Построить линейное уравнение парной регрессии y по x в excel

  • Редакция Кодкампа

17 авг. 2022 г.
читать 2 мин


Вы можете использовать функцию ЛИНЕЙН , чтобы быстро найти уравнение регрессии в Excel.

Эта функция использует следующий базовый синтаксис:

LINEST(known_y's, known_x's)

куда:

  • known_y’s : столбец значений для переменной ответа.
  • known_x’s : один или несколько столбцов значений для переменных-предикторов.

В следующих примерах показано, как использовать эту функцию для поиска уравнения регрессии для простой модели линейной регрессии и модели множественной линейной регрессии .

Пример 1: Найдите уравнение для простой линейной регрессии

Предположим, у нас есть следующий набор данных, который содержит одну предикторную переменную (x) и одну переменную ответа (y):

Мы можем ввести следующую формулу в ячейку D1 , чтобы вычислить простое уравнение линейной регрессии для этого набора данных:

=LINEST( A2:A15 , B2:B15 )

Как только мы нажмем ENTER , будут показаны коэффициенты для простой модели линейной регрессии:

Вот как интерпретировать вывод:

  • Коэффициент на перехват 3,115589.
  • Коэффициент наклона равен 0,479072.

Используя эти значения, мы можем написать уравнение для этой простой модели регрессии:

у = 3,115589 + 0,478072 (х)

Примечание.Чтобы найти p-значения для коэффициентов, значение r-квадрата модели и другие показатели, следует использовать функцию регрессии из пакета анализа данных. В этом руководстве объясняется, как это сделать.

Пример 2: найти уравнение для множественной линейной регрессии

Предположим, у нас есть следующий набор данных, который содержит две переменные-предикторы (x1 и x2) и одну переменную ответа (y):

Мы можем ввести следующую формулу в ячейку E1 , чтобы вычислить уравнение множественной линейной регрессии для этого набора данных:

=LINEST( A2:A15 , B2:C15 )

Как только мы нажмем ENTER , будут показаны коэффициенты для модели множественной линейной регрессии:

Вот как интерпретировать вывод:

  • Коэффициент на перехват 1.471205
  • Коэффициент для x1 равен 0,047243.
  • Коэффициент для x2 равен 0,406344.

Используя эти значения, мы можем написать уравнение для этой модели множественной регрессии:

у = 1,471205 + 0,047243 (х1) + 0,406344 (х2)

Примечание.Чтобы найти p-значения для коэффициентов, значение r-квадрата модели и другие показатели для модели множественной линейной регрессии в Excel, следует использовать функцию регрессии из пакета анализа данных. В этом руководстве объясняется, как это сделать.

Дополнительные ресурсы

В следующих руководствах представлена дополнительная информация о регрессии в Excel:

Как интерпретировать вывод регрессии в Excel
Как добавить линию регрессии на диаграмму рассеяния в Excel
Как выполнить полиномиальную регрессию в Excel

Содержание

  • Подключение пакета анализа
  • Виды регрессионного анализа
  • Линейная регрессия в программе Excel
  • Разбор результатов анализа
  • Вопросы и ответы

Регрессивный анализ в Microsoft Excel

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Подключение пакета анализа

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.

  1. Перемещаемся во вкладку «Файл».
  2. Переход во вкладку Файл в Microsoft Excel

  3. Переходим в раздел «Параметры».
  4. Переход в параметры в программе Microsoft Excel

  5. Открывается окно параметров Excel. Переходим в подраздел «Надстройки».
  6. Переход в надстройки в программе Microsoft Excel

  7. В самой нижней части открывшегося окна переставляем переключатель в блоке «Управление» в позицию «Надстройки Excel», если он находится в другом положении. Жмем на кнопку «Перейти».
  8. Перемещение в надстройки в программе Microsoft Excel

  9. Открывается окно доступных надстроек Эксель. Ставим галочку около пункта «Пакет анализа». Жмем на кнопку «OK».

Активация пакета анализа в программе Microsoft Excel

Теперь, когда мы перейдем во вкладку «Данные», на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных».

Блок настроек Анализ в программе Microsoft Excel

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк. В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.

  1. Кликаем по кнопке «Анализ данных». Она размещена во вкладке «Главная» в блоке инструментов «Анализ».
  2. Переход в анализ данных в программе Microsoft Excel

    Lumpics.ru

  3. Открывается небольшое окошко. В нём выбираем пункт «Регрессия». Жмем на кнопку «OK».
  4. Запуск регрессии в программе Microsoft Excel

  5. Открывается окно настроек регрессии. В нём обязательными для заполнения полями являются «Входной интервал Y» и «Входной интервал X». Все остальные настройки можно оставить по умолчанию.

    В поле «Входной интервал Y» указываем адрес диапазона ячеек, где расположены переменные данные, влияние факторов на которые мы пытаемся установить. В нашем случае это будут ячейки столбца «Количество покупателей». Адрес можно вписать вручную с клавиатуры, а можно, просто выделить требуемый столбец. Последний вариант намного проще и удобнее.

    В поле «Входной интервал X» вводим адрес диапазона ячеек, где находятся данные того фактора, влияние которого на переменную мы хотим установить. Как говорилось выше, нам нужно установить влияние температуры на количество покупателей магазина, а поэтому вводим адрес ячеек в столбце «Температура». Это можно сделать теми же способами, что и в поле «Количество покупателей».

    Ввод интервала в настройках регрессии в программе Microsoft Excel

    С помощью других настроек можно установить метки, уровень надёжности, константу-ноль, отобразить график нормальной вероятности, и выполнить другие действия. Но, в большинстве случаев, эти настройки изменять не нужно. Единственное на что следует обратить внимание, так это на параметры вывода. По умолчанию вывод результатов анализа осуществляется на другом листе, но переставив переключатель, вы можете установить вывод в указанном диапазоне на том же листе, где расположена таблица с исходными данными, или в отдельной книге, то есть в новом файле.

    Параметры вывода в настройках регрессии в программе Microsoft Excel

    После того, как все настройки установлены, жмем на кнопку «OK».

Запуск регрессивного анализа в программе Microsoft Excel

Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Результат анализа регрессии в программе Microsoft Excel

Одним из основных показателей является R-квадрат. В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты». Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Линейная парная регрессия на точечной диаграмме в MS Excel

Рассмотрим один из самых простых и быстрых способов получения статистической модели взаимосвязи между двумя случайными переменными в виде уравнения парной линейной регрессии. Для этого будем использовать точечную диаграмму и линию тренда в среде электронных таблиц MS Excel.

Уравнение линейной парной регрессии имеет вид:

где — моделируемая переменная,
— переменная-фактор,
— ошибка.

Стандартной задачей является нахождение параметров и для конкретных статистических данных. Рассмотрим пример решения этой задачи простыми инструментами программы MS Excel.

Пример. Изучается зависимость себестоимости единицы изделия (, тыс. руб.) от величины выпуска продукции (, тыс. шт.) по группам предприятий за отчетный период. Экономист обследовал предприятий и получил следующие результаты:

2 3 4 5 6
1,9 1,7 1,8 1,6 1,4

Найти уравнение линейной парной регрессии .

Источник: Просветов Г.И. Эконометрика: задачи и решения: учебно-методическое пособие. — М.: Издательство «Альфа-пресс», 2008. — 192 с. (Пример 18, с.32)

Решение. Введем исходные данные в таблице MS Excel:

Выделим диапазон исходных данных:

В меню Вставка выбираем инструмент Точечная диаграмма (именно эта диаграмма позволяет строить точки по двум координатам):

Появляется диаграмма (в статистике этот график называют корреляционным полем):

Выполняем правый щелчок мыши по любой точке на диаграмме, появляется контекстное меню, в котором выбираем команду Добавить линию тренда :

Появляется окно диалога:

В окне диалога Формат линии тренда выбираем вид Линейная (обычно выбрано по умолчанию) и ставим флажок Показывать уравнение на диаграмме , нажимаем кнопку Закрыть . На точечной диаграмме появляется сглаживающая линия и ее уравнение, это и есть искомое уравнение регрессии:

Таким образом, уравнение регрессии имеет вид:

Сделаем вывод: коэффициент регрессии показывает, что при увеличении выпуска продукции на одну тысячу штук, себестоимость единицы продукции уменьшается в среднем на 0,11 тысяч рублей.

Задание на СР: Найти уравнение линейной парной регрессии, если — недельные объемы продаж, тыс. руб., — расходы на рекламу, тыс. руб.

5 8 6 5 3 9 12 4 3 10
72 76 78 70 68 80 82 65 62 90

Источник: Просветов Г.И. Эконометрика: задачи и решения: учебно-методическое пособие. — М.: Издательство «Альфа-пресс», 2008. — 192 с. (Задача 18, с.32)

Регрессионный анализ в Microsoft Excel

Регрессионный анализ является одним из самых востребованных методов статистического исследования. С его помощью можно установить степень влияния независимых величин на зависимую переменную. В функционале Microsoft Excel имеются инструменты, предназначенные для проведения подобного вида анализа. Давайте разберем, что они собой представляют и как ими пользоваться.

Подключение пакета анализа

Но, для того, чтобы использовать функцию, позволяющую провести регрессионный анализ, прежде всего, нужно активировать Пакет анализа. Только тогда необходимые для этой процедуры инструменты появятся на ленте Эксель.

    Перемещаемся во вкладку «Файл».

Открывается окно параметров Excel. Переходим в подраздел «Надстройки».

В самой нижней части открывшегося окна переставляем переключатель в блоке «Управление» в позицию «Надстройки Excel», если он находится в другом положении. Жмем на кнопку «Перейти».

Теперь, когда мы перейдем во вкладку «Данные», на ленте в блоке инструментов «Анализ» мы увидим новую кнопку – «Анализ данных».

Виды регрессионного анализа

Существует несколько видов регрессий:

  • параболическая;
  • степенная;
  • логарифмическая;
  • экспоненциальная;
  • показательная;
  • гиперболическая;
  • линейная регрессия.

О выполнении последнего вида регрессионного анализа в Экселе мы подробнее поговорим далее.

Линейная регрессия в программе Excel

Внизу, в качестве примера, представлена таблица, в которой указана среднесуточная температура воздуха на улице, и количество покупателей магазина за соответствующий рабочий день. Давайте выясним при помощи регрессионного анализа, как именно погодные условия в виде температуры воздуха могут повлиять на посещаемость торгового заведения.

Общее уравнение регрессии линейного вида выглядит следующим образом: У = а0 + а1х1 +…+акхк . В этой формуле Y означает переменную, влияние факторов на которую мы пытаемся изучить. В нашем случае, это количество покупателей. Значение x – это различные факторы, влияющие на переменную. Параметры a являются коэффициентами регрессии. То есть, именно они определяют значимость того или иного фактора. Индекс k обозначает общее количество этих самых факторов.

  1. Кликаем по кнопке «Анализ данных». Она размещена во вкладке «Главная» в блоке инструментов «Анализ».

Открывается небольшое окошко. В нём выбираем пункт «Регрессия». Жмем на кнопку «OK».

Открывается окно настроек регрессии. В нём обязательными для заполнения полями являются «Входной интервал Y» и «Входной интервал X». Все остальные настройки можно оставить по умолчанию.

В поле «Входной интервал Y» указываем адрес диапазона ячеек, где расположены переменные данные, влияние факторов на которые мы пытаемся установить. В нашем случае это будут ячейки столбца «Количество покупателей». Адрес можно вписать вручную с клавиатуры, а можно, просто выделить требуемый столбец. Последний вариант намного проще и удобнее.

В поле «Входной интервал X» вводим адрес диапазона ячеек, где находятся данные того фактора, влияние которого на переменную мы хотим установить. Как говорилось выше, нам нужно установить влияние температуры на количество покупателей магазина, а поэтому вводим адрес ячеек в столбце «Температура». Это можно сделать теми же способами, что и в поле «Количество покупателей».

С помощью других настроек можно установить метки, уровень надёжности, константу-ноль, отобразить график нормальной вероятности, и выполнить другие действия. Но, в большинстве случаев, эти настройки изменять не нужно. Единственное на что следует обратить внимание, так это на параметры вывода. По умолчанию вывод результатов анализа осуществляется на другом листе, но переставив переключатель, вы можете установить вывод в указанном диапазоне на том же листе, где расположена таблица с исходными данными, или в отдельной книге, то есть в новом файле.

После того, как все настройки установлены, жмем на кнопку «OK».

Разбор результатов анализа

Результаты регрессионного анализа выводятся в виде таблицы в том месте, которое указано в настройках.

Одним из основных показателей является R-квадрат. В нем указывается качество модели. В нашем случае данный коэффициент равен 0,705 или около 70,5%. Это приемлемый уровень качества. Зависимость менее 0,5 является плохой.

Ещё один важный показатель расположен в ячейке на пересечении строки «Y-пересечение» и столбца «Коэффициенты». Тут указывается какое значение будет у Y, а в нашем случае, это количество покупателей, при всех остальных факторах равных нулю. В этой таблице данное значение равно 58,04.

Значение на пересечении граф «Переменная X1» и «Коэффициенты» показывает уровень зависимости Y от X. В нашем случае — это уровень зависимости количества клиентов магазина от температуры. Коэффициент 1,31 считается довольно высоким показателем влияния.

Как видим, с помощью программы Microsoft Excel довольно просто составить таблицу регрессионного анализа. Но, работать с полученными на выходе данными, и понимать их суть, сможет только подготовленный человек.

Помимо этой статьи, на сайте еще 12695 инструкций.
Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

Отблагодарите автора, поделитесь статьей в социальных сетях.

Регрессия в Excel: уравнение, примеры. Линейная регрессия

Регрессионный анализ — это статистический метод исследования, позволяющий показать зависимость того или иного параметра от одной либо нескольких независимых переменных. В докомпьютерную эру его применение было достаточно затруднительно, особенно если речь шла о больших объемах данных. Сегодня, узнав как построить регрессию в Excel, можно решать сложные статистические задачи буквально за пару минут. Ниже представлены конкретные примеры из области экономики.

Виды регрессии

Само это понятие было введено в математику Фрэнсисом Гальтоном в 1886 году. Регрессия бывает:

  • линейной;
  • параболической;
  • степенной;
  • экспоненциальной;
  • гиперболической;
  • показательной;
  • логарифмической.

Пример 1

Рассмотрим задачу определения зависимости количества уволившихся членов коллектива от средней зарплаты на 6 промышленных предприятиях.

Задача. На шести предприятиях проанализировали среднемесячную заработную плату и количество сотрудников, которые уволились по собственному желанию. В табличной форме имеем:

Для задачи определения зависимости количества уволившихся работников от средней зарплаты на 6 предприятиях модель регрессии имеет вид уравнения Y = а0 + а1x1 +…+аkxk, где хi — влияющие переменные, ai — коэффициенты регрессии, a k — число факторов.

Для данной задачи Y — это показатель уволившихся сотрудников, а влияющий фактор — зарплата, которую обозначаем X.

Использование возможностей табличного процессора «Эксель»

Анализу регрессии в Excel должно предшествовать применение к имеющимся табличным данным встроенных функций. Однако для этих целей лучше воспользоваться очень полезной надстройкой «Пакет анализа». Для его активации нужно:

  • с вкладки «Файл» перейти в раздел «Параметры»;
  • в открывшемся окне выбрать строку «Надстройки»;
  • щелкнуть по кнопке «Перейти», расположенной внизу, справа от строки «Управление»;
  • поставить галочку рядом с названием «Пакет анализа» и подтвердить свои действия, нажав «Ок».

Если все сделано правильно, в правой части вкладки «Данные», расположенном над рабочим листом «Эксель», появится нужная кнопка.

Линейная регрессия в Excel

Теперь, когда под рукой есть все необходимые виртуальные инструменты для осуществления эконометрических расчетов, можем приступить к решению нашей задачи. Для этого:

  • щелкаем по кнопке «Анализ данных»;
  • в открывшемся окне нажимаем на кнопку «Регрессия»;
  • в появившуюся вкладку вводим диапазон значений для Y (количество уволившихся работников) и для X (их зарплаты);
  • подтверждаем свои действия нажатием кнопки «Ok».

В результате программа автоматически заполнит новый лист табличного процессора данными анализа регрессии. Обратите внимание! В Excel есть возможность самостоятельно задать место, которое вы предпочитаете для этой цели. Например, это может быть тот же лист, где находятся значения Y и X, или даже новая книга, специально предназначенная для хранения подобных данных.

Анализ результатов регрессии для R-квадрата

В Excel данные полученные в ходе обработки данных рассматриваемого примера имеют вид:

Прежде всего, следует обратить внимание на значение R-квадрата. Он представляет собой коэффициент детерминации. В данном примере R-квадрат = 0,755 (75,5%), т. е. расчетные параметры модели объясняют зависимость между рассматриваемыми параметрами на 75,5 %. Чем выше значение коэффициента детерминации, тем выбранная модель считается более применимой для конкретной задачи. Считается, что она корректно описывает реальную ситуацию при значении R-квадрата выше 0,8. Если R-квадрата 2 (RI) представляет собой числовую характеристику доли общего разброса и показывает, разброс какой части экспериментальных данных, т.е. значений зависимой переменной соответствует уравнению линейной регрессии. В рассматриваемой задаче эта величина равна 84,8%, т. е. статистические данные с высокой степенью точности описываются полученным УР.

F-статистика, называемая также критерием Фишера, используется для оценки значимости линейной зависимости, опровергая или подтверждая гипотезу о ее существовании.

Значение t-статистики (критерий Стьюдента) помогает оценивать значимость коэффициента при неизвестной либо свободного члена линейной зависимости. Если значение t-критерия > tкр, то гипотеза о незначимости свободного члена линейного уравнения отвергается.

В рассматриваемой задаче для свободного члена посредством инструментов «Эксель» было получено, что t=169,20903, а p=2,89Е-12, т. е. имеем нулевую вероятность того, что будет отвергнута верная гипотеза о незначимости свободного члена. Для коэффициента при неизвестной t=5,79405, а p=0,001158. Иными словами вероятность того, что будет отвергнута верная гипотеза о незначимости коэффициента при неизвестной, равна 0,12%.

Таким образом, можно утверждать, что полученное уравнение линейной регрессии адекватно.

Задача о целесообразности покупки пакета акций

Множественная регрессия в Excel выполняется с использованием все того же инструмента «Анализ данных». Рассмотрим конкретную прикладную задачу.

Руководство компания «NNN» должно принять решение о целесообразности покупки 20 % пакета акций АО «MMM». Стоимость пакета (СП) составляет 70 млн американских долларов. Специалистами «NNN» собраны данные об аналогичных сделках. Было принято решение оценивать стоимость пакета акций по таким параметрам, выраженным в миллионах американских долларов, как:

  • кредиторская задолженность (VK);
  • объем годового оборота (VO);
  • дебиторская задолженность (VD);
  • стоимость основных фондов (СОФ).

Кроме того, используется параметр задолженность предприятия по зарплате (V3 П) в тысячах американских долларов.

Решение средствами табличного процессора Excel

Прежде всего, необходимо составить таблицу исходных данных. Она имеет следующий вид:

  • вызывают окно «Анализ данных»;
  • выбирают раздел «Регрессия»;
  • в окошко «Входной интервал Y» вводят диапазон значений зависимых переменных из столбца G;
  • щелкают по иконке с красной стрелкой справа от окна «Входной интервал X» и выделяют на листе диапазон всех значений из столбцов B,C, D, F.

Отмечают пункт «Новый рабочий лист» и нажимают «Ok».

Получают анализ регрессии для данной задачи.

Изучение результатов и выводы

«Собираем» из округленных данных, представленных выше на листе табличного процессора Excel, уравнение регрессии:

СП = 0,103*СОФ + 0,541*VO – 0,031*VK +0,405*VD +0,691*VZP – 265,844.

В более привычном математическом виде его можно записать, как:

y = 0,103*x1 + 0,541*x2 – 0,031*x3 +0,405*x4 +0,691*x5 – 265,844

Данные для АО «MMM» представлены в таблице:

источники:

http://lumpics.ru/regression-analysis-in-excel/

http://fb.ru/article/322644/regressiya-v-excel-uravnenie-primeryi-lineynaya-regressiya

Регрессионный анализ в Microsoft Excel

Регрессивный анализ в Microsoft Excel

​Смотрите также​ При значении коэффициента​ 75,5%. Это означает,​х​ нескольких независимых переменных.​ D, F.​ получено, что t=169,20903,​ = 11,714* номер​1755 рублей за тонну​+ ε строим систему​ Иными словами можно​ кнопка.​20​ того или иного​ или в отдельной​

​ В нём обязательными​степенная;​

Подключение пакета анализа

​Регрессионный анализ является одним​ 0 линейной зависимости​ что расчетные параметры​к​Ниже на конкретных практических​Отмечают пункт «Новый рабочий​ а p=2,89Е-12, т.​ месяца + 1727,54.​4​

  1. ​ нормальных уравнений (см.​​ утверждать, что на​​Теперь, когда под рукой​

    Переход во вкладку Файл в Microsoft Excel

  2. ​50000 рублей​​ параметра от одной​​ книге, то есть​

    Переход в параметры в программе Microsoft Excel

  3. ​ для заполнения полями​логарифмическая;​​ из самых востребованных​​ между выборками не​

    Переход в надстройки в программе Microsoft Excel

  4. ​ модели на 75,5%​.​ примерах рассмотрим эти​​ лист» и нажимают​​ е. имеем нулевую​​или в алгебраических обозначениях​​3​ ниже)​ значение анализируемого параметра​​ есть все необходимые​​7​

    Перемещение в надстройки в программе Microsoft Excel

  5. ​ либо нескольких независимых​ в новом файле.​ являются​​экспоненциальная;​​ методов статистического исследования.​ существует.​

Активация пакета анализа в программе Microsoft Excel

​ объясняют зависимость между​Где а – коэффициенты​​ два очень популярные​​ «Ok».​ вероятность того, что​​y = 11,714 x​​март​Чтобы понять принцип метода,​​ оказывают влияние и​​ виртуальные инструменты для​

Блок настроек Анализ в программе Microsoft Excel

Виды регрессионного анализа

​5​

  • ​ переменных. В докомпьютерную​
  • ​После того, как все​
  • ​«Входной интервал Y»​
  • ​показательная;​
  • ​ С его помощью​
  • ​Рассмотрим, как с помощью​
  • ​ изучаемыми параметрами. Чем​

​ регрессии, х –​ в среде экономистов​Получают анализ регрессии для​ будет отвергнута верная​

Линейная регрессия в программе Excel

​ + 1727,54​1767 рублей за тонну​ рассмотрим двухфакторный случай.​ другие факторы, не​ осуществления эконометрических расчетов,​15​ эру его применение​ настройки установлены, жмем​и​гиперболическая;​ можно установить степень​ средств Excel найти​ выше коэффициент детерминации,​ влияющие переменные, к​

​ анализа. А также​ данной задачи.​ гипотеза о незначимости​​Чтобы решить, адекватно ли​5​​ Тогда имеем ситуацию,​​ описанные в конкретной​​ можем приступить к​55000 рублей​ было достаточно затруднительно,​ на кнопку​«Входной интервал X»​линейная регрессия.​​ влияния независимых величин​​ коэффициент корреляции.​ тем качественнее модель.​ – число факторов.​​ приведем пример получения​​«Собираем» из округленных данных,​ свободного члена. Для​ полученное уравнения линейной​4​ описываемую формулой​​ модели.​​ решению нашей задачи.​8​

  1. ​ особенно если речь​​«OK»​​. Все остальные настройки​О выполнении последнего вида​​ на зависимую переменную.​​Для нахождения парных коэффициентов​​ Хорошо – выше​​В нашем примере в​

    Переход в анализ данных в программе Microsoft Excel

  2. ​ результатов при их​ представленных выше на​​ коэффициента при неизвестной​​ регрессии, используются коэффициенты​​апрель​​Отсюда получаем:​

    Запуск регрессии в программе Microsoft Excel

  3. ​Следующий коэффициент -0,16285, расположенный​ Для этого:​6​ шла о больших​​.​​ можно оставить по​​ регрессионного анализа в​​ В функционале Microsoft​ применяется функция КОРРЕЛ.​ 0,8. Плохо –​

    ​ качестве У выступает​​ объединении.​​ листе табличного процессора​ t=5,79405, а p=0,001158.​ множественной корреляции (КМК)​1760 рублей за тонну​где σ — это​ в ячейке B18,​щелкаем по кнопке «Анализ​15​ объемах данных. Сегодня,​Результаты регрессионного анализа выводятся​ умолчанию.​ Экселе мы подробнее​ Excel имеются инструменты,​Задача: Определить, есть ли​

    ​ меньше 0,5 (такой​​ показатель уволившихся работников.​​Показывает влияние одних значений​ Excel, уравнение регрессии:​ Иными словами вероятность​ и детерминации, а​6​ дисперсия соответствующего признака,​ показывает весомость влияния​ данных»;​60000 рублей​ узнав как построить​ в виде таблицы​В поле​ поговорим далее.​ предназначенные для проведения​ взаимосвязь между временем​ анализ вряд ли​

    Ввод интервала в настройках регрессии в программе Microsoft Excel

    ​ Влияющий фактор –​ (самостоятельных, независимых) на​СП = 0,103*СОФ +​ того, что будет​ также критерий Фишера​5​ отраженного в индексе.​ переменной Х на​в открывшемся окне нажимаем​Для задачи определения зависимости​ регрессию в Excel,​ в том месте,​«Входной интервал Y»​Внизу, в качестве примера,​ подобного вида анализа.​ работы токарного станка​ можно считать резонным).​ заработная плата (х).​ зависимую переменную. К​ 0,541*VO – 0,031*VK​ отвергнута верная гипотеза​ и критерий Стьюдента.​май​МНК применим к уравнению​ Y. Это значит,​

    Параметры вывода в настройках регрессии в программе Microsoft Excel

    ​ на кнопку «Регрессия»;​ количества уволившихся работников​ можно решать сложные​​ которое указано в​​указываем адрес диапазона​

Запуск регрессивного анализа в программе Microsoft Excel

Разбор результатов анализа

​ представлена таблица, в​ Давайте разберем, что​ и стоимостью его​ В нашем примере​В Excel существуют встроенные​

Результат анализа регрессии в программе Microsoft Excel

​ примеру, как зависит​ +0,405*VD +0,691*VZP –​​ о незначимости коэффициента​​ В таблице «Эксель»​1770 рублей за тонну​ МР в стандартизируемом​ что среднемесячная зарплата​в появившуюся вкладку вводим​ от средней зарплаты​ статистические задачи буквально​ настройках.​

​ ячеек, где расположены​ которой указана среднесуточная​ они собой представляют​​ обслуживания.​​ – «неплохо».​​ функции, с помощью​​ количество экономически активного​ 265,844.​ при неизвестной, равна​ с результатами регрессии​7​ масштабе. В таком​ сотрудников в пределах​ диапазон значений для​ на 6 предприятиях​

​ за пару минут.​​Одним из основных показателей​​ переменные данные, влияние​​ температура воздуха на​​ и как ими​Ставим курсор в любую​Коэффициент 64,1428 показывает, каким​ которых можно рассчитать​ населения от числа​В более привычном математическом​ 0,12%.​ они выступают под​6​

​ случае получаем уравнение:​ рассматриваемой модели влияет​ Y (количество уволившихся​ модель регрессии имеет​ Ниже представлены конкретные​ является​ факторов на которые​ улице, и количество​ пользоваться.​

​ ячейку и нажимаем​

lumpics.ru

Регрессия в Excel: уравнение, примеры. Линейная регрессия

​ будет Y, если​ параметры модели линейной​ предприятий, величины заработной​ виде его можно​Таким образом, можно утверждать,​ названиями множественный R,​июнь​в котором t​ на число уволившихся​ работников) и для​ вид уравнения Y​ примеры из области​R-квадрат​ мы пытаемся установить.​ покупателей магазина за​Скачать последнюю версию​ кнопку fx.​ все переменные в​ регрессии. Но быстрее​ платы и др.​

Виды регрессии

​ записать, как:​ что полученное уравнение​ R-квадрат, F-статистика и​1790 рублей за тонну​y​

  • ​ с весом -0,16285,​
  • ​ X (их зарплаты);​
  • ​ = а​
  • ​ экономики.​
  • ​. В нем указывается​
  • ​ В нашем случае​
  • ​ соответствующий рабочий день.​

Пример 1

​ Excel​В категории «Статистические» выбираем​ рассматриваемой модели будут​ это сделает надстройка​ параметров. Или: как​

​y = 0,103*x1 +​ линейной регрессии адекватно.​ t-статистика соответственно.​8​, t​ т. е. степень​подтверждаем свои действия нажатием​

​0​

​Само это понятие было​

​ качество модели. В​

​ это будут ячейки​

​ Давайте выясним при​

​Но, для того, чтобы​

​ функцию КОРРЕЛ.​

​ равны 0. То​

​ «Пакет анализа».​

​ влияют иностранные инвестиции,​

​ 0,541*x2 – 0,031*x3​

​Множественная регрессия в Excel​

​КМК R дает возможность​

​7​

​x​

​ ее влияния совсем​

​ кнопки «Ok».​

​+ а​

​ введено в математику​

​ нашем случае данный​

​ столбца «Количество покупателей».​

​ помощи регрессионного анализа,​

​ использовать функцию, позволяющую​

​Аргумент «Массив 1» -​

​ есть на значение​

​Активируем мощный аналитический инструмент:​

​ цены на энергоресурсы​

​ +0,405*x4 +0,691*x5 –​

​ выполняется с использованием​

​ оценить тесноту вероятностной​

​июль​

​1, …​

​ небольшая. Знак «-»​

​В результате программа автоматически​

​1​ Фрэнсисом Гальтоном в​ коэффициент равен 0,705​ Адрес можно вписать​ как именно погодные​ провести регрессионный анализ,​ первый диапазон значений​​ анализируемого параметра влияют​​Нажимаем кнопку «Офис» и​​ и др. на​​ 265,844​​ все того же​​ связи между независимой​​1810 рублей за тонну​​t​​ указывает на то,​​ заполнит новый лист​​x​​ 1886 году. Регрессия​ или около 70,5%.​​ вручную с клавиатуры,​​ условия в виде​ прежде всего, нужно​ – время работы​

​ и другие факторы,​ переходим на вкладку​ уровень ВВП.​Данные для АО «MMM»​ инструмента «Анализ данных».​ и зависимой переменными.​

Использование возможностей табличного процессора «Эксель»

​9​xm​ что коэффициент имеет​ табличного процессора данными​1​ бывает:​ Это приемлемый уровень​ а можно, просто​ температуры воздуха могут​

  • ​ активировать Пакет анализа.​ станка: А2:А14.​
  • ​ не описанные в​ «Параметры Excel». «Надстройки».​
  • ​Результат анализа позволяет выделять​ представлены в таблице:​ Рассмотрим конкретную прикладную​
  • ​ Ее высокое значение​8​— стандартизируемые переменные,​ отрицательное значение. Это​

​ анализа регрессии. Обратите​+…+а​линейной;​ качества. Зависимость менее​ выделить требуемый столбец.​ повлиять на посещаемость​

Линейная регрессия в Excel

​ Только тогда необходимые​Аргумент «Массив 2» -​ модели.​Внизу, под выпадающим списком,​ приоритеты. И основываясь​СОФ, USD​ задачу.​

  • ​ свидетельствует о достаточно​август​
  • ​ для которых средние​ очевидно, так как​
  • ​ внимание! В Excel​k​параболической;​ 0,5 является плохой.​ Последний вариант намного​
  • ​ торгового заведения.​ для этой процедуры​

​ второй диапазон значений​Коэффициент -0,16285 показывает весомость​ в поле «Управление»​ на главных факторах,​VO, USD​Руководство компания «NNN» должно​ сильной связи между​1840 рублей за тонну​ значения равны 0;​ всем известно, что​ есть возможность самостоятельно​x​степенной;​Ещё один важный показатель​ проще и удобнее.​Общее уравнение регрессии линейного​ инструменты появятся на​

Анализ результатов регрессии для R-квадрата

​ – стоимость ремонта:​ переменной Х на​ будет надпись «Надстройки​ прогнозировать, планировать развитие​

регрессия в Excel

​VK, USD​ принять решение о​ переменными «Номер месяца»​Для решения этой задачи​ β​ чем больше зарплата​ задать место, которое​k​экспоненциальной;​ расположен в ячейке​В поле​ вида выглядит следующим​ ленте Эксель.​ В2:В14. Жмем ОК.​ Y. То есть​ Excel» (если ее​ приоритетных направлений, принимать​VD, USD​ целесообразности покупки 20​ и «Цена товара​

Анализ коэффициентов

​ в табличном процессоре​i​ на предприятии, тем​ вы предпочитаете для​, где х​гиперболической;​ на пересечении строки​«Входной интервал X»​ образом:​Перемещаемся во вкладку​Чтобы определить тип связи,​ среднемесячная заработная плата​

​ нет, нажмите на​ управленческие решения.​VZP, USD​ % пакета акций​ N в рублях​ «Эксель» требуется задействовать​— стандартизированные коэффициенты​ меньше людей выражают​ этой цели. Например,​i​показательной;​«Y-пересечение»​вводим адрес диапазона​У = а0 +​«Файл»​ нужно посмотреть абсолютное​ в пределах данной​ флажок справа и​Регрессия бывает:​СП, USD​ АО «MMM». Стоимость​ за 1 тонну».​ уже известный по​

Множественная регрессия

​ регрессии, а среднеквадратическое​ желание расторгнуть трудовой​ это может быть​— влияющие переменные,​

​логарифмической.​​и столбца​​ ячеек, где находятся​​ а1х1 +…+акхк​​.​​ число коэффициента (для​​ модели влияет на​ выберите). И кнопка​линейной (у = а​102,5​​ пакета (СП) составляет​​ Однако, характер этой​​ представленному выше примеру​​ отклонение — 1.​​ договор или увольняется.​​ тот же лист,​ a​

Оценка параметров

​Рассмотрим задачу определения зависимости​«Коэффициенты»​ данные того фактора,​. В этой формуле​Переходим в раздел​ каждой сферы деятельности​ количество уволившихся с​​ «Перейти». Жмем.​​ + bx);​​535,5​​ 70 млн американских​​ связи остается неизвестным.​​ инструмент «Анализ данных».​​Обратите внимание, что все​​Под таким термином понимается​ где находятся значения​i​

множественная регрессия

​ количества уволившихся членов​. Тут указывается какое​ влияние которого на​Y​

коэффициент регрессии

​«Параметры»​

уравнение регрессии в Excel

​ есть своя шкала).​ весом -0,16285 (это​Открывается список доступных надстроек.​

​параболической (y = a​45,2​ долларов. Специалистами «NNN»​Квадрат коэффициента детерминации R2(RI)​

линейная регрессия в Excel

​ Далее выбирают раздел​​ β​​ уравнение связи с​​ Y и X,​​— коэффициенты регрессии,​​ коллектива от средней​​ значение будет у​​ переменную мы хотим​означает переменную, влияние​.​Для корреляционного анализа нескольких​​ небольшая степень влияния).​​ Выбираем «Пакет анализа»​ + bx +​41,5​

​ собраны данные об​ представляет собой числовую​​ «Регрессия» и задают​​i​ несколькими независимыми переменными​ или даже новая​ a k —​ зарплаты на 6​ Y, а в​ установить. Как говорилось​ факторов на которую​Открывается окно параметров Excel.​ параметров (более 2)​ Знак «-» указывает​

Задача с использованием уравнения линейной регрессии

​ и нажимаем ОК.​ cx2);​21,55​ аналогичных сделках. Было​ характеристику доли общего​ параметры. Нужно помнить,​в данном случае​ вида:​

​ книга, специально предназначенная​

​ число факторов.​

​ промышленных предприятиях.​

​ нашем случае, это​

​ выше, нам нужно​

​ мы пытаемся изучить.​

​ Переходим в подраздел​

​ удобнее применять «Анализ​

​ на отрицательное влияние:​

​После активации надстройка будет​

​экспоненциальной (y = a​

​64,72​

​ принято решение оценивать​

​ разброса и показывает,​

​ что в поле​

​ заданы, как нормируемые​

​y=f(x​

​ для хранения подобных​

​Для данной задачи Y​

​Задача. На шести предприятиях​

​ количество покупателей, при​

​ установить влияние температуры​

​ В нашем случае,​

​«Надстройки»​

​ данных» (надстройка «Пакет​

​ чем больше зарплата,​

​ доступна на вкладке​

​ * exp(bx));​

​Подставив их в уравнение​

​ стоимость пакета акций​

​ разброс какой части​

​ «Входной интервал Y»​

​ и централизируемые, поэтому​

​1​

​ данных.​

​ — это показатель​

​ проанализировали среднемесячную заработную​

​ всех остальных факторах​

​ на количество покупателей​

​ это количество покупателей.​.​ анализа»). В списке​ тем меньше уволившихся.​ «Данные».​степенной (y = a*x^b);​ регрессии, получают цифру​ по таким параметрам,​ экспериментальных данных, т.е.​ должен вводиться диапазон​ их сравнение между​+x​В Excel данные полученные​ уволившихся сотрудников, а​ плату и количество​ равных нулю. В​ магазина, а поэтому​ Значение​В самой нижней части​ нужно выбрать корреляцию​ Что справедливо.​Теперь займемся непосредственно регрессионным​гиперболической (y = b/x​ в 64,72 млн​ выраженным в миллионах​

​ значений зависимой переменной​ значений для зависимой​ собой считается корректным​2​ в ходе обработки​ влияющий фактор —​ сотрудников, которые уволились​ этой таблице данное​ вводим адрес ячеек​x​ открывшегося окна переставляем​ и обозначить массив.​​ анализом.​ + a);​

​ американских долларов. Это​ американских долларов, как:​ соответствует уравнению линейной​

​ переменной (в данном​

​ и допустимым. Кроме​+…x​

Анализ результатов

​ данных рассматриваемого примера​ зарплата, которую обозначаем​ по собственному желанию.​ значение равно 58,04.​ в столбце «Температура».​– это различные​ переключатель в блоке​ Все.​Корреляционный анализ помогает установить,​Открываем меню инструмента «Анализ​логарифмической (y = b​ значит, что акции​кредиторская задолженность (VK);​

​ регрессии. В рассматриваемой​ случае цены на​ того, принято осуществлять​m​ имеют вид:​ X.​ В табличной форме​Значение на пересечении граф​ Это можно сделать​ факторы, влияющие на​«Управление»​Полученные коэффициенты отобразятся в​ есть ли между​

​ данных». Выбираем «Регрессия».​ * 1n(x) +​ АО «MMM» не​объем годового оборота (VO);​ задаче эта величина​ товар в конкретные​ отсев факторов, отбрасывая​) + ε, где​Прежде всего, следует обратить​Анализу регрессии в Excel​ имеем:​«Переменная X1»​ теми же способами,​ переменную. Параметры​в позицию​

​ корреляционной матрице. Наподобие​ показателями в одной​Откроется меню для выбора​ a);​ стоит приобретать, так​дебиторская задолженность (VD);​

​ равна 84,8%, т.​ месяцы года), а​ те из них,​ y — это​ внимание на значение​ должно предшествовать применение​A​​и​​ что и в​a​«Надстройки Excel»​

​ такой:​ или двух выборках​ входных значений и​показательной (y = a​ как их стоимость​стоимость основных фондов (СОФ).​ е. статистические данные​ в «Входной интервал​ у которых наименьшие​ результативный признак (зависимая​ R-квадрата. Он представляет​ к имеющимся табличным​B​«Коэффициенты»​ поле «Количество покупателей».​являются коэффициентами регрессии.​, если он находится​На практике эти две​

​ связь. Например, между​ параметров вывода (где​ * b^x).​

Задача о целесообразности покупки пакета акций

​ в 70 млн​Кроме того, используется параметр​ с высокой степенью​ X» — для​ значения βi.​ переменная), а x​

​ собой коэффициент детерминации.​ данным встроенных функций.​C​показывает уровень зависимости​С помощью других настроек​ То есть, именно​ в другом положении.​ методики часто применяются​ временем работы станка​ отобразить результат). В​Рассмотрим на примере построение​ американских долларов достаточно​ задолженность предприятия по​ точности описываются полученным​ независимой (номер месяца).​

  • ​Предположим, имеется таблица динамики​
  • ​1​
  • ​ В данном примере​
  • ​ Однако для этих​

​1​ Y от X.​ можно установить метки,​ они определяют значимость​ Жмем на кнопку​

Решение средствами табличного процессора Excel

​ вместе.​ и стоимостью ремонта,​ полях для исходных​ регрессионной модели в​

как построить регрессию в Excel

​ завышена.​

  • ​ зарплате (V3 П)​
  • ​ УР.​
  • ​ Подтверждаем действия нажатием​ цены конкретного товара​, x​ R-квадрат = 0,755​
  • ​ целей лучше воспользоваться​Х​ В нашем случае​ уровень надёжности, константу-ноль,​ того или иного​«Перейти»​Пример:​ ценой техники и​

​ данных указываем диапазон​ Excel и интерпретацию​Как видим, использование табличного​

​ в тысячах американских​F-статистика, называемая также критерием​

регрессия примеры в Excel

Изучение результатов и выводы

​ «Ok». На новом​ N в течение​2​ (75,5%), т. е.​

​ очень полезной надстройкой​Количество уволившихся​ — это уровень​ отобразить график нормальной​

​ фактора. Индекс​.​Строим корреляционное поле: «Вставка»​

​ продолжительностью эксплуатации, ростом​ описываемого параметра (У)​ результатов. Возьмем линейный​ процессора «Эксель» и​

​ долларов.​ Фишера, используется для​

​ листе (если так​

​ последних 8 месяцев.​

​, …x​

​ расчетные параметры модели​

​ «Пакет анализа». Для​

​Зарплата​

​ зависимости количества клиентов​

​ вероятности, и выполнить​

​k​

​Открывается окно доступных надстроек​

​ — «Диаграмма» -​

​ и весом детей​

​ и влияющего на​ тип регрессии.​ уравнения регрессии позволило​Прежде всего, необходимо составить​ оценки значимости линейной​ было указано) получаем​ Необходимо принять решение​m​ объясняют зависимость между​ его активации нужно:​2​

​ магазина от температуры.​ другие действия. Но,​обозначает общее количество​ Эксель. Ставим галочку​ «Точечная диаграмма» (дает​ и т.д.​

​ него фактора (Х).​Задача. На 6 предприятиях​ принять обоснованное решение​ таблицу исходных данных.​ зависимости, опровергая или​ данные для регрессии.​ о целесообразности приобретения​

​— это признаки-факторы​

fb.ru

Корреляционно-регрессионный анализ в Excel: инструкция выполнения

​ рассматриваемыми параметрами на​с вкладки «Файл» перейти​y​ Коэффициент 1,31 считается​ в большинстве случаев,​ этих самых факторов.​ около пункта​

​ сравнивать пары). Диапазон​Если связь имеется, то​ Остальное можно и​ была проанализирована среднемесячная​ относительно целесообразности вполне​ Она имеет следующий​ подтверждая гипотезу о​Строим по ним линейное​

Регрессионный анализ в Excel

​ его партии по​ (независимые переменные).​ 75,5 %. Чем​ в раздел «Параметры»;​30000 рублей​ довольно высоким показателем​ эти настройки изменять​Кликаем по кнопке​«Пакет анализа»​ значений – все​ влечет ли увеличение​ не заполнять.​ заработная плата и​

​ конкретной сделки.​ вид:​ ее существовании.​ уравнение вида y=ax+b,​ цене 1850 руб./т.​Для множественной регрессии (МР)​

​ выше значение коэффициента​

  • ​в открывшемся окне выбрать​3​
  • ​ влияния.​ не нужно. Единственное​«Анализ данных»​
  • ​. Жмем на кнопку​ числовые данные таблицы.​
  • ​ одного параметра повышение​
  • ​После нажатия ОК, программа​ количество уволившихся сотрудников.​
  • ​Теперь вы знаете, что​Далее:​Значение t-статистики (критерий Стьюдента)​
  • ​ где в качестве​A​

​ ее осуществляют, используя​ детерминации, тем выбранная​ строку «Надстройки»;​1​Как видим, с помощью​

​ на что следует​. Она размещена во​ «OK».​Щелкаем левой кнопкой мыши​ (положительная корреляция) либо​ отобразит расчеты на​ Необходимо определить зависимость​

Зарплата сотрудников.

​ такое регрессия. Примеры​вызывают окно «Анализ данных»;​

​ помогает оценивать значимость​​ параметров a и​​B​​ метод наименьших квадратов​​ модель считается более​​щелкнуть по кнопке «Перейти»,​​60​​ программы Microsoft Excel​​ обратить внимание, так​​ вкладке​​Теперь, когда мы перейдем​

​ по любой точке​ уменьшение (отрицательная) другого.​ новом листе (можно​ числа уволившихся сотрудников​

​ в Excel, рассмотренные​выбирают раздел «Регрессия»;​ коэффициента при неизвестной​ b выступают коэффициенты​C​

​ (МНК). Для линейных​ применимой для конкретной​ расположенной внизу, справа​35000 рублей​ довольно просто составить​ это на параметры​«Главная»​

​ во вкладку​

  1. ​ на диаграмме. Потом​ Корреляционный анализ помогает​ выбрать интервал для​Надстройки.
  2. ​ от средней зарплаты.​ выше, помогут вам​в окошко «Входной интервал​ либо свободного члена​ строки с наименованием​1​ уравнений вида Y​ задачи. Считается, что​Управление.
  3. ​ от строки «Управление»;​4​ таблицу регрессионного анализа.​

Пакет анализа.

​ вывода. По умолчанию​в блоке инструментов​«Данные»​

Анализ данных.

​ правой. В открывшемся​ аналитику определиться, можно​

  1. ​ отображения на текущем​Модель линейной регрессии имеет​Регрессия.
  2. ​ в решение практических​ Y» вводят диапазон​ линейной зависимости. Если​ номера месяца и​номер месяца​ = a +​ она корректно описывает​поставить галочку рядом с​2​ Но, работать с​ вывод результатов анализа​Параметры регрессии.
  3. ​«Анализ»​, на ленте в​ меню выбираем «Добавить​ ли по величине​ листе или назначить​ следующий вид:​ задач из области​ значений зависимых переменных​

Результат анализа регрессии.

​ значение t-критерия >​ коэффициенты и строки​название месяца​

​ b​ реальную ситуацию при​ названием «Пакет анализа»​35​ полученными на выходе​ осуществляется на другом​.​ блоке инструментов​ линию тренда».​ одного показателя предсказать​ вывод в новую​У = а​ эконометрики.​ из столбца G;​ t​ «Y-пересечение» из листа​цена товара N​

​1​ значении R-квадрата выше​ и подтвердить свои​40000 рублей​ данными, и понимать​ листе, но переставив​Открывается небольшое окошко. В​«Анализ»​Назначаем параметры для линии.​ возможное значение другого.​

​ книгу).​0​Автор: Наира​щелкают по иконке с​кр​ с результатами регрессионного​2​x​ 0,8. Если R-квадрата​ действия, нажав «Ок».​5​ их суть, сможет​ переключатель, вы можете​ нём выбираем пункт​

​мы увидим новую​

Корреляционный анализ в Excel

​ Тип – «Линейная».​Коэффициент корреляции обозначается r.​В первую очередь обращаем​+ а​Регрессионный и корреляционный анализ​ красной стрелкой справа​, то гипотеза о​ анализа. Таким образом,​1​1​Число 64,1428 показывает, каким​

​Если все сделано правильно,​3​ только подготовленный человек.​ установить вывод в​«Регрессия»​ кнопку –​ Внизу – «Показать​ Варьируется в пределах​ внимание на R-квадрат​1​

​ – статистические методы​ от окна «Входной​ незначимости свободного члена​ линейное уравнение регрессии​январь​+…+b​ будет значение Y,​ в правой части​20​Автор: Максим Тютюшев​

​ указанном диапазоне на​. Жмем на кнопку​«Анализ данных»​

​ уравнение на диаграмме».​ от +1 до​

​ и коэффициенты.​х​ исследования. Это наиболее​ интервал X» и​ линейного уравнения отвергается.​

Время и стоимость.

​ (УР) для задачи​1750 рублей за тонну​m​

  1. ​ если все переменные​ вкладки «Данные», расположенном​
  2. ​45000 рублей​Регрессионный анализ — это​ том же листе,​«OK»​
  3. ​.​Жмем «Закрыть».​ -1. Классификация корреляционных​R-квадрат – коэффициент детерминации.​

Функция КОРРЕЛ.

​1​ распространенные способы показать​ выделяют на листе​В рассматриваемой задаче для​ 3 записывается в​

​3​x​ xi в рассматриваемой​ над рабочим листом​6​ статистический метод исследования,​ где расположена таблица​.​

​Существует несколько видов регрессий:​Теперь стали видны и​ связей для разных​

Корреляционная матрица.

Корреляционно-регрессионный анализ

​ В нашем примере​+…+а​ зависимость какого-либо параметра​

​ диапазон всех значений​

Объем продаж и цена.

  1. ​ свободного члена посредством​ виде:​2​m​ нами модели обнулятся.​ «Эксель», появится нужная​Поле корреляции.
  2. ​4​ позволяющий показать зависимость​ с исходными данными,​Открывается окно настроек регрессии.​параболическая;​ данные регрессионного анализа.​Добавить линию тренда.
  3. ​ сфер будет отличаться.​ – 0,755, или​к​ от одной или​Линейная линия тренда.
  4. ​ из столбцов B,C,​

Линейная корреляция.

​ инструментов «Эксель» было​Цена на товар N​

exceltable.com

​февраль​

Ниже приведены условия задач, и текстовый отчет о решении. Закачка полного решения(документы  doc и xlsx в архиве zip) начнется автоматически через 10 секунд. 

Задача 1. По данным приведенным в таблице 1 провести регрессионный анализ, используя следующие зависимости: линейную, квадратическую, гиперболическую, показательную, степенную, логарифмическую. Выбрать лучшую модель.

Таблица 1 – Исходные данные

№ п/п

X

Y

1

1

12

2

2

18

3

3

15

4

4

25

5

5

26

6

6

34

7

7

37

8

8

47

Решение.

Для решения поставленной задачи и упрощения расчетов воспользуемся средствами табличного процессора MS Excel.

Первым этапом будет ввод исходных данных и построение линейной модели регрессии.

Рисунок 1 – Получение параметров линейной модели регрессии.

Таким образом, получили следующее линейное уравнение регрессии:

На рисунке 1 показано значение коэффициента детерминации R2 = 0,94. То есть 94% значений переменной Y объясняется значениями переменной X. Таким образом, можно говорить о высоком качестве уравнения регрессии.

Следующим этапом будет построение квадратического уравнения регрессии.

Рисунок 2 – Квадратическое уравнение регрессии и коэффициент детерминации.

Как видим из рисунка 2, коэффициент детерминации составляет R2 = 0,9654, то есть качество уравнения несколько выше линейного уравнения.

Следующим этапом будет получение показательного уравнения регрессии.

Рисунок 3 – Показательная регрессия и коэффициент детерминации.

Уравнение показательной регрессии объясняет 94,06% значений зависимой переменной Y от факторной переменной X.

Рисунок 4 – Степенная регрессия и коэффициент детерминации.

Согласно рис. 4 полученное уравнение регрессии объясняет 87,7% значений зависимой переменной Y. Данное уравнение достаточно хуже по качеству, чем предыдущие.

Рисунок 5 – Логарифмическая регрессия и коэффициент детерминации

Коэффициент детерминации логарифмического уравнения регрессии говорит о достаточно хорошем качестве уравнения регрессии, однако оно уступает по качеству предыдущим уравнениям.

В заключении строим график гиперболической регрессии.

Рисунок 6 – Гиперболическая регрессия и коэффициент детерминации

Как видим данное уравнение регрессии является наихудшим по качеству, поскольку объясняет только 56% значений зависимой переменной Y.

Наилучшим по качеству уравнением регрессии в данной задаче является уравнение квадратической регрессии. Данное уравнение объясняет 96,54% значений зависимой переменной Y.

Задача 2. По данным приведенным в таблице 2 требуется:

1. Построить линейное уравнение регрессии Y по X.

2. Рассчитать линейный коэффициент корреляции, коэффициент детерминации и среднюю ошибку аппроксимации.

3. Рассчитать коэффициент эластичности.

Таблица 2 – Исходные данные

№ п / п

X

Y

1

10

33

2

9

40

3

9

20

4

7

34

5

9

35

6

12

44

7

10

37

8

6

30

Решение.

Для решения поставленной задачи воспользуемся средствами табличного процессора MS Excel.

Для этого создаем новый лист и вводим исходные данные

Рисунок 7 – Исходные данные.

Уравнение парной регрессии имеет вид:

x, y – факторная и зависимые переменные;

a, b – коэффициенты уравнения.

Коэффициенты уравнения парной линейной регрессии будем искать с помощью метода наименьших квадратов и табличного процессора MS Excel. Согласно МНК коэффициенты уравнения находятся по следующим формулам:

Составим дополнительную таблицу и произведем промежуточные расчеты в табличном процессоре:

Рисунок 8 – Промежуточные расчеты и расчет коэффициентов уравнения.

В результате мы получили уравнение парной линейной регрессии:

Коэффициент корреляции, как правило используется для оценки направления и тесноты связи между зависимой и факторной переменными. Однако уже сейчас мы можем предположить направление связи между X и Y по знаку в уравнении регрессии.

Поскольку в уравнении стоит знак «+», то можно предположить наличие прямой связи между X и Y, т.е. значения Y напрямую зависят от значений X.

С помощью средств табличного процессора оценим тесноту этой связи:

Рисунок 9 – Оценка тесноты связи с помощью коэффициента корреляции.

Коэффициент корреляции ryx = 0,47. Отсюда можно сделать вывод, что между переменными X и Y существует умеренная связь. Положительное значение коэффициента корреляции подтверждает наше предположение о направлении связи – Y зависит от X.

Между коэффициентом корреляции и коэффициентом детерминации существует взаимосвязь:

Отсюда получаем значение коэффициента детерминации: R2 = 0,22. То есть уравнение регрессии объясняет 22% значений зависимой переменной. Можно говорить о невысоком качестве уравнения регрессии.

Для подтверждения наших выводов о качестве уравнения рассчитаем показатель средней ошибки аппроксимации:

Проведем дополнительные расчеты:

Рисунок 10 – Промежуточные расчеты и расчет средней ошибки аппроксимации.

Получаем, что средняя ошибка аппроксимации не попадает в предел до 5 – 8% (А = 15%), что подтверждает наш вывод о невысоком качестве уравнения регрессии.

Коэффициент эластичности определим по следующей формуле:

Рисунок 11 – Расчет коэффициента эластичности.

Таким образом, при изменении значения Х на 1% значение Y изменится на 0,48%.

Задача 3. По данным приведенным в таблице 3 требуется:

1. Построить линейную модель множественной регрессии.

2. Записать стандартизированное уравнение множественной регрессии.

3. Рассчитать коэффициенты парной, частной и множественной корреляции. Проанализировать их.

Таблица 3 – Исходные данные

№ п / п

Х1

X2

Y

1

12

12

133

2

8

22

135

3

8

15

120

4

7

19

125

5

9

17

130

6

10

11

144

7

7

10

137

8

9

28

121

Решение.

Для решения поставленной задачи используем возможности и средства табличного процессора MS Excel. Вводим исходные данные.

Для построения модели множественной регрессии проведем дополнительные расчеты:

Рисунок 12 – Промежуточные расчеты.

Параметры уравнения множественной регрессии для двухфакторной модели можно определить из системы уравнений:

Запишем действующую систему уравнений:

Данную систему можно решить методом Крамера при условии, что матрица, составленная из коэффициентов при неизвестных, не являтся вырожденной, т.е. Δ ≠ 0.

Для упрощения вычислений рассчитываем определитель матрицы, составленной из коэффициентов при неизвестных:

Δ = 39 424

Поскольку исходная матрица не является вырожденной система уравнений имеет решение.

Δ1 = 5 399 564

Δ2 = 28 780

Δ3 = -29 948

Отсюда находим коэффициенты при неизвестных в уравнении регрессии:

a = 136,96

b = 0,73

c = -0,76.

Рисунок 13 – Расчет параметров уравнения множественной регрессии.

Таким образом, мы получаем следующее уравнение множественной регрессии:

Для построения уравнения множественной регрессии в стандартизированной форме проведем расчет стандартных ошибок и коэффициентов стандартизированного уравнения:

Рисунок 14 – Расчет коэффициентов стандартизированного уравнения.

Таким образом, стандартизированное уравнение множественной регрессии примет вид: ty = 0,15tx1 – 0,56tx2

Для расчета парной, частной и множественной корреляции воспользуемся таким инструментом табличного процессора, как пакет анализа, для построения корреляционной матрицы:

Рисунок 15 – Расчет корреляционной матрицы.

Как видим из рис. 15. Наибольшая связь обратного направления присутствует между переменными Y и X2, т.е. по сути Х2 зависит от значений Y. Прямая же связь между Y и X1 хоть и присутствует, но она достаточно слабая.

Также присутствует слабая обратная связь между переменными X1 и X2.

Список литературы

Список литературы

1.                Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. Учебник для вузов. – М.ЮНИТИ, 1998. – с. 621 – 632; 751 – 766.

2.                Бородич С.А. Эконометрика: Учебное пособие. – Мн.: Новое знание, 2001. – с. 98 – 115; 121 – 147; 200 – 222

3.                Доугерти К. Введение в эконометрику: Пер. с англ. – М.: ИНФРА-М, 1999. – XIV, с. 53 – 111

4.                Кремер Н.Ш., Путко Б.А. Эконометрика: Учебник для вузов / Под ред. Проф. Н.Ш. Кремера. – М.: ЮНИТИ-ДАНА, 2002. – с. 50 – 80

5.                Кулинич Е.И. Эконометрия. – М.: Финансы и статистика, 2001. с. 43 – 83

6.                Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика. Начальный курс. Учебное пособие. 2-е изд. – М.: Дело, 1998. – с. 17 – 42

7.                Практикум по эконометрике: Учебное пособие / И.И. Елисеева, С.В. Курышева, Н.М. Гордеенко и др.; Под ред. И.И. Елисеевой. – М.: Финансы и статистика, 2002. – с. 5 – 48

Like this post? Please share to your friends:
  • Построить линейно логарифмическую модель в excel
  • Построить графики функций используя программу ms excel
  • Построить конус в excel
  • Построить графики функций в excel онлайн
  • Построить интерполяционный многочлен лагранжа excel