Python excel for windows

Узнайте, как читать и импортировать файлы Excel в Python, как записывать данные в эти таблицы и какие библиотеки лучше всего подходят для этого.

Известный вам инструмент для организации, анализа и хранения ваших данных в таблицах — Excel — применяется и в data science. В какой-то момент вам придется иметь дело с этими таблицами, но работать именно с ними вы будете не всегда. Вот почему разработчики Python реализовали способы чтения, записи и управления не только этими файлами, но и многими другими типами файлов.

Из этого учебника узнаете, как можете работать с Excel и Python. Внутри найдете обзор библиотек, которые вы можете использовать для загрузки и записи этих таблиц в файлы с помощью Python. Вы узнаете, как работать с такими библиотеками, как pandas, openpyxl, xlrd, xlutils и pyexcel.

Данные как ваша отправная точка

Когда вы начинаете проект по data science, вам придется работать с данными, которые вы собрали по всему интернету, и с наборами данных, которые вы загрузили из других мест — Kaggle, Quandl и тд

Но чаще всего вы также найдете данные в Google или в репозиториях, которые используются другими пользователями. Эти данные могут быть в файле Excel или сохранены в файл с расширением .csv … Возможности могут иногда казаться бесконечными, но когда у вас есть данные, в первую очередь вы должны убедиться, что они качественные.

В случае с электронной таблицей вы можете не только проверить, могут ли эти данные ответить на вопрос исследования, который вы имеете в виду, но также и можете ли вы доверять данным, которые хранятся в электронной таблице.

Проверяем качество таблицы

  • Представляет ли электронная таблица статические данные?
  • Смешивает ли она данные, расчеты и отчетность?
  • Являются ли данные в вашей электронной таблице полными и последовательными?
  • Имеет ли ваша таблица систематизированную структуру рабочего листа?
  • Проверяли ли вы действительные формулы в электронной таблице?

Этот список вопросов поможет убедиться, что ваша таблица не грешит против лучших практик, принятых в отрасли. Конечно, этот список не исчерпывающий, но позволит провести базовую проверку таблицы.

Лучшие практики для данных электронных таблиц

Прежде чем приступить к чтению вашей электронной таблицы на Python, вы также должны подумать о том, чтобы настроить свой файл в соответствии с некоторыми основными принципами, такими как:

  • Первая строка таблицы обычно зарезервирована для заголовка, а первый столбец используется для идентификации единицы выборки;
  • Избегайте имен, значений или полей с пробелами. В противном случае каждое слово будет интерпретироваться как отдельная переменная, что приведет к ошибкам, связанным с количеством элементов на строку в вашем наборе данных. По возможности, используйте:
  • подчеркивания,
  • тире,
  • горбатый регистр, где первая буква каждого слова пишется с большой буквы
  • объединяющие слова
  • Короткие имена предпочтительнее длинных имен;
  • старайтесь не использовать имена, которые содержат символы ?, $,%, ^, &, *, (,), -, #,? ,,, <,>, /, |, , [,], {, и };
  • Удалите все комментарии, которые вы сделали в вашем файле, чтобы избежать добавления в ваш файл лишних столбцов или NA;
  • Убедитесь, что все пропущенные значения в вашем наборе данных обозначены как NA.

Затем, после того, как вы внесли необходимые изменения или тщательно изучили свои данные, убедитесь, что вы сохранили внесенные изменения. Сделав это, вы можете вернуться к данным позже, чтобы отредактировать их, добавить дополнительные данные или изменить их, сохранив формулы, которые вы, возможно, использовали для расчета данных и т.д.

Если вы работаете с Microsoft Excel, вы можете сохранить файл в разных форматах: помимо расширения по умолчанию .xls или .xlsx, вы можете перейти на вкладку «Файл», нажать «Сохранить как» и выбрать одно из расширений, которые указаны в качестве параметров «Сохранить как тип». Наиболее часто используемые расширения для сохранения наборов данных в data science — это .csv и .txt (в виде текстового файла с разделителями табуляции). В зависимости от выбранного варианта сохранения поля вашего набора данных разделяются вкладками или запятыми, которые образуют символы-разделители полей вашего набора данных.

Теперь, когда вы проверили и сохранили ваши данные, вы можете начать с подготовки вашего рабочего окружения.

Готовим рабочее окружение

Как убедиться, что вы все делаете хорошо? Проверить рабочее окружение!

Когда вы работаете в терминале, вы можете сначала перейти в каталог, в котором находится ваш файл, а затем запустить Python. Убедитесь, что файл лежит именно в том каталоге, к которому вы обратились.

Возможно, вы уже начали сеанс Python и у вас нет подсказок о каталоге, в котором вы работаете. Тогда можно выполнить следующие команды:

# Import `os` 
import os

# Retrieve current working directory (`cwd`)
cwd = os.getcwd()
cwd

# Change directory 
os.chdir("/path/to/your/folder")

# List all files and directories in current directory
os.listdir('.')

Круто, да?

Вы увидите, что эти команды очень важны не только для загрузки ваших данных, но и для дальнейшего анализа. А пока давайте продолжим: вы прошли все проверки, вы сохранили свои данные и подготовили рабочее окружение.

Можете ли вы начать с чтения данных в Python?

Установите библиотеки для чтения и записи файлов Excel

Даже если вы еще не знаете, какие библиотеки вам понадобятся для импорта ваших данных, вы должны убедиться, что у вас есть все, что нужно для установки этих библиотек, когда придет время.

Подготовка к дополнительной рабочей области: pip

Вот почему вам нужно установить pip и setuptools. Если у вас установлен Python2 ⩾ 2.7.9 или Python3  ⩾ 3.4, то можно не беспокоиться — просто убедитесь, что вы обновились до последней версии.

Для этого выполните следующую команду в своем терминале:

# Для Linux/OS X
pip install -U pip setuptools

# Для Windows
python -m pip install -U pip setuptools

Если вы еще не установили pip, запустите скрипт python get-pip.py, который вы можете найти здесь. Следуйте инструкциям по установке.

Установка Anaconda

Другой вариант для работы в data science — установить дистрибутив Anaconda Python. Сделав это, вы получите простой и быстрый способ начать заниматься data science, потому что вам не нужно беспокоиться об установке отдельных библиотек, необходимых для работы.

Это особенно удобно, если вы новичок, но даже для более опытных разработчиков это способ быстро протестировать некоторые вещи без необходимости устанавливать каждую библиотеку отдельно.

Anaconda включает в себя 100 самых популярных библиотек Python, R и Scala для науки о данных и несколько сред разработки с открытым исходным кодом, таких как Jupyter и Spyder.

Установить Anaconda можно здесь. Следуйте инструкциям по установке, и вы готовы начать!

Загрузить файлы Excel в виде фреймов Pandas

Все, среда настроена, вы готовы начать импорт ваших файлов.

Один из способов, который вы часто используете для импорта ваших файлов для обработки данных, — с помощью библиотеки Pandas. Она основана на NumPy и предоставляет простые в использовании структуры данных и инструменты анализа данных Python.

Эта мощная и гибкая библиотека очень часто используется дата-инженерами для передачи своих данных в структуры данных, очень выразительных для их анализа.

Если у вас уже есть Pandas, доступные через Anaconda, вы можете просто загрузить свои файлы в Pandas DataFrames с помощью pd.Excelfile():

# импорт библиотеки pandas
import pandas as pd

# Загружаем ваш файл в переменную `file` / вместо 'example' укажите название свого файла из текущей директории
file = 'example.xlsx'

# Загружаем spreadsheet в объект pandas
xl = pd.ExcelFile(file)

# Печатаем название листов в данном файле
print(xl.sheet_names)

# Загрузить лист в DataFrame по его имени: df1
df1 = xl.parse('Sheet1')

Если вы не установили Anaconda, просто выполните pip install pandas, чтобы установить библиотеку Pandas в вашей среде, а затем выполните команды, которые включены в фрагмент кода выше.

Проще простого, да?

Для чтения в файлах .csv у вас есть аналогичная функция для загрузки данных в DataFrame: read_csv(). Вот пример того, как вы можете использовать эту функцию:

# Импорт библиотеки pandas
import pandas as pd

# Загрузить csv файл
df = pd.read_csv("example.csv") 

Разделитель, который будет учитывать эта функция, по умолчанию является запятой, но вы можете указать альтернативный разделитель, если хотите. Перейдите к документации, чтобы узнать, какие другие аргументы вы можете указать для успешного импорта!

Обратите внимание, что есть также функции read_table() и read_fwf() для чтения файлов и таблиц с фиксированной шириной в формате DataFrames с общим разделителем. Для первой функции разделителем по умолчанию является вкладка, но вы можете снова переопределить это, а также указать альтернативный символ-разделитель. Более того, есть и другие функции, которые вы можете использовать для получения данных в DataFrames: вы можете найти их здесь.

Как записать Pandas DataFrames в файлы Excel

Допустим, что после анализа данных вы хотите записать данные обратно в новый файл. Есть также способ записать ваши Pandas DataFrames обратно в файлы с помощью функции to_excel().

Но, прежде чем использовать эту функцию, убедитесь, что у вас установлен XlsxWriter, если вы хотите записать свои данные в несколько листов в файле .xlsx:

# Установим `XlsxWriter` 
pip install XlsxWriter

# Указать writer библиотеки
writer = pd.ExcelWriter('example.xlsx', engine='xlsxwriter')

# Записать ваш DataFrame в файл     
yourData.to_excel(writer, 'Sheet1')

# Сохраним результат 
writer.save()

Обратите внимание, что в приведенном выше фрагменте кода вы используете объект ExcelWriter для вывода DataFrame.

Иными словами, вы передаете переменную Writer в функцию to_excel() и также указываете имя листа. Таким образом, вы добавляете лист с данными в существующую рабочую книгу: вы можете использовать ExcelWriter для сохранения нескольких (немного) разных DataFrames в одной рабочей книге.

Все это означает, что если вы просто хотите сохранить один DataFrame в файл, вы также можете обойтись без установки пакета XlsxWriter. Затем вы просто не указываете аргумент движка, который вы передаете в функцию pd.ExcelWriter(). Остальные шаги остаются прежними.

Аналогично функциям, которые вы использовали для чтения в файлах .csv, у вас также есть функция to_csv() для записи результатов обратно в файл, разделенный запятыми. Он снова работает так же, как когда вы использовали его для чтения в файле:

# Запишите DataFrame в csv
df.to_csv("example.csv")

Если вы хотите иметь файл, разделенный табуляцией, вы также можете передать t аргументу sep. Обратите внимание, что есть другие функции, которые вы можете использовать для вывода ваших файлов. Вы можете найти их все здесь.

Пакеты для разбора файлов Excel и обратной записи с помощью Python

Помимо библиотеки Pandas, который вы будете использовать очень часто для загрузки своих данных, вы также можете использовать другие библиотеки для получения ваших данных в Python. Наш обзор основан на этой странице со списком доступных библиотек, которые вы можете использовать для работы с файлами Excel в Python.

Далее вы увидите, как использовать эти библиотеки с помощью некоторых реальных, но упрощенных примеров.

Использование виртуальных сред

Общий совет для установки — делать это в Python virtualenv без системных пакетов. Вы можете использовать virtualenv для создания изолированных сред Python: он создает папку, содержащую все необходимые исполняемые файлы для использования пакетов, которые потребуются проекту Python.

Чтобы начать работать с virtualenv, вам сначала нужно установить его. Затем перейдите в каталог, в который вы хотите поместить свой проект. Создайте virtualenv в этой папке и загрузите в определенную версию Python, если вам это нужно. Затем вы активируете виртуальную среду. После этого вы можете начать загрузку в другие библиотеки, начать работать с ними и т. д.

Совет: не забудьте деактивировать среду, когда закончите!

# Install virtualenv
$ pip install virtualenv

# Go to the folder of your project
$ cd my_folder

# Create a virtual environment `venv`
$ virtualenv venv

# Indicate the Python interpreter to use for `venv`
$ virtualenv -p /usr/bin/python2.7 venv

# Activate `venv`
$ source venv/bin/activate

# Deactivate `venv`
$ deactivate

Обратите внимание, что виртуальная среда может показаться немного проблемной на первый взгляд, когда вы только начинаете работать с данными с Python. И, особенно если у вас есть только один проект, вы можете не понять, зачем вам вообще нужна виртуальная среда.

С ней будет гораздо легче, когда у вас одновременно запущено несколько проектов, и вы не хотите, чтобы они использовали одну и ту же установку Python. Или когда ваши проекты имеют противоречащие друг другу требования, виртуальная среда пригодится!

Теперь вы можете, наконец, начать установку и импорт библиотек, о которых вы читали, и загрузить их в таблицу.

Как читать и записывать файлы Excel с openpyxl

Этот пакет обычно рекомендуется, если вы хотите читать и записывать файлы .xlsx, xlsm, xltx и xltm.

Установите openpyxl с помощью pip: вы видели, как это сделать в предыдущем разделе.

Общий совет для установки этой библиотеки — делать это в виртуальной среде Python без системных библиотек. Вы можете использовать виртуальную среду для создания изолированных сред Python: она создает папку, которая содержит все необходимые исполняемые файлы для использования библиотек, которые потребуются проекту Python.

Перейдите в каталог, в котором находится ваш проект, и повторно активируйте виртуальную среду venv. Затем продолжите установку openpyxl с pip, чтобы убедиться, что вы можете читать и записывать файлы с ним:

# Активируйте virtualenv
$ source activate venv

# Установим `openpyxl` в `venv`
$ pip install openpyxl

Теперь, когда вы установили openpyxl, вы можете загружать данные. Но что это за данные?

Доспутим Excel с данными, которые вы пытаетесь загрузить в Python, содержит следующие листы:

Функция load_workbook() принимает имя файла в качестве аргумента и возвращает объект рабочей книги, который представляет файл. Вы можете проверить это, запустив type (wb). Убедитесь, что вы находитесь в том каталоге, где находится ваша таблица, иначе вы получите error при импорте.

# Import `load_workbook` module from `openpyxl`
from openpyxl import load_workbook

# Load in the workbook
wb = load_workbook('./test.xlsx')

# Get sheet names
print(wb.get_sheet_names())

Помните, что вы можете изменить рабочий каталог с помощью os.chdir().

Вы видите, что фрагмент кода выше возвращает имена листов книги, загруженной в Python.Можете использовать эту информацию, чтобы также получить отдельные листы рабочей книги.

Вы также можете проверить, какой лист в настоящее время активен с wb.active. Как видно из кода ниже, вы можете использовать его для загрузки другого листа из вашей книги:

# Get a sheet by name 
sheet = wb.get_sheet_by_name('Sheet3')

# Print the sheet title 
sheet.title

# Get currently active sheet
anotherSheet = wb.active

# Check `anotherSheet` 
anotherSheet

На первый взгляд, с этими объектами рабочего листа вы не сможете многое сделать.. Однако вы можете извлечь значения из определенных ячеек на листе вашей книги, используя квадратные скобки [], в которые вы передаете точную ячейку, из которой вы хотите получить значение.

Обратите внимание, что это похоже на выбор, получение и индексирование массивов NumPy и Pandas DataFrames, но это не все, что вам нужно сделать, чтобы получить значение. Вам нужно добавить атрибут value:

# Retrieve the value of a certain cell
sheet['A1'].value

# Select element 'B2' of your sheet 
c = sheet['B2']

# Retrieve the row number of your element
c.row

# Retrieve the column letter of your element
c.column

# Retrieve the coordinates of the cell 
c.coordinate

Как вы можете видеть, помимо значения, есть и другие атрибуты, которые вы можете использовать для проверки вашей ячейки, а именно: row, column и coordinate.

Атрибут row вернет 2;

Добавление атрибута column к c даст вам ‘B’

coordinate вернет ‘B2’.

Вы также можете получить значения ячеек с помощью функции cell(). Передайте row и column, добавьте к этим аргументам значения, соответствующие значениям ячейки, которую вы хотите получить, и, конечно же, не забудьте добавить атрибут value:

# Retrieve cell value 
sheet.cell(row=1, column=2).value

# Print out values in column 2 
for i in range(1, 4):
     print(i, sheet.cell(row=i, column=2).value)

Обратите внимание, что если вы не укажете атрибут value, вы получите <Cell Sheet3.B1>, который ничего не говорит о значении, которое содержится в этой конкретной ячейке.

Вы видите, что вы используете цикл for с помощью функции range(), чтобы помочь вам распечатать значения строк, имеющих значения в столбце 2. Если эти конкретные ячейки пусты, вы просто вернете None. Если вы хотите узнать больше о циклах for, пройдите наш курс Intermediate Python для Data Science.

Есть специальные функции, которые вы можете вызывать для получения некоторых других значений, например, get_column_letter() и column_index_from_string.

Две функции указывают примерно то, что вы можете получить, используя их, но лучше сделать их четче: хотя вы можете извлечь букву столбца с предшествующего, вы можете сделать обратное или получить адрес столбца, когда вы задаёте букву последнему. Вы можете увидеть, как это работает ниже:

# Импорт необходимых модулей из  `openpyxl.utils`
from openpyxl.utils import get_column_letter, column_index_from_string

# Вывод 'A'
get_column_letter(1)

# Return '1'
column_index_from_string('A')

Вы уже получили значения для строк, которые имеют значения в определенном столбце, но что вам нужно сделать, если вы хотите распечатать строки вашего файла, не сосредотачиваясь только на одном столбце? Использовать другой цикл, конечно!

Например, вы говорите, что хотите сфокусироваться на области между «А1» и «С3», где первая указывает на левый верхний угол, а вторая — на правый нижний угол области, на которой вы хотите сфокусироваться. ,

Эта область будет так называемым cellObj, который вы видите в первой строке кода ниже. Затем вы говорите, что для каждой ячейки, которая находится в этой области, вы печатаете координату и значение, которое содержится в этой ячейке. После конца каждой строки вы печатаете сообщение, которое указывает, что строка этой области cellObj напечатана.

# Напечатать строчку за строчкой
for cellObj in sheet['A1':'C3']:
      for cell in cellObj:
              print(cells.coordinate, cells.value)
      print('--- END ---')

Еще раз обратите внимание, что выбор области очень похож на выбор, получение и индексирование списка и элементов массива NumPy, где вы также используете [] и : для указания области, значения которой вы хотите получить. Кроме того, вышеприведенный цикл также хорошо использует атрибуты ячейки!

Чтобы сделать вышеприведенное объяснение и код наглядным, вы можете проверить результат, который вы получите после завершения цикла:

('A1', u'M')
('B1', u'N')
('C1', u'O')
--- END ---
('A2', 10L)
('B2', 11L)
('C2', 12L)
--- END ---
('A3', 14L)
('B3', 15L)
('C3', 16L)
--- END ---

Наконец, есть некоторые атрибуты, которые вы можете использовать для проверки результата вашего импорта, а именно max_row и max_column. Эти атрибуты, конечно, и так  — общие способы проверки правильности загрузки данных, но они все равно полезны.

# Вывести максимальное количество строк 
sheet.max_row

# Вывести максимальное количество колонок 
sheet.max_column

Наверное, вы думаете, что такой способ работы с этими файлами сложноват, особенно если вы еще хотите манипулировать данными.

Должно быть что-то попроще, верно? Так и есть!

openpyxl поддерживает Pandas DataFrames! Вы можете использовать функцию DataFrame() из библиотеки Pandas, чтобы поместить значения листа в DataFrame:

# Import `pandas` 
import pandas as pd

# конвертировать Лист в DataFrame
df = pd.DataFrame(sheet.values)

Если вы хотите указать заголовки и индексы, вам нужно добавить немного больше кода:

# Put the sheet values in `data`
data = sheet.values

# Indicate the columns in the sheet values
cols = next(data)[1:]

# Convert your data to a list
data = list(data)

# Read in the data at index 0 for the indices
idx = [r[0] for r in data]

# Slice the data at index 1 
data = (islice(r, 1, None) for r in data)

# Make your DataFrame
df = pd.DataFrame(data, index=idx, columns=cols)

Затем вы можете начать манипулировать данными со всеми функциями, которые предлагает библиотека Pandas. Но помните, что вы находитесь в виртуальной среде, поэтому, если библиотека еще не представлена, вам нужно будет установить ее снова через pip.

Чтобы записать ваши Pandas DataFrames обратно в файл Excel, вы можете легко использовать функцию dataframe_to_rows() из модуля utils:

# Import `dataframe_to_rows`
from openpyxl.utils.dataframe import dataframe_to_rows

# Initialize a workbook 
wb = Workbook()

# Get the worksheet in the active workbook
ws = wb.active

# Append the rows of the DataFrame to your worksheet
for r in dataframe_to_rows(df, index=True, header=True):
    ws.append(r)

Но это точно не все! Библиотека openpyxl предлагает вам высокую гибкость при записи ваших данных обратно в файлы Excel, изменении стилей ячеек или использовании режима write-only. Эту библиотеку обязательно нужно знать, когда вы часто работаете с электронными таблицами ,

Совет: читайте больше о том, как вы можете изменить стили ячеек, перейти в режим write-only или как библиотека работает с NumPy здесь.

Теперь давайте также рассмотрим некоторые другие библиотеки, которые вы можете использовать для получения данных вашей электронной таблицы в Python.

Прежде чем закрыть этот раздел, не забудьте отключить виртуальную среду, когда закончите!

Чтение и форматирование Excel-файлов: xlrd

Эта библиотека идеально подходит для чтения и форматирования данных из Excel с расширением xls или xlsx.

# Import `xlrd`
import xlrd

# Open a workbook 
workbook = xlrd.open_workbook('example.xls')

# Loads only current sheets to memory
workbook = xlrd.open_workbook('example.xls', on_demand = True)

Когда вам не нужны данные из всей Excel-книги, вы можете использовать функции sheet_by_name() или sheet_by_index() для получения листов, которые вы хотите получить в своём анализе

# Load a specific sheet by name
worksheet = workbook.sheet_by_name('Sheet1')

# Load a specific sheet by index 
worksheet = workbook.sheet_by_index(0)

# Retrieve the value from cell at indices (0,0) 
sheet.cell(0, 0).value

Также можно получить значение в определённых ячейках с вашего листа.

Перейдите к xlwt и xlutils, чтобы узнать больше о том, как они относятся к библиотеке xlrd.

Запись данных в Excel-файлы с xlwt

Если вы хотите создать таблицу со своими данными, вы можете использовать не только библиотеку XlsWriter, но и xlwt. xlwt идеально подходит для записи данных и форматирования информации в файлах с расширением .xls

Когда вы вручную создаёте файл:

# Import `xlwt` 
import xlwt

# Initialize a workbook 
book = xlwt.Workbook(encoding="utf-8")

# Add a sheet to the workbook 
sheet1 = book.add_sheet("Python Sheet 1") 

# Write to the sheet of the workbook 
sheet1.write(0, 0, "This is the First Cell of the First Sheet") 

# Save the workbook 
book.save("spreadsheet.xls")

Если вы хотите записать данные в файл, но не хотите делать все самостоятельно, вы всегда можете прибегнуть к циклу for, чтобы автоматизировать весь процесс. Составьте сценарий, в котором вы создаёте книгу и в которую добавляете лист. Укажите список со столбцами и один со значениями, которые будут заполнены на листе.

Далее у вас есть цикл for, который гарантирует, что все значения попадают в файл: вы говорите, что для каждого элемента в диапазоне от 0 до 4 (5 не включительно) вы собираетесь что-то делать. Вы будете заполнять значения построчно. Для этого вы указываете элемент строки, который появляется в каждом цикле. Далее у вас есть еще один цикл for, который будет проходить по столбцам вашего листа. Вы говорите, что для каждой строки на листе, вы будете смотреть на столбцы, которые идут с ним, и вы будете заполнять значение для каждого столбца в строке. Заполнив все столбцы строки значениями, вы перейдете к следующей строке, пока не останется строк.

# Initialize a workbook
book = xlwt.Workbook()

# Add a sheet to the workbook
sheet1 = book.add_sheet("Sheet1")

# The data
cols = ["A", "B", "C", "D", "E"]
txt = [0,1,2,3,4]

# Loop over the rows and columns and fill in the values
for num in range(5):
      row = sheet1.row(num)
      for index, col in enumerate(cols):
          value = txt[index] + num
          row.write(index, value)

# Save the result
book.save("test.xls")

На скриншоте ниже представлен результат выполнения этого кода:

Теперь, когда вы увидели, как xlrd и xlwt работают друг с другом, пришло время взглянуть на библиотеку, которая тесно связана с этими двумя: xlutils.

Сборник утилит: xlutils

Эта библиотека — сборник утилит, для которого требуются и xlrd и xlwt, и которая может копировать, изменять и фильтровать существующие данные. О том, как пользоваться этими командами рассказано в разделе по openpyxl.

Вернитесь в раздел openpyxl, чтобы получить больше информации о том, как использовать этот пакет для получения данных в Python.

Использование pyexcel для чтения .xls или .xlsx файлов

Еще одна библиотека, которую можно использовать для чтения данных электронных таблиц в Python — это pyexcel; Python Wrapper, который предоставляет один API для чтения, записи и работы с данными в файлах .csv, .ods, .xls, .xlsx и .xlsm. Конечно, для этого урока вы просто сосредоточитесь на файлах .xls и .xls.

Чтобы получить ваши данные в массиве, вы можете использовать функцию get_array(), которая содержится в пакете pyexcel:

# Import `pyexcel`
import pyexcel

# Get an array from the data
my_array = pyexcel.get_array(file_name="test.xls")

Вы также можете получить свои данные в упорядоченном словаре списков. Вы можете использовать функцию get_dict():

# Import `OrderedDict` module 
from pyexcel._compact import OrderedDict

# Get your data in an ordered dictionary of lists
my_dict = pyexcel.get_dict(file_name="test.xls", name_columns_by_row=0)

# Get your data in a dictionary of 2D arrays
book_dict = pyexcel.get_book_dict(file_name="test.xls")

Здесь видно, что если вы хотите получить словарь двумерных массивов или получить все листы рабочей книги в одном словаре, вы можете прибегнуть к get_book_dict().

Помните, что эти две структуры данных, которые были упомянуты выше, массивы и словари вашей таблицы, позволяют вам создавать DataFrames ваших данных с помощью pd.DataFrame(). Это облегчит обработку данных.

Кроме того, вы можете просто получить записи из таблицы с помощью pyexcel благодаря функции get_records(). Просто передайте аргумент file_name в функцию, и вы получите список словарей:

# Retrieve the records of the file
records = pyexcel.get_records(file_name="test.xls")

Чтобы узнать, как управлять списками Python, ознакомьтесь с примерами из документации о списках Python.

Запись в файл с pyexcel

С помощью этой библиотеки можно не только загружать данные в массивы, вы также можете экспортировать свои массивы обратно в таблицу. Используйте функцию save_as() и передайте массив и имя файла назначения в аргумент dest_file_name:

# Get the data
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

# Save the array to a file
pyexcel.save_as(array=data, dest_file_name="array_data.xls")

Обратите внимание, что если вы хотите указать разделитель, вы можете добавить аргумент dest_delimiter и передать символ, который вы хотите использовать в качестве разделителя между «».

Однако если у вас есть словарь, вам нужно использовать функцию save_book_as(). Передайте двумерный словарь в bookdict и укажите имя файла:

# The data
2d_array_dictionary = {'Sheet 1': [
                                   ['ID', 'AGE', 'SCORE']
                                   [1, 22, 5],
                                   [2, 15, 6],
                                   [3, 28, 9]
                                  ],
                       'Sheet 2': [
                                    ['X', 'Y', 'Z'],
                                    [1, 2, 3],
                                    [4, 5, 6]
                                    [7, 8, 9]
                                  ],
                       'Sheet 3': [
                                    ['M', 'N', 'O', 'P'],
                                    [10, 11, 12, 13],
                                    [14, 15, 16, 17]
                                    [18, 19, 20, 21]
                                   ]}

# Save the data to a file                        
pyexcel.save_book_as(bookdict=2d_array_dictionary, dest_file_name="2d_array_data.xls")

При использовании кода, напечатанного в приведенном выше примере, важно помнить, что порядок ваших данных в словаре не будет сохранен. Если вы не хотите этого, вам нужно сделать небольшой обход. Вы можете прочитать все об этом здесь.

Чтение и запись .csv файлов

Если вы все еще ищете библиотеки, которые позволяют загружать и записывать данные в файлы .csv, кроме Pandas, лучше всего использовать пакет csv:

# import `csv`
import csv

# Read in csv file 
for row in csv.reader(open('data.csv'), delimiter=','):
      print(row)
      
# Write csv file
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
outfile = open('data.csv', 'w')
writer = csv.writer(outfile, delimiter=';', quotechar='"')
writer.writerows(data)
outfile.close()

Обратите внимание, что в пакете NumPy есть функция genfromtxt(), которая позволяет загружать данные, содержащиеся в файлах .csv, в массивы, которые затем можно поместить в DataFrames.

Финальная проверка данных

Когда у вас есть данные, не забудьте последний шаг: проверить, правильно ли загружены данные. Если вы поместили свои данные в DataFrame, вы можете легко и быстро проверить, был ли импорт успешным, выполнив следующие команды:

# Check the first entries of the DataFrame
df1.head()

# Check the last entries of the DataFrame
df1.tail()

Если у вас есть данные в массиве, вы можете проверить их, используя следующие атрибуты массива: shape, ndim, dtype и т.д .:

# Inspect the shape 
data.shape

# Inspect the number of dimensions
data.ndim

# Inspect the data type
data.dtype

Что дальше?

Поздравляем! Вы успешно прошли наш урок и научились читать файлы Excel на Python.

Если вы хотите продолжить работу над этой темой, попробуйте воспользоваться PyXll, который позволяет писать функции в Python и вызывать их в Excel.

Время на прочтение
7 мин

Количество просмотров 172K

Если Вы только начинаете свой путь знакомства с возможностями Python, ваши познания еще имеют начальный уровень — этот материал для Вас. В статье мы опишем, как можно извлекать информацию из данных, представленных в Excel файлах, работать с ними используя базовый функционал библиотек. В первой части статьи мы расскажем про установку необходимых библиотек и настройку среды. Во второй части — предоставим обзор библиотек, которые могут быть использованы для загрузки и записи таблиц в файлы с помощью Python и расскажем как работать с такими библиотеками как pandas, openpyxl, xlrd, xlutils, pyexcel.

В какой-то момент вы неизбежно столкнетесь с необходимостью работы с данными Excel, и нет гарантии, что работа с таким форматами хранения данных доставит вам удовольствие. Поэтому разработчики Python реализовали удобный способ читать, редактировать и производить иные манипуляции не только с файлами Excel, но и с файлами других типов.

Отправная точка — наличие данных

ПЕРЕВОД
Оригинал статьи — www.datacamp.com/community/tutorials/python-excel-tutorial
Автор — Karlijn Willems

Когда вы начинаете проект по анализу данных, вы часто сталкиваетесь со статистикой собранной, возможно, при помощи счетчиков, возможно, при помощи выгрузок данных из систем типа Kaggle, Quandl и т. д. Но большая часть данных все-таки находится в Google или репозиториях, которыми поделились другие пользователи. Эти данные могут быть в формате Excel или в файле с .csv расширением.

Данные есть, данных много. Анализируй — не хочу. С чего начать? Первый шаг в анализе данных — их верификация. Иными словами — необходимо убедиться в качестве входящих данных.
В случае, если данные хранятся в таблице, необходимо не только подтвердить качество данных (нужно быть уверенным, что данные таблицы ответят на поставленный для исследования вопрос), но и оценить, можно ли доверять этим данным.

Проверка качества таблицы

Чтобы проверить качество таблицы, обычно используют простой чек-лист. Отвечают ли данные в таблице следующим условиям:

  • данные являются статистикой;
  • различные типы данных: время, вычисления, результат;
  • данные полные и консистентные: структура данных в таблице — систематическая, а присутствующие формулы — работающие.

Ответы на эти простые вопросы позволят понять, не противоречит ли ваша таблица стандарту. Конечно, приведенный чек-лист не является исчерпывающим: существует много правил, на соответствие которым вы можете проверять данные в таблице, чтобы убедиться, что таблица не является “гадким утенком”. Однако, приведенный выше чек-лист наиболее актуален, если вы хотите убедиться, что таблица содержит качественные данные.

Бест-практикс табличных данных

Читать данные таблицы при помощи Python — это хорошо. Но данные хочется еще и редактировать. Причем редактирование данных в таблице, должно соответствовать следующим условиям:

  • первая строка таблицы зарезервирована для заголовка, а первый столбец используется для идентификации единицы выборки;
  • избегайте имен, значений или полей с пробелами. В противном случае, каждое слово будет интерпретироваться как отдельная переменная, что приведет к ошибкам, связанным с количеством элементов в строке в наборе данных. Лучше использовать подчеркивания, регистр (первая буква каждого раздела текста — заглавная) или соединительные слова;
  • отдавайте предпочтение коротким названиям;
  • старайтесь избегать использования названий, которые содержат символы ?, $,%, ^, &, *, (,),-,#, ?,,,<,>, /, |, , [ ,] ,{, и };
  • удаляйте любые комментарии, которые вы сделали в файле, чтобы избежать дополнительных столбцов или полей со значением NA;
  • убедитесь, что любые недостающие значения в наборе данных отображаются как NA.

После внесения необходимых изменений (или когда вы внимательно просмотрите свои данные), убедитесь, что внесенные изменения сохранены. Это важно, потому что позволит еще раз взглянуть на данные, при необходимости отредактировать, дополнить или внести изменения, сохраняя формулы, которые, возможно, использовались для расчета.

Если вы работаете с Microsoft Excel, вы наверняка знаете, что есть большое количество вариантов сохранения файла помимо используемых по умолчанию расширения: .xls или .xlsx (переходим на вкладку “файл”, “сохранить как” и выбираем другое расширение (наиболее часто используемые расширения для сохранения данных с целью анализа — .CSV и.ТХТ)). В зависимости от варианта сохранения поля данных будут разделены знаками табуляции или запятыми, которые составляют поле “разделитель”. Итак, данные проверены и сохранены. Начинаем готовить рабочее пространство.

Подготовка рабочего пространства

Подготовка рабочего пространства — одна из первых вещей, которую надо сделать, чтобы быть уверенным в качественном результате анализа.

Первый шаг — проверка рабочей директории.

Когда вы работаете в терминале, вы можете сначала перейти к директории, в которой находится ваш файл, а затем запустить Python. В таком случае необходимо убедиться, что файл находится в директории, из которой вы хотите работать.

Для проверки дайте следующие команды:

# Import `os` 
import os

# Retrieve current working directory (`cwd`)
cwd = os.getcwd()
cwd

# Change directory 
os.chdir("/path/to/your/folder")

# List all files and directories in current directory
os.listdir('.')

Эти команды важны не только для загрузки данных, но и для дальнейшего анализа. Итак, вы прошли все проверки, вы сохранили данные и подготовили рабочее пространство. Уже можно начать чтение данных в Python? :) К сожалению пока нет. Нужно сделать еще одну последнюю вещь.

Установка пакетов для чтения и записи Excel файлов

Несмотря на то, что вы еще не знаете, какие библиотеки будут нужны для импорта данных, нужно убедиться, что у все готово для установки этих библиотек. Если у вас установлен Python 2> = 2.7.9 или Python 3> = 3.4, нет повода для беспокойства — обычно, в этих версиях уже все подготовлено. Поэтому просто убедитесь, что вы обновились до последней версии :)

Для этого запустите в своем компьютере следующую команду:

# For Linux/OS X
pip install -U pip setuptools

# For Windows
python -m pip install -U pip setuptools

В случае, если вы еще не установили pip, запустите скрипт python get-pip.py, который вы можете найти здесь (там же есть инструкции по установке и help).

Установка Anaconda

Установка дистрибутива Anaconda Python — альтернативный вариант, если вы используете Python для анализа данных. Это простой и быстрый способ начать работу с анализом данных — ведь отдельно устанавливать пакеты, необходимые для data science не придется.

Это особенно удобно для новичков, однако даже опытные разработчики часто идут этим путем, ведь Anakonda — удобный способ быстро протестировать некоторые вещи без необходимости устанавливать каждый пакет отдельно.

Anaconda включает в себя 100 наиболее популярных библиотек Python, R и Scala для анализа данных в нескольких средах разработки с открытым исходным кодом, таких как Jupyter и Spyder. Если вы хотите начать работу с Jupyter Notebook, то вам сюда.

Чтобы установить Anaconda — вам сюда.

Загрузка файлов Excel как Pandas DataFrame

Ну что ж, мы сделали все, чтобы настроить среду! Теперь самое время начать импорт файлов.

Один из способов, которым вы будете часто пользоваться для импорта файлов с целью анализа данных — импорт с помощью библиотеки Pandas (Pandas — программная библиотека на языке Python для обработки и анализа данных). Работа Pandas с данными происходит поверх библиотеки NumPy, являющейся инструментом более низкого уровня. Pandas — мощная и гибкая библиотека и она очень часто используется для структуризации данных в целях облегчения анализа.

Если у вас уже есть Pandas в Anaconda, вы можете просто загрузить файлы в Pandas DataFrames с помощью pd.Excelfile ():

# Import pandas
import pandas as pd

# Assign spreadsheet filename to `file`
file = 'example.xlsx'

# Load spreadsheet
xl = pd.ExcelFile(file)

# Print the sheet names
print(xl.sheet_names)

# Load a sheet into a DataFrame by name: df1
df1 = xl.parse('Sheet1')

Если вы не установили Anaconda, просто запустите pip install pandas, чтобы установить пакет Pandas в вашей среде, а затем выполните команды, приведенные выше.

Для чтения .csv-файлов есть аналогичная функция загрузки данных в DataFrame: read_csv (). Вот пример того, как вы можете использовать эту функцию:

# Import pandas
import pandas as pd

# Load csv
df = pd.read_csv("example.csv") 

Разделителем, который эта функция будет учитывать, является по умолчанию запятая, но вы можете, если хотите, указать альтернативный разделитель. Перейдите к документации, если хотите узнать, какие другие аргументы можно указать, чтобы произвести импорт.

Как записывать Pandas DataFrame в Excel файл

Предположим, после анализа данных вы хотите записать данные в новый файл. Существует способ записать данные Pandas DataFrames (с помощью функции to_excel ). Но, прежде чем использовать эту функцию, убедитесь, что у вас установлен XlsxWriter, если вы хотите записать свои данные на несколько листов в файле .xlsx:

# Install `XlsxWriter` 
pip install XlsxWriter

# Specify a writer
writer = pd.ExcelWriter('example.xlsx', engine='xlsxwriter')

# Write your DataFrame to a file     
yourData.to_excel(writer, 'Sheet1')

# Save the result 
writer.save()

Обратите внимание, что в фрагменте кода используется объект ExcelWriter для вывода DataFrame. Иными словами, вы передаете переменную writer в функцию to_excel (), и указываете имя листа. Таким образом, вы добавляете лист с данными в существующую книгу. Также можно использовать ExcelWriter для сохранения нескольких разных DataFrames в одной книге.

То есть если вы просто хотите сохранить один файл DataFrame в файл, вы можете обойтись без установки библиотеки XlsxWriter. Просто не указываете аргумент, который передается функции pd.ExcelWriter (), остальные шаги остаются неизменными.

Подобно функциям, которые используются для чтения в .csv-файлах, есть также функция to_csv () для записи результатов обратно в файл с разделителями-запятыми. Он работает так же, как когда мы использовали ее для чтения в файле:

# Write the DataFrame to csv
df.to_csv("example.csv")

Если вы хотите иметь отдельный файл с вкладкой, вы можете передать a t аргументу sep. Обратите внимание, что существуют различные другие функции, которые можно использовать для вывода файлов. Их можно найти здесь.

Использование виртуальной среды

Общий совет по установке библиотек — делать установку в виртуальной среде Python без системных библиотек. Вы можете использовать virtualenv для создания изолированных сред Python: он создает папку, содержащую все необходимое для использования библиотек, которые потребуются для Python.

Чтобы начать работу с virtualenv, сначала нужно его установить. Потом перейти в директорию, где будет находится проект. Создать virtualenv в этой папке и загрузить, если нужно, в определенную версию Python. После этого активируете виртуальную среду. Теперь можно начинать загрузку других библиотек и начинать работать с ними.

Не забудьте отключить среду, когда вы закончите!

# Install virtualenv
$ pip install virtualenv

# Go to the folder of your project
$ cd my_folder

# Create a virtual environment `venv`
$ virtualenv venv

# Indicate the Python interpreter to use for `venv`
$ virtualenv -p /usr/bin/python2.7 venv

# Activate `venv`
$ source venv/bin/activate

# Deactivate `venv`
$ deactivate

Обратите внимание, что виртуальная среда может показаться сначала проблематичной, если вы делаете первые шаги в области анализа данных с помощью Python. И особенно, если у вас только один проект, вы можете не понимать, зачем вообще нужна виртуальная среда.

Но что делать, если у вас несколько проектов, работающих одновременно, и вы не хотите, чтобы они использовали одну и ту же установку Python? Или если у ваших проектов есть противоречивые требования. В таких случаях виртуальная среда — идеальное решение.

Во второй части статьи мы расскажем об основных библиотеках для анализа данных.
Продолжение следует…

pyexcel — Let you focus on data, instead of file formats

https://raw.githubusercontent.com/pyexcel/pyexcel.github.io/master/images/patreon.png

https://pepy.tech/badge/pyexcel/month

https://img.shields.io/static/v1?label=continuous%20templating&message=%E6%A8%A1%E7%89%88%E6%9B%B4%E6%96%B0&color=blue&style=flat-square
https://img.shields.io/static/v1?label=coding%20style&message=black&color=black&style=flat-square
https://readthedocs.org/projects/pyexcel/badge/?version=latest

Support the project

If your company has embedded pyexcel and its components into a revenue generating
product, please support me on github, patreon
or bounty source to maintain
the project and develop it further.

If you are an individual, you are welcome to support me too and for however long
you feel like. As my backer, you will receive
early access to pyexcel related contents.

And your issues will get prioritized if you would like to become my patreon as pyexcel pro user.

With your financial support, I will be able to invest
a little bit more time in coding, documentation and writing interesting posts.

Known constraints

Fonts, colors and charts are not supported.

Nor to read password protected xls, xlsx and ods files.

Introduction

Feature Highlights

A list of supported file formats

file format definition
csv comma separated values
tsv tab separated values
csvz a zip file that contains one or many csv files
tsvz a zip file that contains one or many tsv files
xls a spreadsheet file format created by
MS-Excel 97-2003
xlsx MS-Excel Extensions to the Office Open XML
SpreadsheetML File Format.
xlsm an MS-Excel Macro-Enabled Workbook file
ods open document spreadsheet
fods flat open document spreadsheet
json java script object notation
html html table of the data structure
simple simple presentation
rst rStructured Text presentation of the data
mediawiki media wiki table

  1. One application programming interface(API) to handle multiple data sources:
    • physical file
    • memory file
    • SQLAlchemy table
    • Django Model
    • Python data structures: dictionary, records and array
  2. One API to read and write data in various excel file formats.
  3. For large data sets, data streaming are supported. A genenerator can be returned to you. Checkout iget_records, iget_array, isave_as and isave_book_as.

Installation

You can install pyexcel via pip:

or clone it and install it:

$ git clone https://github.com/pyexcel/pyexcel.git
$ cd pyexcel
$ python setup.py install

One liners

This section shows you how to get data from your excel files and how to
export data to excel files in one line

Read from the excel files

Get a list of dictionaries

Suppose you want to process History of Classical Music:

History of Classical Music:

Name Period Representative Composers
Medieval c.1150-c.1400 Machaut, Landini
Renaissance c.1400-c.1600 Gibbons, Frescobaldi
Baroque c.1600-c.1750 JS Bach, Vivaldi
Classical c.1750-c.1830 Joseph Haydn, Wolfgan Amadeus Mozart
Early Romantic c.1830-c.1860 Chopin, Mendelssohn, Schumann, Liszt
Late Romantic c.1860-c.1920 Wagner,Verdi
Modernist 20th century Sergei Rachmaninoff,Calude Debussy

Let’s get a list of dictionary out from the xls file:

>>> records = p.get_records(file_name="your_file.xls")

And let’s check what do we have:

>>> for row in records:
...     print(f"{row['Representative Composers']} are from {row['Name']} period ({row['Period']})")
Machaut, Landini are from Medieval period (c.1150-c.1400)
Gibbons, Frescobaldi are from Renaissance period (c.1400-c.1600)
JS Bach, Vivaldi are from Baroque period (c.1600-c.1750)
Joseph Haydn, Wolfgan Amadeus Mozart are from Classical period (c.1750-c.1830)
Chopin, Mendelssohn, Schumann, Liszt are from Early Romantic period (c.1830-c.1860)
Wagner,Verdi are from Late Romantic period (c.1860-c.1920)
Sergei Rachmaninoff,Calude Debussy are from Modernist period (20th century)

Get two dimensional array

Instead, what if you have to use pyexcel.get_array to do the same:

>>> for row in p.get_array(file_name="your_file.xls", start_row=1):
...     print(f"{row[2]} are from {row[0]} period ({row[1]})")
Machaut, Landini are from Medieval period (c.1150-c.1400)
Gibbons, Frescobaldi are from Renaissance period (c.1400-c.1600)
JS Bach, Vivaldi are from Baroque period (c.1600-c.1750)
Joseph Haydn, Wolfgan Amadeus Mozart are from Classical period (c.1750-c.1830)
Chopin, Mendelssohn, Schumann, Liszt are from Early Romantic period (c.1830-c.1860)
Wagner,Verdi are from Late Romantic period (c.1860-c.1920)
Sergei Rachmaninoff,Calude Debussy are from Modernist period (20th century)

where start_row skips the header row.

Get a dictionary

You can get a dictionary too:

>>> my_dict = p.get_dict(file_name="your_file.xls", name_columns_by_row=0)

And let’s have a look inside:

>>> from pyexcel._compact import OrderedDict
>>> isinstance(my_dict, OrderedDict)
True
>>> for key, values in my_dict.items():
...     print(key + " : " + ','.join([str(item) for item in values]))
Name : Medieval,Renaissance,Baroque,Classical,Early Romantic,Late Romantic,Modernist
Period : c.1150-c.1400,c.1400-c.1600,c.1600-c.1750,c.1750-c.1830,c.1830-c.1860,c.1860-c.1920,20th century
Representative Composers : Machaut, Landini,Gibbons, Frescobaldi,JS Bach, Vivaldi,Joseph Haydn, Wolfgan Amadeus Mozart,Chopin, Mendelssohn, Schumann, Liszt,Wagner,Verdi,Sergei Rachmaninoff,Calude Debussy

Please note that my_dict is an OrderedDict.

Get a dictionary of two dimensional array

Suppose you have a multiple sheet book as the following:

Top Violinist:

Name Period Nationality
Antonio Vivaldi 1678-1741 Italian
Niccolo Paganini 1782-1840 Italian
Pablo de Sarasate 1852-1904 Spainish
Eugene Ysaye 1858-1931 Belgian
Fritz Kreisler 1875-1962 Astria-American
Jascha Heifetz 1901-1987 Russian-American
David Oistrakh 1908-1974 Russian
Yehundi Menuhin 1916-1999 American
Itzhak Perlman 1945- Israeli-American
Hilary Hahn 1979- American

Noteable Violin Makers:

Maker Period Country
Antonio Stradivari 1644-1737 Cremona, Italy
Giovanni Paolo Maggini 1580-1630 Botticino, Italy
Amati Family 1500-1740 Cremona, Italy
Guarneri Family 1626-1744 Cremona, Italy
Rugeri Family 1628-1719 Cremona, Italy
Carlo Bergonzi 1683-1747 Cremona, Italy
Jacob Stainer 1617-1683 Austria

Most Expensive Violins:

Name Estimated Value Location
Messiah Stradivarious $ 20,000,000 Ashmolean Museum in Oxford, England
Vieuxtemps Guarneri $ 16,000,000 On loan to Anne Akiko Meyers
Lady Blunt $ 15,900,000 Anonymous bidder

Here is the code to obtain those sheets as a single dictionary:

>>> book_dict = p.get_book_dict(file_name="book.xls")

And check:

>>> isinstance(book_dict, OrderedDict)
True
>>> import json
>>> for key, item in book_dict.items():
...     print(json.dumps({key: item}))
{"Most Expensive Violins": [["Name", "Estimated Value", "Location"], ["Messiah Stradivarious", "$ 20,000,000", "Ashmolean Museum in Oxford, England"], ["Vieuxtemps Guarneri", "$ 16,000,000", "On loan to Anne Akiko Meyers"], ["Lady Blunt", "$ 15,900,000", "Anonymous bidder"]]}
{"Noteable Violin Makers": [["Maker", "Period", "Country"], ["Antonio Stradivari", "1644-1737", "Cremona, Italy"], ["Giovanni Paolo Maggini", "1580-1630", "Botticino, Italy"], ["Amati Family", "1500-1740", "Cremona, Italy"], ["Guarneri Family", "1626-1744", "Cremona, Italy"], ["Rugeri Family", "1628-1719", "Cremona, Italy"], ["Carlo Bergonzi", "1683-1747", "Cremona, Italy"], ["Jacob Stainer", "1617-1683", "Austria"]]}
{"Top Violinist": [["Name", "Period", "Nationality"], ["Antonio Vivaldi", "1678-1741", "Italian"], ["Niccolo Paganini", "1782-1840", "Italian"], ["Pablo de Sarasate", "1852-1904", "Spainish"], ["Eugene Ysaye", "1858-1931", "Belgian"], ["Fritz Kreisler", "1875-1962", "Astria-American"], ["Jascha Heifetz", "1901-1987", "Russian-American"], ["David Oistrakh", "1908-1974", "Russian"], ["Yehundi Menuhin", "1916-1999", "American"], ["Itzhak Perlman", "1945-", "Israeli-American"], ["Hilary Hahn", "1979-", "American"]]}

Write data

Export an array

Suppose you have the following array:

>>> data = [['G', 'D', 'A', 'E'], ['Thomastik-Infield Domaints', 'Thomastik-Infield Domaints', 'Thomastik-Infield Domaints', 'Pirastro'], ['Silver wound', '', 'Aluminum wound', 'Gold Label Steel']]

And here is the code to save it as an excel file :

>>> p.save_as(array=data, dest_file_name="example.xls")

Let’s verify it:

>>> p.get_sheet(file_name="example.xls")
pyexcel_sheet1:
+----------------------------+----------------------------+----------------------------+------------------+
| G                          | D                          | A                          | E                |
+----------------------------+----------------------------+----------------------------+------------------+
| Thomastik-Infield Domaints | Thomastik-Infield Domaints | Thomastik-Infield Domaints | Pirastro         |
+----------------------------+----------------------------+----------------------------+------------------+
| Silver wound               |                            | Aluminum wound             | Gold Label Steel |
+----------------------------+----------------------------+----------------------------+------------------+

And here is the code to save it as a csv file :

>>> p.save_as(array=data,
...           dest_file_name="example.csv",
...           dest_delimiter=':')

Let’s verify it:

>>> with open("example.csv") as f:
...     for line in f.readlines():
...         print(line.rstrip())
...
G:D:A:E
Thomastik-Infield Domaints:Thomastik-Infield Domaints:Thomastik-Infield Domaints:Pirastro
Silver wound::Aluminum wound:Gold Label Steel

Export a list of dictionaries

>>> records = [
...     {"year": 1903, "country": "Germany", "speed": "206.7km/h"},
...     {"year": 1964, "country": "Japan", "speed": "210km/h"},
...     {"year": 2008, "country": "China", "speed": "350km/h"}
... ]
>>> p.save_as(records=records, dest_file_name='high_speed_rail.xls')

Export a dictionary of single key value pair

>>> henley_on_thames_facts = {
...     "area": "5.58 square meters",
...     "population": "11,619",
...     "civial parish": "Henley-on-Thames",
...     "latitude": "51.536",
...     "longitude": "-0.898"
... }
>>> p.save_as(adict=henley_on_thames_facts, dest_file_name='henley.xlsx')

Export a dictionary of single dimensonal array

>>> ccs_insights = {
...     "year": ["2017", "2018", "2019", "2020", "2021"],
...     "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90],
...     "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]
... }
>>> p.save_as(adict=ccs_insights, dest_file_name='ccs.csv')

Export a dictionary of two dimensional array as a book

Suppose you want to save the below dictionary to an excel file :

>>> a_dictionary_of_two_dimensional_arrays = {
...      'Sheet 1':
...          [
...              [1.0, 2.0, 3.0],
...              [4.0, 5.0, 6.0],
...              [7.0, 8.0, 9.0]
...          ],
...      'Sheet 2':
...          [
...              ['X', 'Y', 'Z'],
...              [1.0, 2.0, 3.0],
...              [4.0, 5.0, 6.0]
...          ],
...      'Sheet 3':
...          [
...              ['O', 'P', 'Q'],
...              [3.0, 2.0, 1.0],
...              [4.0, 3.0, 2.0]
...          ]
...  }

Here is the code:

>>> p.save_book_as(
...    bookdict=a_dictionary_of_two_dimensional_arrays,
...    dest_file_name="book.xls"
... )

If you want to preserve the order of sheets in your dictionary, you have to
pass on an ordered dictionary to the function itself. For example:

>>> data = OrderedDict()
>>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']})
>>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']})
>>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']})
>>> p.save_book_as(bookdict=data, dest_file_name="book.xls")

Let’s verify its order:

>>> book_dict = p.get_book_dict(file_name="book.xls")
>>> for key, item in book_dict.items():
...     print(json.dumps({key: item}))
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

Please notice that «Sheet 2» is the first item in the book_dict, meaning the order of sheets are preserved.

Transcoding

Note

Please note that pyexcel-cli can perform file transcoding at command line.
No need to open your editor, save the problem, then python run.

The following code does a simple file format transcoding from xls to csv:

>>> p.save_as(file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.csv")
>>> sheet
birth.csv:
+-------+--------+----------+
| name  | weight | birth    |
+-------+--------+----------+
| Adam  | 3.4    | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2    | 12/11/14 |
+-------+--------+----------+

Note

Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding job.

Let use previous example and save it as xlsx instead

>>> p.save_as(file_name="birth.xls",
...           dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.xlsx")
>>> sheet
pyexcel_sheet1:
+-------+--------+----------+
| name  | weight | birth    |
+-------+--------+----------+
| Adam  | 3.4    | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2    | 12/11/14 |
+-------+--------+----------+

Excel book merge and split operation in one line

Merge all excel files in directory into a book where each file become a sheet

The following code will merge every excel files into one file, say «output.xls»:

from pyexcel.cookbook import merge_all_to_a_book
import glob


merge_all_to_a_book(glob.glob("your_csv_directory*.csv"), "output.xls")

You can mix and match with other excel formats: xls, xlsm and ods. For example, if you are sure you have only xls, xlsm, xlsx, ods and csv files in your_excel_file_directory, you can do the following:

from pyexcel.cookbook import merge_all_to_a_book
import glob


merge_all_to_a_book(glob.glob("your_excel_file_directory*.*"), "output.xls")

Split a book into single sheet files

Suppose you have many sheets in a work book and you would like to separate each into a single sheet excel file. You can easily do this:

>>> from pyexcel.cookbook import split_a_book
>>> split_a_book("megabook.xls", "output.xls")
>>> import glob
>>> outputfiles = glob.glob("*_output.xls")
>>> for file in sorted(outputfiles):
...     print(file)
...
Sheet 1_output.xls
Sheet 2_output.xls
Sheet 3_output.xls

for the output file, you can specify any of the supported formats

Extract just one sheet from a book

Suppose you just want to extract one sheet from many sheets that exists in a work book and you would like to separate it into a single sheet excel file. You can easily do this:

>>> from pyexcel.cookbook import extract_a_sheet_from_a_book
>>> extract_a_sheet_from_a_book("megabook.xls", "Sheet 1", "output.xls")
>>> if os.path.exists("Sheet 1_output.xls"):
...     print("Sheet 1_output.xls exists")
...
Sheet 1_output.xls exists

for the output file, you can specify any of the supported formats

Hidden feature: partial read

Most pyexcel users do not know, but other library users were requesting partial read

When you are dealing with huge amount of data, e.g. 64GB, obviously you would not
like to fill up your memory with those data. What you may want to do is, record
data from Nth line, take M records and stop. And you only want to use your memory
for the M records, not for beginning part nor for the tail part.

Hence partial read feature is developed to read partial data into memory for
processing.

You can paginate by row, by column and by both, hence you dictate what portion of the
data to read back. But remember only row limit features help you save memory. Let’s
you use this feature to record data from Nth column, take M number of columns and skip
the rest. You are not going to reduce your memory footprint.

Why did not I see above benefit?

This feature depends heavily on the implementation details.

pyexcel-xls (xlrd), pyexcel-xlsx (openpyxl), pyexcel-ods (odfpy) and
pyexcel-ods3 (pyexcel-ezodf) will read all data into memory. Because xls,
xlsx and ods file are effective a zipped folder, all four will unzip the folder
and read the content in xml format in full, so as to make sense of all details.

Hence, during the partial data is been returned, the memory consumption won’t
differ from reading the whole data back. Only after the partial
data is returned, the memory comsumption curve shall jump the cliff. So pagination
code here only limits the data returned to your program.

With that said, pyexcel-xlsxr, pyexcel-odsr and pyexcel-htmlr DOES read
partial data into memory. Those three are implemented in such a way that they
consume the xml(html) when needed. When they have read designated portion of the
data, they stop, even if they are half way through.

In addition, pyexcel’s csv readers can read partial data into memory too.

Let’s assume the following file is a huge csv file:

>>> import datetime
>>> import pyexcel as pe
>>> data = [
...     [1, 21, 31],
...     [2, 22, 32],
...     [3, 23, 33],
...     [4, 24, 34],
...     [5, 25, 35],
...     [6, 26, 36]
... ]
>>> pe.save_as(array=data, dest_file_name="your_file.csv")

And let’s pretend to read partial data:

>>> pe.get_sheet(file_name="your_file.csv", start_row=2, row_limit=3)
your_file.csv:
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+

And you could as well do the same for columns:

>>> pe.get_sheet(file_name="your_file.csv", start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 21 | 31 |
+----+----+
| 22 | 32 |
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+
| 26 | 36 |
+----+----+

Obvious, you could do both at the same time:

>>> pe.get_sheet(file_name="your_file.csv",
...     start_row=2, row_limit=3,
...     start_column=1, column_limit=2)
your_file.csv:
+----+----+
| 23 | 33 |
+----+----+
| 24 | 34 |
+----+----+
| 25 | 35 |
+----+----+

The pagination support is available across all pyexcel plugins.

Note

No column pagination support for query sets as data source.

Formatting while transcoding a big data file

If you are transcoding a big data set, conventional formatting method would not
help unless a on-demand free RAM is available. However, there is a way to minimize
the memory footprint of pyexcel while the formatting is performed.

Let’s continue from previous example. Suppose we want to transcode «your_file.csv»
to «your_file.xls» but increase each element by 1.

What we can do is to define a row renderer function as the following:

>>> def increment_by_one(row):
...     for element in row:
...         yield element + 1

Then pass it onto save_as function using row_renderer:

>>> pe.isave_as(file_name="your_file.csv",
...             row_renderer=increment_by_one,
...             dest_file_name="your_file.xlsx")

Note

If the data content is from a generator, isave_as has to be used.

We can verify if it was done correctly:

>>> pe.get_sheet(file_name="your_file.xlsx")
your_file.csv:
+---+----+----+
| 2 | 22 | 32 |
+---+----+----+
| 3 | 23 | 33 |
+---+----+----+
| 4 | 24 | 34 |
+---+----+----+
| 5 | 25 | 35 |
+---+----+----+
| 6 | 26 | 36 |
+---+----+----+
| 7 | 27 | 37 |
+---+----+----+

Stream APIs for big file : A set of two liners

When you are dealing with BIG excel files, you will want pyexcel to use
constant memory.

This section shows you how to get data from your BIG excel files and how to
export data to excel files in two lines at most, without eating all
your computer memory.

Two liners for get data from big excel files

Get a list of dictionaries

Suppose you want to process the following coffee data again:

Top 5 coffeine drinks:

Coffees Serving Size Caffeine (mg)
Starbucks Coffee Blonde Roast venti(20 oz) 475
Dunkin’ Donuts Coffee with Turbo Shot large(20 oz.) 398
Starbucks Coffee Pike Place Roast grande(16 oz.) 310
Panera Coffee Light Roast regular(16 oz.) 300

Let’s get a list of dictionary out from the xls file:

>>> records = p.iget_records(file_name="your_file.xls")

And let’s check what do we have:

>>> for r in records:
...     print(f"{r['Serving Size']} of {r['Coffees']} has {r['Caffeine (mg)']} mg")
venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg
large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg
grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg
regular(16 oz.) of Panera Coffee Light Roast has 300 mg

Please do not forgot the second line to close the opened file handle:

Get two dimensional array

Instead, what if you have to use pyexcel.get_array to do the same:

>>> for row in p.iget_array(file_name="your_file.xls", start_row=1):
...     print(f"{row[1]} of {row[0]} has {row[2]} mg")
venti(20 oz) of Starbucks Coffee Blonde Roast has 475 mg
large(20 oz.) of Dunkin' Donuts Coffee with Turbo Shot has 398 mg
grande(16 oz.) of Starbucks Coffee Pike Place Roast has 310 mg
regular(16 oz.) of Panera Coffee Light Roast has 300 mg

Again, do not forgot the second line:

where start_row skips the header row.

Data export in one liners

Export an array

Suppose you have the following array:

>>> data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

And here is the code to save it as an excel file :

>>> p.isave_as(array=data, dest_file_name="example.xls")

But the following line is not required because the data source
are not file sources:

Let’s verify it:

>>> p.get_sheet(file_name="example.xls")
pyexcel_sheet1:
+---+---+---+
| 1 | 2 | 3 |
+---+---+---+
| 4 | 5 | 6 |
+---+---+---+
| 7 | 8 | 9 |
+---+---+---+

And here is the code to save it as a csv file :

>>> p.isave_as(array=data,
...            dest_file_name="example.csv",
...            dest_delimiter=':')

Let’s verify it:

>>> with open("example.csv") as f:
...     for line in f.readlines():
...         print(line.rstrip())
...
1:2:3
4:5:6
7:8:9

Export a list of dictionaries

>>> records = [
...     {"year": 1903, "country": "Germany", "speed": "206.7km/h"},
...     {"year": 1964, "country": "Japan", "speed": "210km/h"},
...     {"year": 2008, "country": "China", "speed": "350km/h"}
... ]
>>> p.isave_as(records=records, dest_file_name='high_speed_rail.xls')

Export a dictionary of single key value pair

>>> henley_on_thames_facts = {
...     "area": "5.58 square meters",
...     "population": "11,619",
...     "civial parish": "Henley-on-Thames",
...     "latitude": "51.536",
...     "longitude": "-0.898"
... }
>>> p.isave_as(adict=henley_on_thames_facts, dest_file_name='henley.xlsx')

Export a dictionary of single dimensonal array

>>> ccs_insights = {
...     "year": ["2017", "2018", "2019", "2020", "2021"],
...     "smart phones": [1.53, 1.64, 1.74, 1.82, 1.90],
...     "feature phones": [0.46, 0.38, 0.30, 0.23, 0.17]
... }
>>> p.isave_as(adict=ccs_insights, dest_file_name='ccs.csv')
>>> p.free_resources()

Export a dictionary of two dimensional array as a book

Suppose you want to save the below dictionary to an excel file :

>>> a_dictionary_of_two_dimensional_arrays = {
...      'Sheet 1':
...          [
...              [1.0, 2.0, 3.0],
...              [4.0, 5.0, 6.0],
...              [7.0, 8.0, 9.0]
...          ],
...      'Sheet 2':
...          [
...              ['X', 'Y', 'Z'],
...              [1.0, 2.0, 3.0],
...              [4.0, 5.0, 6.0]
...          ],
...      'Sheet 3':
...          [
...              ['O', 'P', 'Q'],
...              [3.0, 2.0, 1.0],
...              [4.0, 3.0, 2.0]
...          ]
...  }

Here is the code:

>>> p.isave_book_as(
...    bookdict=a_dictionary_of_two_dimensional_arrays,
...    dest_file_name="book.xls"
... )

If you want to preserve the order of sheets in your dictionary, you have to
pass on an ordered dictionary to the function itself. For example:

>>> from pyexcel._compact import OrderedDict
>>> data = OrderedDict()
>>> data.update({"Sheet 2": a_dictionary_of_two_dimensional_arrays['Sheet 2']})
>>> data.update({"Sheet 1": a_dictionary_of_two_dimensional_arrays['Sheet 1']})
>>> data.update({"Sheet 3": a_dictionary_of_two_dimensional_arrays['Sheet 3']})
>>> p.isave_book_as(bookdict=data, dest_file_name="book.xls")
>>> p.free_resources()

Let’s verify its order:

>>> import json
>>> book_dict = p.get_book_dict(file_name="book.xls")
>>> for key, item in book_dict.items():
...     print(json.dumps({key: item}))
{"Sheet 2": [["X", "Y", "Z"], [1, 2, 3], [4, 5, 6]]}
{"Sheet 1": [[1, 2, 3], [4, 5, 6], [7, 8, 9]]}
{"Sheet 3": [["O", "P", "Q"], [3, 2, 1], [4, 3, 2]]}

Please notice that «Sheet 2» is the first item in the book_dict, meaning the order of sheets are preserved.

File format transcoding on one line

Note

Please note that the following file transcoding could be with zero line. Please
install pyexcel-cli and you will do the transcode in one command. No need to
open your editor, save the problem, then python run.

The following code does a simple file format transcoding from xls to csv:

>>> import pyexcel
>>> p.save_as(file_name="birth.xls", dest_file_name="birth.csv")

Again it is really simple. Let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.csv")
>>> sheet
birth.csv:
+-------+--------+----------+
| name  | weight | birth    |
+-------+--------+----------+
| Adam  | 3.4    | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2    | 12/11/14 |
+-------+--------+----------+

Note

Please note that csv(comma separate value) file is pure text file. Formula, charts, images and formatting in xls file will disappear no matter which transcoding tool you use. Hence, pyexcel is a quick alternative for this transcoding job.

Let use previous example and save it as xlsx instead

>>> import pyexcel
>>> p.isave_as(file_name="birth.xls",
...            dest_file_name="birth.xlsx") # change the file extension

Again let’s verify what we have gotten:

>>> sheet = p.get_sheet(file_name="birth.xlsx")
>>> sheet
pyexcel_sheet1:
+-------+--------+----------+
| name  | weight | birth    |
+-------+--------+----------+
| Adam  | 3.4    | 03/02/15 |
+-------+--------+----------+
| Smith | 4.2    | 12/11/14 |
+-------+--------+----------+

Available Plugins


A list of file formats supported by external plugins

Package name Supported file formats Dependencies
pyexcel-io csv, csvz [1], tsv,
tsvz [2]
 
pyexcel-xls xls, xlsx(read only),
xlsm(read only)
xlrd,
xlwt
pyexcel-xlsx xlsx openpyxl
pyexcel-ods3 ods pyexcel-ezodf,
lxml
pyexcel-ods ods odfpy

Dedicated file reader and writers

Package name Supported file formats Dependencies
pyexcel-xlsxw xlsx(write only) XlsxWriter
pyexcel-libxlsxw xlsx(write only) libxlsxwriter
pyexcel-xlsxr xlsx(read only) lxml
pyexcel-xlsbr xlsb(read only) pyxlsb
pyexcel-odsr read only for ods, fods lxml
pyexcel-odsw write only for ods loxun
pyexcel-htmlr html(read only) lxml,html5lib
pyexcel-pdfr pdf(read only) camelot

Plugin shopping guide

Since 2020, all pyexcel-io plugins have dropped the support for python versions
which are lower than 3.6. If you want to use any of those Python versions, please use pyexcel-io
and its plugins versions that are lower than 0.6.0.

Except csv files, xls, xlsx and ods files are a zip of a folder containing a lot of
xml files

The dedicated readers for excel files can stream read

In order to manage the list of plugins installed, you need to use pip to add or remove
a plugin. When you use virtualenv, you can have different plugins per virtual
environment. In the situation where you have multiple plugins that does the same thing
in your environment, you need to tell pyexcel which plugin to use per function call.
For example, pyexcel-ods and pyexcel-odsr, and you want to get_array to use pyexcel-odsr.
You need to append get_array(…, library=’pyexcel-odsr’).

Other data renderers

Package name Supported file formats Dependencies Python versions
pyexcel-text write only:rst,
mediawiki, html,
latex, grid, pipe,
orgtbl, plain simple
read only: ndjson
r/w: json
tabulate 2.6, 2.7, 3.3, 3.4
3.5, 3.6, pypy
pyexcel-handsontable handsontable in html handsontable same as above
pyexcel-pygal svg chart pygal 2.7, 3.3, 3.4, 3.5
3.6, pypy
pyexcel-sortable sortable table in html csvtotable same as above
pyexcel-gantt gantt chart in html frappe-gantt except pypy, same
as above

Footnotes

Acknowledgement

All great work have been done by odf, ezodf, xlrd, xlwt, tabulate and other
individual developers. This library unites only the data access code.

License

New BSD License

Pandas можно использовать для чтения и записи файлов Excel с помощью Python. Это работает по аналогии с другими форматами. В этом материале рассмотрим, как это делается с помощью DataFrame.

Помимо чтения и записи рассмотрим, как записывать несколько DataFrame в Excel-файл, как считывать определенные строки и колонки из таблицы и как задавать имена для одной или нескольких таблиц в файле.

Установка Pandas

Для начала Pandas нужно установить. Проще всего это сделать с помощью pip.

Если у вас Windows, Linux или macOS:

pip install pandas # или pip3

В процессе можно столкнуться с ошибками ModuleNotFoundError или ImportError при попытке запустить этот код. Например:

ModuleNotFoundError: No module named 'openpyxl'

В таком случае нужно установить недостающие модули:

pip install openpyxl xlsxwriter xlrd  # или pip3

Будем хранить информацию, которую нужно записать в файл Excel, в DataFrame. А с помощью встроенной функции to_excel() ее можно будет записать в Excel.

Сначала импортируем модуль pandas. Потом используем словарь для заполнения DataFrame:


import pandas as pd

df = pd.DataFrame({'Name': ['Manchester City', 'Real Madrid', 'Liverpool',
'FC Bayern München', 'FC Barcelona', 'Juventus'],
'League': ['English Premier League (1)', 'Spain Primera Division (1)',
'English Premier League (1)', 'German 1. Bundesliga (1)',
'Spain Primera Division (1)', 'Italian Serie A (1)'],
'TransferBudget': [176000000, 188500000, 90000000,
100000000, 180500000, 105000000]})

Ключи в словаре — это названия колонок. А значения станут строками с информацией.

Теперь можно использовать функцию to_excel() для записи содержимого в файл. Единственный аргумент — это путь к файлу:


df.to_excel('./teams.xlsx')

А вот и созданный файл Excel:

файл Excel в python

Стоит обратить внимание на то, что в этом примере не использовались параметры. Таким образом название листа в файле останется по умолчанию — «Sheet1». В файле может быть и дополнительная колонка с числами. Эти числа представляют собой индексы, которые взяты напрямую из DataFrame.

Поменять название листа можно, добавив параметр sheet_name в вызов to_excel():


df.to_excel('./teams.xlsx', sheet_name='Budgets', index=False)

Также можно добавили параметр index со значением False, чтобы избавиться от колонки с индексами. Теперь файл Excel будет выглядеть следующим образом:

Чтение и запись файлов Excel (XLSX) в Python

Запись нескольких DataFrame в файл Excel

Также есть возможность записать несколько DataFrame в файл Excel. Для этого можно указать отдельный лист для каждого объекта:


salaries1 = pd.DataFrame({'Name': ['L. Messi', 'Cristiano Ronaldo', 'J. Oblak'],
'Salary': [560000, 220000, 125000]})

salaries2 = pd.DataFrame({'Name': ['K. De Bruyne', 'Neymar Jr', 'R. Lewandowski'],
'Salary': [370000, 270000, 240000]})

salaries3 = pd.DataFrame({'Name': ['Alisson', 'M. ter Stegen', 'M. Salah'],
'Salary': [160000, 260000, 250000]})

salary_sheets = {'Group1': salaries1, 'Group2': salaries2, 'Group3': salaries3}
writer = pd.ExcelWriter('./salaries.xlsx', engine='xlsxwriter')

for sheet_name in salary_sheets.keys():
salary_sheets[sheet_name].to_excel(writer, sheet_name=sheet_name, index=False)

writer.save()

Здесь создаются 3 разных DataFrame с разными названиями, которые включают имена сотрудников, а также размер их зарплаты. Каждый объект заполняется соответствующим словарем.

Объединим все три в переменной salary_sheets, где каждый ключ будет названием листа, а значение — объектом DataFrame.

Дальше используем движок xlsxwriter для создания объекта writer. Он и передается функции to_excel().

Перед записью пройдемся по ключам salary_sheets и для каждого ключа запишем содержимое в лист с соответствующим именем. Вот сгенерированный файл:

Чтение и запись файлов Excel (XLSX) в Python

Можно увидеть, что в этом файле Excel есть три листа: Group1, Group2 и Group3. Каждый из этих листов содержит имена сотрудников и их зарплаты в соответствии с данными в трех DataFrame из кода.

Параметр движка в функции to_excel() используется для определения модуля, который задействуется библиотекой Pandas для создания файла Excel. В этом случае использовался xslswriter, который нужен для работы с классом ExcelWriter. Разные движка можно определять в соответствии с их функциями.

В зависимости от установленных в системе модулей Python другими параметрами для движка могут быть openpyxl (для xlsx или xlsm) и xlwt (для xls). Подробности о модуле xlswriter можно найти в официальной документации.

Наконец, в коде была строка writer.save(), которая нужна для сохранения файла на диске.

Чтение файлов Excel с python

По аналогии с записью объектов DataFrame в файл Excel, эти файлы можно и читать, сохраняя данные в объект DataFrame. Для этого достаточно воспользоваться функцией read_excel():


top_players = pd.read_excel('./top_players.xlsx')
top_players.head()

Содержимое финального объекта можно посмотреть с помощью функции head().

Примечание:

Этот способ самый простой, но он и способен прочесть лишь содержимое первого листа.

Посмотрим на вывод функции head():

Name Age Overall Potential Positions Club
0 L. Messi 33 93 93 RW,ST,CF FC Barcelona
1 Cristiano Ronaldo 35 92 92 ST,LW Juventus
2 J. Oblak 27 91 93 GK Atlético Madrid
3 K. De Bruyne 29 91 91 CAM,CM Manchester City
4 Neymar Jr 28 91 91 LW,CAM Paris Saint-Germain

Pandas присваивает метку строки или числовой индекс объекту DataFrame по умолчанию при использовании функции read_excel().

Это поведение можно переписать, передав одну из колонок из файла в качестве параметра index_col:


top_players = pd.read_excel('./top_players.xlsx', index_col='Name')
top_players.head()

Результат будет следующим:

Name Age Overall Potential Positions Club
L. Messi 33 93 93 RW,ST,CF FC Barcelona
Cristiano Ronaldo 35 92 92 ST,LW Juventus
J. Oblak 27 91 93 GK Atlético Madrid
K. De Bruyne 29 91 91 CAM,CM Manchester City
Neymar Jr 28 91 91 LW,CAM Paris Saint-Germain

В этом примере индекс по умолчанию был заменен на колонку «Name» из файла. Однако этот способ стоит использовать только при наличии колонки со значениями, которые могут стать заменой для индексов.

Чтение определенных колонок из файла Excel

Иногда удобно прочитать содержимое файла целиком, но бывают случаи, когда требуется получить доступ к определенному элементу. Например, нужно считать значение элемента и присвоить его полю объекта.

Это делается с помощью функции read_excel() и параметра usecols. Например, можно ограничить функцию, чтобы она читала только определенные колонки. Добавим параметр, чтобы он читал колонки, которые соответствуют значениям «Name», «Overall» и «Potential».

Для этого укажем числовой индекс каждой колонки:


cols = [0, 2, 3]

top_players = pd.read_excel('./top_players.xlsx', usecols=cols)
top_players.head()

Вот что выдаст этот код:

Name Overall Potential
0 L. Messi 93 93
1 Cristiano Ronaldo 92 92
2 J. Oblak 91 93
3 K. De Bruyne 91 91
4 Neymar Jr 91 91

Таким образом возвращаются лишь колонки из списка cols.

В DataFrame много встроенных возможностей. Легко изменять, добавлять и агрегировать данные. Даже можно строить сводные таблицы. И все это сохраняется в Excel одной строкой кода.

Рекомендую изучить DataFrame в моих уроках по Pandas.

Выводы

В этом материале были рассмотрены функции read_excel() и to_excel() из библиотеки Pandas. С их помощью можно считывать данные из файлов Excel и выполнять запись в них. С помощью различных параметров есть возможность менять поведение функций, создавая нужные файлы, не просто копируя содержимое из объекта DataFrame.

Электронные таблицы Excel — это интуитивно понятный и удобный способ манипулирования большими наборами данных без какой-либо предварительной технической подготовки. По этому, это один из форматов, с которым, в какой-то момент времени, вам придется иметь дело. Часто будут стоять задачи по извлечению каких-то данных из базы данных или файла логов в электронную таблицу Excel, или наоборот, преобразовывать электронную таблицу Excel в какую-либо более удобную программную форму, примеров этому масса.

Модуль openpyxl — это библиотека Python для чтения/записи форматов Office Open XML (файлов Excel 2010) с расширениями xlsx/xlsm/xltx/xltm.

Установка модуля openpyxl в виртуальное окружение.

Модуль openpyxl размещен на PyPI, поэтому установка относительно проста.

# создаем виртуальное окружение, если нет
$ python3 -m venv .venv --prompt VirtualEnv
# активируем виртуальное окружение 
$ source .venv/bin/activate
# ставим модуль openpyxl
(VirtualEnv):~$ python3 -m pip install -U openpyxl

Основы работы с файлами Microsoft Excel на Python.

  • Создание книги Excel.
    • Новый рабочий лист книги Excel.
    • Копирование рабочего листа книги Excel.
    • Удаление рабочего листа книги Excel.
  • Доступ к ячейке электронной таблицы и ее значению.
  • Доступ к диапазону ячеек листа электронной таблицы.
  • Получение только значений ячеек листа.
  • Добавление данных в ячейки списком.
  • Сохранение созданной книги в файл Excel.
    • Сохранение данных книги в виде потока.
  • Загрузка документа XLSX из файла.

Создание книги Excel.

Чтобы начать работу с модулем openpyxl, нет необходимости создавать файл электронной таблицы в файловой системе. Нужно просто импортировать класс Workbook и создать его экземпляр. Рабочая книга всегда создается как минимум с одним рабочим листом, его можно получить, используя свойство Workbook.active:

>>> from openpyxl import Workbook
# создаем книгу 
>>> wb = Workbook()
# делаем единственный лист активным 
>>> ws = wb.active

Новый рабочий лист книги Excel.

Новые рабочие листы можно создавать, используя метод Workbook.create_sheet():

# вставить рабочий лист в конец (по умолчанию)
>>> ws1 = wb.create_sheet("Mysheet")
# вставить рабочий лист в первую позицию
>>> ws2 = wb.create_sheet("Mysheet", 0)
# вставить рабочий лист в предпоследнюю позицию
>>> ws3 = wb.create_sheet("Mysheet", -1)

Листам автоматически присваивается имя при создании. Они нумеруются последовательно (Sheet, Sheet1, Sheet2, …). Эти имена можно изменить в любое время с помощью свойства Worksheet.title:

Цвет фона вкладки с этим заголовком по умолчанию белый. Можно изменить этот цвет, указав цветовой код RRGGBB для атрибута листа Worksheet.sheet_properties.tabColor:

>>> ws.sheet_properties.tabColor = "1072BA"

Рабочий лист можно получить, используя его имя в качестве ключа экземпляра созданной книги Excel:

Что бы просмотреть имена всех рабочих листов книги, необходимо использовать атрибут Workbook.sheetname. Также можно итерироваться по рабочим листам книги Excel.

>>> wb.sheetnames
# ['Mysheet1', 'NewPage', 'Mysheet2', 'Mysheet']

>>> for sheet in wb:
...     print(sheet.title)
# Mysheet1
# NewPage
# Mysheet2
# Mysheet

Копирование рабочего листа книги Excel.

Для создания копии рабочих листов в одной книге, необходимо воспользоваться методом Workbook.copy_worksheet():

>>> source_page = wb.active
>>> target_page = wb.copy_worksheet(source_page)

Примечание. Копируются только ячейки (значения, стили, гиперссылки и комментарии) и определенные атрибуты рабочего листа (размеры, формат и свойства). Все остальные атрибуты книги/листа не копируются, например, изображения или диаграммы.

Поддерживается возможность копирования рабочих листов между книгами. Нельзя скопировать рабочий лист, если рабочая книга открыта в режиме только для чтения или только для записи.

Удаление рабочего листа книги Excel.

Очевидно, что встает необходимость удалить лист электронной таблицы, который уже существует. Модуль openpyxl дает возможность удалить лист по его имени. Следовательно, сначала необходимо выяснить, какие листы присутствуют в книге, а потом удалить ненужный. За удаление листов книги отвечает метод Workbook.remove().

Смотрим пример:

# выясним, названия листов присутствуют в книге
>>> name_list = wb.sheetnames
>>> name_list
# ['Mysheet1', 'NewPage', 'Mysheet2', 'Mysheet', 'Mysheet1 Copy']

# допустим, что нам не нужны первый и последний
# удаляем первый лист по его имени с проверкой 
# существования такого имени в книге
>>> if 'Mysheet1' in wb.sheetnames:
        # Если лист с именем `Mysheet1` присутствует
        # в списке листов экземпляра книги, то удаляем
...     wb.remove(wb['Mysheet1'])
...
>>> wb.sheetnames
# ['NewPage', 'Mysheet2', 'Mysheet', 'Mysheet1 Copy']

# удаляем последний лист через оператор
#  `del`, имя листа извлечем по индексу 
# полученного списка `name_list`
>>> del wb[name_list[-1]]
>>> wb.sheetnames
# ['NewPage', 'Mysheet2', 'Mysheet']

Доступ к ячейке и ее значению.

После того как выбран рабочий лист, можно начинать изменять содержимое ячеек. К ячейкам можно обращаться непосредственно как к ключам рабочего листа, например ws['A4']. Это вернет ячейку на A4 или создаст ее, если она еще не существует. Значения могут быть присвоены напрямую:

>>> ws['A4'] = 5
>>> ws['A4']
# <Cell 'NewPage'.A4>
>>> ws['A4'].value
# 5
>>> ws['A4'].column
# 1
>>> ws['A4'].row
# 4

Если объект ячейки присвоить переменной, то этой переменной, также можно присваивать значение:

>>> c = ws['A4']
>>> c.value = c.value * 2
>>> c.value
# 10

Существует также метод Worksheet.cell(). Он обеспечивает доступ к ячейкам с непосредственным указанием значений строк и столбцов:

>>> d = ws.cell(row=4, column=2, value=10)
>>> d
# <Cell 'NewPage'.B4>
>>> d.value = 3.14
>>> print(d.value)
# 3.14

Примечание. При создании рабочего листа в памяти, он не содержит ячеек. Ячейки создаются при первом доступе к ним.

Важно! Из-за такого поведения, простой перебор ячеек в цикле, создаст объекты этих ячеек в памяти, даже если не присваивать им значения.

Не запускайте этот пример, поверьте на слово:

# создаст в памяти 100x100=10000 пустых объектов  
# ячеек, просто так израсходовав оперативную память.
>>> for x in range(1,101):
...        for y in range(1,101):
...            ws.cell(row=x, column=y)

Доступ к диапазону ячеек листа электронной таблицы.

Диапазон с ячейками активного листа электронной таблицы можно получить с помощью простых срезов. Эти срезы будут возвращать итераторы объектов ячеек.

>>> cell_range = ws['A1':'C2']
>>> cell_range
# ((<Cell 'NewPage'.A1>, <Cell 'NewPage'.B1>, <Cell 'NewPage'.C1>), 
# (<Cell 'NewPage'.A2>, <Cell 'NewPage'.B2>, <Cell 'NewPage'.C2>))

Аналогично можно получить диапазоны имеющихся строк или столбцов на листе:

# Все доступные ячейки в колонке `C`
>>> colC = ws['C']
# Все доступные ячейки в диапазоне колонок `C:D`
>>> col_range = ws['C:D']
# Все доступные ячейки в строке 10
>>> row10 = ws[10]
# Все доступные ячейки в диапазоне строк `5:10`
>>> row_range = ws[5:10]

Можно также использовать метод Worksheet.iter_rows():

>>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2):
...    for cell in row:
...        print(cell)
# <Cell Sheet1.A1>
# <Cell Sheet1.B1>
# <Cell Sheet1.C1>
# <Cell Sheet1.A2>
# <Cell Sheet1.B2>
# <Cell Sheet1.C2>

Точно так же метод Worksheet.iter_cols() будет возвращать столбцы:

>>> for col in ws.iter_cols(min_row=1, max_col=3, max_row=2):
...     for cell in col:
...         print(cell)
# <Cell Sheet1.A1>
# <Cell Sheet1.A2>
# <Cell Sheet1.B1>
# <Cell Sheet1.B2>
# <Cell Sheet1.C1>
# <Cell Sheet1.C2>

Примечание. Из соображений производительности метод Worksheet.iter_cols() недоступен в режиме только для чтения.

Если необходимо перебрать все строки или столбцы файла, то можно использовать свойство Worksheet.rows:

>>> ws = wb.active
>>> ws['C9'] = 'hello world'
>>> tuple(ws.rows)
# ((<Cell Sheet.A1>, <Cell Sheet.B1>, <Cell Sheet.C1>),
# (<Cell Sheet.A2>, <Cell Sheet.B2>, <Cell Sheet.C2>),
# (<Cell Sheet.A3>, <Cell Sheet.B3>, <Cell Sheet.C3>),
# ...
# (<Cell Sheet.A7>, <Cell Sheet.B7>, <Cell Sheet.C7>),
# (<Cell Sheet.A8>, <Cell Sheet.B8>, <Cell Sheet.C8>),
# (<Cell Sheet.A9>, <Cell Sheet.B9>, <Cell Sheet.C9>))

или свойство Worksheet.columns:

>>> tuple(ws.columns)
# ((<Cell Sheet.A1>,
# <Cell Sheet.A2>,
# ...
# <Cell Sheet.B8>,
# <Cell Sheet.B9>),
# (<Cell Sheet.C1>,
# <Cell Sheet.C2>,
# ...
# <Cell Sheet.C8>,
# <Cell Sheet.C9>))

Примечание. Из соображений производительности свойство Worksheet.columns недоступно в режиме только для чтения.

Получение только значений ячеек активного листа.

Если просто нужны значения из рабочего листа, то можно использовать свойство активного листа Worksheet.values. Это свойство перебирает все строки на листе, но возвращает только значения ячеек:

for row in ws.values:
   for value in row:
     print(value)

Для возврата только значения ячейки, методы Worksheet.iter_rows() и Worksheet.iter_cols(), представленные выше, могут принимать аргумент values_only:

>>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2, values_only=True):
...   print(row)
# (None, None, None)
# (None, None, None)

Добавление данных в ячейки листа списком.

Модуль openpyxl дает возможность супер просто и удобно добавлять данные в конец листа электронной таблицы. Такое удобство обеспечивается методом объекта листа Worksheet.append(iterable), где аргумент iterable — это любой итерируемый объект (список, кортеж и т.д.). Такое поведение позволяет, без костылей, переносить в электронную таблицу данные из других источников, например CSV файлы, таблицы баз данных, дата-фреймы из Pandas и т.д.

Метод Worksheet.append() добавляет группу значений в последнюю строку, которая не содержит данных.

  • Если это список: все значения добавляются по порядку, начиная с первого столбца.
  • Если это словарь: значения присваиваются столбцам, обозначенным ключами (цифрами или буквами).

Варианты использования:

  • добавление списка: .append([‘ячейка A1’, ‘ячейка B1’, ‘ячейка C1’])
  • добавление словаря:
    • вариант 1: .append({‘A’ : ‘ячейка A1’, ‘C’ : ‘ячейка C1’}), в качестве ключей используются буквы столбцов.
    • вариант 2: .append({1 : ‘ячейка A1’, 3 : ‘ячейка C1’}), в качестве ключей используются цифры столбцов.

Пример добавление данных из списка:

# существующие листы рабочей книги
>>> wb.sheetnames
# ['NewPage', 'Mysheet2', 'Mysheet']

# добавим данные в лист с именем `Mysheet2`
>>> ws = wb["Mysheet2"]
# создадим произвольные данные, используя
# вложенный генератор списков
>>> data = [[row*col for col in range(1, 10)] for row in range(1, 31)]
>>> data
# [
#     [1, 2, 3, 4, 5, 6, 7, 8, 9], 
#     [2, 4, 6, 8, 10, 12, 14, 16, 18], 
# ...
# ...
#     [30, 60, 90, 120, 150, 180, 210, 240, 270]
# ]

# добавляем данные в выбранный лист
>>> for row in data:
...     ws.append(row)
...

Вот и все, данные добавлены… Просто? Не просто, а супер просто!

Сохранение созданной книги в файл Excel.

Самый простой и безопасный способ сохранить книгу, это использовать метод Workbook.save() объекта Workbook:

>>> wb = Workbook()
>>> wb.save('test.xlsx')

Внимание. Эта операция перезапишет существующий файл без предупреждения!!!

После сохранения, можно открыть полученный файл в Excel и посмотреть данные, выбрав лист с именем NewPage.

Примечание. Расширение имени файла не обязательно должно быть xlsx или xlsm, хотя могут возникнуть проблемы с его открытием непосредственно в другом приложении. Поскольку файлы OOXML в основном представляют собой ZIP-файлы, их также можете открыть с помощью своего любимого менеджера ZIP-архивов.

Сохранение данных книги в виде потока.

Если необходимо сохранить файл в поток, например, при использовании веб-приложения, такого как Flask или Django, то можно просто предоставить tempfile.NamedTemporaryFile():

from tempfile import NamedTemporaryFile
from openpyxl import Workbook

wb = Workbook()

with NamedTemporaryFile() as tmp:
    wb.save(tmp.name)
    tmp.seek(0)
    stream = tmp.read()

Можно указать атрибут template=True, чтобы сохранить книгу как шаблон:

>>> from openpyxl import load_workbook
>>> wb = load_workbook('test.xlsx')
>>> wb.template = True
>>> wb.save('test_template.xltx')

Примечание. Атрибут wb.template по умолчанию имеет значение False, это означает — сохранить как документ.

Внимание. Следующее не удастся:

>>> from openpyxl import load_workbook
>>> wb = load_workbook('test.xlsx')
# Необходимо сохранить с расширением *.xlsx
>>> wb.save('new_test.xlsm') # MS Excel не может открыть документ

# Нужно указать атрибут `keep_vba=True`
>>> wb = load_workbook('test.xlsm')
>>> wb.save('new_test.xlsm')

>>> wb = load_workbook('test.xltm', keep_vba=True)
# Если нужен шаблон документа, то необходимо указать расширение *.xltm.
>>> wb.save('new_test.xlsm') # MS Excel не может открыть документ

Загрузка документа XLSX из файла.

Чтобы открыть существующую книгу Excel необходимо использовать функцию openpyxl.load_workbook():

>>> from openpyxl import load_workbook
>>> wb2 = load_workbook('test.xlsx')
>>> print(wb2.sheetnames)
# ['Mysheet1', 'NewPage', 'Mysheet2', 'Mysheet']

Есть несколько флагов, которые можно использовать в функции openpyxl.load_workbook().

  • data_only: определяет, будут ли содержать ячейки с формулами — формулу (по умолчанию) или только значение, сохраненное/посчитанное при последнем чтении листа Excel.
  • keep_vba определяет, сохраняются ли какие-либо элементы Visual Basic (по умолчанию). Если они сохранены, то они не могут изменяться/редактироваться.

Like this post? Please share to your friends:
  • Python pandas and excel
  • Python packages for excel
  • Python output to excel
  • Python or vba for excel
  • Python openpyxl создать excel файл