Построить графики тригонометрических функций в excel

Использование диаграмм Excel — хороший способ отображения графиков математических и тригонометрических функций. В этой статье описываются два метода построения графика функции: с одной переменной с помощью точечной диаграммы и с двумя переменными с помощью 3D-диаграммы.

Построение графиков математических функций с одной переменной

Точечная диаграмма (известная как диаграмма XY в предыдущих версиях Excel) отображает точку (маркер) для каждой пары значений. Например, на рис. 140.1 показан график функции SIN. На диаграмму наносятся рассчитанные значения у для значений х (в радианах) от -5 до 5 с инкрементом (приращением) 0,5. Каждая пара значений х и у выступает в качестве точки данных в диаграмме, и эти точки связаны линиями.

Рис. 140.1. Диаграмма представляет собой график функции SIN(x)

Рис. 140.1. Диаграмма представляет собой график функции SIN(x)

Функция выражается в таком виде: у = SIN(x).

Соответствующая формула в ячейке В2 (которая копируется в ячейки, расположенные ниже) будет следующей: =SIN(A2).

Чтобы создать эту диаграмму, выполните следующие действия.

  1. Выделите диапазон А1:В22.
  2. Выберите Вставка ► Диаграммы ► Точечная ► Точечная с прямыми отрезками и маркерами.
  3. Выберите макет диаграммы, который вам нравится, а затем настройте его.

Измените значения в столбце А для построения графика функции при различных значениях х. И, конечно, вы можете использовать любую формулу с одной переменной в столбце В. Вот несколько примеров, которые приводят к построению интересных графиков:
=SIN(ПИ()*A2)*(ПИ()*A2)
=SIN(A2)/A2
=SIN(A2^3)*COS(A2^2)
=НОРМ.РАСП(A2;0;1;ЛОЖЬ)

Чтобы получить более точную диаграмму, увеличьте количество значений для построения графика и сделайте приращение в столбце А меньше.

Вы можете использовать онлайн наш файл примера графиков математических функций с одной переменной, расположенной в Excel Web Apps при помощи Skydrive, и внести свои данные (изменения не будут сохраняться) или скачать себе на компьютер, для чего необходимо кликнуть по иконке Excel в правом нижнем углу. Это бесплатно 🙂

Построение графиков математических функций с двумя переменными

Вы также можете строить графики функций, которые используют две переменные. Например, следующая функция рассчитывает z для различных значений двух переменных (х и у): =SIN($A2)*COS($B1)

На рис. 140.2 приведена поверхностная диаграмма, которая рассчитывает значение z для 21 значения х в диапазоне от -3 до 0 и для 21 значения у в диапазоне от 2 до 5. Для х и у используется приращение 0,15.

Рис. 140.2. Использование трехмерной поверхностной диаграммы для построения графика функции с двумя переменными

Рис. 140.2. Использование трехмерной поверхностной диаграммы для построения графика функции с двумя переменными

Значения х находятся в диапазоне А2:А22, а значения у — в диапазоне B1:V1.

Формула в ячейке В2 копируется в другие ячейки таблицы и имеет следующий вид: =SIN($A2)*C0S(B$1).

Чтобы создать диаграмму, выполните приведенные ниже действия.

  1. Выделите диапазон A1:V22.
  2. Выберите Вставка ► Диаграммы ► Другие ► Поверхность.
  3. Выберите макет диаграммы, который вам нравится, а затем настройте его.

Пока значения х и у имеют равные приращения, вы можете задавать любую формулу с двумя переменными. Вам, возможно, потребуется настроить начальные значения и значение приращения для х и у. Для увеличения сглаживания используйте больше значений х и у при меньшем приращении. Вот другие формулы, которые вы можете попробовать:
=SIN(КОРЕНЬ($A2^2+B$1^2))
=SIN($A2)*COS($A2*B$1)
=COS($A2*B$1)

Функция SIN в Excel используется для вычисления синуса угла, заданного в радианах, и возвращает соответствующее значение.

Функция SINH в Excel возвращает значение гиперболического синуса заданного вещественного числа.

Функция COS в Excel вычисляет косинус угла, заданного в радианах, и возвращает соответствующее значение.

Функция COSH возвращает значение гиперболического косинуса заданного вещественного числа.

Примеры использования функций SIN, SINH, COS и COSH в Excel

Пример 1. Путешественник движется вверх на гору с уклоном в 17°. Скорость движения постоянная и составляет 4 км/ч. Определить, на какой высоте относительно начальной точке отсчета он окажется спустя 3 часа.

Таблица данных:

Пример 1.

Для решения используем формулу:

=B2*B3*SIN(РАДИАНЫ(B1))

Описание аргументов:

  • B2*B3 – произведение скорости на время пути, результатом которого является пройденное расстояние (гипотенуза прямоугольного треугольника);
  • SIN(РАДИАНЫ(B1)) – синус угла уклона, выраженного в радианах с помощью функции РАДИАНЫ.

В результате расчетов.

В результате расчетов мы получили величину малого катета прямоугольного треугольника, который характеризует высоту подъема путешественника.



Таблица синусов и косинусов в Excel

Пример 2. Ранее в учебных заведениях широко использовались справочники тригонометрических функций. Как можно создать свой простой справочник с помощью Excel для косинусов углов от 0 до 90?

Заполним столбцы значениями углов в градусах:

Пример 2.

Для заполнения используем функцию COS как формулу массива. Пример заполнения первого столбца:

=COS(РАДИАНЫ(A2:A16))

Вычислим значения для всех значений углов. Полученный результат:

COS РАДИАНЫ.
Примечание: известно, что cos(90°)=0, однако функция РАДИАНЫ(90) определяет значение радианов угла с некоторой погрешностью, поэтому для угла 90° было получено отличное от нуля значение.

Аналогичным способом создадим таблицу синусов в Excel:

создадим таблицу синусов.

Построение графика функций SINH и COSH в Excel

Пример 3. Построить графики функций sinh(x) и cosh(x) для одинаковых значений независимой переменной и сравнить их.

Исходные данные:

Пример 3.

Формула для нахождения синусов гиперболических:

нахождение синусов гиперболических.

=SINH(A2:A12)

Формула для нахождения косинусов гиперболических:

.

=COSH(A2:A12)

Таблица полученных значений:

COSH.

Построим графики обеих функций на основе имеющихся данных. Выделите диапазон ячеек A1:C12 и выберите инструмент «ВСТАВКА»-«Диаграммы»-«Вставь точечную (X,Y) или пузырьковую диаграмму»-«Точечная с гладкими кривыми и маркерами»:

графики функций.

Как видно, графики совпадают на промежутке (0;+∞), а в области отрицательных значений x части графиков являются зеркальными отражениями друг друга.

Особенности использования тригонометрических функций в Excel

Синтаксис функции SIN:

=SIN(число)

Синтаксис функции SINH:

=SINH(число)

Синтаксис функции COS:

=COS(число)

Синтаксис функции COSH:

>=COSH(число)

Каждая из приведенных выше функций принимает единственный аргумент число, который характеризует угол, заданный в радианах (для SIN и COS) или любое значение из диапазона вещественных чисел, для которого требуется определить гиперболические синус или косинус (для SINH и COSH соответственно).

Примечания 1:

  1. Если в качестве аргумента любой из рассматриваемых функций были переданы текстовые данные, которые не могут быть преобразованы в числовое значение, результатом выполнения функций будет код ошибки #ЗНАЧ!. Например, функция =SIN(“1”) вернет результат 0,8415, поскольку Excel выполняет преобразование данных там, где это возможно.
  2. В качестве аргументов рассматриваемых функций могут быть переданы логические значения ИСТИНА и ЛОЖЬ, которые будут интерпретированы как числовые значения 1 и 0 соответственно.
  3. Все рассматриваемые функции могут быть использованы в качестве формул массива.

Примечения 2:

  1. Синус гиперболический рассчитывается по формуле: sinh(x)=0,5*(ex-e-x).
  2. Формула расчета косинуса гиперболического имеет вид: cosh(x)=0,5*( ex+e-x).
  3. При расчетах синусов и косинусов углов с использованием формул SIN и COS необходимо использовать радианные меры углов. Если угол указан в градусах, для перевода в радианную меру угла можно использовать два способа:

Скачать примеры тригонометрических функций SIN и COS

  • Функция РАДИАНЫ (например, =SIN(РАДИАНЫ(30)) вернет результат 0,5;
  • Выражение ПИ()*угол_в_градусах/180.

Содержание

  1. Microsoft Excel
  2. Построение в Excel графиков математических и тригонометрических функций
  3. Построение графиков математических функций с одной переменной
  4. Построение графиков математических функций с двумя переменными
  5. Как построить график функции в Excel
  6. Как в экселе построить график косинуса?
  7. Видео
  8. Варианты построения графика функции в Microsoft Excel
  9. Вариант 1: График функции X^2
  10. Вариант 2: График функции y=sin(x)

Microsoft Excel

трюки • приёмы • решения

Построение в Excel графиков математических и тригонометрических функций

Использование диаграмм Excel — хороший способ отображения графиков математических и тригонометрических функций. В этой статье описываются два метода построения графика функции: с одной переменной с помощью точечной диаграммы и с двумя переменными с помощью 3D-диаграммы.

Построение графиков математических функций с одной переменной

Точечная диаграмма (известная как диаграмма XY в предыдущих версиях Excel) отображает точку (маркер) для каждой пары значений. Например, на рис. 140.1 показан график функции SIN. На диаграмму наносятся рассчитанные значения у для значений х (в радианах) от -5 до 5 с инкрементом (приращением) 0,5. Каждая пара значений х и у выступает в качестве точки данных в диаграмме, и эти точки связаны линиями.

Рис. 140.1. Диаграмма представляет собой график функции SIN(x)

Функция выражается в таком виде: у = SIN(x) .

Соответствующая формула в ячейке В2 (которая копируется в ячейки, расположенные ниже) будет следующей: =SIN(A2) .

Чтобы создать эту диаграмму, выполните следующие действия.

  1. Выделите диапазон А1:В22 .
  2. Выберите Вставка ► Диаграммы ► Точечная ► Точечная с прямыми отрезками и маркерами.
  3. Выберите макет диаграммы, который вам нравится, а затем настройте его.

Измените значения в столбце А для построения графика функции при различных значениях х. И, конечно, вы можете использовать любую формулу с одной переменной в столбце В. Вот несколько примеров, которые приводят к построению интересных графиков:
=SIN(ПИ()*A2)*(ПИ()*A2)
=SIN(A2)/A2
=SIN(A2^3)*COS(A2^2)
=НОРМ.РАСП(A2;0;1;ЛОЖЬ)

Чтобы получить более точную диаграмму, увеличьте количество значений для построения графика и сделайте приращение в столбце А меньше.

Вы можете использовать онлайн наш файл примера графиков математических функций с одной переменной, расположенной в Excel Web Apps при помощи Skydrive, и внести свои данные (изменения не будут сохраняться) или скачать себе на компьютер, для чего необходимо кликнуть по иконке Excel в правом нижнем углу. Это бесплатно 🙂

Построение графиков математических функций с двумя переменными

Вы также можете строить графики функций, которые используют две переменные. Например, следующая функция рассчитывает z для различных значений двух переменных (х и у): =SIN($A2)*COS($B1)

На рис. 140.2 приведена поверхностная диаграмма, которая рассчитывает значение z для 21 значения х в диапазоне от -3 до 0 и для 21 значения у в диапазоне от 2 до 5. Для х и у используется приращение 0,15.

Рис. 140.2. Использование трехмерной поверхностной диаграммы для построения графика функции с двумя переменными

Значения х находятся в диапазоне А2:А22 , а значения у — в диапазоне B1:V1 .

Формула в ячейке В2 копируется в другие ячейки таблицы и имеет следующий вид: =SIN($A2)*C0S(B$1) .

Чтобы создать диаграмму, выполните приведенные ниже действия.

  1. Выделите диапазон A1:V22 .
  2. Выберите Вставка ► Диаграммы ► Другие ► Поверхность.
  3. Выберите макет диаграммы, который вам нравится, а затем настройте его.

Пока значения х и у имеют равные приращения, вы можете задавать любую формулу с двумя переменными. Вам, возможно, потребуется настроить начальные значения и значение приращения для х и у. Для увеличения сглаживания используйте больше значений х и у при меньшем приращении. Вот другие формулы, которые вы можете попробовать:
=SIN(КОРЕНЬ($A2^2+B$1^2))
=SIN($A2)*COS($A2*B$1)
=COS($A2*B$1)

Источник

Как построить график функции в Excel

Построение графиков функции в Excel – тема не сложная и Эксель с ней может справиться без проблем. Главное правильно задать параметры и выбрать подходящую диаграмму. В данном примере будем строить точечную диаграмму в Excel.

Учитывая, что функция – зависимость одного параметра от другого, зададим значения для оси абсцисс с шагом 0,5. Строить график будем на отрезке [-3;3]. Называем столбец «х» , пишем первое значение «-3» , второе – «-2,5» . Выделяем их и тянем вниз за черный крестик в правом нижнем углу ячейки.

Будем строить график функции вида y=х^3+2х^2+2. В ячейке В1 пишем «у» , для удобства можно вписать всю формулу. Выделяем ячейку В2 , ставим «=» и в «Строке формул» пишем формулу: вместо «х» ставим ссылку на нужную ячейку, чтобы возвести число в степень, нажмите «Shift+6» . Когда закончите, нажмите «Enter» и растяните формулу вниз.

У нас получилась таблица, в одном столбце которой записаны значения аргумента – «х» , в другом – рассчитаны значения для заданной функции.

Перейдем к построению графика функции в Excel. Выделяем значения для «х» и для «у» , переходим на вкладку «Вставка» и в группе «Диаграммы» нажимаем на кнопочку «Точечная» . Выберите одну из предложенных видов.

График функции выглядит следующим образом.

Теперь покажем, что по оси «х» установлен шаг 0,5. Выделите ее и кликните по ней правой кнопкой мши. Из контекстного меню выберите пункт «Формат оси» .

Откроется соответствующее диалоговое окно. На вкладке «Параметры оси» в поле «цена основных делений» , поставьте маркер в пункте «фиксированное» и впишите значение «0,5» .

Чтобы добавить название диаграммы и название для осей, отключить легенду, добавить сетку, залить ее или выбрать контур, поклацайте по вкладкам «Конструктор» , «Макет» , «Формат» .

Построить график функции в Эксель можно и с помощью «Графика» . О том, как построить график в Эксель, Вы можете прочесть, перейдя по ссылке.

Давайте добавим еще один график на данную диаграмму. На этот раз функция будет иметь вид: у1=2*х+5. Называем столбец и рассчитываем формулу для различных значений «х» .

Выделяем диаграмму, кликаем по ней правой кнопкой мыши и выбираем из контекстного меню «Выбрать данные» .

В поле «Элементы легенды» кликаем на кнопочку «Добавить» .

Появится окно «Изменение ряда» . Поставьте курсор в поле «Имя ряда» и выделите ячейку С1 . Для полей «Значения Х» и «Значения У» выделяем данные из соответствующих столбцов. Нажмите «ОК» .

Чтобы для первого графика в Легенде не было написано «Ряд 1» , выделите его и нажмите на кнопку «Изменить» .

Ставим курсор в поле «Имя ряда» и выделяем мышкой нужную ячейку. Нажмите «ОК» .

Ввести данные можно и с клавиатуры, но в этом случае, если Вы измените данные в ячейке В1 , подпись на диаграмме не поменяется.

В результате получилась следующая диаграмма, на которой построены два графика: для «у» и «у1» .

Думаю теперь, Вы сможете построить график функции в Excel, и при необходимости добавлять на диаграмму нужные графики.

Источник

Как в экселе построить график косинуса?

Построить график косинуса в программе эксель несложна задача, которую нужно сделать в несколько этапов, рассмотрим каждый по отдельности:

Первый этап. Построим график косинуса от нуля до ста восьмидесяти градусов, шаг точки возьмем пятнадцать градусов.

Второй этап. Переведем градусы в радианы, для этого воспользуемся функцией «РАДИАНЫ(Х)», где «Х» — это значение в градусах, которое необходимо перевести в радианы. Сначала в ячейке «В2» пишем формулу: =РАДИАНЫ(A2), потом копируем эту формулу на другие ячейки.

Третий этап. Посчитаем значение косинуса для каждого значения, для этого сначала пропишем в ячейке «С2» формулу: =COS(B2). После снова нужно скопировать эту формулу на остальные ячейки. В итоге все готово, чтобы начать строить график косинуса.

Четвертый этап. Выделим область ячеек с «В2» по «С14». На верхней панели настроек, активируем панель «Вставка», в ней отыскиваете блок «Диаграммы» и выбираете «Точечная», после нажатия на данную иконку, отразиться выбор графиков, нужно выбрать в первой строке вторую картинку.

В итоге получаем небольшой участок графика косинуса, дальше можно его строить в обоих направления, используя вышеописанный алгоритм.

Видео

Источник

Варианты построения графика функции в Microsoft Excel

Вариант 1: График функции X^2

В качестве первого примера для Excel рассмотрим самую популярную функцию F(x)=X^2. График от этой функции в большинстве случаев должен содержать точки, что мы и реализуем при его составлении в будущем, а пока разберем основные составляющие.

  1. Создайте строку X, где укажите необходимый диапазон чисел для графика функции.
  2. Ниже сделайте то же самое с Y, но можно обойтись и без ручного вычисления всех значений, к тому же это будет удобно, если они изначально не заданы и их нужно рассчитать.
  3. Нажмите по первой ячейке и впишите =B1^2 , что значит автоматическое возведение указанной ячейки в квадрат.

Если график должен быть точечным, но функция не соответствует указанной, составляйте его точно в таком же порядке, формируя требуемые вычисления в таблице, чтобы оптимизировать их и упростить весь процесс работы с данными.

Вариант 2: График функции y=sin(x)

Функций очень много и разобрать их в рамках этой статьи просто невозможно, поэтому в качестве альтернативы предыдущему варианту предлагаем остановиться на еще одном популярном, но сложном — y=sin(x). То есть изначально есть диапазон значений X, затем нужно посчитать синус, чему и будет равняться Y. В этом тоже поможет созданная таблица, из которой потом и построим график функции.

  1. Для удобства укажем всю необходимую информацию на листе в Excel. Это будет сама функция sin(x), интервал значений от -1 до 5 и их шаг весом в 0.25.

  • Создайте сразу два столбца — X и Y, куда будете записывать данные.
  • Запишите самостоятельно первые два или три значения с указанным шагом.
  • Далее растяните столбец с X так же, как обычно растягиваете функции, чтобы автоматически не заполнять каждый шаг.
  • Перейдите к столбцу Y и объявите функцию =SIN( , а в качестве числа укажите первое значение X.
  • Сама функция автоматически высчитает синус заданного числа.
  • Растяните столбец точно так же, как это было показано ранее.
  • Если чисел после запятой слишком много, уменьшите разрядность, несколько раз нажав по соответствующей кнопке.
  • Выделите столбец с Y и перейдите на вкладку «Вставка».
  • Создайте стандартный график, развернув выпадающее меню.
  • График функции от y=sin(x) успешно построен и отображается правильно. Редактируйте его название и отображаемые шаги для простоты понимания.
  • Источник

    Тип урока: урок обобщения и
    систематизации знаний

    Цели:

    • научить строить графики тригонометрических
      функций средствами MS Excel
    • закрепить навыки работы в электронных таблицах,
    • углубить представления учащихся о взаимосвязи
      предметов и прикладной ориентации курса
      информатики.

    ХОД УРОКА

    Если вычислений много, а времени мало,
    то доверьтесь электронным таблицам

    1. Сообщение целей и задач урока

    – Ребята, сегодня мы продолжим знакомиться с
    возможностями электронных таблиц Excel.  Давайте
    вспомним, для чего предназначены электронные
    таблицы? (Автоматизация расчетов).
    – Что вы уже умеете делать в электронных
    таблицах? (Создавать и форматировать таблицу,
    работать с типами данных, решать задачи
    используя относительную и абсолютную ссылки,
    строить диаграммы)
    .
    – На уроках математики вы изучили
    тригонометрические функции и их графики. При
    построении графиков тригонометрических функций
    необходимо учесть множество нюансов. Начертить
    синусоиду или косинусоиду красиво – это уже
    искусство, а если необходимо график растянуть,
    сжать или симметрично отобразить относительно
    какой-либо оси – это может вызвать затруднения. И
    здесь нам на помощь нам придут электронные
    таблицы MS Excel. Вы узнаете как с их помощью быстро и
    красиво построить график.
    Сегодня на уроке мы познакомимся с алгоритмом
    построения графика тригонометрической функции.
    Эпиграфом к уроку я взяла слова «Если
    вычислений много, а времени мало, то доверьтесь
    электронным таблицам»

    2. Актуализация знаний

    Фронтальный опрос (за правильный ответ даем
    красную карточку)

    1. С чего начинается ввод формулы в ячейку? (Со
      знака равенства)
    2. На каком языке набирается формула в MS Excel? (Английском)
    3. Как скопировать формулу в другие ячейки?
      помощью маркера автозаполнения)
    4. Как изменить число десятичных знаков после
      запятой в отображаемом числе? (Выделить,
      Формат, Ячейки, вкладка Число, Числовой формат,
      …..)
    5. Что означает запись ###### в ячейке? (Длина
      водимых данных превышает ширину ячейки)
    6. Каким образом набирается формула, содержащая
      какую-либо функцию? (Выделить ячейку, в которую
      нужно вставить первое значение функции;Вставка,
      Функция, выбрать Категорию и саму функцию)
    7. Каким образом набирается формула, содержащая
      сложную функцию, например, y = |x2|? (Вставляется
      внешняя функция с пустым аргументом, затем левее
      строки редактирования формул из раскрывающегося
      списка выбирается внутренняя функция)
    8. Как вставить какой-либо символ, например,
      математический в ячейку? (Вставка, Символ, в
      появившемся диалоговом окне выбрать шрифт Symbol и
      нужный символ)

    На прошлом уроке вы строили графики
    элементарных функций. Давайте повторим алгоритм
    построения графика (Учащиеся называют шаги
    построения графика функции, а учитель показывает
    соответствующий пункт алгоритма на доске
    (используется проектор) и если необходимо
    дополняет ответ учеников)
    (см. Приложение
    1
    ).

    3. Изучение нового

    С использованием презентации (см. Приложение
    2
    ) учитель рассказывает, как строится
     график тригонометрической функций, а затем
    выполняет его построение в электронных таблицах.

    Задание. Построить в MS Excel графики
    функций y = Sin x и y = |1 – sin x| на
    промежутке [–360о; 360о] с шагом 15о.

    Построенные графики смотри в Приложении
    3

    4. Закрепление полученных знаний

    Каждому ученику даётся карточка с заданием и
    оценочный лист, который после выполнения задания
    отдается учителю (Каждый пункт в оценочном
    листе является шагом построения графика
    тригонометрической функции с использованием
    MSExcel).
    Презентация находится в
    сетевой папке, и любой ученик может ею
    воспользоваться при выполнении своего задания.

    Задание. Построить в MS Excel графики
    функций на промежутке [–36о;36о] с
    шагом 15о.

    5. Проверка построенных графиков и разбор
    нюансов

    Один из учеников строил график y = |Sin x|
    / Sin x на промежутке [–360о;360о] с
    шагом 15о. На доске демонстрируется этот
    график и график, построенный традиционным
    алгебраическим способом.

    С помощью этого примера обращается внимание
    учащихся, что существуют функции, графики
    которых в электронных таблицах строятся неточно.
    Учащихся можно попросить найти неточности в
    графике, построенном с помощью MS Excel и попросить
    объяснить их.

    График, построенный традиционным
    алгебраическим

    График, построенный с использованием МS
    Exel

    6. Подведение итогов

    Учеников просят ответить на вопросы:

    1. В чем достоинства и недостатки алгебраического
      метода построения графиков функций и построения
      графиков с использованием электронных таблиц?
    2. Каким образом можно использовать полученные на
      уроке знания в учебе?

    Вывод. MS Excel облегчает построение
    графиков функций, но без глубоких математических
    знаний построить точные графики сложных функций
    (тригонометрических функций, функций с модулем,
    функций имеющих точки разрыва) невозможно.

    Математика – это царица всех наук!

    7. Постановка Д/З.

    Построить график функции y= 1 + 0,5*ctg(X–П/4) на
    промежутке [–360о;360о] с шагом 15о.

    8. Рефлексия

    Оцени свое настроение на уроке

    Оценочный лист

      Фамилия, имя

    Количество баллов 

    Создание заголовка таблицы

    0,2

    Заполнение ряда значений аргумента х в
    градусах

    0,1

    Заполнение ряда значений аргумента х в
    радианах (перевод градусов в радианы)

    0,5

    Запись формулы для вычисления значений
    сложной функции

    1

    Запись формулы для вычисления значений
    элементарной функции

    0,5

    Заполнение рядов значений функций (для обеих
    функций)

    0,1

    Установка числового формата данных

    0,2

    Построение графиков функций

    1

    Перенос оси

    0,2

    Подпись значений х на оси абсцисс (в градусах)

    0,2 

    Создание ряда значений аргумента х (в радианах,
    например П/3)

    0,7

    Подпись значений х на оси абсцисс (в радианах,
    например П/3)

    0,5

    ИТОГО

    5

    Если вы обращаетесь к учителю, то
    ставится 0 баллов

    Как строить график функции в Экселе

    Вариант 1: График функции X^2

    В качестве первого примера для Excel рассмотрим самую популярную функцию F(x)=X^2. График от этой функции в большинстве случаев должен содержать точки, что мы и реализуем при его составлении в будущем, а пока разберем основные составляющие.

    1. Создайте строку X, где укажите необходимый диапазон чисел для графика функции.
    2. Создание первой строки для построения графика функции X^2 в Excel

    3. Ниже сделайте то же самое с Y, но можно обойтись и без ручного вычисления всех значений, к тому же это будет удобно, если они изначально не заданы и их нужно рассчитать.
    4. Создание второй строки для построения графика функции X^2 в Excel

    5. Нажмите по первой ячейке и впишите =B1^2, что значит автоматическое возведение указанной ячейки в квадрат.
    6. Создание формулы для автоматического расчета значений при работе с графиком функции X^2 в Excel

    7. Растяните функцию, зажав правый нижний угол ячейки, и приведя таблицу в тот вид, который продемонстрирован на следующем скриншоте.
    8. Растягивание формулы перед создание графика функции X^2 в Excel

    9. Диапазон данных для построения графика функции указан, а это означает, что можно выделять его и переходить на вкладку «Вставка».
    10. Выделение всего диапазона данных для создания графика функции X^2 в Excel

    11. На ней сразу же щелкайте по кнопке «Рекомендуемые диаграммы».
    12. Переход в меню выбора диаграммы для создания графика функции X^2 в Excel

    13. В новом окне перейдите на вкладку «Все диаграммы» и в списке найдите «Точечная».
    14. Выбор точечного графика для создания графика функции X^2 в Excel

    15. Подойдет вариант «Точечная с гладкими кривыми и маркерами».
    16. Добавление выбранного графика на лист для создания графика функции X^2 в Excel

    17. После ее вставки в таблицу обратите внимание, что мы добавили равнозначный диапазон отрицательных и плюсовых значений, чтобы получить примерно стандартное представление параболы.
    18. Проверка созданного графика функции при работе с X^2 в Excel

    19. Сейчас вы можете поменять название диаграммы и убедиться в том, что маркеры значений выставлены так, как это нужно для дальнейшего взаимодействия с этим графиком.
    20. Редактирование графика функции X^2 в Excel после его добавления на лист

    21. Из дополнительных возможностей отметим копирование и перенос графика в любой текстовый редактор. Для этого щелкните в нем по пустому месту ПКМ и из контекстного меню выберите «Копировать».
    22. Кнопка для копирования созданного графика функции X^2 в Excel

    23. Откройте лист в используемом текстовом редакторе и через это же контекстное меню вставьте график или используйте горячую клавишу Ctrl + V.
    24. Успешная вставка построенного графика функции X^2 в Excel в текстовый редактор

    Если график должен быть точечным, но функция не соответствует указанной, составляйте его точно в таком же порядке, формируя требуемые вычисления в таблице, чтобы оптимизировать их и упростить весь процесс работы с данными.

    Вариант 2: График функции y=sin(x)

    Функций очень много и разобрать их в рамках этой статьи просто невозможно, поэтому в качестве альтернативы предыдущему варианту предлагаем остановиться на еще одном популярном, но сложном — y=sin(x). То есть изначально есть диапазон значений X, затем нужно посчитать синус, чему и будет равняться Y. В этом тоже поможет созданная таблица, из которой потом и построим график функции.

    Lumpics.ru

    1. Для удобства укажем всю необходимую информацию на листе в Excel. Это будет сама функция sin(x), интервал значений от -1 до 5 и их шаг весом в 0.25.
    2. Добавление объяснений перед построением графика функции y=sin(x) в Excel

    3. Создайте сразу два столбца — X и Y, куда будете записывать данные.
    4. Добавление двух столбцов при построении графика функции y=sin(x) в Excel

    5. Запишите самостоятельно первые два или три значения с указанным шагом.
    6. Добавление первых значений для X при построении графика функции y=sin(x) в Excel

    7. Далее растяните столбец с X так же, как обычно растягиваете функции, чтобы автоматически не заполнять каждый шаг.
    8. Растягивание значений при построении графика функции y=sin(x) в Excel

    9. Перейдите к столбцу Y и объявите функцию =SIN(, а в качестве числа укажите первое значение X.
    10. Добавление первого числа для формулы при расчете Y для построения графика функции y=sin(x) в Excel

    11. Сама функция автоматически высчитает синус заданного числа.
    12. Добавление первого числа для формулы при расчете Y для построения графика функции y=sin(x) в Excel

    13. Растяните столбец точно так же, как это было показано ранее.
    14. Растягивание формулы перед построением графика функции y=sin(x) в Excel

    15. Если чисел после запятой слишком много, уменьшите разрядность, несколько раз нажав по соответствующей кнопке.
    16. Удаление лишней разрядности перед построением графика функции y=sin(x) в Excel

    17. Выделите столбец с Y и перейдите на вкладку «Вставка».
    18. Выбор стандартного графика для построения графика функции y=sin(x) в Excel

    19. Создайте стандартный график, развернув выпадающее меню.
    20. Выбор диапазона данных для построения графика функции y=sin(x) в Excel

    21. График функции от y=sin(x) успешно построен и отображается правильно. Редактируйте его название и отображаемые шаги для простоты понимания.
    22. Успешное построение графика функции y=sin(x) в Excel и его добавление на лист

    Еще статьи по данной теме:

    Помогла ли Вам статья?

    Понравилась статья? Поделить с друзьями:
  • Построить диаграмму таблицы в программе excel
  • Построить график функции с параметром в excel
  • Построить диаграмму с долями в excel
  • Построить график функции с двумя переменными в excel
  • Построить диаграмму в excel структура