лучше всего подходит для ваших данных. Вы можетевычислить known_y(known_x) для прямой линии или РОСТ(known_y, known_x в) для экспоненциальной кривой. Эти функции без аргумента new_x возвращают массив значений y, спрогнозируемых вдоль этой линии или кривой в фактических точках данных. Затем можно сравнить спрогнозируемые значения с фактическими значениями. Для наглядного сравнения можно отобразить оба этих диаграммы.

  • Проводя регрессионный анализ, Microsoft Excel вычисляет для каждой точки квадрат разности между прогнозируемым значением y и фактическим значением y. Сумма этих квадратов разностей называется остаточной суммой квадратов (ssresid). Затем Microsoft Excel подсчитывает общую сумму квадратов (sstotal). Если конст = ИСТИНА или значение этого аргумента не указано, общая сумма квадратов будет равна сумме квадратов разностей действительных значений y и средних значений y. При конст = ЛОЖЬ общая сумма квадратов будет равна сумме квадратов действительных значений y (без вычитания среднего значения y из частного значения y). После этого регрессионную сумму квадратов можно вычислить следующим образом: ssreg = sstotal — ssresid. Чем меньше остаточная сумма квадратов по сравнению с общей суммой квадратов, тем больше значение коэффициента определения r2— индикатор того, насколько хорошо уравнение, выданное в результате регрессионного анализа, объясняет связь между переменными. Значение r2 равно ssreg/sstotal.

  • В некоторых случаях один или несколько столбцов X (предполагается, что значения Y и X — в столбцах) могут не иметь дополнительного прогнозируемого значения при наличии других столбцов X. Другими словами, удаление одного или более столбцов X может привести к одинаковой точности предсказания значений Y. В этом случае эти избыточные столбцы X следует не использовать в модели регрессии. Этот вариант называется «коллинеарность», так как любой избыточный X-столбец может быть выражен как сумма многих не избыточных X-столбцов. Функция ЛИНЕЙН проверяет коллинеарность и удаляет все избыточные X-столбцы из модели регрессии при их идентификации. Удалены столбцы X распознаются в результатах LINEST как имеющие коэффициенты 0 в дополнение к значениям 0 se. Если один или несколько столбцов будут удалены как избыточные, это влияет на df, поскольку df зависит от числа X столбцов, фактически используемых для прогнозирования. Подробные сведения о вычислении df см. в примере 4. Если значение df изменилось из-за удаления избыточных X-столбцов, это также влияет на значения Sey и F. Коллинеарность должна быть относительно редкой на практике. Однако чаще всего возникают ситуации, когда некоторые столбцы X содержат только значения 0 и 1 в качестве индикаторов того, является ли тема в эксперименте участником определенной группы или не является ее участником. Если конст = ИСТИНА или опущен, функция LYST фактически вставляет дополнительный столбец X из всех 1 значений для моделирования перехвата. Если у вас есть столбец с значением 1 для каждой темы, если мальчик, или 0, а также столбец с 1 для каждой темы, если она является женщиной, или 0, последний столбец является избыточным, так как записи в нем могут быть получены из вычитания записи в столбце «самец» из записи в дополнительном столбце всех 1 значений, добавленных функцией LINEST.

  • Вычисление значения df для случаев, когда столбцы X удаляются из модели вследствие коллинеарности происходит следующим образом: если существует k столбцов известных_значений_x и значение конст = ИСТИНА или не указано, то df = n – k – 1. Если конст = ЛОЖЬ, то df = n — k. В обоих случаях удаление столбцов X вследствие коллинеарности увеличивает значение df на 1.

  • При вводе константы массива (например, в качестве аргумента известные_значения_x) следует использовать точку с запятой для разделения значений в одной строке и двоеточие для разделения строк. Знаки-разделители могут быть другими в зависимости от региональных параметров.

  • Следует отметить, что значения y, предсказанные с помощью уравнения регрессии, возможно, не будут правильными, если они располагаются вне интервала значений y, которые использовались для определения уравнения.

  • Основной алгоритм, используемый в функции ЛИНЕЙН, отличается от основного алгоритма функций НАКЛОН и ОТРЕЗОК. Разница между алгоритмами может привести к различным результатам при неопределенных и коллинеарных данных. Например, если точки данных аргумента известные_значения_y равны 0, а точки данных аргумента известные_значения_x равны 1, то:

    • Функция ЛИНЕЙН возвращает значение, равное 0. Алгоритм функции ЛИНЕЙН используется для возвращения подходящих значений для коллинеарных данных, и в данном случае может быть найден по меньшей мере один ответ.

    • Наклон и ОТОКП возвращают #DIV/0! ошибка «#ЗНАЧ!». Алгоритм функций НАКЛОН и ОТОКП предназначен для поиска только одного ответа, и в этом случае может быть несколько ответов.

  • Помимо вычисления статистики для других типов регрессии с помощью функции ЛГРФПРИБЛ, для вычисления диапазонов некоторых других типов регрессий можно использовать функцию ЛИНЕЙН, вводя функции переменных x и y как ряды переменных х и у для ЛИНЕЙН. Например, следующая формула:

    =ЛИНЕЙН(значения_y, значения_x^СТОЛБЕЦ($A:$C))

    работает при наличии одного столбца значений Y и одного столбца значений Х для вычисления аппроксимации куба (многочлен 3-й степени) следующей формы:

    y = m1*x + m2*x^2 + m3*x^3 + b

    Формула может быть изменена для расчетов других типов регрессии, но в отдельных случаях требуется корректировка выходных значений и других статистических данных.

  • Значение F-теста, возвращаемое функцией ЛИНЕЙН, отличается от значения, возвращаемого функцией ФТЕСТ. Функция ЛИНЕЙН возвращает F-статистику, в то время как ФТЕСТ возвращает вероятность.

Примеры

Пример 1. Наклон и Y-пересечение

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Известные значения y

Известные значения x

1

0

9

4

5

2

7

3

Результат (наклон)

Результат (y-пересечение)

2

1

Формула (формула массива в ячейках A7:B7)

=ЛИНЕЙН(A2:A5;B2:B5;;ЛОЖЬ)

Пример 2. Простая линейная регрессия

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Месяц

Продажи

1

3 100 ₽

2

4 500 ₽

3

4 400 ₽

4

5 400 ₽

5

7 500 ₽

6

8 100 ₽

Формула

Результат

=СУММ(ЛИНЕЙН(B1:B6; A2:A7)*{9;1})

11 000 ₽

Вычисляет предполагаемый объем продаж в девятом месяце на основе данных о продажах за период с первого по шестой месяцы.

Пример 3. Множественная линейная регрессия

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Общая площадь (x1)

Количество офисов (x2)

Количество входов (x3)

Время эксплуатации (x4)

Оценочная цена (y)

2310

2

2

20

142 000 ₽

2333

2

2

12

144 000 ₽

2356

3

1,5

33

151 000 ₽

2379

3

2

43

150 000 ₽

2402

2

3

53

139 000 ₽

2425

4

2

23

169 000 ₽

2448

2

1,5

99

126 000 ₽

2471

2

2

34

142 900 ₽

2494

3

3

23

163 000 ₽

2517

4

4

55

169 000 ₽

2540

2

3

22

149 000 ₽

-234,2371645

13,26801148

0,996747993

459,7536742

1732393319

Формула (формула динамического массива, введенная в A19)

=ЛИНЕЙН(E2:E12; A2:D12; ИСТИНА; ИСТИНА)

Пример 4. Использование статистики F и r2

В предыдущем примере коэффициент определения (r2)составляет 0,99675 (см. ячейку A17 в результатах для ЛИТН), что указывает на крепкая связь между независимыми переменными и ценой продажи. F-статистику можно использовать для определения случайности этих результатов с таким высоким значением r2.

Предположим, что на самом деле взаимосвязи между переменными не существует, просто статистический анализ вывел сильную взаимозависимость по взятой равномерной выборке 11 зданий. Величина «Альфа» используется для обозначения вероятности ошибочного вывода о существовании сильная взаимозависимости.

Значения F и df в результатах функции LINEST можно использовать для оценки вероятности возникновения более высокого F-значения. F можно сравнивать с критическими значениями в опубликованных F-таблицах или с помощью функции FРАСП в Excel для вычисления вероятности случайного возникновения большего F-значения. Соответствующее F-распределение имеет v1 и v2 степени свободы. Если n — количество точек данных и конст = ИСТИНА или опущен, то v1 = n – df – 1 и v2 = df. (Если конст = ЛОЖЬ, то v1 = n – df и v2 = df.) Функция FIST с синтаксисом FDIST(F;v1;v2) возвращает вероятность возникновения более высокого F-значения, случайного. В этом примере df = 6 (ячейка B18) и F = 459,753674 (ячейка A18).

Предположим, что альфа имеет значение 0,05, v1 = 11 – 6 – 1 = 4, а v2 = 6, критический уровень F составляет 4,53. Поскольку F = 459,753674 значительно больше 4,53, вероятность того, что F-значение этого высокой случайности превышает 4,53, крайне маловероятно. (Если значение «Альфа» = 0,05, гипотеза о том, что между known_y и known_x нет связи, отклоняется при превышении F критического уровня (4,53).) Функцию FDIST в Excel можно использовать для получения вероятности случайного возникновения F-значения. Например, FIST(459,753674, 4, 6) = 1,37E-7, очень небольшая вероятность. Можно сделать вывод о том, что формула регрессии полезна для предсказания оценочного значения офисных зданий в этой области, найдя критический уровень F в таблице или с помощью функции FDIST. Помните, что крайне важно использовать правильные значения 1 и 2, вычисленные в предыдущем абзаце.

Пример 5. Вычисление t-статистики

Другой тест позволяет определить, подходит ли каждый коэффициент наклона для оценки стоимости здания под офис в примере 3. Например, чтобы проверить, имеет ли срок эксплуатации здания статистическую значимость, разделим -234,24 (коэффициент наклона для срока эксплуатации здания) на 13,268 (оценка стандартной ошибки для коэффициента времени эксплуатации из ячейки A15). Ниже приводится наблюдаемое t-значение:

t = m4 ÷ se4 = –234,24 ÷ 13,268 = –17,7

Если абсолютное значение t достаточно велико, можно сделать вывод, что коэффициент наклона можно использовать для оценки стоимости здания под офис в примере 3. В таблице ниже приведены абсолютные значения четырех наблюдаемых t-значений.

Если обратиться к справочнику по математической статистике, то окажется, что t-критическое двустороннее с 6 степенями свободы равно 2,447 при Альфа = 0,05. Критическое значение также можно также найти с помощью функции Microsoft Excel СТЬЮДРАСПОБР. СТЬЮДРАСПОБР(0,05; 6) = 2,447. Поскольку абсолютная величина t, равная 17,7, больше, чем 2,447, срок эксплуатации — это важная переменная для оценки стоимости здания под офис. Аналогичным образом можно протестировать все другие переменные на статистическую значимость. Ниже приводятся наблюдаемые t-значения для каждой из независимых переменных.

Переменная

t-наблюдаемое значение

Общая площадь

5,1

Количество офисов

31,3

Количество входов

4,8

Возраст

17,7

Абсолютная величина всех этих значений больше, чем 2,447. Следовательно, все переменные, использованные в уравнении регрессии, полезны для предсказания оценочной стоимости здания под офис в данном районе.

Понравилась статья? Поделить с друзьями:
  • Расчет регрессии в excel примеры
  • Расчет регистра отопления excel
  • Расчет пружины сжатия excel
  • Расчет ребалансировки портфеля в excel
  • Расчет пружин в excel