Python pandas and excel

Время на прочтение
5 мин

Количество просмотров 63K

Excel — это чрезвычайно распространённый инструмент для анализа данных. С ним легко научиться работать, есть он практически на каждом компьютере, а тот, кто его освоил, может с его помощью решать довольно сложные задачи. Python часто считают инструментом, возможности которого практически безграничны, но который освоить сложнее, чем Excel. Автор материала, перевод которого мы сегодня публикуем, хочет рассказать о решении с помощью Python трёх задач, которые обычно решают в Excel. Эта статья представляет собой нечто вроде введения в Python для тех, кто хорошо знает Excel.

Загрузка данных

Начнём с импорта Python-библиотеки pandas и с загрузки в датафреймы данных, которые хранятся на листах sales и states книги Excel. Такие же имена мы дадим и соответствующим датафреймам.

import pandas as pd
sales = pd.read_excel('https://github.com/datagy/mediumdata/raw/master/pythonexcel.xlsx', sheet_name = 'sales')
states = pd.read_excel('https://github.com/datagy/mediumdata/raw/master/pythonexcel.xlsx', sheet_name = 'states')

Теперь воспользуемся методом .head() датафрейма sales для того чтобы вывести элементы, находящиеся в начале датафрейма:

print(sales.head())

Сравним то, что будет выведено, с тем, что можно видеть в Excel.

Сравнение внешнего вида данных, выводимых в Excel, с внешним видом данных, выводимых из датафрейма pandas

Тут можно видеть, что результаты визуализации данных из датафрейма очень похожи на то, что можно видеть в Excel. Но тут имеются и некоторые очень важные различия:

  • Нумерация строк в Excel начинается с 1, а в pandas номер (индекс) первой строки равняется 0.
  • В Excel столбцы имеют буквенные обозначения, начинающиеся с буквы A, а в pandas названия столбцов соответствуют именам соответствующих переменных.

Продолжим исследование возможностей pandas, позволяющих решать задачи, которые обычно решают в Excel.

Реализация возможностей Excel-функции IF в Python

В Excel существует очень удобная функция IF, которая позволяет, например, записать что-либо в ячейку, основываясь на проверке того, что находится в другой ячейке. Предположим, нужно создать в Excel новый столбец, ячейки которого будут сообщать нам о том, превышают ли 500 значения, записанные в соответствующие ячейки столбца B. В Excel такому столбцу (в нашем случае это столбец E) можно назначить заголовок MoreThan500, записав соответствующий текст в ячейку E1. После этого, в ячейке E2, можно ввести следующее:

=IF([@Sales]>500, "Yes", "No")

Использование функции IF в Excel

Для того чтобы сделать то же самое с использованием pandas, можно воспользоваться списковым включением (list comprehension):

sales['MoreThan500'] = ['Yes' if x > 500 else 'No' for x in sales['Sales']]

Списковые включения в Python: если текущее значение больше 500 — в список попадает Yes, в противном случае — No

Списковые включения — это отличное средство для решения подобных задач, позволяющее упростить код за счёт уменьшения потребности в сложных конструкциях вида if/else. Ту же задачу можно решить и с помощью if/else, но предложенный подход экономит время и делает код немного чище. Подробности о списковых включениях можно найти здесь.

Реализация возможностей Excel-функции VLOOKUP в Python

В нашем наборе данных, на одном из листов Excel, есть названия городов, а на другом — названия штатов и провинций. Как узнать о том, где именно находится каждый город? Для этого подходит Excel-функция VLOOKUP, с помощью которой можно связать данные двух таблиц. Эта функция работает по принципу левого соединения, когда сохраняется каждая запись из набора данных, находящегося в левой части выражения. Применяя функцию VLOOKUP, мы предлагаем системе выполнить поиск определённого значения в заданном столбце указанного листа, а затем — вернуть значение, которое находится на заданное число столбцов правее найденного значения. Вот как это выглядит:

=VLOOKUP([@City],states,2,false)

Зададим на листе sales заголовок столбца F как State и воспользуемся функцией VLOOKUP для того чтобы заполнить ячейки этого столбца названиями штатов и провинций, в которых расположены города.

Использование функции VLOOKUP в Excel

В Python сделать то же самое можно, воспользовавшись методом merge из pandas. Он принимает два датафрейма и объединяет их. Для решения этой задачи нам понадобится следующий код:

sales = pd.merge(sales, states, how='left', on='City')

Разберём его:

  1. Первый аргумент метода merge — это исходный датафрейм.
  2. Второй аргумент — это датафрейм, в котором мы ищем значения.
  3. Аргумент how указывает на то, как именно мы хотим соединить данные.
  4. Аргумент on указывает на переменную, по которой нужно выполнить соединение (тут ещё можно использовать аргументы left_on и right_on, нужные в том случае, если интересующие нас данные в разных датафреймах названы по-разному).

Сводные таблицы

Сводные таблицы (Pivot Tables) — это одна из самых мощных возможностей Excel. Такие таблицы позволяют очень быстро извлекать ценные сведения из больших наборов данных. Создадим в Excel сводную таблицу, выводящую сведения о суммарных продажах по каждому городу.

Создание сводной таблицы в Excel

Как видите, для создания подобной таблицы достаточно перетащить поле City в раздел Rows, а поле Sales — в раздел Values. После этого Excel автоматически выведет суммарные продажи для каждого города.

Для того чтобы создать такую же сводную таблицу в pandas, нужно будет написать следующий код:

sales.pivot_table(index = 'City', values = 'Sales', aggfunc = 'sum')

Разберём его:

  1. Здесь мы используем метод sales.pivot_table, сообщая pandas о том, что мы хотим создать сводную таблицу, основанную на датафрейме sales.
  2. Аргумент index указывает на столбец, по которому мы хотим агрегировать данные.
  3. Аргумент values указывает на то, какие значения мы собираемся агрегировать.
  4. Аргумент aggfunc задаёт функцию, которую мы хотим использовать при обработке значений (тут ещё можно воспользоваться функциями mean, max, min и так далее).

Итоги

Из этого материала вы узнали о том, как импортировать Excel-данные в pandas, о том, как реализовать средствами Python и pandas возможности Excel-функций IF и VLOOKUP, а также о том, как воспроизвести средствами pandas функционал сводных таблиц Excel. Возможно, сейчас вы задаётесь вопросом о том, зачем вам пользоваться pandas, если то же самое можно сделать и в Excel. На этот вопрос нет однозначного ответа. Python позволяет создавать код, который поддаётся тонкой настройке и глубокому исследованию. Такой код можно использовать многократно. Средствами Python можно описывать очень сложные схемы анализа данных. А возможностей Excel, вероятно, достаточно лишь для менее масштабных исследований данных. Если вы до этого момента пользовались только Excel — рекомендую испытать Python и pandas, и узнать о том, что у вас из этого получится.

А какие инструменты вы используете для анализа данных?

Напоминаем, что у нас продолжается конкурс прогнозов, в котором можно выиграть новенький iPhone. Еще есть время ворваться в него, и сделать максимально точный прогноз по злободневным величинам.

Why learn to work with Excel with Python? Excel is one of the most popular and widely-used data tools; it’s hard to find an organization that doesn’t work with it in some way. From analysts, to sales VPs, to CEOs, various professionals use Excel for both quick stats and serious data crunching.

With Excel being so pervasive, data professionals must be familiar with it. Working with data in Python or R offers serious advantages over Excel’s UI, so finding a way to work with Excel using code is critical. Thankfully, there’s a great tool already out there for using Excel with Python called pandas.

Pandas has excellent methods for reading all kinds of data from Excel files. You can also export your results from pandas back to Excel, if that’s preferred by your intended audience. Pandas is great for other routine data analysis tasks, such as:

  • quick Exploratory Data Analysis (EDA)
  • drawing attractive plots
  • feeding data into machine learning tools like scikit-learn
  • building machine learning models on your data
  • taking cleaned and processed data to any number of data tools

Pandas is better at automating data processing tasks than Excel, including processing Excel files.

In this tutorial, we are going to show you how to work with Excel files in pandas. We will cover the following concepts.

  • setting up your computer with the necessary software
  • reading in data from Excel files into pandas
  • data exploration in pandas
  • visualizing data in pandas using the matplotlib visualization library
  • manipulating and reshaping data in pandas
  • moving data from pandas into Excel

Note that this tutorial does not provide a deep dive into pandas. To explore pandas more, check out our course.

System Prerequisites

We will use Python 3 and Jupyter Notebook to demonstrate the code in this tutorial.In addition to Python and Jupyter Notebook, you will need the following Python modules:

  • matplotlib — data visualization
  • NumPy — numerical data functionality
  • OpenPyXL — read/write Excel 2010 xlsx/xlsm files
  • pandas — data import, clean-up, exploration, and analysis
  • xlrd — read Excel data
  • xlwt — write to Excel
  • XlsxWriter — write to Excel (xlsx) files

There are multiple ways to get set up with all the modules. We cover three of the most common scenarios below.

  • If you have Python installed via Anaconda package manager, you can install the required modules using the command conda install. For example, to install pandas, you would execute the command — conda install pandas.
  • If you already have a regular, non-Anaconda Python installed on the computer, you can install the required modules using pip. Open your command line program and execute command pip install <module name> to install a module. You should replace <module name> with the actual name of the module you are trying to install. For example, to install pandas, you would execute command — pip install pandas.
  • If you don’t have Python already installed, you should get it through the Anaconda package manager. Anaconda provides installers for Windows, Mac, and Linux Computers. If you choose the full installer, you will get all the modules you need, along with Python and pandas within a single package. This is the easiest and fastest way to get started.

The Data Set

In this tutorial, we will use a multi-sheet Excel file we created from Kaggle’s IMDB Scores data. You can download the file here.

img-excel-1

Our Excel file has three sheets: ‘1900s,’ ‘2000s,’ and ‘2010s.’ Each sheet has data for movies from those years.

We will use this data set to find the ratings distribution for the movies, visualize movies with highest ratings and net earnings and calculate statistical information about the movies. We will be analyzing and exploring this data using Python and pandas, thus demonstrating pandas capabilities for working with Excel data in Python.

Read data from the Excel file

We need to first import the data from the Excel file into pandas. To do that, we start by importing the pandas module.

import pandas as pd

We then use the pandas’ read_excel method to read in data from the Excel file. The easiest way to call this method is to pass the file name. If no sheet name is specified then it will read the first sheet in the index (as shown below).

excel_file = 'movies.xls'
movies = pd.read_excel(excel_file)

Here, the read_excel method read the data from the Excel file into a pandas DataFrame object. Pandas defaults to storing data in DataFrames. We then stored this DataFrame into a variable called movies.

Pandas has a built-in DataFrame.head() method that we can use to easily display the first few rows of our DataFrame. If no argument is passed, it will display first five rows. If a number is passed, it will display the equal number of rows from the top.

movies.head()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
0 Intolerance: Love’s Struggle Throughout the Ages 1916 Drama|History|War NaN USA Not Rated 123 1.33 385907.0 NaN 436 22 9.0 481 691 1 10718 88 69.0 8.0
1 Over the Hill to the Poorhouse 1920 Crime|Drama NaN USA NaN 110 1.33 100000.0 3000000.0 2 2 0.0 4 0 1 5 1 1.0 4.8
2 The Big Parade 1925 Drama|Romance|War NaN USA Not Rated 151 1.33 245000.0 NaN 81 12 6.0 108 226 0 4849 45 48.0 8.3
3 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 136 23 18.0 203 12000 1 111841 413 260.0 8.3
4 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 426 20 3.0 455 926 1 7431 84 71.0 8.0

5 rows × 25 columns

Excel files quite often have multiple sheets and the ability to read a specific sheet or all of them is very important. To make this easy, the pandas read_excel method takes an argument called sheetname that tells pandas which sheet to read in the data from. For this, you can either use the sheet name or the sheet number. Sheet numbers start with zero. If the sheetname argument is not given, it defaults to zero and pandas will import the first sheet.

By default, pandas will automatically assign a numeric index or row label starting with zero. You may want to leave the default index as such if your data doesn’t have a column with unique values that can serve as a better index. In case there is a column that you feel would serve as a better index, you can override the default behavior by setting index_col property to a column. It takes a numeric value for setting a single column as index or a list of numeric values for creating a multi-index.

In the below code, we are choosing the first column, ‘Title’, as index (index=0) by passing zero to the index_col argument.

movies_sheet1 = pd.read_excel(excel_file, sheetname=0, index_col=0)
movies_sheet1.head()
Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
Title
Intolerance: Love’s Struggle Throughout the Ages 1916 Drama|History|War NaN USA Not Rated 123 1.33 385907.0 NaN D.W. Griffith 436 22 9.0 481 691 1 10718 88 69.0 8.0
Over the Hill to the Poorhouse 1920 Crime|Drama NaN USA NaN 110 1.33 100000.0 3000000.0 Harry F. Millarde 2 2 0.0 4 0 1 5 1 1.0 4.8
The Big Parade 1925 Drama|Romance|War NaN USA Not Rated 151 1.33 245000.0 NaN King Vidor 81 12 6.0 108 226 0 4849 45 48.0 8.3
Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 Fritz Lang 136 23 18.0 203 12000 1 111841 413 260.0 8.3
Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 Georg Wilhelm Pabst 426 20 3.0 455 926 1 7431 84 71.0 8.0

5 rows × 24 columns

As you noticed above, our Excel data file has three sheets. We already read the first sheet in a DataFrame above. Now, using the same syntax, we will read in rest of the two sheets too.

movies_sheet2 = pd.read_excel(excel_file, sheetname=1, index_col=0)
movies_sheet2.head()
Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
Title
102 Dalmatians 2000 Adventure|Comedy|Family English USA G 100.0 1.85 85000000.0 66941559.0 Kevin Lima 2000.0 795.0 439.0 4182 372 1 26413 77.0 84.0 4.8
28 Days 2000 Comedy|Drama English USA PG-13 103.0 1.37 43000000.0 37035515.0 Betty Thomas 12000.0 10000.0 664.0 23864 0 1 34597 194.0 116.0 6.0
3 Strikes 2000 Comedy English USA R 82.0 1.85 6000000.0 9821335.0 DJ Pooh 939.0 706.0 585.0 3354 118 1 1415 10.0 22.0 4.0
Aberdeen 2000 Drama English UK NaN 106.0 1.85 6500000.0 64148.0 Hans Petter Moland 844.0 2.0 0.0 846 260 0 2601 35.0 28.0 7.3
All the Pretty Horses 2000 Drama|Romance|Western English USA PG-13 220.0 2.35 57000000.0 15527125.0 Billy Bob Thornton 13000.0 861.0 820.0 15006 652 2 11388 183.0 85.0 5.8

5 rows × 24 columns

movies_sheet3 = pd.read_excel(excel_file, sheetname=2, index_col=0)
movies_sheet3.head()
Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
Title
127 Hours 2010.0 Adventure|Biography|Drama|Thriller English USA R 94.0 1.85 18000000.0 18329466.0 Danny Boyle 11000.0 642.0 223.0 11984 63000 0.0 279179 440.0 450.0 7.6
3 Backyards 2010.0 Drama English USA R 88.0 NaN 300000.0 NaN Eric Mendelsohn 795.0 659.0 301.0 1884 92 0.0 554 23.0 20.0 5.2
3 2010.0 Comedy|Drama|Romance German Germany Unrated 119.0 2.35 NaN 59774.0 Tom Tykwer 24.0 20.0 9.0 69 2000 0.0 4212 18.0 76.0 6.8
8: The Mormon Proposition 2010.0 Documentary English USA R 80.0 1.78 2500000.0 99851.0 Reed Cowan 191.0 12.0 5.0 210 0 0.0 1138 30.0 28.0 7.1
A Turtle’s Tale: Sammy’s Adventures 2010.0 Adventure|Animation|Family English France PG 88.0 2.35 NaN NaN Ben Stassen 783.0 749.0 602.0 3874 0 2.0 5385 22.0 56.0 6.1

5 rows × 24 columns

Since all the three sheets have similar data but for different recordsmovies, we will create a single DataFrame from all the three DataFrames we created above. We will use the pandas concat method for this and pass in the names of the three DataFrames we just created and assign the results to a new DataFrame object, movies. By keeping the DataFrame name same as before, we are over-writing the previously created DataFrame.

movies = pd.concat([movies_sheet1, movies_sheet2, movies_sheet3])

We can check if this concatenation by checking the number of rows in the combined DataFrame by calling the method shape on it that will give us the number of rows and columns.

movies.shape
(5042, 24)

Using the ExcelFile class to read multiple sheets

We can also use the ExcelFile class to work with multiple sheets from the same Excel file. We first wrap the Excel file using ExcelFile and then pass it to read_excel method.

xlsx = pd.ExcelFile(excel_file)
movies_sheets = []
for sheet in xlsx.sheet_names:
   movies_sheets.append(xlsx.parse(sheet))
movies = pd.concat(movies_sheets)

If you are reading an Excel file with a lot of sheets and are creating a lot of DataFrames, ExcelFile is more convenient and efficient in comparison to read_excel. With ExcelFile, you only need to pass the Excel file once, and then you can use it to get the DataFrames. When using read_excel, you pass the Excel file every time and hence the file is loaded again for every sheet. This can be a huge performance drag if the Excel file has many sheets with a large number of rows.

Exploring the data

Now that we have read in the movies data set from our Excel file, we can start exploring it using pandas. A pandas DataFrame stores the data in a tabular format, just like the way Excel displays the data in a sheet. Pandas has a lot of built-in methods to explore the DataFrame we created from the Excel file we just read in.

We already introduced the method head in the previous section that displays few rows from the top from the DataFrame. Let’s look at few more methods that come in handy while exploring the data set.

We can use the shape method to find out the number of rows and columns for the DataFrame.

movies.shape
(5042, 25)

This tells us our Excel file has 5042 records and 25 columns or observations. This can be useful in reporting the number of records and columns and comparing that with the source data set.

We can use the tail method to view the bottom rows. If no parameter is passed, only the bottom five rows are returned.

movies.tail()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
1599 War & Peace NaN Drama|History|Romance|War English UK TV-14 NaN 16.00 NaN NaN 1000.0 888.0 502.0 4528 11000 1.0 9277 44.0 10.0 8.2
1600 Wings NaN Comedy|Drama English USA NaN 30.0 1.33 NaN NaN 685.0 511.0 424.0 1884 1000 5.0 7646 56.0 19.0 7.3
1601 Wolf Creek NaN Drama|Horror|Thriller English Australia NaN NaN 2.00 NaN NaN 511.0 457.0 206.0 1617 954 0.0 726 6.0 2.0 7.1
1602 Wuthering Heights NaN Drama|Romance English UK NaN 142.0 NaN NaN NaN 27000.0 698.0 427.0 29196 0 2.0 6053 33.0 9.0 7.7
1603 Yu-Gi-Oh! Duel Monsters NaN Action|Adventure|Animation|Family|Fantasy Japanese Japan NaN 24.0 NaN NaN NaN 0.0 NaN NaN 0 124 0.0 12417 51.0 6.0 7.0

5 rows × 25 columns

In Excel, you’re able to sort a sheet based on the values in one or more columns. In pandas, you can do the same thing with the sort_values method. For example, let’s sort our movies DataFrame based on the Gross Earnings column.

sorted_by_gross = movies.sort_values(['Gross Earnings'], ascending=False)

Since we have the data sorted by values in a column, we can do few interesting things with it. For example, we can display the top 10 movies by Gross Earnings.

sorted_by_gross["Gross Earnings"].head(10)
1867 760505847.0
1027 658672302.0
1263 652177271.0
610 623279547.0
611 623279547.0
1774 533316061.0
1281 474544677.0
226 460935665.0
1183 458991599.0
618 448130642.0
Name: Gross Earnings, dtype: float64

We can also create a plot for the top 10 movies by Gross Earnings. Pandas makes it easy to visualize your data with plots and charts through matplotlib, a popular data visualization library. With a couple lines of code, you can start plotting. Moreover, matplotlib plots work well inside Jupyter Notebooks since you can displace the plots right under the code.

First, we import the matplotlib module and set matplotlib to display the plots right in the Jupyter Notebook.

import matplotlib.pyplot as plt%matplotlib inline

We will draw a bar plot where each bar will represent one of the top 10 movies. We can do this by calling the plot method and setting the argument kind to barh. This tells matplotlib to draw a horizontal bar plot.

sorted_by_gross['Gross Earnings'].head(10).plot(kind="barh")
plt.show()

python-pandas-and-excel_28_0

Let’s create a histogram of IMDB Scores to check the distribution of IMDB Scores across all movies. Histograms are a good way to visualize the distribution of a data set. We use the plot method on the IMDB Scores series from our movies DataFrame and pass it the argument.

movies['IMDB Score'].plot(kind="hist")
plt.show()

python-pandas-and-excel_30_0

This data visualization suggests that most of the IMDB Scores fall between six and eight.

Getting statistical information about the data

Pandas has some very handy methods to look at the statistical data about our data set. For example, we can use the describe method to get a statistical summary of the data set.

movies.describe()
Year Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Director Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
count 4935.000000 5028.000000 4714.000000 4.551000e+03 4.159000e+03 4938.000000 5035.000000 5029.000000 5020.000000 5042.000000 5042.000000 5029.000000 5.042000e+03 5022.000000 4993.000000 5042.000000
mean 2002.470517 107.201074 2.220403 3.975262e+07 4.846841e+07 686.621709 6561.323932 1652.080533 645.009761 9700.959143 7527.457160 1.371446 8.368475e+04 272.770808 140.194272 6.442007
std 12.474599 25.197441 1.385113 2.061149e+08 6.845299e+07 2813.602405 15021.977635 4042.774685 1665.041728 18165.101925 19322.070537 2.013683 1.384940e+05 377.982886 121.601675 1.125189
min 1916.000000 7.000000 1.180000 2.180000e+02 1.620000e+02 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5.000000e+00 1.000000 1.000000 1.600000
25% 1999.000000 93.000000 1.850000 6.000000e+06 5.340988e+06 7.000000 614.500000 281.000000 133.000000 1411.250000 0.000000 0.000000 8.599250e+03 65.000000 50.000000 5.800000
50% 2005.000000 103.000000 2.350000 2.000000e+07 2.551750e+07 49.000000 988.000000 595.000000 371.500000 3091.000000 166.000000 1.000000 3.437100e+04 156.000000 110.000000 6.600000
75% 2011.000000 118.000000 2.350000 4.500000e+07 6.230944e+07 194.750000 11000.000000 918.000000 636.000000 13758.750000 3000.000000 2.000000 9.634700e+04 326.000000 195.000000 7.200000
max 2016.000000 511.000000 16.000000 1.221550e+10 7.605058e+08 23000.000000 640000.000000 137000.000000 23000.000000 656730.000000 349000.000000 43.000000 1.689764e+06 5060.000000 813.000000 9.500000

The describe method displays below information for each of the columns.

  • the count or number of values
  • mean
  • standard deviation
  • minimum, maximum
  • 25%, 50%, and 75% quantile

Please note that this information will be calculated only for the numeric values.

We can also use the corresponding method to access this information one at a time. For example, to get the mean of a particular column, you can use the mean method on that column.

movies["Gross Earnings"].mean()
48468407.526809327

Just like mean, there are methods available for each of the statistical information we want to access. You can read about these methods in our free pandas cheat sheet.

Reading files with no header and skipping records

Earlier in this tutorial, we saw some ways to read a particular kind of Excel file that had headers and no rows that needed skipping. Sometimes, the Excel sheet doesn’t have any header row. For such instances, you can tell pandas not to consider the first row as header or columns names. And If the Excel sheet’s first few rows contain data that should not be read in, you can ask the read_excel method to skip a certain number of rows, starting from the top.

For example, look at the top few rows of this Excel file.img-excel-no-header-1

This file obviously has no header and first four rows are not actual records and hence should not be read in. We can tell read_excel there is no header by setting argument header to None and we can skip first four rows by setting argument skiprows to four.

movies_skip_rows = pd.read_excel("movies-no-header-skip-rows.xls", header=None, skiprows=4)
movies_skip_rows.head(5)
0 1 2 3 4 5 6 7 8 9 15 16 17 18 19 20 21 22 23 24
0 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 136 23 18.0 203 12000 1 111841 413 260.0 8.3
1 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 426 20 3.0 455 926 1 7431 84 71.0 8.0
2 The Broadway Melody 1929 Musical|Romance English USA Passed 100 1.37 379000.0 2808000.0 77 28 4.0 109 167 8 4546 71 36.0 6.3
3 Hell’s Angels 1930 Drama|War English USA Passed 96 1.20 3950000.0 NaN 431 12 4.0 457 279 1 3753 53 35.0 7.8
4 A Farewell to Arms 1932 Drama|Romance|War English USA Unrated 79 1.37 800000.0 NaN 998 164 99.0 1284 213 1 3519 46 42.0 6.6

5 rows × 25 columns

We skipped four rows from the sheet and used none of the rows as the header. Also, notice that one can combine different options in a single read statement. To skip rows at the bottom of the sheet, you can use option skip_footer, which works just like skiprows, the only difference being the rows are counted from the bottom upwards.

The column names in the previous DataFrame are numeric and were allotted as default by the pandas. We can rename the column names to descriptive ones by calling the method columns on the DataFrame and passing the column names as a list.

movies_skip_rows.columns = ['Title', 'Year', 'Genres', 'Language', 'Country', 'Content Rating', 'Duration', 'Aspect Ratio', 'Budget', 'Gross Earnings', 'Director', 'Actor 1', 'Actor 2', 'Actor 3', 'Facebook Likes - Director', 'Facebook Likes - Actor 1', 'Facebook Likes - Actor 2', 'Facebook Likes - Actor 3', 'Facebook Likes - cast Total', 'Facebook likes - Movie', 'Facenumber in posters', 'User Votes', 'Reviews by Users', 'Reviews by Crtiics', 'IMDB Score']
movies_skip_rows.head()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 1 Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score
0 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145 1.33 6000000.0 26435.0 136 23 18.0 203 12000 1 111841 413 260.0 8.3
1 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110 1.33 NaN 9950.0 426 20 3.0 455 926 1 7431 84 71.0 8.0
2 The Broadway Melody 1929 Musical|Romance English USA Passed 100 1.37 379000.0 2808000.0 77 28 4.0 109 167 8 4546 71 36.0 6.3
3 Hell’s Angels 1930 Drama|War English USA Passed 96 1.20 3950000.0 NaN 431 12 4.0 457 279 1 3753 53 35.0 7.8
4 A Farewell to Arms 1932 Drama|Romance|War English USA Unrated 79 1.37 800000.0 NaN 998 164 99.0 1284 213 1 3519 46 42.0 6.6

5 rows × 25 columns

Now that we have seen how to read a subset of rows from the Excel file, we can learn how to read a subset of columns.

Reading a subset of columns

Although read_excel defaults to reading and importing all columns, you can choose to import only certain columns. By passing parse_cols=6, we are telling the read_excel method to read only the first columns till index six or first seven columns (the first column being indexed zero).

movies_subset_columns = pd.read_excel(excel_file, parse_cols=6)
movies_subset_columns.head()
Title Year Genres Language Country Content Rating Duration
0 Intolerance: Love’s Struggle Throughout the Ages 1916 Drama|History|War NaN USA Not Rated 123
1 Over the Hill to the Poorhouse 1920 Crime|Drama NaN USA NaN 110
2 The Big Parade 1925 Drama|Romance|War NaN USA Not Rated 151
3 Metropolis 1927 Drama|Sci-Fi German Germany Not Rated 145
4 Pandora’s Box 1929 Crime|Drama|Romance German Germany Not Rated 110

Alternatively, you can pass in a list of numbers, which will let you import columns at particular indexes.

Applying formulas on the columns

One of the much-used features of Excel is to apply formulas to create new columns from existing column values. In our Excel file, we have Gross Earnings and Budget columns. We can get Net earnings by subtracting Budget from Gross earnings. We could then apply this formula in the Excel file to all the rows. We can do this in pandas also as shown below.

movies["Net Earnings"] = movies["Gross Earnings"] - movies["Budget"]

Above, we used pandas to create a new column called Net Earnings, and populated it with the difference of Gross Earnings and Budget. It’s worth noting the difference here in how formulas are treated in Excel versus pandas. In Excel, a formula lives in the cell and updates when the data changes — with Python, the calculations happen and the values are stored — if Gross Earnings for one movie was manually changed, Net Earnings won’t be updated.

Let’s use the sort_values method to sort the data by the new column we created and visualize the top 10 movies by Net Earnings.

sorted_movies = movies[['Net Earnings']].sort_values(['Net Earnings'], ascending=[False])sorted_movies.head(10)['Net Earnings'].plot.barh()
plt.show()

python-pandas-and-excel_44_0

Pivot Table in pandas

Advanced Excel users also often use pivot tables. A pivot table summarizes the data of another table by grouping the data on an index and applying operations such as sorting, summing, or averaging. You can use this feature in pandas too.

We need to first identify the column or columns that will serve as the index, and the column(s) on which the summarizing formula will be applied. Let’s start small, by choosing Year as the index column and Gross Earnings as the summarization column and creating a separate DataFrame from this data.

movies_subset = movies[['Year', 'Gross Earnings']]
movies_subset.head()
Year Gross Earnings
0 1916.0 NaN
1 1920.0 3000000.0
2 1925.0 NaN
3 1927.0 26435.0
4 1929.0 9950.0

We now call pivot_table on this subset of data. The method pivot_table takes a parameter index. As mentioned, we want to use Year as the index.

earnings_by_year = movies_subset.pivot_table(index=['Year'])
earnings_by_year.head()
Gross Earnings
Year
1916.0 NaN
1920.0 3000000.0
1925.0 NaN
1927.0 26435.0
1929.0 1408975.0

This gave us a pivot table with grouping on Year and summarization on the sum of Gross Earnings. Notice, we didn’t need to specify Gross Earnings column explicitly as pandas automatically identified it the values on which summarization should be applied.

We can use this pivot table to create some data visualizations. We can call the plot method on the DataFrame to create a line plot and call the show method to display the plot in the notebook.

earnings_by_year.plot()
plt.show()

python-pandas-and-excel_50_0

We saw how to pivot with a single column as the index. Things will get more interesting if we can use multiple columns. Let’s create another DataFrame subset but this time we will choose the columns, Country, Language and Gross Earnings.

movies_subset = movies[['Country', 'Language', 'Gross Earnings']]
movies_subset.head()
Country Language Gross Earnings
0 USA NaN NaN
1 USA NaN 3000000.0
2 USA NaN NaN
3 Germany German 26435.0
4 Germany German 9950.0

We will use columns Country and Language as the index for the pivot table. We will use Gross Earnings as summarization table, however, we do not need to specify this explicitly as we saw earlier.

earnings_by_co_lang = movies_subset.pivot_table(index=['Country', 'Language'])
earnings_by_co_lang.head()
Gross Earnings
Country Language
Afghanistan Dari 1.127331e+06
Argentina Spanish 7.230936e+06
Aruba English 1.007614e+07
Australia Aboriginal 6.165429e+06
Dzongkha 5.052950e+05

Let’s visualize this pivot table with a bar plot. Since there are still few hundred records in this pivot table, we will plot just a few of them.

earnings_by_co_lang.head(20).plot(kind='bar', figsize=(20,8))
plt.show()

python-pandas-and-excel_56_0

Exporting the results to Excel

If you’re going to be working with colleagues who use Excel, saving Excel files out of pandas is important. You can export or write a pandas DataFrame to an Excel file using pandas to_excel method. Pandas uses the xlwt Python module internally for writing to Excel files. The to_excel method is called on the DataFrame we want to export.We also need to pass a filename to which this DataFrame will be written.

movies.to_excel('output.xlsx')

By default, the index is also saved to the output file. However, sometimes the index doesn’t provide any useful information. For example, the movies DataFrame has a numeric auto-increment index, that was not part of the original Excel data.

movies.head()
Title Year Genres Language Country Content Rating Duration Aspect Ratio Budget Gross Earnings Facebook Likes — Actor 2 Facebook Likes — Actor 3 Facebook Likes — cast Total Facebook likes — Movie Facenumber in posters User Votes Reviews by Users Reviews by Crtiics IMDB Score Net Earnings
0 Intolerance: Love’s Struggle Throughout the Ages 1916.0 Drama|History|War NaN USA Not Rated 123.0 1.33 385907.0 NaN 22.0 9.0 481 691 1.0 10718 88.0 69.0 8.0 NaN
1 Over the Hill to the Poorhouse 1920.0 Crime|Drama NaN USA NaN 110.0 1.33 100000.0 3000000.0 2.0 0.0 4 0 1.0 5 1.0 1.0 4.8 2900000.0
2 The Big Parade 1925.0 Drama|Romance|War NaN USA Not Rated 151.0 1.33 245000.0 NaN 12.0 6.0 108 226 0.0 4849 45.0 48.0 8.3 NaN
3 Metropolis 1927.0 Drama|Sci-Fi German Germany Not Rated 145.0 1.33 6000000.0 26435.0 23.0 18.0 203 12000 1.0 111841 413.0 260.0 8.3 -5973565.0
4 Pandora’s Box 1929.0 Crime|Drama|Romance German Germany Not Rated 110.0 1.33 NaN 9950.0 20.0 3.0 455 926 1.0 7431 84.0 71.0 8.0 NaN

5 rows × 26 columns

You can choose to skip the index by passing along index-False.

movies.to_excel('output.xlsx', index=False)

We need to be able to make our output files look nice before we can send it out to our co-workers. We can use pandas ExcelWriter class along with the XlsxWriter Python module to apply the formatting.

We can do use these advanced output options by creating a ExcelWriter object and use this object to write to the EXcel file.

writer = pd.ExcelWriter('output.xlsx', engine='xlsxwriter')
movies.to_excel(writer, index=False, sheet_name='report')
workbook = writer.bookworksheet = writer.sheets['report']

We can apply customizations by calling add_format on the workbook we are writing to. Here we are setting header format as bold.

header_fmt = workbook.add_format({'bold': True})
worksheet.set_row(0, None, header_fmt)

Finally, we save the output file by calling the method save on the writer object.

writer.save()

As an example, we saved the data with column headers set as bold. And the saved file looks like the image below.

img-excel-output-bold-1

Like this, one can use XlsxWriter to apply various formatting to the output Excel file.

Conclusion

Pandas is not a replacement for Excel. Both tools have their place in the data analysis workflow and can be very great companion tools. As we demonstrated, pandas can do a lot of complex data analysis and manipulations, which depending on your need and expertise, can go beyond what you can achieve if you are just using Excel. One of the major benefits of using Python and pandas over Excel is that it helps you automate Excel file processing by writing scripts and integrating with your automated data workflow. Pandas also has excellent methods for reading all kinds of data from Excel files. You can export your results from pandas back to Excel too if that’s preferred by your intended audience.

On the other hand, Excel is a such a widely used data tool, it’s not a wise to ignore it. Acquiring expertise in both pandas and Excel and making them work together gives you skills that can help you stand out in your organization.

If you’d like to learn more about this topic, check out Dataquest’s interactive Pandas and NumPy Fundamentals course, and our Data Analyst in Python, and Data Scientist in Python paths that will help you become job-ready in around 6 months.

Excel sheets are very instinctive and user-friendly, which makes them ideal for manipulating large datasets even for less technical folks. If you are looking for places to learn to manipulate and automate stuff in excel files using Python, look no more. You are at the right place.

Python Pandas With Excel Sheet

In this article, you will learn how to use Pandas to work with Excel spreadsheets. At the end of the article, you will have the knowledge of:

  • Necessary modules are needed for this and how to set them up in your system.
  • Reading data from excel files into pandas using Python.
  • Exploring the data from excel files in Pandas.
  • Using functions to manipulate and reshape the data in Pandas.

Installation

To install Pandas in Anaconda, we can use the following command in Anaconda Terminal:

conda install pandas

To install Pandas in regular Python (Non-Anaconda), we can use the following command in the command prompt:

pip install pandas

Getting Started

First of all, we need to import the Pandas module which can be done by running the command: Pandas

Python3

Input File: Let’s suppose the excel file looks like this 

Sheet 1: 

Sheet 2: 

Now we can import the excel file using the read_excel function in Pandas. The second statement reads the data from excel and stores it into a pandas Data Frame which is represented by the variable newData. If there are multiple sheets in the excel workbook, the command will import data of the first sheet. To make a data frame with all the sheets in the workbook, the easiest method is to create different data frames separately and then concatenate them. The read_excel method takes argument sheet_name and index_col where we can specify the sheet of which the data frame should be made of and index_col specifies the title column, as is shown below: 

Python3

file =('path_of_excel_file')

newData = pds.read_excel(file)

newData

Output: 

Example: 

The third statement concatenates both sheets. Now to check the whole data frame, we can simply run the following command: 

Python3

sheet1 = pds.read_excel(file,

                        sheet_name = 0,

                        index_col = 0)

sheet2 = pds.read_excel(file,

                        sheet_name = 1,

                        index_col = 0)

newData = pds.concat([sheet1, sheet2])

newData

Output: 

To view 5 columns from the top and from the bottom of the data frame, we can run the command. This head() and tail() method also take arguments as numbers for the number of columns to show. 

Python3

newData.head()

newData.tail()

Output: 

The shape() method can be used to view the number of rows and columns in the data frame as follows: 

Python3

Output: 

If any column contains numerical data, we can sort that column using the sort_values() method in pandas as follows: 

Python3

sorted_column = newData.sort_values(['Height'], ascending = False)

Now, let’s suppose we want the top 5 values of the sorted column, we can use the head() method here: 

Python3

sorted_column['Height'].head(5)

Output: 

 We can do that with any numerical column of the data frame as shown below: 

Python3

Output: 

Now, suppose our data is mostly numerical. We can get the statistical information like mean, max, min, etc. about the data frame using the describe() method as shown below: 

Python3

Output: 

This can also be done separately for all the numerical columns using the following command: 

Python3

Output: 

Other statistical information can also be calculated using the respective methods. Like in excel, formulas can also be applied and calculated columns can be created as follows: 

Python3

newData['calculated_column'] =

                newData[“Height”] + newData[“Weight”]

newData['calculated_column'].head()

Output: 

After operating on the data in the data frame, we can export the data back to an excel file using the method to_excel. For this we need to specify an output excel file where the transformed data is to be written, as shown below: 

Python3

newData.to_excel('Output File.xlsx')

Output: 

Хотя многие Data Scientist’ы больше привыкли работать с CSV-файлами, на практике очень часто приходится сталкиваться с обычными Excel-таблицами. Поэтому сегодня мы расскажем, как читать Excel-файлы в Pandas, а также рассмотрим основные возможности Python-библиотеки OpenPyXL для чтения метаданных ячеек.

Дополнительные зависимости для возможности чтения Excel таблиц

Для чтения таблиц Excel в Pandas требуются дополнительные зависимости:

  • xlrd поддерживает старые и новые форматы MS Excel [1];
  • OpenPyXL поддерживает новые форматы MS Excel (.xlsx) [2];
  • ODFpy поддерживает свободные форматы OpenDocument (.odf, .ods и .odt) [3];
  • pyxlsb поддерживает бинарные MS Excel файлы (формат .xlsb) [4].

Мы рекомендуем установить только OpenPyXL, поскольку он нам пригодится в дальнейшем. Для этого в командной строке прописывается следующая операция:

pip install openpyxl

Затем в Pandas нужно указать путь к Excel-файлу и одну из установленных зависимостей. Python-код выглядит следующим образом:

import pandas as pd
pd.read_excel(io='temp1.xlsx', engine='openpyxl')
#
     Name  Age  Weight
0    Alex   35      87
1   Lesha   57      72
2  Nastya   21      64

Читаем несколько листов

Excel-файл может содержать несколько листов. В Pandas, чтобы прочитать конкретный лист, в аргументе нужно указать sheet_name. Можно указать список названий листов, тогда Pandas вернет словарь (dict) с объектами DataFrame:

dfs = pd.read_excel(io='temp1.xlsx',
                    engine='openpyxl',
                    sheet_name=['Sheet1', 'Sheet2'])
dfs
#
{'Sheet1':      Name  Age  Weight
 0    Alex   35      87
 1   Lesha   57      72
 2  Nastya   21      64,
 'Sheet2':     Name  Age  Weight
 0  Gosha   43      95
 1   Anna   24      65
 2   Lena   22      78}

Если таблицы в словаре имеют одинаковые атрибуты, то их можно объединить в один DataFrame. В Python это выглядит так:

pd.concat(dfs).reset_index(drop=True)
     Name  Age  Weight
0    Alex   35      87
1   Lesha   57      72
2  Nastya   21      64
3   Gosha   43      95
4    Anna   24      65
5    Lena   22      78

Указание диапазонов

Таблицы могут размещаться не в самом начале, а как, например, на рисунке ниже. Как видим, таблица располагается в диапазоне A:F.

Таблица Excel

Таблица с диапазоном

Чтобы прочитать такую таблицу, нужно указать диапазон в аргументе usecols. Также дополнительно можно добавить header — номер заголовка таблицы, а также nrows — количество строк, которые нужно прочитать. В аргументе header всегда передается номер строки на единицу меньше, чем в Excel-файле, поскольку в Python индексация начинается с 0 (на рисунке это номер 5, тогда указываем 4):

pd.read_excel(io='temp1.xlsx',
              engine='openpyxl',
              usecols='D:F',
              header=4, # в excel это №5
              nrows=3)
#
    Name  Age  Weight
0  Gosha   43      95
1   Anna   24      65
2   Lena   22      78

Читаем таблицы в OpenPyXL

Pandas прочитывает только содержимое таблицы, но игнорирует метаданные: цвет заливки ячеек, примечания, стили таблицы и т.д. В таком случае пригодится библиотека OpenPyXL. Загрузка файлов осуществляется через функцию load_workbook, а к листам обращаться можно через квадратные скобки:

from openpyxl import load_workbook
wb = load_workbook('temp2.xlsx')
ws = wb['Лист1']
type(ws)
# openpyxl.worksheet.worksheet.Worksheet

Excel-таблица OpenPyXL

Две таблицы на листе

Допустим, имеется Excel-файл с несколькими таблицами на листе (см. рисунок выше). Если бы мы использовали Pandas, то он бы выдал следующий результат:

pd.read_excel(io='temp2.xlsx',
              engine='openpyxl')
#
     Name  Age  Weight  Unnamed: 3 Name.1  Age.1  Weight.1
0    Alex   35      87         NaN  Tanya     25        66
1   Lesha   57      72         NaN  Gosha     43        77
2  Nastya   21      64         NaN  Tolya     32        54

Можно, конечно, заняться обработкой и привести таблицы в нормальный вид, а можно воспользоваться OpenPyXL, который хранит таблицу и его диапазон в словаре. Чтобы посмотреть этот словарь, нужно вызвать ws.tables.items. Вот так выглядит Python-код:

ws.tables.items()
wb = load_workbook('temp2.xlsx')
ws = wb['Лист1']
ws.tables.items()
#
[('Таблица1', 'A1:C4'), ('Таблица13', 'E1:G4')]

Обращаясь к каждому диапазону, можно проходить по каждой строке или столбцу, а внутри них – по каждой ячейке. Например, следующий код на Python таблицы объединяет строки в список, где первая строка уходит на заголовок, а затем преобразует их в DataFrame:

dfs = []
for table_name, value in ws.tables.items():
    table = ws[value]
    header, *body = [[cell.value for cell in row]
                      for row in table]
    df = pd.DataFrame(body, columns=header)
    dfs.append(df)

Если таблицы имеют одинаковые атрибуты, то их можно соединить в одну:

pd.concat(dfs)
#
     Name  Age  Weight
0    Alex   35      87
1   Lesha   57      72
2  Nastya   21      64
0   Tanya   25      66
1   Gosha   43      77
2   Tolya   32      54

Сохраняем метаданные таблицы

Как указано в коде выше, у ячейки OpenPyXL есть атрибут value, который хранит ее значение. Помимо value, можно получить тип ячейки (data_type), цвет заливки (fill), примечание (comment) и др.

Excel OpenPyXL

Таблица с цветными ячейками

Например, требуется сохранить данные о цвете ячеек. Для этого мы каждую ячейку с числами перезапишем в виде <значение,RGB>, где RGB — значение цвета в формате RGB (red, green, blue). Python-код выглядит следующим образом:

# _TYPES = {int:'n', float:'n', str:'s', bool:'b'}
data = []
for row in ws.rows:
    row_cells = []
    for cell in row:
        cell_value = cell.value
        if cell.data_type == 'n':
            cell_value = f"{cell_value},{cell.fill.fgColor.rgb}"
        row_cells.append(cell_value)
    data.append(row_cells)

Первым элементом списка является строка-заголовок, а все остальное уже значения таблицы:

pd.DataFrame(data[1:], columns=data[0])
#
     Name          Age       Weight
0    Alex  35,00000000  87,00000000
1   Lesha  57,00000000  72,FFFF0000
2  Nastya  21,FF00A933  64,00000000

Теперь представим атрибуты в виде индексов с помощью метода stack, а после разобьём все записи на значение и цвет методом str.split:

(pd.DataFrame(data[1:], columns=data[0])
 .set_index('Name')
 .stack()
 .str.split(',', expand=True)
)
#
                0         1
Name                       
Alex   Age     35  00000000
       Weight  87  00000000
Lesha  Age     57  00000000
       Weight  72  FFFF0000
Nastya Age     21  FF00A933
       Weight  64  0000000

Осталось только переименовать 0 и 1 на Value и Color, а также добавить атрибут Variable, который обозначит Вес и Возраст. Полный код на Python выглядит следующим образом:

(pd.DataFrame(data[1:], columns=data[0])
 .set_index('Name')
 .stack()
 .str.split(',', expand=True)
 .set_axis(['Value', 'Color'], axis=1)
 .rename_axis(index=['Name', 'Variable'])
 .reset_index()
)
#
     Name Variable Value     Color
0    Alex      Age    35  00000000
1    Alex   Weight    87  00000000
2   Lesha      Age    57  00000000
3   Lesha   Weight    72  FFFF0000
4  Nastya      Age    21  FF00A933
5  Nastya   Weight    64  00000000

Ещё больше подробностей о работе с таблицами в Pandas, а также их обработке на реальных примерах Data Science задач, вы узнаете на наших курсах по Python в лицензированном учебном центре обучения и повышения квалификации IT-специалистов в Москве.

Источники

  1. https://xlrd.readthedocs.io/en/latest/
  2. https://openpyxl.readthedocs.io/en/latest/
  3. https://github.com/eea/odfpy
  4. https://github.com/willtrnr/pyxlsb

The read_excel() method can read Excel 2003 (.xls) and
Excel 2007+ (.xlsx) files using the xlrd Python
module. The to_excel() instance method is used for
saving a DataFrame to Excel. Generally the semantics are
similar to working with csv data. See the cookbook for some
advanced strategies

10.5.1 Reading Excel Files

In the most basic use-case, read_excel takes a path to an Excel
file, and the sheetname indicating which sheet to parse.

# Returns a DataFrame
read_excel('path_to_file.xls', sheetname='Sheet1')

10.5.1.1 ExcelFile class

To facilitate working with multiple sheets from the same file, the ExcelFile
class can be used to wrap the file and can be be passed into read_excel
There will be a performance benefit for reading multiple sheets as the file is
read into memory only once.

xlsx = pd.ExcelFile('path_to_file.xls)
df = pd.read_excel(xlsx, 'Sheet1')

The ExcelFile class can also be used as a context manager.

with pd.ExcelFile('path_to_file.xls') as xls:
    df1 = pd.read_excel(xls, 'Sheet1')
    df2 = pd.read_excel(xls, 'Sheet2')

The sheet_names property will generate
a list of the sheet names in the file.

The primary use-case for an ExcelFile is parsing multiple sheets with
different parameters

data = {}
# For when Sheet1's format differs from Sheet2
with pd.ExcelFile('path_to_file.xls') as xls:
    data['Sheet1'] = pd.read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
    data['Sheet2'] = pd.read_excel(xls, 'Sheet2', index_col=1)

Note that if the same parsing parameters are used for all sheets, a list
of sheet names can simply be passed to read_excel with no loss in performance.

# using the ExcelFile class
data = {}
with pd.ExcelFile('path_to_file.xls') as xls:
    data['Sheet1'] = read_excel(xls, 'Sheet1', index_col=None, na_values=['NA'])
    data['Sheet2'] = read_excel(xls, 'Sheet2', index_col=None, na_values=['NA'])

# equivalent using the read_excel function
data = read_excel('path_to_file.xls', ['Sheet1', 'Sheet2'], index_col=None, na_values=['NA'])

New in version 0.12.

ExcelFile has been moved to the top level namespace.

New in version 0.17.

read_excel can take an ExcelFile object as input

10.5.1.2 Specifying Sheets

Note

The second argument is sheetname, not to be confused with ExcelFile.sheet_names

Note

An ExcelFile’s attribute sheet_names provides access to a list of sheets.

  • The arguments sheetname allows specifying the sheet or sheets to read.
  • The default value for sheetname is 0, indicating to read the first sheet
  • Pass a string to refer to the name of a particular sheet in the workbook.
  • Pass an integer to refer to the index of a sheet. Indices follow Python
    convention, beginning at 0.
  • Pass a list of either strings or integers, to return a dictionary of specified sheets.
  • Pass a None to return a dictionary of all available sheets.
# Returns a DataFrame
read_excel('path_to_file.xls', 'Sheet1', index_col=None, na_values=['NA'])

Using the sheet index:

# Returns a DataFrame
read_excel('path_to_file.xls', 0, index_col=None, na_values=['NA'])

Using all default values:

# Returns a DataFrame
read_excel('path_to_file.xls')

Using None to get all sheets:

# Returns a dictionary of DataFrames
read_excel('path_to_file.xls',sheetname=None)

Using a list to get multiple sheets:

# Returns the 1st and 4th sheet, as a dictionary of DataFrames.
read_excel('path_to_file.xls',sheetname=['Sheet1',3])

New in version 0.16.

read_excel can read more than one sheet, by setting sheetname to either
a list of sheet names, a list of sheet positions, or None to read all sheets.

New in version 0.13.

Sheets can be specified by sheet index or sheet name, using an integer or string,
respectively.

10.5.1.3 Reading a MultiIndex

New in version 0.17.

read_excel can read a MultiIndex index, by passing a list of columns to index_col
and a MultiIndex column by passing a list of rows to header. If either the index
or columns have serialized level names those will be read in as well by specifying
the rows/columns that make up the levels.

For example, to read in a MultiIndex index without names:

In [1]: df = pd.DataFrame({'a':[1,2,3,4], 'b':[5,6,7,8]},
   ...:                   index=pd.MultiIndex.from_product([['a','b'],['c','d']]))
   ...: 

In [2]: df.to_excel('path_to_file.xlsx')

In [3]: df = pd.read_excel('path_to_file.xlsx', index_col=[0,1])

In [4]: df
Out[4]: 
     a  b
a c  1  5
  d  2  6
b c  3  7
  d  4  8

If the index has level names, they will parsed as well, using the same
parameters.

In [5]: df.index = df.index.set_names(['lvl1', 'lvl2'])

In [6]: df.to_excel('path_to_file.xlsx')

In [7]: df = pd.read_excel('path_to_file.xlsx', index_col=[0,1])

In [8]: df
Out[8]: 
           a  b
lvl1 lvl2      
a    c     1  5
     d     2  6
b    c     3  7
     d     4  8

If the source file has both MultiIndex index and columns, lists specifying each
should be passed to index_col and header

In [9]: df.columns = pd.MultiIndex.from_product([['a'],['b', 'd']], names=['c1', 'c2'])

In [10]: df.to_excel('path_to_file.xlsx')

In [11]: df = pd.read_excel('path_to_file.xlsx',
   ....:                     index_col=[0,1], header=[0,1])
   ....: 

In [12]: df
Out[12]: 
c1         a   
c2         b  d
lvl1 lvl2      
a    c     1  5
     d     2  6
b    c     3  7
     d     4  8

Warning

Excel files saved in version 0.16.2 or prior that had index names will still able to be read in,
but the has_index_names argument must specified to True.

10.5.1.4 Parsing Specific Columns

It is often the case that users will insert columns to do temporary computations
in Excel and you may not want to read in those columns. read_excel takes
a parse_cols keyword to allow you to specify a subset of columns to parse.

If parse_cols is an integer, then it is assumed to indicate the last column
to be parsed.

read_excel('path_to_file.xls', 'Sheet1', parse_cols=2)

If parse_cols is a list of integers, then it is assumed to be the file column
indices to be parsed.

read_excel('path_to_file.xls', 'Sheet1', parse_cols=[0, 2, 3])

10.5.1.5 Cell Converters

It is possible to transform the contents of Excel cells via the converters
option. For instance, to convert a column to boolean:

read_excel('path_to_file.xls', 'Sheet1', converters={'MyBools': bool})

This options handles missing values and treats exceptions in the converters
as missing data. Transformations are applied cell by cell rather than to the
column as a whole, so the array dtype is not guaranteed. For instance, a
column of integers with missing values cannot be transformed to an array
with integer dtype, because NaN is strictly a float. You can manually mask
missing data to recover integer dtype:

cfun = lambda x: int(x) if x else -1
read_excel('path_to_file.xls', 'Sheet1', converters={'MyInts': cfun})

10.5.2 Writing Excel Files

10.5.2.1 Writing Excel Files to Disk

To write a DataFrame object to a sheet of an Excel file, you can use the
to_excel instance method. The arguments are largely the same as to_csv
described above, the first argument being the name of the excel file, and the
optional second argument the name of the sheet to which the DataFrame should be
written. For example:

df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')

Files with a .xls extension will be written using xlwt and those with a
.xlsx extension will be written using xlsxwriter (if available) or
openpyxl.

The DataFrame will be written in a way that tries to mimic the REPL output. One
difference from 0.12.0 is that the index_label will be placed in the second
row instead of the first. You can get the previous behaviour by setting the
merge_cells option in to_excel() to False:

df.to_excel('path_to_file.xlsx', index_label='label', merge_cells=False)

The Panel class also has a to_excel instance method,
which writes each DataFrame in the Panel to a separate sheet.

In order to write separate DataFrames to separate sheets in a single Excel file,
one can pass an ExcelWriter.

with ExcelWriter('path_to_file.xlsx') as writer:
    df1.to_excel(writer, sheet_name='Sheet1')
    df2.to_excel(writer, sheet_name='Sheet2')

Note

Wringing a little more performance out of read_excel
Internally, Excel stores all numeric data as floats. Because this can
produce unexpected behavior when reading in data, pandas defaults to trying
to convert integers to floats if it doesn’t lose information (1.0 -->
1
). You can pass convert_float=False to disable this behavior, which
may give a slight performance improvement.

10.5.2.2 Writing Excel Files to Memory

New in version 0.17.

Pandas supports writing Excel files to buffer-like objects such as StringIO or
BytesIO using ExcelWriter.

New in version 0.17.

Added support for Openpyxl >= 2.2

# Safe import for either Python 2.x or 3.x
try:
    from io import BytesIO
except ImportError:
    from cStringIO import StringIO as BytesIO

bio = BytesIO()

# By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter(bio, engine='xlsxwriter')
df.to_excel(writer, sheet_name='Sheet1')

# Save the workbook
writer.save()

# Seek to the beginning and read to copy the workbook to a variable in memory
bio.seek(0)
workbook = bio.read()

Note

engine is optional but recommended. Setting the engine determines
the version of workbook produced. Setting engine='xlrd' will produce an
Excel 2003-format workbook (xls). Using either 'openpyxl' or
'xlsxwriter' will produce an Excel 2007-format workbook (xlsx). If
omitted, an Excel 2007-formatted workbook is produced.

10.5.3 Excel writer engines

New in version 0.13.

pandas chooses an Excel writer via two methods:

  1. the engine keyword argument
  2. the filename extension (via the default specified in config options)

By default, pandas uses the XlsxWriter for .xlsx and openpyxl
for .xlsm files and xlwt for .xls files. If you have multiple
engines installed, you can set the default engine through setting the
config options
io.excel.xlsx.writer and
io.excel.xls.writer. pandas will fall back on openpyxl for .xlsx
files if Xlsxwriter is not available.

To specify which writer you want to use, you can pass an engine keyword
argument to to_excel and to ExcelWriter. The built-in engines are:

  • openpyxl: This includes stable support for Openpyxl from 1.6.1. However,
    it is advised to use version 2.2 and higher, especially when working with
    styles.
  • xlsxwriter
  • xlwt
# By setting the 'engine' in the DataFrame and Panel 'to_excel()' methods.
df.to_excel('path_to_file.xlsx', sheet_name='Sheet1', engine='xlsxwriter')

# By setting the 'engine' in the ExcelWriter constructor.
writer = ExcelWriter('path_to_file.xlsx', engine='xlsxwriter')

# Or via pandas configuration.
from pandas import options
options.io.excel.xlsx.writer = 'xlsxwriter'

df.to_excel('path_to_file.xlsx', sheet_name='Sheet1')

Like this post? Please share to your friends:
  • Python packages for excel
  • Python output to excel
  • Python or vba for excel
  • Python openpyxl создать excel файл
  • Python openpyxl open excel file