Python pandas excel пример

Время на прочтение
5 мин

Количество просмотров 63K

Excel — это чрезвычайно распространённый инструмент для анализа данных. С ним легко научиться работать, есть он практически на каждом компьютере, а тот, кто его освоил, может с его помощью решать довольно сложные задачи. Python часто считают инструментом, возможности которого практически безграничны, но который освоить сложнее, чем Excel. Автор материала, перевод которого мы сегодня публикуем, хочет рассказать о решении с помощью Python трёх задач, которые обычно решают в Excel. Эта статья представляет собой нечто вроде введения в Python для тех, кто хорошо знает Excel.

Загрузка данных

Начнём с импорта Python-библиотеки pandas и с загрузки в датафреймы данных, которые хранятся на листах sales и states книги Excel. Такие же имена мы дадим и соответствующим датафреймам.

import pandas as pd
sales = pd.read_excel('https://github.com/datagy/mediumdata/raw/master/pythonexcel.xlsx', sheet_name = 'sales')
states = pd.read_excel('https://github.com/datagy/mediumdata/raw/master/pythonexcel.xlsx', sheet_name = 'states')

Теперь воспользуемся методом .head() датафрейма sales для того чтобы вывести элементы, находящиеся в начале датафрейма:

print(sales.head())

Сравним то, что будет выведено, с тем, что можно видеть в Excel.

Сравнение внешнего вида данных, выводимых в Excel, с внешним видом данных, выводимых из датафрейма pandas

Тут можно видеть, что результаты визуализации данных из датафрейма очень похожи на то, что можно видеть в Excel. Но тут имеются и некоторые очень важные различия:

  • Нумерация строк в Excel начинается с 1, а в pandas номер (индекс) первой строки равняется 0.
  • В Excel столбцы имеют буквенные обозначения, начинающиеся с буквы A, а в pandas названия столбцов соответствуют именам соответствующих переменных.

Продолжим исследование возможностей pandas, позволяющих решать задачи, которые обычно решают в Excel.

Реализация возможностей Excel-функции IF в Python

В Excel существует очень удобная функция IF, которая позволяет, например, записать что-либо в ячейку, основываясь на проверке того, что находится в другой ячейке. Предположим, нужно создать в Excel новый столбец, ячейки которого будут сообщать нам о том, превышают ли 500 значения, записанные в соответствующие ячейки столбца B. В Excel такому столбцу (в нашем случае это столбец E) можно назначить заголовок MoreThan500, записав соответствующий текст в ячейку E1. После этого, в ячейке E2, можно ввести следующее:

=IF([@Sales]>500, "Yes", "No")

Использование функции IF в Excel

Для того чтобы сделать то же самое с использованием pandas, можно воспользоваться списковым включением (list comprehension):

sales['MoreThan500'] = ['Yes' if x > 500 else 'No' for x in sales['Sales']]

Списковые включения в Python: если текущее значение больше 500 — в список попадает Yes, в противном случае — No

Списковые включения — это отличное средство для решения подобных задач, позволяющее упростить код за счёт уменьшения потребности в сложных конструкциях вида if/else. Ту же задачу можно решить и с помощью if/else, но предложенный подход экономит время и делает код немного чище. Подробности о списковых включениях можно найти здесь.

Реализация возможностей Excel-функции VLOOKUP в Python

В нашем наборе данных, на одном из листов Excel, есть названия городов, а на другом — названия штатов и провинций. Как узнать о том, где именно находится каждый город? Для этого подходит Excel-функция VLOOKUP, с помощью которой можно связать данные двух таблиц. Эта функция работает по принципу левого соединения, когда сохраняется каждая запись из набора данных, находящегося в левой части выражения. Применяя функцию VLOOKUP, мы предлагаем системе выполнить поиск определённого значения в заданном столбце указанного листа, а затем — вернуть значение, которое находится на заданное число столбцов правее найденного значения. Вот как это выглядит:

=VLOOKUP([@City],states,2,false)

Зададим на листе sales заголовок столбца F как State и воспользуемся функцией VLOOKUP для того чтобы заполнить ячейки этого столбца названиями штатов и провинций, в которых расположены города.

Использование функции VLOOKUP в Excel

В Python сделать то же самое можно, воспользовавшись методом merge из pandas. Он принимает два датафрейма и объединяет их. Для решения этой задачи нам понадобится следующий код:

sales = pd.merge(sales, states, how='left', on='City')

Разберём его:

  1. Первый аргумент метода merge — это исходный датафрейм.
  2. Второй аргумент — это датафрейм, в котором мы ищем значения.
  3. Аргумент how указывает на то, как именно мы хотим соединить данные.
  4. Аргумент on указывает на переменную, по которой нужно выполнить соединение (тут ещё можно использовать аргументы left_on и right_on, нужные в том случае, если интересующие нас данные в разных датафреймах названы по-разному).

Сводные таблицы

Сводные таблицы (Pivot Tables) — это одна из самых мощных возможностей Excel. Такие таблицы позволяют очень быстро извлекать ценные сведения из больших наборов данных. Создадим в Excel сводную таблицу, выводящую сведения о суммарных продажах по каждому городу.

Создание сводной таблицы в Excel

Как видите, для создания подобной таблицы достаточно перетащить поле City в раздел Rows, а поле Sales — в раздел Values. После этого Excel автоматически выведет суммарные продажи для каждого города.

Для того чтобы создать такую же сводную таблицу в pandas, нужно будет написать следующий код:

sales.pivot_table(index = 'City', values = 'Sales', aggfunc = 'sum')

Разберём его:

  1. Здесь мы используем метод sales.pivot_table, сообщая pandas о том, что мы хотим создать сводную таблицу, основанную на датафрейме sales.
  2. Аргумент index указывает на столбец, по которому мы хотим агрегировать данные.
  3. Аргумент values указывает на то, какие значения мы собираемся агрегировать.
  4. Аргумент aggfunc задаёт функцию, которую мы хотим использовать при обработке значений (тут ещё можно воспользоваться функциями mean, max, min и так далее).

Итоги

Из этого материала вы узнали о том, как импортировать Excel-данные в pandas, о том, как реализовать средствами Python и pandas возможности Excel-функций IF и VLOOKUP, а также о том, как воспроизвести средствами pandas функционал сводных таблиц Excel. Возможно, сейчас вы задаётесь вопросом о том, зачем вам пользоваться pandas, если то же самое можно сделать и в Excel. На этот вопрос нет однозначного ответа. Python позволяет создавать код, который поддаётся тонкой настройке и глубокому исследованию. Такой код можно использовать многократно. Средствами Python можно описывать очень сложные схемы анализа данных. А возможностей Excel, вероятно, достаточно лишь для менее масштабных исследований данных. Если вы до этого момента пользовались только Excel — рекомендую испытать Python и pandas, и узнать о том, что у вас из этого получится.

А какие инструменты вы используете для анализа данных?

Напоминаем, что у нас продолжается конкурс прогнозов, в котором можно выиграть новенький iPhone. Еще есть время ворваться в него, и сделать максимально точный прогноз по злободневным величинам.

В Python данные из файла Excel считываются в объект DataFrame. Для этого используется функция read_excel() модуля pandas.

Лист Excel — это двухмерная таблица. Объект DataFrame также представляет собой двухмерную табличную структуру данных.

  • Пример использования Pandas read_excel()
  • Список заголовков столбцов листа Excel
  • Вывод данных столбца
  • Пример использования Pandas to Excel: read_excel()
  • Чтение файла Excel без строки заголовка
  • Лист Excel в Dict, CSV и JSON
  • Ресурсы

Пример использования Pandas read_excel()

Предположим, что у нас есть документ Excel, состоящий из двух листов: «Employees» и «Cars». Верхняя строка содержит заголовок таблицы.

Пример использования Pandas read_excel() - 2

Ниже приведен код, который считывает данные листа «Employees» и выводит их.

import pandas

excel_data_df = pandas.read_excel('records.xlsx', sheet_name='Employees')

# print whole sheet data
print(excel_data_df)

Вывод:

   EmpID    EmpName EmpRole
0      1     Pankaj     CEO
1      2  David Lee  Editor
2      3   Lisa Ray  Author

Первый параметр, который принимает функция read_excel ()— это имя файла Excel. Второй параметр (sheet_name) определяет лист для считывания данных.

При выводе содержимого объекта DataFrame мы получаем двухмерные таблицы, схожие по своей структуре со структурой документа Excel.

Чтобы получить список заголовков столбцов таблицы, используется свойство columns объекта Dataframe. Пример реализации:

print(excel_data_df.columns.ravel())

Вывод:

['Pankaj', 'David Lee', 'Lisa Ray']

Мы можем получить данные из столбца и преобразовать их в список значений. Пример:

print(excel_data_df['EmpName'].tolist())

Вывод:

['Pankaj', 'David Lee', 'Lisa Ray']

Можно указать имена столбцов для чтения из файла Excel. Это потребуется, если нужно вывести данные из определенных столбцов таблицы.

import pandas

excel_data_df = pandas.read_excel('records.xlsx', sheet_name='Cars', usecols=['Car Name', 'Car Price'])
print(excel_data_df)

Вывод:

         Car Name      Car Price
0      Honda City     20,000 USD
1  Bugatti Chiron  3 Million USD
2     Ferrari 458   2,30,000 USD

Если в листе Excel нет строки заголовка, нужно передать его значение как None.

excel_data_df = pandas.read_excel('records.xlsx', sheet_name='Numbers', header=None)

Если вы передадите значение заголовка как целое число (например, 3), тогда третья строка станет им. При этом считывание данных начнется со следующей строки. Данные, расположенные перед строкой заголовка, будут отброшены.

Объект DataFrame предоставляет различные методы для преобразования табличных данных в формат Dict , CSV или JSON.

excel_data_df = pandas.read_excel('records.xlsx', sheet_name='Cars', usecols=['Car Name', 'Car Price'])

print('Excel Sheet to Dict:', excel_data_df.to_dict(orient='record'))
print('Excel Sheet to JSON:', excel_data_df.to_json(orient='records'))
print('Excel Sheet to CSV:n', excel_data_df.to_csv(index=False))

Вывод:

Excel Sheet to Dict: [{'Car Name': 'Honda City', 'Car Price': '20,000 USD'}, {'Car Name': 'Bugatti Chiron', 'Car Price': '3 Million USD'}, {'Car Name': 'Ferrari 458', 'Car Price': '2,30,000 USD'}]
Excel Sheet to JSON: [{"Car Name":"Honda City","Car Price":"20,000 USD"},{"Car Name":"Bugatti Chiron","Car Price":"3 Million USD"},{"Car Name":"Ferrari 458","Car Price":"2,30,000 USD"}]
Excel Sheet to CSV:
 Car Name,Car Price
Honda City,"20,000 USD"
Bugatti Chiron,3 Million USD
Ferrari 458,"2,30,000 USD"
  • Документы API pandas read_excel()

Дайте знать, что вы думаете по этой теме материала в комментариях. Мы крайне благодарны вам за ваши комментарии, дизлайки, подписки, лайки, отклики!

Хотя многие Data Scientist’ы больше привыкли работать с CSV-файлами, на практике очень часто приходится сталкиваться с обычными Excel-таблицами. Поэтому сегодня мы расскажем, как читать Excel-файлы в Pandas, а также рассмотрим основные возможности Python-библиотеки OpenPyXL для чтения метаданных ячеек.

Дополнительные зависимости для возможности чтения Excel таблиц

Для чтения таблиц Excel в Pandas требуются дополнительные зависимости:

  • xlrd поддерживает старые и новые форматы MS Excel [1];
  • OpenPyXL поддерживает новые форматы MS Excel (.xlsx) [2];
  • ODFpy поддерживает свободные форматы OpenDocument (.odf, .ods и .odt) [3];
  • pyxlsb поддерживает бинарные MS Excel файлы (формат .xlsb) [4].

Мы рекомендуем установить только OpenPyXL, поскольку он нам пригодится в дальнейшем. Для этого в командной строке прописывается следующая операция:

pip install openpyxl

Затем в Pandas нужно указать путь к Excel-файлу и одну из установленных зависимостей. Python-код выглядит следующим образом:

import pandas as pd
pd.read_excel(io='temp1.xlsx', engine='openpyxl')
#
     Name  Age  Weight
0    Alex   35      87
1   Lesha   57      72
2  Nastya   21      64

Читаем несколько листов

Excel-файл может содержать несколько листов. В Pandas, чтобы прочитать конкретный лист, в аргументе нужно указать sheet_name. Можно указать список названий листов, тогда Pandas вернет словарь (dict) с объектами DataFrame:

dfs = pd.read_excel(io='temp1.xlsx',
                    engine='openpyxl',
                    sheet_name=['Sheet1', 'Sheet2'])
dfs
#
{'Sheet1':      Name  Age  Weight
 0    Alex   35      87
 1   Lesha   57      72
 2  Nastya   21      64,
 'Sheet2':     Name  Age  Weight
 0  Gosha   43      95
 1   Anna   24      65
 2   Lena   22      78}

Если таблицы в словаре имеют одинаковые атрибуты, то их можно объединить в один DataFrame. В Python это выглядит так:

pd.concat(dfs).reset_index(drop=True)
     Name  Age  Weight
0    Alex   35      87
1   Lesha   57      72
2  Nastya   21      64
3   Gosha   43      95
4    Anna   24      65
5    Lena   22      78

Указание диапазонов

Таблицы могут размещаться не в самом начале, а как, например, на рисунке ниже. Как видим, таблица располагается в диапазоне A:F.

Таблица Excel

Таблица с диапазоном

Чтобы прочитать такую таблицу, нужно указать диапазон в аргументе usecols. Также дополнительно можно добавить header — номер заголовка таблицы, а также nrows — количество строк, которые нужно прочитать. В аргументе header всегда передается номер строки на единицу меньше, чем в Excel-файле, поскольку в Python индексация начинается с 0 (на рисунке это номер 5, тогда указываем 4):

pd.read_excel(io='temp1.xlsx',
              engine='openpyxl',
              usecols='D:F',
              header=4, # в excel это №5
              nrows=3)
#
    Name  Age  Weight
0  Gosha   43      95
1   Anna   24      65
2   Lena   22      78

Читаем таблицы в OpenPyXL

Pandas прочитывает только содержимое таблицы, но игнорирует метаданные: цвет заливки ячеек, примечания, стили таблицы и т.д. В таком случае пригодится библиотека OpenPyXL. Загрузка файлов осуществляется через функцию load_workbook, а к листам обращаться можно через квадратные скобки:

from openpyxl import load_workbook
wb = load_workbook('temp2.xlsx')
ws = wb['Лист1']
type(ws)
# openpyxl.worksheet.worksheet.Worksheet

Excel-таблица OpenPyXL

Две таблицы на листе

Допустим, имеется Excel-файл с несколькими таблицами на листе (см. рисунок выше). Если бы мы использовали Pandas, то он бы выдал следующий результат:

pd.read_excel(io='temp2.xlsx',
              engine='openpyxl')
#
     Name  Age  Weight  Unnamed: 3 Name.1  Age.1  Weight.1
0    Alex   35      87         NaN  Tanya     25        66
1   Lesha   57      72         NaN  Gosha     43        77
2  Nastya   21      64         NaN  Tolya     32        54

Можно, конечно, заняться обработкой и привести таблицы в нормальный вид, а можно воспользоваться OpenPyXL, который хранит таблицу и его диапазон в словаре. Чтобы посмотреть этот словарь, нужно вызвать ws.tables.items. Вот так выглядит Python-код:

ws.tables.items()
wb = load_workbook('temp2.xlsx')
ws = wb['Лист1']
ws.tables.items()
#
[('Таблица1', 'A1:C4'), ('Таблица13', 'E1:G4')]

Обращаясь к каждому диапазону, можно проходить по каждой строке или столбцу, а внутри них – по каждой ячейке. Например, следующий код на Python таблицы объединяет строки в список, где первая строка уходит на заголовок, а затем преобразует их в DataFrame:

dfs = []
for table_name, value in ws.tables.items():
    table = ws[value]
    header, *body = [[cell.value for cell in row]
                      for row in table]
    df = pd.DataFrame(body, columns=header)
    dfs.append(df)

Если таблицы имеют одинаковые атрибуты, то их можно соединить в одну:

pd.concat(dfs)
#
     Name  Age  Weight
0    Alex   35      87
1   Lesha   57      72
2  Nastya   21      64
0   Tanya   25      66
1   Gosha   43      77
2   Tolya   32      54

Сохраняем метаданные таблицы

Как указано в коде выше, у ячейки OpenPyXL есть атрибут value, который хранит ее значение. Помимо value, можно получить тип ячейки (data_type), цвет заливки (fill), примечание (comment) и др.

Excel OpenPyXL

Таблица с цветными ячейками

Например, требуется сохранить данные о цвете ячеек. Для этого мы каждую ячейку с числами перезапишем в виде <значение,RGB>, где RGB — значение цвета в формате RGB (red, green, blue). Python-код выглядит следующим образом:

# _TYPES = {int:'n', float:'n', str:'s', bool:'b'}
data = []
for row in ws.rows:
    row_cells = []
    for cell in row:
        cell_value = cell.value
        if cell.data_type == 'n':
            cell_value = f"{cell_value},{cell.fill.fgColor.rgb}"
        row_cells.append(cell_value)
    data.append(row_cells)

Первым элементом списка является строка-заголовок, а все остальное уже значения таблицы:

pd.DataFrame(data[1:], columns=data[0])
#
     Name          Age       Weight
0    Alex  35,00000000  87,00000000
1   Lesha  57,00000000  72,FFFF0000
2  Nastya  21,FF00A933  64,00000000

Теперь представим атрибуты в виде индексов с помощью метода stack, а после разобьём все записи на значение и цвет методом str.split:

(pd.DataFrame(data[1:], columns=data[0])
 .set_index('Name')
 .stack()
 .str.split(',', expand=True)
)
#
                0         1
Name                       
Alex   Age     35  00000000
       Weight  87  00000000
Lesha  Age     57  00000000
       Weight  72  FFFF0000
Nastya Age     21  FF00A933
       Weight  64  0000000

Осталось только переименовать 0 и 1 на Value и Color, а также добавить атрибут Variable, который обозначит Вес и Возраст. Полный код на Python выглядит следующим образом:

(pd.DataFrame(data[1:], columns=data[0])
 .set_index('Name')
 .stack()
 .str.split(',', expand=True)
 .set_axis(['Value', 'Color'], axis=1)
 .rename_axis(index=['Name', 'Variable'])
 .reset_index()
)
#
     Name Variable Value     Color
0    Alex      Age    35  00000000
1    Alex   Weight    87  00000000
2   Lesha      Age    57  00000000
3   Lesha   Weight    72  FFFF0000
4  Nastya      Age    21  FF00A933
5  Nastya   Weight    64  00000000

Ещё больше подробностей о работе с таблицами в Pandas, а также их обработке на реальных примерах Data Science задач, вы узнаете на наших курсах по Python в лицензированном учебном центре обучения и повышения квалификации IT-специалистов в Москве.

Источники

  1. https://xlrd.readthedocs.io/en/latest/
  2. https://openpyxl.readthedocs.io/en/latest/
  3. https://github.com/eea/odfpy
  4. https://github.com/willtrnr/pyxlsb

Excel sheets are very instinctive and user-friendly, which makes them ideal for manipulating large datasets even for less technical folks. If you are looking for places to learn to manipulate and automate stuff in excel files using Python, look no more. You are at the right place.

Python Pandas With Excel Sheet

In this article, you will learn how to use Pandas to work with Excel spreadsheets. At the end of the article, you will have the knowledge of:

  • Necessary modules are needed for this and how to set them up in your system.
  • Reading data from excel files into pandas using Python.
  • Exploring the data from excel files in Pandas.
  • Using functions to manipulate and reshape the data in Pandas.

Installation

To install Pandas in Anaconda, we can use the following command in Anaconda Terminal:

conda install pandas

To install Pandas in regular Python (Non-Anaconda), we can use the following command in the command prompt:

pip install pandas

Getting Started

First of all, we need to import the Pandas module which can be done by running the command: Pandas

Python3

Input File: Let’s suppose the excel file looks like this 

Sheet 1: 

Sheet 2: 

Now we can import the excel file using the read_excel function in Pandas. The second statement reads the data from excel and stores it into a pandas Data Frame which is represented by the variable newData. If there are multiple sheets in the excel workbook, the command will import data of the first sheet. To make a data frame with all the sheets in the workbook, the easiest method is to create different data frames separately and then concatenate them. The read_excel method takes argument sheet_name and index_col where we can specify the sheet of which the data frame should be made of and index_col specifies the title column, as is shown below: 

Python3

file =('path_of_excel_file')

newData = pds.read_excel(file)

newData

Output: 

Example: 

The third statement concatenates both sheets. Now to check the whole data frame, we can simply run the following command: 

Python3

sheet1 = pds.read_excel(file,

                        sheet_name = 0,

                        index_col = 0)

sheet2 = pds.read_excel(file,

                        sheet_name = 1,

                        index_col = 0)

newData = pds.concat([sheet1, sheet2])

newData

Output: 

To view 5 columns from the top and from the bottom of the data frame, we can run the command. This head() and tail() method also take arguments as numbers for the number of columns to show. 

Python3

newData.head()

newData.tail()

Output: 

The shape() method can be used to view the number of rows and columns in the data frame as follows: 

Python3

Output: 

If any column contains numerical data, we can sort that column using the sort_values() method in pandas as follows: 

Python3

sorted_column = newData.sort_values(['Height'], ascending = False)

Now, let’s suppose we want the top 5 values of the sorted column, we can use the head() method here: 

Python3

sorted_column['Height'].head(5)

Output: 

 We can do that with any numerical column of the data frame as shown below: 

Python3

Output: 

Now, suppose our data is mostly numerical. We can get the statistical information like mean, max, min, etc. about the data frame using the describe() method as shown below: 

Python3

Output: 

This can also be done separately for all the numerical columns using the following command: 

Python3

Output: 

Other statistical information can also be calculated using the respective methods. Like in excel, formulas can also be applied and calculated columns can be created as follows: 

Python3

newData['calculated_column'] =

                newData[“Height”] + newData[“Weight”]

newData['calculated_column'].head()

Output: 

After operating on the data in the data frame, we can export the data back to an excel file using the method to_excel. For this we need to specify an output excel file where the transformed data is to be written, as shown below: 

Python3

newData.to_excel('Output File.xlsx')

Output: 

Pandas можно использовать для чтения и записи файлов Excel с помощью Python. Это работает по аналогии с другими форматами. В этом материале рассмотрим, как это делается с помощью DataFrame.

Помимо чтения и записи рассмотрим, как записывать несколько DataFrame в Excel-файл, как считывать определенные строки и колонки из таблицы и как задавать имена для одной или нескольких таблиц в файле.

Установка Pandas

Для начала Pandas нужно установить. Проще всего это сделать с помощью pip.

Если у вас Windows, Linux или macOS:

pip install pandas # или pip3

В процессе можно столкнуться с ошибками ModuleNotFoundError или ImportError при попытке запустить этот код. Например:

ModuleNotFoundError: No module named 'openpyxl'

В таком случае нужно установить недостающие модули:

pip install openpyxl xlsxwriter xlrd  # или pip3

Будем хранить информацию, которую нужно записать в файл Excel, в DataFrame. А с помощью встроенной функции to_excel() ее можно будет записать в Excel.

Сначала импортируем модуль pandas. Потом используем словарь для заполнения DataFrame:


import pandas as pd

df = pd.DataFrame({'Name': ['Manchester City', 'Real Madrid', 'Liverpool',
'FC Bayern München', 'FC Barcelona', 'Juventus'],
'League': ['English Premier League (1)', 'Spain Primera Division (1)',
'English Premier League (1)', 'German 1. Bundesliga (1)',
'Spain Primera Division (1)', 'Italian Serie A (1)'],
'TransferBudget': [176000000, 188500000, 90000000,
100000000, 180500000, 105000000]})

Ключи в словаре — это названия колонок. А значения станут строками с информацией.

Теперь можно использовать функцию to_excel() для записи содержимого в файл. Единственный аргумент — это путь к файлу:


df.to_excel('./teams.xlsx')

А вот и созданный файл Excel:

файл Excel в python

Стоит обратить внимание на то, что в этом примере не использовались параметры. Таким образом название листа в файле останется по умолчанию — «Sheet1». В файле может быть и дополнительная колонка с числами. Эти числа представляют собой индексы, которые взяты напрямую из DataFrame.

Поменять название листа можно, добавив параметр sheet_name в вызов to_excel():


df.to_excel('./teams.xlsx', sheet_name='Budgets', index=False)

Также можно добавили параметр index со значением False, чтобы избавиться от колонки с индексами. Теперь файл Excel будет выглядеть следующим образом:

Чтение и запись файлов Excel (XLSX) в Python

Запись нескольких DataFrame в файл Excel

Также есть возможность записать несколько DataFrame в файл Excel. Для этого можно указать отдельный лист для каждого объекта:


salaries1 = pd.DataFrame({'Name': ['L. Messi', 'Cristiano Ronaldo', 'J. Oblak'],
'Salary': [560000, 220000, 125000]})

salaries2 = pd.DataFrame({'Name': ['K. De Bruyne', 'Neymar Jr', 'R. Lewandowski'],
'Salary': [370000, 270000, 240000]})

salaries3 = pd.DataFrame({'Name': ['Alisson', 'M. ter Stegen', 'M. Salah'],
'Salary': [160000, 260000, 250000]})

salary_sheets = {'Group1': salaries1, 'Group2': salaries2, 'Group3': salaries3}
writer = pd.ExcelWriter('./salaries.xlsx', engine='xlsxwriter')

for sheet_name in salary_sheets.keys():
salary_sheets[sheet_name].to_excel(writer, sheet_name=sheet_name, index=False)

writer.save()

Здесь создаются 3 разных DataFrame с разными названиями, которые включают имена сотрудников, а также размер их зарплаты. Каждый объект заполняется соответствующим словарем.

Объединим все три в переменной salary_sheets, где каждый ключ будет названием листа, а значение — объектом DataFrame.

Дальше используем движок xlsxwriter для создания объекта writer. Он и передается функции to_excel().

Перед записью пройдемся по ключам salary_sheets и для каждого ключа запишем содержимое в лист с соответствующим именем. Вот сгенерированный файл:

Чтение и запись файлов Excel (XLSX) в Python

Можно увидеть, что в этом файле Excel есть три листа: Group1, Group2 и Group3. Каждый из этих листов содержит имена сотрудников и их зарплаты в соответствии с данными в трех DataFrame из кода.

Параметр движка в функции to_excel() используется для определения модуля, который задействуется библиотекой Pandas для создания файла Excel. В этом случае использовался xslswriter, который нужен для работы с классом ExcelWriter. Разные движка можно определять в соответствии с их функциями.

В зависимости от установленных в системе модулей Python другими параметрами для движка могут быть openpyxl (для xlsx или xlsm) и xlwt (для xls). Подробности о модуле xlswriter можно найти в официальной документации.

Наконец, в коде была строка writer.save(), которая нужна для сохранения файла на диске.

Чтение файлов Excel с python

По аналогии с записью объектов DataFrame в файл Excel, эти файлы можно и читать, сохраняя данные в объект DataFrame. Для этого достаточно воспользоваться функцией read_excel():


top_players = pd.read_excel('./top_players.xlsx')
top_players.head()

Содержимое финального объекта можно посмотреть с помощью функции head().

Примечание:

Этот способ самый простой, но он и способен прочесть лишь содержимое первого листа.

Посмотрим на вывод функции head():

Name Age Overall Potential Positions Club
0 L. Messi 33 93 93 RW,ST,CF FC Barcelona
1 Cristiano Ronaldo 35 92 92 ST,LW Juventus
2 J. Oblak 27 91 93 GK Atlético Madrid
3 K. De Bruyne 29 91 91 CAM,CM Manchester City
4 Neymar Jr 28 91 91 LW,CAM Paris Saint-Germain

Pandas присваивает метку строки или числовой индекс объекту DataFrame по умолчанию при использовании функции read_excel().

Это поведение можно переписать, передав одну из колонок из файла в качестве параметра index_col:


top_players = pd.read_excel('./top_players.xlsx', index_col='Name')
top_players.head()

Результат будет следующим:

Name Age Overall Potential Positions Club
L. Messi 33 93 93 RW,ST,CF FC Barcelona
Cristiano Ronaldo 35 92 92 ST,LW Juventus
J. Oblak 27 91 93 GK Atlético Madrid
K. De Bruyne 29 91 91 CAM,CM Manchester City
Neymar Jr 28 91 91 LW,CAM Paris Saint-Germain

В этом примере индекс по умолчанию был заменен на колонку «Name» из файла. Однако этот способ стоит использовать только при наличии колонки со значениями, которые могут стать заменой для индексов.

Чтение определенных колонок из файла Excel

Иногда удобно прочитать содержимое файла целиком, но бывают случаи, когда требуется получить доступ к определенному элементу. Например, нужно считать значение элемента и присвоить его полю объекта.

Это делается с помощью функции read_excel() и параметра usecols. Например, можно ограничить функцию, чтобы она читала только определенные колонки. Добавим параметр, чтобы он читал колонки, которые соответствуют значениям «Name», «Overall» и «Potential».

Для этого укажем числовой индекс каждой колонки:


cols = [0, 2, 3]

top_players = pd.read_excel('./top_players.xlsx', usecols=cols)
top_players.head()

Вот что выдаст этот код:

Name Overall Potential
0 L. Messi 93 93
1 Cristiano Ronaldo 92 92
2 J. Oblak 91 93
3 K. De Bruyne 91 91
4 Neymar Jr 91 91

Таким образом возвращаются лишь колонки из списка cols.

В DataFrame много встроенных возможностей. Легко изменять, добавлять и агрегировать данные. Даже можно строить сводные таблицы. И все это сохраняется в Excel одной строкой кода.

Рекомендую изучить DataFrame в моих уроках по Pandas.

Выводы

В этом материале были рассмотрены функции read_excel() и to_excel() из библиотеки Pandas. С их помощью можно считывать данные из файлов Excel и выполнять запись в них. С помощью различных параметров есть возможность менять поведение функций, создавая нужные файлы, не просто копируя содержимое из объекта DataFrame.

Like this post? Please share to your friends:
  • Python pandas excel листы
  • Python excel pandas xlsx
  • Python pandas excel to json
  • Python excel pandas for row
  • Python pandas excel to dict