Время на прочтение
10 мин
Количество просмотров 290K
Первая часть статьи была опубликована тут.
Как читать и редактировать Excel файлы при помощи openpyxl
ПЕРЕВОД
Оригинал статьи — www.datacamp.com/community/tutorials/python-excel-tutorial
Автор — Karlijn Willems
Эта библиотека пригодится, если вы хотите читать и редактировать файлы .xlsx, xlsm, xltx и xltm.
Установите openpyxl using pip. Общие рекомендации по установке этой библиотеки — сделать это в виртуальной среде Python без системных библиотек. Вы можете использовать виртуальную среду для создания изолированных сред Python: она создает папку, содержащую все необходимые файлы, для использования библиотек, которые потребуются для Python.
Перейдите в директорию, в которой находится ваш проект, и повторно активируйте виртуальную среду venv. Затем перейдите к установке openpyxl с помощью pip, чтобы убедиться, что вы можете читать и записывать с ним файлы:
# Activate virtualenv
$ source activate venv
# Install `openpyxl` in `venv`
$ pip install openpyxl
Теперь, когда вы установили openpyxl, вы можете начать загрузку данных. Но что именно это за данные? Например, в книге с данными, которые вы пытаетесь получить на Python, есть следующие листы:
Функция load_workbook () принимает имя файла в качестве аргумента и возвращает объект рабочей книги, который представляет файл. Это можно проверить запуском type (wb). Не забудьте убедиться, что вы находитесь в правильной директории, где расположена электронная таблица. В противном случае вы получите сообщение об ошибке при импорте.
# Import `load_workbook` module from `openpyxl`
from openpyxl import load_workbook
# Load in the workbook
wb = load_workbook('./test.xlsx')
# Get sheet names
print(wb.get_sheet_names())
Помните, вы можете изменить рабочий каталог с помощью os.chdir (). Фрагмент кода выше возвращает имена листов книги, загруженной в Python. Вы можете использовать эту информацию для получения отдельных листов книги. Также вы можете проверить, какой лист активен в настоящий момент с помощью wb.active. В приведенном ниже коде, вы также можете использовать его для загрузки данных на другом листе книги:
# Get a sheet by name
sheet = wb.get_sheet_by_name('Sheet3')
# Print the sheet title
sheet.title
# Get currently active sheet
anotherSheet = wb.active
# Check `anotherSheet`
anotherSheet
На первый взгляд, с этими объектами Worksheet мало что можно сделать. Однако, можно извлекать значения из определенных ячеек на листе книги, используя квадратные скобки [], к которым нужно передавать точную ячейку, из которой вы хотите получить значение.
Обратите внимание, это похоже на выбор, получение и индексирование массивов NumPy и Pandas DataFrames, но это еще не все, что нужно сделать, чтобы получить значение. Нужно еще добавить значение атрибута:
# Retrieve the value of a certain cell
sheet['A1'].value
# Select element 'B2' of your sheet
c = sheet['B2']
# Retrieve the row number of your element
c.row
# Retrieve the column letter of your element
c.column
# Retrieve the coordinates of the cell
c.coordinate
Помимо value, есть и другие атрибуты, которые можно использовать для проверки ячейки, а именно row, column и coordinate:
Атрибут row вернет 2;
Добавление атрибута column к “С” даст вам «B»;
coordinate вернет «B2».
Вы также можете получить значения ячеек с помощью функции cell (). Передайте аргументы row и column, добавьте значения к этим аргументам, которые соответствуют значениям ячейки, которые вы хотите получить, и, конечно же, не забудьте добавить атрибут value:
# Retrieve cell value
sheet.cell(row=1, column=2).value
# Print out values in column 2
for i in range(1, 4):
print(i, sheet.cell(row=i, column=2).value)
Обратите внимание: если вы не укажете значение атрибута value, вы получите <Cell Sheet3.B1>, который ничего не говорит о значении, которое содержится в этой конкретной ячейке.
Вы используете цикл с помощью функции range (), чтобы помочь вам вывести значения строк, которые имеют значения в столбце 2. Если эти конкретные ячейки пусты, вы получите None.
Более того, существуют специальные функции, которые вы можете вызвать, чтобы получить другие значения, например get_column_letter () и column_index_from_string.
В двух функциях уже более или менее указано, что вы можете получить, используя их. Но лучше всего сделать их явными: пока вы можете получить букву прежнего столбца, можно сделать обратное или получить индекс столбца, перебирая букву за буквой. Как это работает:
# Import relevant modules from `openpyxl.utils`
from openpyxl.utils import get_column_letter, column_index_from_string
# Return 'A'
get_column_letter(1)
# Return '1'
column_index_from_string('A')
Вы уже получили значения для строк, которые имеют значения в определенном столбце, но что нужно сделать, если нужно вывести строки файла, не сосредотачиваясь только на одном столбце?
Конечно, использовать другой цикл.
Например, вы хотите сосредоточиться на области, находящейся между «A1» и «C3», где первый указывает левый верхний угол, а второй — правый нижний угол области, на которой вы хотите сфокусироваться. Эта область будет так называемой cellObj, которую вы видите в первой строке кода ниже. Затем вы указываете, что для каждой ячейки, которая находится в этой области, вы хотите вывести координату и значение, которое содержится в этой ячейке. После окончания каждой строки вы хотите выводить сообщение-сигнал о том, что строка этой области cellObj была выведена.
# Print row per row
for cellObj in sheet['A1':'C3']:
for cell in cellObj:
print(cells.coordinate, cells.value)
print('--- END ---')
Обратите внимание, что выбор области очень похож на выбор, получение и индексирование списка и элементы NumPy, где вы также используете квадратные скобки и двоеточие чтобы указать область, из которой вы хотите получить значения. Кроме того, вышеприведенный цикл также хорошо использует атрибуты ячейки!
Чтобы визуализировать описанное выше, возможно, вы захотите проверить результат, который вернет вам завершенный цикл:
('A1', u'M')
('B1', u'N')
('C1', u'O')
--- END ---
('A2', 10L)
('B2', 11L)
('C2', 12L)
--- END ---
('A3', 14L)
('B3', 15L)
('C3', 16L)
--- END ---
Наконец, есть некоторые атрибуты, которые вы можете использовать для проверки результата импорта, а именно max_row и max_column. Эти атрибуты, конечно, являются общими способами обеспечения правильной загрузки данных, но тем не менее в данном случае они могут и будут полезны.
# Retrieve the maximum amount of rows
sheet.max_row
# Retrieve the maximum amount of columns
sheet.max_column
Это все очень классно, но мы почти слышим, что вы сейчас думаете, что это ужасно трудный способ работать с файлами, особенно если нужно еще и управлять данными.
Должно быть что-то проще, не так ли? Всё так!
Openpyxl имеет поддержку Pandas DataFrames. И можно использовать функцию DataFrame () из пакета Pandas, чтобы поместить значения листа в DataFrame:
# Import `pandas`
import pandas as pd
# Convert Sheet to DataFrame
df = pd.DataFrame(sheet.values)
Если вы хотите указать заголовки и индексы, вам нужно добавить немного больше кода:
# Put the sheet values in `data`
data = sheet.values
# Indicate the columns in the sheet values
cols = next(data)[1:]
# Convert your data to a list
data = list(data)
# Read in the data at index 0 for the indices
idx = [r[0] for r in data]
# Slice the data at index 1
data = (islice(r, 1, None) for r in data)
# Make your DataFrame
df = pd.DataFrame(data, index=idx, columns=cols)
Затем вы можете начать управлять данными при помощи всех функций, которые есть в Pandas. Но помните, что вы находитесь в виртуальной среде, поэтому, если библиотека еще не подключена, вам нужно будет установить ее снова через pip.
Чтобы записать Pandas DataFrames обратно в файл Excel, можно использовать функцию dataframe_to_rows () из модуля utils:
# Import `dataframe_to_rows`
from openpyxl.utils.dataframe import dataframe_to_rows
# Initialize a workbook
wb = Workbook()
# Get the worksheet in the active workbook
ws = wb.active
# Append the rows of the DataFrame to your worksheet
for r in dataframe_to_rows(df, index=True, header=True):
ws.append(r)
Но это определенно не все! Библиотека openpyxl предлагает вам высокую гибкость в отношении того, как вы записываете свои данные в файлы Excel, изменяете стили ячеек или используете режим только для записи. Это делает ее одной из тех библиотек, которую вам точно необходимо знать, если вы часто работаете с электронными таблицами.
И не забудьте деактивировать виртуальную среду, когда закончите работу с данными!
Теперь давайте рассмотрим некоторые другие библиотеки, которые вы можете использовать для получения данных в электронной таблице на Python.
Готовы узнать больше?
Чтение и форматирование Excel файлов xlrd
Эта библиотека идеальна, если вы хотите читать данные и форматировать данные в файлах с расширением .xls или .xlsx.
# Import `xlrd`
import xlrd
# Open a workbook
workbook = xlrd.open_workbook('example.xls')
# Loads only current sheets to memory
workbook = xlrd.open_workbook('example.xls', on_demand = True)
Если вы не хотите рассматривать всю книгу, можно использовать такие функции, как sheet_by_name () или sheet_by_index (), чтобы извлекать листы, которые необходимо использовать в анализе.
# Load a specific sheet by name
worksheet = workbook.sheet_by_name('Sheet1')
# Load a specific sheet by index
worksheet = workbook.sheet_by_index(0)
# Retrieve the value from cell at indices (0,0)
sheet.cell(0, 0).value
Наконец, можно получить значения по определенным координатам, обозначенным индексами.
О том, как xlwt и xlutils, соотносятся с xlrd расскажем дальше.
Запись данных в Excel файл при помощи xlrd
Если нужно создать электронные таблицы, в которых есть данные, кроме библиотеки XlsxWriter можно использовать библиотеки xlwt. Xlwt идеально подходит для записи и форматирования данных в файлы с расширением .xls.
Когда вы вручную хотите записать в файл, это будет выглядеть так:
# Import `xlwt`
import xlwt
# Initialize a workbook
book = xlwt.Workbook(encoding="utf-8")
# Add a sheet to the workbook
sheet1 = book.add_sheet("Python Sheet 1")
# Write to the sheet of the workbook
sheet1.write(0, 0, "This is the First Cell of the First Sheet")
# Save the workbook
book.save("spreadsheet.xls")
Если нужно записать данные в файл, то для минимизации ручного труда можно прибегнуть к циклу for. Это позволит немного автоматизировать процесс. Делаем скрипт, в котором создается книга, в которую добавляется лист. Далее указываем список со столбцами и со значениями, которые будут перенесены на рабочий лист.
Цикл for будет следить за тем, чтобы все значения попадали в файл: задаем, что с каждым элементом в диапазоне от 0 до 4 (5 не включено) мы собираемся производить действия. Будем заполнять значения строка за строкой. Для этого указываем row элемент, который будет “прыгать” в каждом цикле. А далее у нас следующий for цикл, который пройдется по столбцам листа. Задаем условие, что для каждой строки на листе смотрим на столбец и заполняем значение для каждого столбца в строке. Когда заполнили все столбцы строки значениями, переходим к следующей строке, пока не заполним все имеющиеся строки.
# Initialize a workbook
book = xlwt.Workbook()
# Add a sheet to the workbook
sheet1 = book.add_sheet("Sheet1")
# The data
cols = ["A", "B", "C", "D", "E"]
txt = [0,1,2,3,4]
# Loop over the rows and columns and fill in the values
for num in range(5):
row = sheet1.row(num)
for index, col in enumerate(cols):
value = txt[index] + num
row.write(index, value)
# Save the result
book.save("test.xls")
В качестве примера скриншот результирующего файла:
Теперь, когда вы видели, как xlrd и xlwt взаимодействуют вместе, пришло время посмотреть на библиотеку, которая тесно связана с этими двумя: xlutils.
Коллекция утилит xlutils
Эта библиотека в основном представляет собой набор утилит, для которых требуются как xlrd, так и xlwt. Включает в себя возможность копировать и изменять/фильтровать существующие файлы. Вообще говоря, оба этих случая подпадают теперь под openpyxl.
Использование pyexcel для чтения файлов .xls или .xlsx
Еще одна библиотека, которую можно использовать для чтения данных таблиц в Python — pyexcel. Это Python Wrapper, который предоставляет один API для чтения, обработки и записи данных в файлах .csv, .ods, .xls, .xlsx и .xlsm.
Чтобы получить данные в массиве, можно использовать функцию get_array (), которая содержится в пакете pyexcel:
# Import `pyexcel`
import pyexcel
# Get an array from the data
my_array = pyexcel.get_array(file_name="test.xls")
Также можно получить данные в упорядоченном словаре списков, используя функцию get_dict ():
# Import `OrderedDict` module
from pyexcel._compact import OrderedDict
# Get your data in an ordered dictionary of lists
my_dict = pyexcel.get_dict(file_name="test.xls", name_columns_by_row=0)
# Get your data in a dictionary of 2D arrays
book_dict = pyexcel.get_book_dict(file_name="test.xls")
Однако, если вы хотите вернуть в словарь двумерные массивы или, иными словами, получить все листы книги в одном словаре, стоит использовать функцию get_book_dict ().
Имейте в виду, что обе упомянутые структуры данных, массивы и словари вашей электронной таблицы, позволяют создавать DataFrames ваших данных с помощью pd.DataFrame (). Это упростит обработку ваших данных!
Наконец, вы можете просто получить записи с pyexcel благодаря функции get_records (). Просто передайте аргумент file_name функции и обратно получите список словарей:
# Retrieve the records of the file
records = pyexcel.get_records(file_name="test.xls")
Записи файлов при помощи pyexcel
Так же, как загрузить данные в массивы с помощью этого пакета, можно также легко экспортировать массивы обратно в электронную таблицу. Для этого используется функция save_as () с передачей массива и имени целевого файла в аргумент dest_file_name:
# Get the data
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# Save the array to a file
pyexcel.save_as(array=data, dest_file_name="array_data.xls")
Обратите внимание: если указать разделитель, то можно добавить аргумент dest_delimiter и передать символ, который хотите использовать, в качестве разделителя между “”.
Однако, если у вас есть словарь, нужно будет использовать функцию save_book_as (). Передайте двумерный словарь в bookdict и укажите имя файла, и все ОК:
# The data
2d_array_dictionary = {'Sheet 1': [
['ID', 'AGE', 'SCORE']
[1, 22, 5],
[2, 15, 6],
[3, 28, 9]
],
'Sheet 2': [
['X', 'Y', 'Z'],
[1, 2, 3],
[4, 5, 6]
[7, 8, 9]
],
'Sheet 3': [
['M', 'N', 'O', 'P'],
[10, 11, 12, 13],
[14, 15, 16, 17]
[18, 19, 20, 21]
]}
# Save the data to a file
pyexcel.save_book_as(bookdict=2d_array_dictionary, dest_file_name="2d_array_data.xls")
Помните, что когда используете код, который напечатан в фрагменте кода выше, порядок данных в словаре не будет сохранен!
Чтение и запись .csv файлов
Если вы все еще ищете библиотеки, которые позволяют загружать и записывать данные в CSV-файлы, кроме Pandas, рекомендуем библиотеку csv:
# import `csv`
import csv
# Read in csv file
for row in csv.reader(open('data.csv'), delimiter=','):
print(row)
# Write csv file
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
outfile = open('data.csv', 'w')
writer = csv.writer(outfile, delimiter=';', quotechar='"')
writer.writerows(data)
outfile.close()
Обратите внимание, что NumPy имеет функцию genfromtxt (), которая позволяет загружать данные, содержащиеся в CSV-файлах в массивах, которые затем можно помещать в DataFrames.
Финальная проверка данных
Когда данные подготовлены, не забудьте последний шаг: проверьте правильность загрузки данных. Если вы поместили свои данные в DataFrame, вы можете легко и быстро проверить, был ли импорт успешным, выполнив следующие команды:
# Check the first entries of the DataFrame
df1.head()
# Check the last entries of the DataFrame
df1.tail()
Note: Используйте DataCamp Pandas Cheat Sheet, когда вы планируете загружать файлы в виде Pandas DataFrames.
Если данные в массиве, вы можете проверить его, используя следующие атрибуты массива: shape, ndim, dtype и т.д.:
# Inspect the shape
data.shape
# Inspect the number of dimensions
data.ndim
# Inspect the data type
data.dtype
Что дальше?
Поздравляем, теперь вы знаете, как читать файлы Excel в Python Но импорт данных — это только начало рабочего процесса в области данных. Когда у вас есть данные из электронных таблиц в вашей среде, вы можете сосредоточиться на том, что действительно важно: на анализе данных.
Если вы хотите глубже погрузиться в тему — знакомьтесь с PyXll, которая позволяет записывать функции в Python и вызывать их в Excel.
pyexcel — Let you focus on data, instead of file formats
Support the project
If your company has embedded pyexcel and its components into a revenue generating
product, please support me on github, patreon
or bounty source to maintain
the project and develop it further.
If you are an individual, you are welcome to support me too and for however long
you feel like. As my backer, you will receive
early access to pyexcel related contents.
And your issues will get prioritized if you would like to become my patreon as pyexcel pro user.
With your financial support, I will be able to invest
a little bit more time in coding, documentation and writing interesting posts.
Known constraints
Fonts, colors and charts are not supported.
Nor to read password protected xls, xlsx and ods files.
Introduction
Feature Highlights
A list of supported file formats
file format | definition |
---|---|
csv | comma separated values |
tsv | tab separated values |
csvz | a zip file that contains one or many csv files |
tsvz | a zip file that contains one or many tsv files |
xls | a spreadsheet file format created by MS-Excel 97-2003 |
xlsx | MS-Excel Extensions to the Office Open XML SpreadsheetML File Format. |
xlsm | an MS-Excel Macro-Enabled Workbook file |
ods | open document spreadsheet |
fods | flat open document spreadsheet |
json | java script object notation |
html | html table of the data structure |
simple | simple presentation |
rst | rStructured Text presentation of the data |
mediawiki | media wiki table |
- One application programming interface(API) to handle multiple data sources:
- physical file
- memory file
- SQLAlchemy table
- Django Model
- Python data structures: dictionary, records and array
- One API to read and write data in various excel file formats.
- For large data sets, data streaming are supported. A genenerator can be returned to you. Checkout iget_records, iget_array, isave_as and isave_book_as.
Installation
You can install pyexcel via pip:
or clone it and install it:
$ git clone https://github.com/pyexcel/pyexcel.git
$ cd pyexcel
$ python setup.py install
One liners
This section shows you how to get data from your excel files and how to
export data to excel files in one line
Read from the excel files
Get a list of dictionaries
Suppose you want to process History of Classical Music:
History of Classical Music:
Name | Period | Representative Composers |
Medieval | c.1150-c.1400 | Machaut, Landini |
Renaissance | c.1400-c.1600 | Gibbons, Frescobaldi |
Baroque | c.1600-c.1750 | JS Bach, Vivaldi |
Classical | c.1750-c.1830 | Joseph Haydn, Wolfgan Amadeus Mozart |
Early Romantic | c.1830-c.1860 | Chopin, Mendelssohn, Schumann, Liszt |
Late Romantic | c.1860-c.1920 | Wagner,Verdi |
Modernist | 20th century | Sergei Rachmaninoff,Calude Debussy |
Let’s get a list of dictionary out from the xls file:
>>> records = p.get_records(file_name="your_file.xls")
And let’s check what do we have:
>>> for row in records: ... print(f"{row['Representative Composers']} are from {row['Name']} period ({row['Period']})") Machaut, Landini are from Medieval period (c.1150-c.1400) Gibbons, Frescobaldi are from Renaissance period (c.1400-c.1600) JS Bach, Vivaldi are from Baroque period (c.1600-c.1750) Joseph Haydn, Wolfgan Amadeus Mozart are from Classical period (c.1750-c.1830) Chopin, Mendelssohn, Schumann, Liszt are from Early Romantic period (c.1830-c.1860) Wagner,Verdi are from Late Romantic period (c.1860-c.1920) Sergei Rachmaninoff,Calude Debussy are from Modernist period (20th century)
Get two dimensional array
Instead, what if you have to use pyexcel.get_array to do the same:
>>> for row in p.get_array(file_name="your_file.xls", start_row=1): ... print(f"{row[2]} are from {row[0]} period ({row[1]})") Machaut, Landini are from Medieval period (c.1150-c.1400) Gibbons, Frescobaldi are from Renaissance period (c.1400-c.1600) JS Bach, Vivaldi are from Baroque period (c.1600-c.1750) Joseph Haydn, Wolfgan Amadeus Mozart are from Classical period (c.1750-c.1830) Chopin, Mendelssohn, Schumann, Liszt are from Early Romantic period (c.1830-c.1860) Wagner,Verdi are from Late Romantic period (c.1860-c.1920) Sergei Rachmaninoff,Calude Debussy are from Modernist period (20th century)
where start_row skips the header row.
Get a dictionary
You can get a dictionary too:
>>> my_dict = p.get_dict(file_name="your_file.xls", name_columns_by_row=0)
And let’s have a look inside:
>>> from pyexcel._compact import OrderedDict >>> isinstance(my_dict, OrderedDict) True >>> for key, values in my_dict.items(): ... print(key + " : " + ','.join([str(item) for item in values])) Name : Medieval,Renaissance,Baroque,Classical,Early Romantic,Late Romantic,Modernist Period : c.1150-c.1400,c.1400-c.1600,c.1600-c.1750,c.1750-c.1830,c.1830-c.1860,c.1860-c.1920,20th century Representative Composers : Machaut, Landini,Gibbons, Frescobaldi,JS Bach, Vivaldi,Joseph Haydn, Wolfgan Amadeus Mozart,Chopin, Mendelssohn, Schumann, Liszt,Wagner,Verdi,Sergei Rachmaninoff,Calude Debussy
Please note that my_dict is an OrderedDict.
Get a dictionary of two dimensional array
Suppose you have a multiple sheet book as the following:
Top Violinist:
Name | Period | Nationality |
Antonio Vivaldi | 1678-1741 | Italian |
Niccolo Paganini | 1782-1840 | Italian |
Pablo de Sarasate | 1852-1904 | Spainish |
Eugene Ysaye | 1858-1931 | Belgian |
Fritz Kreisler | 1875-1962 | Astria-American |
Jascha Heifetz | 1901-1987 | Russian-American |
David Oistrakh | 1908-1974 | Russian |
Yehundi Menuhin | 1916-1999 | American |
Itzhak Perlman | 1945- | Israeli-American |
Hilary Hahn | 1979- | American |
Noteable Violin Makers:
Maker | Period | Country |
Antonio Stradivari | 1644-1737 | Cremona, Italy |
Giovanni Paolo Maggini | 1580-1630 | Botticino, Italy |
Amati Family | 1500-1740 | Cremona, Italy |
Guarneri Family | 1626-1744 | Cremona, Italy |
Rugeri Family | 1628-1719 | Cremona, Italy |
Carlo Bergonzi | 1683-1747 | Cremona, Italy |
Jacob Stainer | 1617-1683 | Austria |
Most Expensive Violins:
Name | Estimated Value | Location |
Messiah Stradivarious | $ 20,000,000 | Ashmolean Museum in Oxford, England |
Vieuxtemps Guarneri | $ 16,000,000 | On loan to Anne Akiko Meyers |
Lady Blunt | $ 15,900,000 | Anonymous bidder |
Here is the code to obtain those sheets as a single dictionary:
>>> book_dict = p.get_book_dict(file_name="book.xls")
And check:
>>> isinstance(book_dict, OrderedDict) True >>> import json >>> for key, item in book_dict.items(): ... print(json.dumps({key: item})) {"Most Expensive Violins": [["Name", "Estimated Value", "Location"], ["Messiah Stradivarious", "$ 20,000,000", "Ashmolean Museum in Oxford, England"], ["Vieuxtemps Guarneri", "$ 16,000,000", "On loan to Anne Akiko Meyers"], ["Lady Blunt", "$ 15,900,000", "Anonymous bidder"]]} {"Noteable Violin Makers": [["Maker", "Period", "Country"], ["Antonio Stradivari", "1644-1737", "Cremona, Italy"], ["Giovanni Paolo Maggini", "1580-1630", "Botticino, Italy"], ["Amati Family", "1500-1740", "Cremona, Italy"], ["Guarneri Family", "1626-1744", "Cremona, Italy"], ["Rugeri Family", "1628-1719", "Cremona, Italy"], ["Carlo Bergonzi", "1683-1747", "Cremona, Italy"], ["Jacob Stainer", "1617-1683", "Austria"]]} {"Top Violinist": [["Name", "Period", "Nationality"], ["Antonio Vivaldi", "1678-1741", "Italian"], ["Niccolo Paganini", "1782-1840", "Italian"], ["Pablo de Sarasate", "1852-1904", "Spainish"], ["Eugene Ysaye", "1858-1931", "Belgian"], ["Fritz Kreisler", "1875-1962", "Astria-American"], ["Jascha Heifetz", "1901-1987", "Russian-American"], ["David Oistrakh", "1908-1974", "Russian"], ["Yehundi Menuhin", "1916-1999", "American"], ["Itzhak Perlman", "1945-", "Israeli-American"], ["Hilary Hahn", "1979-", "American"]]}
Write data
Export an array
Suppose you have the following array:
>>> data = [['G', 'D', 'A', 'E'], ['Thomastik-Infield Domaints', 'Thomastik-Infield Domaints', 'Thomastik-Infield Domaints', 'Pirastro'], ['Silver wound', '', 'Aluminum wound', 'Gold Label Steel']]
And here is the code to save it as an excel file :
>>> p.save_as(array=data, dest_file_name="example.xls")
Let’s verify it:
>>> p.get_sheet(file_name="example.xls") pyexcel_sheet1: +----------------------------+----------------------------+----------------------------+------------------+ | G | D | A | E | +----------------------------+----------------------------+----------------------------+------------------+ | Thomastik-Infield Domaints | Thomastik-Infield Domaints | Thomastik-Infield Domaints | Pirastro | +----------------------------+----------------------------+----------------------------+------------------+ | Silver wound | | Aluminum wound | Gold Label Steel | +----------------------------+----------------------------+----------------------------+------------------+
And here is the code to save it as a csv file :
>>> p.save_as(array=data, ... dest_file_name="example.csv", ... dest_delimiter=':')
Let’s verify it:
>>> with open("example.csv") as f: ... for line in f.readlines(): ... print(line.rstrip()) ... G:D:A:E Thomastik-Infield Domaints:Thomastik-Infield Domaints:Thomastik-Infield Domaints:Pirastro Silver wound::Aluminum wound:Gold Label Steel
Export a list of dictionaries
>>> records = [ ... {"year": 1903, "country": "Germany", "speed": "206.7km/h"}, ... {"year": 1964, "country": "Japan", "speed": "210km/h"}, ... {"year": 2008, "country": "China", "speed": "350km/h"} ... ] >>> p.save_as(records=records, dest_file_name='high_speed_rail.xls')
Export a dictionary of single key value pair
>>> henley_on_thames_facts = { ... "area": "5.58 square meters", ... "population": "11,619", ... "civial parish": "Henley-on-Thames", ... "latitude": "51.536", ... "longitude": "-0.898" ... } >>> p.save_as(adict=henley_on_thames_facts, dest_file_name='henley.xlsx')
Export a dictionary of single dimensonal array
>>> ccs_insights = { ... "year": ["2017", "2018", "2019", "2020", "2021"], ... "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90], ... "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17] ... } >>> p.save_as(adict=ccs_insights, dest_file_name='ccs.csv')
Export a dictionary of two dimensional array as a book
Suppose you want to save the below dictionary to an excel file :
>>> a_dictionary_of_two_dimensional_arrays = { ... 'Sheet 1': ... [ ... [1.0, 2.0, 3.0], ... [4.0, 5.0, 6.0], ... [7.0, 8.0, 9.0] ... ], ... 'Sheet 2': ... [ ... ['X', 'Y', 'Z'], ... [1.0, 2.0, 3.0], ... [4.0, 5.0, 6.0] ... ], ... 'Sheet 3': ... [ ... ['O', 'P', 'Q'], ... [3.0, 2.0, 1.0], ... [4.0, 3.0, 2.0] ... ] ... }
Here is the code:
>>> p.save_book_as( ... bookdict=a_dictionary_of_two_dimensional_arrays, ... dest_file_name="book.xls" ... )
If you want to preserve the order of sheets in your dictionary, you have to
pass on an ordered dictionary to the function itself. For example:
>>> data = OrderedDict() >>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']}) >>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']}) >>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']}) >>> p.save_book_as(bookdict=data, dest_file_name="book.xls")
Let’s verify its order:
>>> book_dict = p.get_book_dict(file_name="book.xls") >>> for key, item in book_dict.items(): ... print(json.dumps({key: item})) {"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]} {"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]} {"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}
Please notice that «Sheet 2» is the first item in the book_dict, meaning the order of sheets are preserved.
Transcoding
Note
Please note that pyexcel-cli can perform file transcoding at command line.
No need to open your editor, save the problem, then python run.
The following code does a simple file format transcoding from xls to csv:
>>> p.save_as(file_name="birth.xls", dest_file_name="birth.csv")
Again it is really simple. Let’s verify what we have gotten:
>>> sheet = p.get_sheet(file_name="birth.csv") >>> sheet birth.csv: +-------+--------+----------+ | name | weight | birth | +-------+--------+----------+ | Adam | 3.4 | 03/02/15 | +-------+--------+----------+ | Smith | 4.2 | 12/11/14 | +-------+--------+----------+
Note
Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding job.
Let use previous example and save it as xlsx instead
>>> p.save_as(file_name="birth.xls", ... dest_file_name="birth.xlsx") # change the file extension
Again let’s verify what we have gotten:
>>> sheet = p.get_sheet(file_name="birth.xlsx") >>> sheet pyexcel_sheet1: +-------+--------+----------+ | name | weight | birth | +-------+--------+----------+ | Adam | 3.4 | 03/02/15 | +-------+--------+----------+ | Smith | 4.2 | 12/11/14 | +-------+--------+----------+
Excel book merge and split operation in one line
Merge all excel files in directory into a book where each file become a sheet
The following code will merge every excel files into one file, say «output.xls»:
from pyexcel.cookbook import merge_all_to_a_book import glob merge_all_to_a_book(glob.glob("your_csv_directory*.csv"), "output.xls")
You can mix and match with other excel formats: xls, xlsm and ods. For example, if you are sure you have only xls, xlsm, xlsx, ods and csv files in your_excel_file_directory, you can do the following:
from pyexcel.cookbook import merge_all_to_a_book import glob merge_all_to_a_book(glob.glob("your_excel_file_directory*.*"), "output.xls")
Split a book into single sheet files
Suppose you have many sheets in a work book and you would like to separate each into a single sheet excel file. You can easily do this:
>>> from pyexcel.cookbook import split_a_book >>> split_a_book("megabook.xls", "output.xls") >>> import glob >>> outputfiles = glob.glob("*_output.xls") >>> for file in sorted(outputfiles): ... print(file) ... Sheet 1_output.xls Sheet 2_output.xls Sheet 3_output.xls
for the output file, you can specify any of the supported formats
Extract just one sheet from a book
Suppose you just want to extract one sheet from many sheets that exists in a work book and you would like to separate it into a single sheet excel file. You can easily do this:
>>> from pyexcel.cookbook import extract_a_sheet_from_a_book >>> extract_a_sheet_from_a_book("megabook.xls", "Sheet 1", "output.xls") >>> if os.path.exists("Sheet 1_output.xls"): ... print("Sheet 1_output.xls exists") ... Sheet 1_output.xls exists
for the output file, you can specify any of the supported formats
Hidden feature: partial read
Most pyexcel users do not know, but other library users were requesting partial read
When you are dealing with huge amount of data, e.g. 64GB, obviously you would not
like to fill up your memory with those data. What you may want to do is, record
data from Nth line, take M records and stop. And you only want to use your memory
for the M records, not for beginning part nor for the tail part.
Hence partial read feature is developed to read partial data into memory for
processing.
You can paginate by row, by column and by both, hence you dictate what portion of the
data to read back. But remember only row limit features help you save memory. Let’s
you use this feature to record data from Nth column, take M number of columns and skip
the rest. You are not going to reduce your memory footprint.
Why did not I see above benefit?
This feature depends heavily on the implementation details.
pyexcel-xls (xlrd), pyexcel-xlsx (openpyxl), pyexcel-ods (odfpy) and
pyexcel-ods3 (pyexcel-ezodf) will read all data into memory. Because xls,
xlsx and ods file are effective a zipped folder, all four will unzip the folder
and read the content in xml format in full, so as to make sense of all details.
Hence, during the partial data is been returned, the memory consumption won’t
differ from reading the whole data back. Only after the partial
data is returned, the memory comsumption curve shall jump the cliff. So pagination
code here only limits the data returned to your program.
With that said, pyexcel-xlsxr, pyexcel-odsr and pyexcel-htmlr DOES read
partial data into memory. Those three are implemented in such a way that they
consume the xml(html) when needed. When they have read designated portion of the
data, they stop, even if they are half way through.
In addition, pyexcel’s csv readers can read partial data into memory too.
Let’s assume the following file is a huge csv file:
>>> import datetime >>> import pyexcel as pe >>> data = [ ... [1, 21, 31], ... [2, 22, 32], ... [3, 23, 33], ... [4, 24, 34], ... [5, 25, 35], ... [6, 26, 36] ... ] >>> pe.save_as(array=data, dest_file_name="your_file.csv")
And let’s pretend to read partial data:
>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3) your_file.csv: +---+----+----+ | 3 | 23 | 33 | +---+----+----+ | 4 | 24 | 34 | +---+----+----+ | 5 | 25 | 35 | +---+----+----+
And you could as well do the same for columns:
>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2) your_file.csv: +----+----+ | 21 | 31 | +----+----+ | 22 | 32 | +----+----+ | 23 | 33 | +----+----+ | 24 | 34 | +----+----+ | 25 | 35 | +----+----+ | 26 | 36 | +----+----+
Obvious, you could do both at the same time:
>>> pe.get_sheet(file_name="your_file.csv", ... start_row=2, row_limit=3, ... start_column=1, column_limit=2) your_file.csv: +----+----+ | 23 | 33 | +----+----+ | 24 | 34 | +----+----+ | 25 | 35 | +----+----+
The pagination support is available across all pyexcel plugins.
Note
No column pagination support for query sets as data source.
Formatting while transcoding a big data file
If you are transcoding a big data set, conventional formatting method would not
help unless a on-demand free RAM is available. However, there is a way to minimize
the memory footprint of pyexcel while the formatting is performed.
Let’s continue from previous example. Suppose we want to transcode «your_file.csv»
to «your_file.xls» but increase each element by 1.
What we can do is to define a row renderer function as the following:
>>> def increment_by_one(row): ... for element in row: ... yield element + 1
Then pass it onto save_as function using row_renderer:
>>> pe.isave_as(file_name="your_file.csv", ... row_renderer=increment_by_one, ... dest_file_name="your_file.xlsx")
Note
If the data content is from a generator, isave_as has to be used.
We can verify if it was done correctly:
>>> pe.get_sheet(file_name="your_file.xlsx") your_file.csv: +---+----+----+ | 2 | 22 | 32 | +---+----+----+ | 3 | 23 | 33 | +---+----+----+ | 4 | 24 | 34 | +---+----+----+ | 5 | 25 | 35 | +---+----+----+ | 6 | 26 | 36 | +---+----+----+ | 7 | 27 | 37 | +---+----+----+
Stream APIs for big file : A set of two liners
When you are dealing with BIG excel files, you will want pyexcel to use
constant memory.
This section shows you how to get data from your BIG excel files and how to
export data to excel files in two lines at most, without eating all
your computer memory.
Two liners for get data from big excel files
Get a list of dictionaries
Suppose you want to process the following coffee data again:
Top 5 coffeine drinks:
Coffees | Serving Size | Caffeine (mg) |
Starbucks Coffee Blonde Roast | venti(20 oz) | 475 |
Dunkin’ Donuts Coffee with Turbo Shot | large(20 oz.) | 398 |
Starbucks Coffee Pike Place Roast | grande(16 oz.) | 310 |
Panera Coffee Light Roast | regular(16 oz.) | 300 |
Let’s get a list of dictionary out from the xls file:
>>> records = p.iget_records(file_name="your_file.xls")
And let’s check what do we have:
>>> for r in records: ... print(f"{r['Serving Size']} of {r['Coffees']} has {r['Caffeine (mg)']} mg") venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg regular(16 oz.) of Panera Coffee Light Roast has 300 mg
Please do not forgot the second line to close the opened file handle:
Get two dimensional array
Instead, what if you have to use pyexcel.get_array to do the same:
>>> for row in p.iget_array(file_name="your_file.xls", start_row=1): ... print(f"{row[1]} of {row[0]} has {row[2]} mg") venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg regular(16 oz.) of Panera Coffee Light Roast has 300 mg
Again, do not forgot the second line:
where start_row skips the header row.
Data export in one liners
Export an array
Suppose you have the following array:
>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
And here is the code to save it as an excel file :
>>> p.isave_as(array=data, dest_file_name="example.xls")
But the following line is not required because the data source
are not file sources:
Let’s verify it:
>>> p.get_sheet(file_name="example.xls") pyexcel_sheet1: +---+---+---+ | 1 | 2 | 3 | +---+---+---+ | 4 | 5 | 6 | +---+---+---+ | 7 | 8 | 9 | +---+---+---+
And here is the code to save it as a csv file :
>>> p.isave_as(array=data, ... dest_file_name="example.csv", ... dest_delimiter=':')
Let’s verify it:
>>> with open("example.csv") as f: ... for line in f.readlines(): ... print(line.rstrip()) ... 1:2:3 4:5:6 7:8:9
Export a list of dictionaries
>>> records = [ ... {"year": 1903, "country": "Germany", "speed": "206.7km/h"}, ... {"year": 1964, "country": "Japan", "speed": "210km/h"}, ... {"year": 2008, "country": "China", "speed": "350km/h"} ... ] >>> p.isave_as(records=records, dest_file_name='high_speed_rail.xls')
Export a dictionary of single key value pair
>>> henley_on_thames_facts = { ... "area": "5.58 square meters", ... "population": "11,619", ... "civial parish": "Henley-on-Thames", ... "latitude": "51.536", ... "longitude": "-0.898" ... } >>> p.isave_as(adict=henley_on_thames_facts, dest_file_name='henley.xlsx')
Export a dictionary of single dimensonal array
>>> ccs_insights = { ... "year": ["2017", "2018", "2019", "2020", "2021"], ... "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90], ... "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17] ... } >>> p.isave_as(adict=ccs_insights, dest_file_name='ccs.csv') >>> p.free_resources()
Export a dictionary of two dimensional array as a book
Suppose you want to save the below dictionary to an excel file :
>>> a_dictionary_of_two_dimensional_arrays = { ... 'Sheet 1': ... [ ... [1.0, 2.0, 3.0], ... [4.0, 5.0, 6.0], ... [7.0, 8.0, 9.0] ... ], ... 'Sheet 2': ... [ ... ['X', 'Y', 'Z'], ... [1.0, 2.0, 3.0], ... [4.0, 5.0, 6.0] ... ], ... 'Sheet 3': ... [ ... ['O', 'P', 'Q'], ... [3.0, 2.0, 1.0], ... [4.0, 3.0, 2.0] ... ] ... }
Here is the code:
>>> p.isave_book_as( ... bookdict=a_dictionary_of_two_dimensional_arrays, ... dest_file_name="book.xls" ... )
If you want to preserve the order of sheets in your dictionary, you have to
pass on an ordered dictionary to the function itself. For example:
>>> from pyexcel._compact import OrderedDict >>> data = OrderedDict() >>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']}) >>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']}) >>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']}) >>> p.isave_book_as(bookdict=data, dest_file_name="book.xls") >>> p.free_resources()
Let’s verify its order:
>>> import json >>> book_dict = p.get_book_dict(file_name="book.xls") >>> for key, item in book_dict.items(): ... print(json.dumps({key: item})) {"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]} {"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]} {"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}
Please notice that «Sheet 2» is the first item in the book_dict, meaning the order of sheets are preserved.
File format transcoding on one line
Note
Please note that the following file transcoding could be with zero line. Please
install pyexcel-cli and you will do the transcode in one command. No need to
open your editor, save the problem, then python run.
The following code does a simple file format transcoding from xls to csv:
>>> import pyexcel >>> p.save_as(file_name="birth.xls", dest_file_name="birth.csv")
Again it is really simple. Let’s verify what we have gotten:
>>> sheet = p.get_sheet(file_name="birth.csv") >>> sheet birth.csv: +-------+--------+----------+ | name | weight | birth | +-------+--------+----------+ | Adam | 3.4 | 03/02/15 | +-------+--------+----------+ | Smith | 4.2 | 12/11/14 | +-------+--------+----------+
Note
Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding job.
Let use previous example and save it as xlsx instead
>>> import pyexcel >>> p.isave_as(file_name="birth.xls", ... dest_file_name="birth.xlsx") # change the file extension
Again let’s verify what we have gotten:
>>> sheet = p.get_sheet(file_name="birth.xlsx") >>> sheet pyexcel_sheet1: +-------+--------+----------+ | name | weight | birth | +-------+--------+----------+ | Adam | 3.4 | 03/02/15 | +-------+--------+----------+ | Smith | 4.2 | 12/11/14 | +-------+--------+----------+
Available Plugins
A list of file formats supported by external plugins
Package name | Supported file formats | Dependencies |
---|---|---|
pyexcel-io | csv, csvz [1], tsv, tsvz [2] |
|
pyexcel-xls | xls, xlsx(read only), xlsm(read only) |
xlrd, xlwt |
pyexcel-xlsx | xlsx | openpyxl |
pyexcel-ods3 | ods | pyexcel-ezodf, lxml |
pyexcel-ods | ods | odfpy |
Dedicated file reader and writers
Package name | Supported file formats | Dependencies |
---|---|---|
pyexcel-xlsxw | xlsx(write only) | XlsxWriter |
pyexcel-libxlsxw | xlsx(write only) | libxlsxwriter |
pyexcel-xlsxr | xlsx(read only) | lxml |
pyexcel-xlsbr | xlsb(read only) | pyxlsb |
pyexcel-odsr | read only for ods, fods | lxml |
pyexcel-odsw | write only for ods | loxun |
pyexcel-htmlr | html(read only) | lxml,html5lib |
pyexcel-pdfr | pdf(read only) | camelot |
Plugin shopping guide
Since 2020, all pyexcel-io plugins have dropped the support for python versions
which are lower than 3.6. If you want to use any of those Python versions, please use pyexcel-io
and its plugins versions that are lower than 0.6.0.
Except csv files, xls, xlsx and ods files are a zip of a folder containing a lot of
xml files
The dedicated readers for excel files can stream read
In order to manage the list of plugins installed, you need to use pip to add or remove
a plugin. When you use virtualenv, you can have different plugins per virtual
environment. In the situation where you have multiple plugins that does the same thing
in your environment, you need to tell pyexcel which plugin to use per function call.
For example, pyexcel-ods and pyexcel-odsr, and you want to get_array to use pyexcel-odsr.
You need to append get_array(…, library=’pyexcel-odsr’).
Other data renderers
Package name | Supported file formats | Dependencies | Python versions |
---|---|---|---|
pyexcel-text | write only:rst, mediawiki, html, latex, grid, pipe, orgtbl, plain simple read only: ndjson r/w: json |
tabulate | 2.6, 2.7, 3.3, 3.4 3.5, 3.6, pypy |
pyexcel-handsontable | handsontable in html | handsontable | same as above |
pyexcel-pygal | svg chart | pygal | 2.7, 3.3, 3.4, 3.5 3.6, pypy |
pyexcel-sortable | sortable table in html | csvtotable | same as above |
pyexcel-gantt | gantt chart in html | frappe-gantt | except pypy, same as above |
Footnotes
Acknowledgement
All great work have been done by odf, ezodf, xlrd, xlwt, tabulate and other
individual developers. This library unites only the data access code.
License
New BSD License
Узнайте, как читать и импортировать файлы Excel в Python, как записывать данные в эти таблицы и какие библиотеки лучше всего подходят для этого.
Известный вам инструмент для организации, анализа и хранения ваших данных в таблицах — Excel — применяется и в data science. В какой-то момент вам придется иметь дело с этими таблицами, но работать именно с ними вы будете не всегда. Вот почему разработчики Python реализовали способы чтения, записи и управления не только этими файлами, но и многими другими типами файлов.
Из этого учебника узнаете, как можете работать с Excel и Python. Внутри найдете обзор библиотек, которые вы можете использовать для загрузки и записи этих таблиц в файлы с помощью Python. Вы узнаете, как работать с такими библиотеками, как pandas, openpyxl, xlrd, xlutils и pyexcel.
Данные как ваша отправная точка
Когда вы начинаете проект по data science, вам придется работать с данными, которые вы собрали по всему интернету, и с наборами данных, которые вы загрузили из других мест — Kaggle, Quandl и тд
Но чаще всего вы также найдете данные в Google или в репозиториях, которые используются другими пользователями. Эти данные могут быть в файле Excel или сохранены в файл с расширением .csv … Возможности могут иногда казаться бесконечными, но когда у вас есть данные, в первую очередь вы должны убедиться, что они качественные.
В случае с электронной таблицей вы можете не только проверить, могут ли эти данные ответить на вопрос исследования, который вы имеете в виду, но также и можете ли вы доверять данным, которые хранятся в электронной таблице.
Проверяем качество таблицы
- Представляет ли электронная таблица статические данные?
- Смешивает ли она данные, расчеты и отчетность?
- Являются ли данные в вашей электронной таблице полными и последовательными?
- Имеет ли ваша таблица систематизированную структуру рабочего листа?
- Проверяли ли вы действительные формулы в электронной таблице?
Этот список вопросов поможет убедиться, что ваша таблица не грешит против лучших практик, принятых в отрасли. Конечно, этот список не исчерпывающий, но позволит провести базовую проверку таблицы.
Лучшие практики для данных электронных таблиц
Прежде чем приступить к чтению вашей электронной таблицы на Python, вы также должны подумать о том, чтобы настроить свой файл в соответствии с некоторыми основными принципами, такими как:
- Первая строка таблицы обычно зарезервирована для заголовка, а первый столбец используется для идентификации единицы выборки;
- Избегайте имен, значений или полей с пробелами. В противном случае каждое слово будет интерпретироваться как отдельная переменная, что приведет к ошибкам, связанным с количеством элементов на строку в вашем наборе данных. По возможности, используйте:
- подчеркивания,
- тире,
- горбатый регистр, где первая буква каждого слова пишется с большой буквы
- объединяющие слова
- Короткие имена предпочтительнее длинных имен;
- старайтесь не использовать имена, которые содержат символы ?, $,%, ^, &, *, (,), -, #,? ,,, <,>, /, |, , [,], {, и };
- Удалите все комментарии, которые вы сделали в вашем файле, чтобы избежать добавления в ваш файл лишних столбцов или NA;
- Убедитесь, что все пропущенные значения в вашем наборе данных обозначены как NA.
Затем, после того, как вы внесли необходимые изменения или тщательно изучили свои данные, убедитесь, что вы сохранили внесенные изменения. Сделав это, вы можете вернуться к данным позже, чтобы отредактировать их, добавить дополнительные данные или изменить их, сохранив формулы, которые вы, возможно, использовали для расчета данных и т.д.
Если вы работаете с Microsoft Excel, вы можете сохранить файл в разных форматах: помимо расширения по умолчанию .xls или .xlsx, вы можете перейти на вкладку «Файл», нажать «Сохранить как» и выбрать одно из расширений, которые указаны в качестве параметров «Сохранить как тип». Наиболее часто используемые расширения для сохранения наборов данных в data science — это .csv и .txt (в виде текстового файла с разделителями табуляции). В зависимости от выбранного варианта сохранения поля вашего набора данных разделяются вкладками или запятыми, которые образуют символы-разделители полей вашего набора данных.
Теперь, когда вы проверили и сохранили ваши данные, вы можете начать с подготовки вашего рабочего окружения.
Готовим рабочее окружение
Как убедиться, что вы все делаете хорошо? Проверить рабочее окружение!
Когда вы работаете в терминале, вы можете сначала перейти в каталог, в котором находится ваш файл, а затем запустить Python. Убедитесь, что файл лежит именно в том каталоге, к которому вы обратились.
Возможно, вы уже начали сеанс Python и у вас нет подсказок о каталоге, в котором вы работаете. Тогда можно выполнить следующие команды:
# Import `os`
import os
# Retrieve current working directory (`cwd`)
cwd = os.getcwd()
cwd
# Change directory
os.chdir("/path/to/your/folder")
# List all files and directories in current directory
os.listdir('.')
Круто, да?
Вы увидите, что эти команды очень важны не только для загрузки ваших данных, но и для дальнейшего анализа. А пока давайте продолжим: вы прошли все проверки, вы сохранили свои данные и подготовили рабочее окружение.
Можете ли вы начать с чтения данных в Python?
Установите библиотеки для чтения и записи файлов Excel
Даже если вы еще не знаете, какие библиотеки вам понадобятся для импорта ваших данных, вы должны убедиться, что у вас есть все, что нужно для установки этих библиотек, когда придет время.
Подготовка к дополнительной рабочей области: pip
Вот почему вам нужно установить pip и setuptools. Если у вас установлен Python2 ⩾ 2.7.9 или Python3 ⩾ 3.4, то можно не беспокоиться — просто убедитесь, что вы обновились до последней версии.
Для этого выполните следующую команду в своем терминале:
# Для Linux/OS X
pip install -U pip setuptools
# Для Windows
python -m pip install -U pip setuptools
Если вы еще не установили pip, запустите скрипт python get-pip.py, который вы можете найти здесь. Следуйте инструкциям по установке.
Установка Anaconda
Другой вариант для работы в data science — установить дистрибутив Anaconda Python. Сделав это, вы получите простой и быстрый способ начать заниматься data science, потому что вам не нужно беспокоиться об установке отдельных библиотек, необходимых для работы.
Это особенно удобно, если вы новичок, но даже для более опытных разработчиков это способ быстро протестировать некоторые вещи без необходимости устанавливать каждую библиотеку отдельно.
Anaconda включает в себя 100 самых популярных библиотек Python, R и Scala для науки о данных и несколько сред разработки с открытым исходным кодом, таких как Jupyter и Spyder.
Установить Anaconda можно здесь. Следуйте инструкциям по установке, и вы готовы начать!
Загрузить файлы Excel в виде фреймов Pandas
Все, среда настроена, вы готовы начать импорт ваших файлов.
Один из способов, который вы часто используете для импорта ваших файлов для обработки данных, — с помощью библиотеки Pandas. Она основана на NumPy и предоставляет простые в использовании структуры данных и инструменты анализа данных Python.
Эта мощная и гибкая библиотека очень часто используется дата-инженерами для передачи своих данных в структуры данных, очень выразительных для их анализа.
Если у вас уже есть Pandas, доступные через Anaconda, вы можете просто загрузить свои файлы в Pandas DataFrames с помощью pd.Excelfile():
# импорт библиотеки pandas
import pandas as pd
# Загружаем ваш файл в переменную `file` / вместо 'example' укажите название свого файла из текущей директории
file = 'example.xlsx'
# Загружаем spreadsheet в объект pandas
xl = pd.ExcelFile(file)
# Печатаем название листов в данном файле
print(xl.sheet_names)
# Загрузить лист в DataFrame по его имени: df1
df1 = xl.parse('Sheet1')
Если вы не установили Anaconda, просто выполните pip install pandas, чтобы установить библиотеку Pandas в вашей среде, а затем выполните команды, которые включены в фрагмент кода выше.
Проще простого, да?
Для чтения в файлах .csv у вас есть аналогичная функция для загрузки данных в DataFrame: read_csv(). Вот пример того, как вы можете использовать эту функцию:
# Импорт библиотеки pandas
import pandas as pd
# Загрузить csv файл
df = pd.read_csv("example.csv")
Разделитель, который будет учитывать эта функция, по умолчанию является запятой, но вы можете указать альтернативный разделитель, если хотите. Перейдите к документации, чтобы узнать, какие другие аргументы вы можете указать для успешного импорта!
Обратите внимание, что есть также функции read_table() и read_fwf() для чтения файлов и таблиц с фиксированной шириной в формате DataFrames с общим разделителем. Для первой функции разделителем по умолчанию является вкладка, но вы можете снова переопределить это, а также указать альтернативный символ-разделитель. Более того, есть и другие функции, которые вы можете использовать для получения данных в DataFrames: вы можете найти их здесь.
Как записать Pandas DataFrames в файлы Excel
Допустим, что после анализа данных вы хотите записать данные обратно в новый файл. Есть также способ записать ваши Pandas DataFrames обратно в файлы с помощью функции to_excel().
Но, прежде чем использовать эту функцию, убедитесь, что у вас установлен XlsxWriter, если вы хотите записать свои данные в несколько листов в файле .xlsx:
# Установим `XlsxWriter`
pip install XlsxWriter
# Указать writer библиотеки
writer = pd.ExcelWriter('example.xlsx', engine='xlsxwriter')
# Записать ваш DataFrame в файл
yourData.to_excel(writer, 'Sheet1')
# Сохраним результат
writer.save()
Обратите внимание, что в приведенном выше фрагменте кода вы используете объект ExcelWriter для вывода DataFrame.
Иными словами, вы передаете переменную Writer в функцию to_excel() и также указываете имя листа. Таким образом, вы добавляете лист с данными в существующую рабочую книгу: вы можете использовать ExcelWriter для сохранения нескольких (немного) разных DataFrames в одной рабочей книге.
Все это означает, что если вы просто хотите сохранить один DataFrame в файл, вы также можете обойтись без установки пакета XlsxWriter. Затем вы просто не указываете аргумент движка, который вы передаете в функцию pd.ExcelWriter(). Остальные шаги остаются прежними.
Аналогично функциям, которые вы использовали для чтения в файлах .csv, у вас также есть функция to_csv() для записи результатов обратно в файл, разделенный запятыми. Он снова работает так же, как когда вы использовали его для чтения в файле:
# Запишите DataFrame в csv
df.to_csv("example.csv")
Если вы хотите иметь файл, разделенный табуляцией, вы также можете передать t аргументу sep. Обратите внимание, что есть другие функции, которые вы можете использовать для вывода ваших файлов. Вы можете найти их все здесь.
Пакеты для разбора файлов Excel и обратной записи с помощью Python
Помимо библиотеки Pandas, который вы будете использовать очень часто для загрузки своих данных, вы также можете использовать другие библиотеки для получения ваших данных в Python. Наш обзор основан на этой странице со списком доступных библиотек, которые вы можете использовать для работы с файлами Excel в Python.
Далее вы увидите, как использовать эти библиотеки с помощью некоторых реальных, но упрощенных примеров.
Использование виртуальных сред
Общий совет для установки — делать это в Python virtualenv без системных пакетов. Вы можете использовать virtualenv для создания изолированных сред Python: он создает папку, содержащую все необходимые исполняемые файлы для использования пакетов, которые потребуются проекту Python.
Чтобы начать работать с virtualenv, вам сначала нужно установить его. Затем перейдите в каталог, в который вы хотите поместить свой проект. Создайте virtualenv в этой папке и загрузите в определенную версию Python, если вам это нужно. Затем вы активируете виртуальную среду. После этого вы можете начать загрузку в другие библиотеки, начать работать с ними и т. д.
Совет: не забудьте деактивировать среду, когда закончите!
# Install virtualenv
$ pip install virtualenv
# Go to the folder of your project
$ cd my_folder
# Create a virtual environment `venv`
$ virtualenv venv
# Indicate the Python interpreter to use for `venv`
$ virtualenv -p /usr/bin/python2.7 venv
# Activate `venv`
$ source venv/bin/activate
# Deactivate `venv`
$ deactivate
Обратите внимание, что виртуальная среда может показаться немного проблемной на первый взгляд, когда вы только начинаете работать с данными с Python. И, особенно если у вас есть только один проект, вы можете не понять, зачем вам вообще нужна виртуальная среда.
С ней будет гораздо легче, когда у вас одновременно запущено несколько проектов, и вы не хотите, чтобы они использовали одну и ту же установку Python. Или когда ваши проекты имеют противоречащие друг другу требования, виртуальная среда пригодится!
Теперь вы можете, наконец, начать установку и импорт библиотек, о которых вы читали, и загрузить их в таблицу.
Как читать и записывать файлы Excel с openpyxl
Этот пакет обычно рекомендуется, если вы хотите читать и записывать файлы .xlsx, xlsm, xltx и xltm.
Установите openpyxl с помощью pip: вы видели, как это сделать в предыдущем разделе.
Общий совет для установки этой библиотеки — делать это в виртуальной среде Python без системных библиотек. Вы можете использовать виртуальную среду для создания изолированных сред Python: она создает папку, которая содержит все необходимые исполняемые файлы для использования библиотек, которые потребуются проекту Python.
Перейдите в каталог, в котором находится ваш проект, и повторно активируйте виртуальную среду venv. Затем продолжите установку openpyxl с pip, чтобы убедиться, что вы можете читать и записывать файлы с ним:
# Активируйте virtualenv
$ source activate venv
# Установим `openpyxl` в `venv`
$ pip install openpyxl
Теперь, когда вы установили openpyxl, вы можете загружать данные. Но что это за данные?
Доспутим Excel с данными, которые вы пытаетесь загрузить в Python, содержит следующие листы:
Функция load_workbook() принимает имя файла в качестве аргумента и возвращает объект рабочей книги, который представляет файл. Вы можете проверить это, запустив type (wb). Убедитесь, что вы находитесь в том каталоге, где находится ваша таблица, иначе вы получите error при импорте.
# Import `load_workbook` module from `openpyxl`
from openpyxl import load_workbook
# Load in the workbook
wb = load_workbook('./test.xlsx')
# Get sheet names
print(wb.get_sheet_names())
Помните, что вы можете изменить рабочий каталог с помощью os.chdir().
Вы видите, что фрагмент кода выше возвращает имена листов книги, загруженной в Python.Можете использовать эту информацию, чтобы также получить отдельные листы рабочей книги.
Вы также можете проверить, какой лист в настоящее время активен с wb.active. Как видно из кода ниже, вы можете использовать его для загрузки другого листа из вашей книги:
# Get a sheet by name
sheet = wb.get_sheet_by_name('Sheet3')
# Print the sheet title
sheet.title
# Get currently active sheet
anotherSheet = wb.active
# Check `anotherSheet`
anotherSheet
На первый взгляд, с этими объектами рабочего листа вы не сможете многое сделать.. Однако вы можете извлечь значения из определенных ячеек на листе вашей книги, используя квадратные скобки [], в которые вы передаете точную ячейку, из которой вы хотите получить значение.
Обратите внимание, что это похоже на выбор, получение и индексирование массивов NumPy и Pandas DataFrames, но это не все, что вам нужно сделать, чтобы получить значение. Вам нужно добавить атрибут value:
# Retrieve the value of a certain cell
sheet['A1'].value
# Select element 'B2' of your sheet
c = sheet['B2']
# Retrieve the row number of your element
c.row
# Retrieve the column letter of your element
c.column
# Retrieve the coordinates of the cell
c.coordinate
Как вы можете видеть, помимо значения, есть и другие атрибуты, которые вы можете использовать для проверки вашей ячейки, а именно: row, column и coordinate.
Атрибут row вернет 2;
Добавление атрибута column к c даст вам ‘B’
coordinate вернет ‘B2’.
Вы также можете получить значения ячеек с помощью функции cell(). Передайте row и column, добавьте к этим аргументам значения, соответствующие значениям ячейки, которую вы хотите получить, и, конечно же, не забудьте добавить атрибут value:
# Retrieve cell value
sheet.cell(row=1, column=2).value
# Print out values in column 2
for i in range(1, 4):
print(i, sheet.cell(row=i, column=2).value)
Обратите внимание, что если вы не укажете атрибут value, вы получите <Cell Sheet3.B1>, который ничего не говорит о значении, которое содержится в этой конкретной ячейке.
Вы видите, что вы используете цикл for с помощью функции range(), чтобы помочь вам распечатать значения строк, имеющих значения в столбце 2. Если эти конкретные ячейки пусты, вы просто вернете None. Если вы хотите узнать больше о циклах for, пройдите наш курс Intermediate Python для Data Science.
Есть специальные функции, которые вы можете вызывать для получения некоторых других значений, например, get_column_letter() и column_index_from_string.
Две функции указывают примерно то, что вы можете получить, используя их, но лучше сделать их четче: хотя вы можете извлечь букву столбца с предшествующего, вы можете сделать обратное или получить адрес столбца, когда вы задаёте букву последнему. Вы можете увидеть, как это работает ниже:
# Импорт необходимых модулей из `openpyxl.utils`
from openpyxl.utils import get_column_letter, column_index_from_string
# Вывод 'A'
get_column_letter(1)
# Return '1'
column_index_from_string('A')
Вы уже получили значения для строк, которые имеют значения в определенном столбце, но что вам нужно сделать, если вы хотите распечатать строки вашего файла, не сосредотачиваясь только на одном столбце? Использовать другой цикл, конечно!
Например, вы говорите, что хотите сфокусироваться на области между «А1» и «С3», где первая указывает на левый верхний угол, а вторая — на правый нижний угол области, на которой вы хотите сфокусироваться. ,
Эта область будет так называемым cellObj, который вы видите в первой строке кода ниже. Затем вы говорите, что для каждой ячейки, которая находится в этой области, вы печатаете координату и значение, которое содержится в этой ячейке. После конца каждой строки вы печатаете сообщение, которое указывает, что строка этой области cellObj напечатана.
# Напечатать строчку за строчкой
for cellObj in sheet['A1':'C3']:
for cell in cellObj:
print(cells.coordinate, cells.value)
print('--- END ---')
Еще раз обратите внимание, что выбор области очень похож на выбор, получение и индексирование списка и элементов массива NumPy, где вы также используете [] и : для указания области, значения которой вы хотите получить. Кроме того, вышеприведенный цикл также хорошо использует атрибуты ячейки!
Чтобы сделать вышеприведенное объяснение и код наглядным, вы можете проверить результат, который вы получите после завершения цикла:
('A1', u'M')
('B1', u'N')
('C1', u'O')
--- END ---
('A2', 10L)
('B2', 11L)
('C2', 12L)
--- END ---
('A3', 14L)
('B3', 15L)
('C3', 16L)
--- END ---
Наконец, есть некоторые атрибуты, которые вы можете использовать для проверки результата вашего импорта, а именно max_row и max_column. Эти атрибуты, конечно, и так — общие способы проверки правильности загрузки данных, но они все равно полезны.
# Вывести максимальное количество строк
sheet.max_row
# Вывести максимальное количество колонок
sheet.max_column
Наверное, вы думаете, что такой способ работы с этими файлами сложноват, особенно если вы еще хотите манипулировать данными.
Должно быть что-то попроще, верно? Так и есть!
openpyxl поддерживает Pandas DataFrames! Вы можете использовать функцию DataFrame() из библиотеки Pandas, чтобы поместить значения листа в DataFrame:
# Import `pandas`
import pandas as pd
# конвертировать Лист в DataFrame
df = pd.DataFrame(sheet.values)
Если вы хотите указать заголовки и индексы, вам нужно добавить немного больше кода:
# Put the sheet values in `data`
data = sheet.values
# Indicate the columns in the sheet values
cols = next(data)[1:]
# Convert your data to a list
data = list(data)
# Read in the data at index 0 for the indices
idx = [r[0] for r in data]
# Slice the data at index 1
data = (islice(r, 1, None) for r in data)
# Make your DataFrame
df = pd.DataFrame(data, index=idx, columns=cols)
Затем вы можете начать манипулировать данными со всеми функциями, которые предлагает библиотека Pandas. Но помните, что вы находитесь в виртуальной среде, поэтому, если библиотека еще не представлена, вам нужно будет установить ее снова через pip.
Чтобы записать ваши Pandas DataFrames обратно в файл Excel, вы можете легко использовать функцию dataframe_to_rows() из модуля utils:
# Import `dataframe_to_rows`
from openpyxl.utils.dataframe import dataframe_to_rows
# Initialize a workbook
wb = Workbook()
# Get the worksheet in the active workbook
ws = wb.active
# Append the rows of the DataFrame to your worksheet
for r in dataframe_to_rows(df, index=True, header=True):
ws.append(r)
Но это точно не все! Библиотека openpyxl предлагает вам высокую гибкость при записи ваших данных обратно в файлы Excel, изменении стилей ячеек или использовании режима write-only. Эту библиотеку обязательно нужно знать, когда вы часто работаете с электронными таблицами ,
Совет: читайте больше о том, как вы можете изменить стили ячеек, перейти в режим write-only или как библиотека работает с NumPy здесь.
Теперь давайте также рассмотрим некоторые другие библиотеки, которые вы можете использовать для получения данных вашей электронной таблицы в Python.
Прежде чем закрыть этот раздел, не забудьте отключить виртуальную среду, когда закончите!
Чтение и форматирование Excel-файлов: xlrd
Эта библиотека идеально подходит для чтения и форматирования данных из Excel с расширением xls или xlsx.
# Import `xlrd`
import xlrd
# Open a workbook
workbook = xlrd.open_workbook('example.xls')
# Loads only current sheets to memory
workbook = xlrd.open_workbook('example.xls', on_demand = True)
Когда вам не нужны данные из всей Excel-книги, вы можете использовать функции sheet_by_name() или sheet_by_index() для получения листов, которые вы хотите получить в своём анализе
# Load a specific sheet by name
worksheet = workbook.sheet_by_name('Sheet1')
# Load a specific sheet by index
worksheet = workbook.sheet_by_index(0)
# Retrieve the value from cell at indices (0,0)
sheet.cell(0, 0).value
Также можно получить значение в определённых ячейках с вашего листа.
Перейдите к xlwt и xlutils, чтобы узнать больше о том, как они относятся к библиотеке xlrd.
Запись данных в Excel-файлы с xlwt
Если вы хотите создать таблицу со своими данными, вы можете использовать не только библиотеку XlsWriter, но и xlwt. xlwt идеально подходит для записи данных и форматирования информации в файлах с расширением .xls
Когда вы вручную создаёте файл:
# Import `xlwt`
import xlwt
# Initialize a workbook
book = xlwt.Workbook(encoding="utf-8")
# Add a sheet to the workbook
sheet1 = book.add_sheet("Python Sheet 1")
# Write to the sheet of the workbook
sheet1.write(0, 0, "This is the First Cell of the First Sheet")
# Save the workbook
book.save("spreadsheet.xls")
Если вы хотите записать данные в файл, но не хотите делать все самостоятельно, вы всегда можете прибегнуть к циклу for, чтобы автоматизировать весь процесс. Составьте сценарий, в котором вы создаёте книгу и в которую добавляете лист. Укажите список со столбцами и один со значениями, которые будут заполнены на листе.
Далее у вас есть цикл for, который гарантирует, что все значения попадают в файл: вы говорите, что для каждого элемента в диапазоне от 0 до 4 (5 не включительно) вы собираетесь что-то делать. Вы будете заполнять значения построчно. Для этого вы указываете элемент строки, который появляется в каждом цикле. Далее у вас есть еще один цикл for, который будет проходить по столбцам вашего листа. Вы говорите, что для каждой строки на листе, вы будете смотреть на столбцы, которые идут с ним, и вы будете заполнять значение для каждого столбца в строке. Заполнив все столбцы строки значениями, вы перейдете к следующей строке, пока не останется строк.
# Initialize a workbook
book = xlwt.Workbook()
# Add a sheet to the workbook
sheet1 = book.add_sheet("Sheet1")
# The data
cols = ["A", "B", "C", "D", "E"]
txt = [0,1,2,3,4]
# Loop over the rows and columns and fill in the values
for num in range(5):
row = sheet1.row(num)
for index, col in enumerate(cols):
value = txt[index] + num
row.write(index, value)
# Save the result
book.save("test.xls")
На скриншоте ниже представлен результат выполнения этого кода:
Теперь, когда вы увидели, как xlrd и xlwt работают друг с другом, пришло время взглянуть на библиотеку, которая тесно связана с этими двумя: xlutils.
Сборник утилит: xlutils
Эта библиотека — сборник утилит, для которого требуются и xlrd и xlwt, и которая может копировать, изменять и фильтровать существующие данные. О том, как пользоваться этими командами рассказано в разделе по openpyxl.
Вернитесь в раздел openpyxl, чтобы получить больше информации о том, как использовать этот пакет для получения данных в Python.
Использование pyexcel для чтения .xls или .xlsx файлов
Еще одна библиотека, которую можно использовать для чтения данных электронных таблиц в Python — это pyexcel; Python Wrapper, который предоставляет один API для чтения, записи и работы с данными в файлах .csv, .ods, .xls, .xlsx и .xlsm. Конечно, для этого урока вы просто сосредоточитесь на файлах .xls и .xls.
Чтобы получить ваши данные в массиве, вы можете использовать функцию get_array(), которая содержится в пакете pyexcel:
# Import `pyexcel`
import pyexcel
# Get an array from the data
my_array = pyexcel.get_array(file_name="test.xls")
Вы также можете получить свои данные в упорядоченном словаре списков. Вы можете использовать функцию get_dict():
# Import `OrderedDict` module
from pyexcel._compact import OrderedDict
# Get your data in an ordered dictionary of lists
my_dict = pyexcel.get_dict(file_name="test.xls", name_columns_by_row=0)
# Get your data in a dictionary of 2D arrays
book_dict = pyexcel.get_book_dict(file_name="test.xls")
Здесь видно, что если вы хотите получить словарь двумерных массивов или получить все листы рабочей книги в одном словаре, вы можете прибегнуть к get_book_dict().
Помните, что эти две структуры данных, которые были упомянуты выше, массивы и словари вашей таблицы, позволяют вам создавать DataFrames ваших данных с помощью pd.DataFrame(). Это облегчит обработку данных.
Кроме того, вы можете просто получить записи из таблицы с помощью pyexcel благодаря функции get_records(). Просто передайте аргумент file_name в функцию, и вы получите список словарей:
# Retrieve the records of the file
records = pyexcel.get_records(file_name="test.xls")
Чтобы узнать, как управлять списками Python, ознакомьтесь с примерами из документации о списках Python.
Запись в файл с pyexcel
С помощью этой библиотеки можно не только загружать данные в массивы, вы также можете экспортировать свои массивы обратно в таблицу. Используйте функцию save_as() и передайте массив и имя файла назначения в аргумент dest_file_name:
# Get the data
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
# Save the array to a file
pyexcel.save_as(array=data, dest_file_name="array_data.xls")
Обратите внимание, что если вы хотите указать разделитель, вы можете добавить аргумент dest_delimiter и передать символ, который вы хотите использовать в качестве разделителя между «».
Однако если у вас есть словарь, вам нужно использовать функцию save_book_as(). Передайте двумерный словарь в bookdict и укажите имя файла:
# The data
2d_array_dictionary = {'Sheet 1': [
['ID', 'AGE', 'SCORE']
[1, 22, 5],
[2, 15, 6],
[3, 28, 9]
],
'Sheet 2': [
['X', 'Y', 'Z'],
[1, 2, 3],
[4, 5, 6]
[7, 8, 9]
],
'Sheet 3': [
['M', 'N', 'O', 'P'],
[10, 11, 12, 13],
[14, 15, 16, 17]
[18, 19, 20, 21]
]}
# Save the data to a file
pyexcel.save_book_as(bookdict=2d_array_dictionary, dest_file_name="2d_array_data.xls")
При использовании кода, напечатанного в приведенном выше примере, важно помнить, что порядок ваших данных в словаре не будет сохранен. Если вы не хотите этого, вам нужно сделать небольшой обход. Вы можете прочитать все об этом здесь.
Чтение и запись .csv файлов
Если вы все еще ищете библиотеки, которые позволяют загружать и записывать данные в файлы .csv, кроме Pandas, лучше всего использовать пакет csv:
# import `csv`
import csv
# Read in csv file
for row in csv.reader(open('data.csv'), delimiter=','):
print(row)
# Write csv file
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
outfile = open('data.csv', 'w')
writer = csv.writer(outfile, delimiter=';', quotechar='"')
writer.writerows(data)
outfile.close()
Обратите внимание, что в пакете NumPy есть функция genfromtxt(), которая позволяет загружать данные, содержащиеся в файлах .csv, в массивы, которые затем можно поместить в DataFrames.
Финальная проверка данных
Когда у вас есть данные, не забудьте последний шаг: проверить, правильно ли загружены данные. Если вы поместили свои данные в DataFrame, вы можете легко и быстро проверить, был ли импорт успешным, выполнив следующие команды:
# Check the first entries of the DataFrame
df1.head()
# Check the last entries of the DataFrame
df1.tail()
Если у вас есть данные в массиве, вы можете проверить их, используя следующие атрибуты массива: shape, ndim, dtype и т.д .:
# Inspect the shape
data.shape
# Inspect the number of dimensions
data.ndim
# Inspect the data type
data.dtype
Что дальше?
Поздравляем! Вы успешно прошли наш урок и научились читать файлы Excel на Python.
Если вы хотите продолжить работу над этой темой, попробуйте воспользоваться PyXll, который позволяет писать функции в Python и вызывать их в Excel.
Python has emerged as one of the most popular programming languages in recent years. It has a simple and easy-to-read syntax, which makes it an ideal language for beginners. Additionally, Python offers many libraries that make it suitable for data analysis and machine learning tasks. In this blog post, we will discuss some of the best open-source Python libraries for Excel.
XlsxWriter
With the XlsxWriter module for Python, it’s easy to export Excel files in clean and efficient formats. With 100% compatibility with Microsoft Excel XLSX files, you can be confident that your data will arrive stored as intended in its destination file format including formatting and all multimedia content like charts or images.
XlsxWriter is a Python module that allows you to write files in the Excel 2007+ XLSX file format. This module has full support for all of the features of the file format, including formatting, merged cells, defined names, charts, autofilters, data validation, and drop-down lists, conditional formatting, worksheet images, textboxes, macros, and more.
import numpy as np import pandas as pd import xlwings as xw @xw.sub def get_workbook_name(): """Writes the name of the Workbook into Range("D3") of Sheet 1""" wb = xw.Book.caller() wb.sheets["Sheet1"].range("D3").value = wb.name @xw.func def double_sum(x, y): """Returns twice the sum of the two arguments""" return 2 * (x + y) @xw.func @xw.arg("data", ndim=2) def add_one(data): """Adds 1 to every cell in Range""" return [[cell + 1 for cell in row] for row in data] @xw.func @xw.arg("x", np.array, ndim=2) @xw.arg("y", np.array, ndim=2) def matrix_mult(x, y): """Alternative implementation of Excel's MMULT, requires NumPy""" return x.dot(y) @xw.func @xw.arg("x", pd.DataFrame, index=False, header=False) @xw.ret(index=False, header=False) def CORREL2(x): """Like CORREL, but as array formula for more than 2 data sets""" return x.corr() if __name__ == "__main__": # To run this with the debug server, # set UDF_DEBUG_SERVER = True in the xlwings VBA module xw.serve()
Additionally, XlsxWriter is optimized for writing large files and can be used in the memory-saving mode for even greater efficiency.
From seamless integration of Charts (including Sparklines) to data validation, auto filters, and drop-down lists, this module has everything you need to create professional-quality Excel files with Python.
It requires Python 3.4 or later and PyPy3, and it makes use of only standard libraries.
xlwings
This is a Python library that makes it easy to call Python from Excel and vice versa. It comes pre-installed with Anaconda and WinPython, and works on Windows and macOS. xlwings is open source and free and lets you automate Excel via Python scripts or Jupyter notebooks. You can also call Python from Excel via macros, and write user-defined functions (UDFs).
import xlsxwriter # Create an new Excel file and add a worksheet. workbook = xlsxwriter.Workbook('demo.xlsx') worksheet = workbook.add_worksheet() # Widen the first column to make the text clearer. worksheet.set_column('A:A', 20) # Add a bold format to use to highlight cells. bold = workbook.add_format({'bold': True}) # Write some simple text. worksheet.write('A1', 'Hello') # Text with formatting. worksheet.write('A2', 'World', bold) # Write some numbers, with row/column notation. worksheet.write(2, 0, 123) worksheet.write(3, 0, 123.456) # Insert an image. worksheet.insert_image('B5', 'logo.png') workbook.close()
xlwings enables you to use Python in Excel in basically two ways: either you script/automate Excel from Python or you write User Defined Functions (UDFs) in Python that work in Excel.
Numpy arrays and Pandas Series/DataFrames are fully supported. xlwings-powered workbooks are easy to distribute and work on Windows and macOS.
xlwings is a great tool for data analysis and data visualization.
xlrd
The xlrd library is a powerful tool for extracting data and formatting information from Excel files. However, it has a number of limitations that users should be aware of. First, the library will only read .xls files, and will not be able to open any other file type. Additionally, the library does not support charts, macros, or pictures.
import xlrd book = xlrd.open_workbook("myfile.xls") print("The number of worksheets is {0}".format(book.nsheets)) print("Worksheet name(s): {0}".format(book.sheet_names())) sh = book.sheet_by_index(0) print("{0} {1} {2}".format(sh.name, sh.nrows, sh.ncols)) print("Cell D30 is {0}".format(sh.cell_value(rowx=29, colx=3))) for rx in range(sh.nrows): print(sh.row(rx))
Password-protected files cannot be read by the library. Despite these limitations, the xlrd library remains a valuable tool for anyone looking to extract data from Excel files.
pyexcel
Python is a versatile language that has many uses, one of which is data processing. Excel is a popular format for storing data, and Pyexcel is a Python library that makes it easy to read, manipulate, and write Excel files.
records = p.get_records(file_name="your_file.xls") for row in records: print(f"{row['Representative Composers']} are from {row['Name']} period ({row['Period']})")
With just a few lines of code, you can convert data from Excel to an array or dictionary, and vice versa. Pyexcel also makes it easy to process data stored in Excel files, making it an enjoyable task. While fonts, colors, and charts are not considered part of Pyexcel’s focus, the library nonetheless provides a powerful and user-friendly way to work with Excel data.
PyExcelerate
PyExcelerate is a library that writes Excel-compatible XLSX spreadsheets. It focuses on speed. PyExcelerate allows you to write data to ranges directly instead of writing cell-by-cell, which makes the writing process faster.
from pyexcelerate import Workbook, Color, Style, Fill from datetime import datetime wb = Workbook() ws = wb.new_sheet("Sheet1") ws.set_col_style(2, Style(size=0)) wb.save("file.xlsx")
The library has full support for Unicode characters, date formatting, and number formatting.