Построение графиков в excel систем


Построим в MS EXCEL график функции, заданный системой уравнений. Эта задача часто встречается в лабораторных работах и почему-то является «камнем преткновения» для многих учащихся.

Пусть дана система уравнений

Требуется на отрезке  [-1; 4] построить график функции f(x). Параметры a = 5 и b = 2 необходимо задать в отдельных ячейках.

Решение (1 ряд данных)

Чтобы построить график функции в MS EXCEL можно использовать диаграмму типа График или Точечная.


СОВЕТ

: О построении диаграмм см. статью

Основы построения диаграмм в MS EXCEL

. О различии диаграмм Точечная и График см. статью

График vs Точечная диаграмма в MS EXCEL

.

Создадим таблицу с исходными данными для x от -1 до 4, включая граничные значения (см.

файл примера, лист Ряд1

):

Шаг по х выберем равным 0,2, чтобы график содержал более 20 точек.

Чтобы построить диаграмму типа Точечная:

  • выделите любую ячейку таблицы;
  • во вкладке

    Вставка

    в группе

    Диаграммы

    выберите диаграмму

    Точечная с прямыми отрезками и маркерами

    .

Чтобы построить диаграмму типа График:

  • выделите любую столбец f(x) вместе с заголовком;
  • во вкладке

    Вставка

    в группе

    Диаграммы

    выберите диаграмму

    График маркерами

    .

У обеих диаграмм один общий недостаток — обе части графика соединены линией (в диапазоне х от 1 до 1,2). Из этого можно сделать ошибочный вывод, что, например, для х=1,1 значение функции равно около -15. Это, конечно же, не так. Кроме того, обе части графика одного цвета, что не удобно. Поэтому, построим график

используя 2 ряда данных

.

Решение (2 ряда данных)

Создадим другую таблицу с исходными данными в

файле примера, лист График

:

Второй и третий столбец таблицы будут использоваться для построения 2-х рядов данных. Первый столбец — для подписей по оси х. Для значений x>1 будет построен второй график (в степени 3/2), для остальных — парабола. Значения #Н/Д (нет данных) использованы для удобства — в качестве исходных данных для ряда можно брать значения из целого столбца. В противном случае пришлось бы указывать диапазоны соответствующих ячеек при построении диаграммы. При изменении шага по х — это вызвало бы необходимость перестроения диаграммы.

У такой диаграммы имеется недостаток — в диапазоне х от 1 до 1,2 на диаграмме теперь нет вообще значений. Чтобы избежать этого недостатка — построим диаграмму типа Точечная с 3-мя рядами данных.

Решение (3 ряда данных)

Для построения графика используем 2 таблицы с данными для каждого уравнения, см.

файл примера, лист График

.

Первое значение второго графика возьмем чуть больше 1, например, 1,00001, чтобы как можно ближе приблизиться к значению, в котором происходит разрыв двух графиков. Также для точки со значением х=1 построим на диаграмме одну точку (ряд №3), чтобы показать, что для этого х значение второго уравнения не вычисляется (хотя фактически вычисляется).

Строим график функции, заданный системой уравнений, в EXCEL

history 8 января 2018 г.
    Группы статей

  • Контрольные работы и задания
  • Диаграммы и графики

Построим в MS EXCEL график функции, заданный системой уравнений. Эта задача часто встречается в лабораторных работах и почему-то является «камнем преткновения» для многих учащихся.

Пусть дана система уравнений

Требуется на отрезке [-1; 4] построить график функции f(x). Параметры a = 5 и b = 2 необходимо задать в отдельных ячейках.

Решение (1 ряд данных)

Чтобы построить график функции в MS EXCEL можно использовать диаграмму типа График или Точечная.

СОВЕТ : О построении диаграмм см. статью Основы построения диаграмм в MS EXCEL . О различии диаграмм Точечная и График см. статью График vs Точечная диаграмма в MS EXCEL .

Создадим таблицу с исходными данными для x от -1 до 4, включая граничные значения (см. файл примера, лист Ряд1 ):

Шаг по х выберем равным 0,2, чтобы график содержал более 20 точек.

Чтобы построить диаграмму типа Точечная:

  • выделите любую ячейку таблицы;
  • во вкладке Вставка в группе Диаграммы выберите диаграмму Точечная с прямыми отрезками и маркерами .

Чтобы построить диаграмму типа График:

  • выделите любую столбец f(x) вместе с заголовком;
  • во вкладке Вставка в группе Диаграммы выберите диаграмму График маркерами .

У обеих диаграмм один общий недостаток — обе части графика соединены линией (в диапазоне х от 1 до 1,2). Из этого можно сделать ошибочный вывод, что, например, для х=1,1 значение функции равно около -15. Это, конечно же, не так. Кроме того, обе части графика одного цвета, что не удобно. Поэтому, построим график используя 2 ряда данных .

Решение (2 ряда данных)

Создадим другую таблицу с исходными данными в файле примера, лист График :

Второй и третий столбец таблицы будут использоваться для построения 2-х рядов данных. Первый столбец — для подписей по оси х. Для значений x>1 будет построен второй график (в степени 3/2), для остальных — парабола. Значения #Н/Д (нет данных) использованы для удобства — в качестве исходных данных для ряда можно брать значения из целого столбца. В противном случае пришлось бы указывать диапазоны соответствующих ячеек при построении диаграммы. При изменении шага по х — это вызвало бы необходимость перестроения диаграммы.

У такой диаграммы имеется недостаток — в диапазоне х от 1 до 1,2 на диаграмме теперь нет вообще значений. Чтобы избежать этого недостатка — построим диаграмму типа Точечная с 3-мя рядами данных.

Решение (3 ряда данных)

Для построения графика используем 2 таблицы с данными для каждого уравнения, см. файл примера, лист График .

Первое значение второго графика возьмем чуть больше 1, например, 1,00001, чтобы как можно ближе приблизиться к значению, в котором происходит разрыв двух графиков. Также для точки со значением х=1 построим на диаграмме одну точку (ряд №3), чтобы показать, что для этого х значение второго уравнения не вычисляется (хотя фактически вычисляется).

Решение системы уравнений в Microsoft Excel

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Варианты решений

Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

  1. Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.

Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.

Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР. Он имеет довольно простой синтаксис:

Аргумент «Массив» — это, собственно, адрес исходной таблицы.

Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.

Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».

Запускается окно аргументов функции МОБР. Оно по числу аргументов имеет всего одно поле – «Массив». Тут нужно указать адрес нашей таблицы. Для этих целей устанавливаем курсор в это поле. Затем зажимаем левую кнопку мыши и выделяем область на листе, в которой находится матрица. Как видим, данные о координатах размещения автоматически заносятся в поле окна. После того, как эта задача выполнена, наиболее очевидным было бы нажать на кнопку «OK», но не стоит торопиться. Дело в том, что нажатие на эту кнопку является равнозначным применению команды Enter. Но при работе с массивами после завершения ввода формулы следует не кликать по кнопке Enter, а произвести набор сочетания клавиш Ctrl+Shift+Enter. Выполняем эту операцию.

Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:

Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».

В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».

Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.

  • После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
  • Способ 2: подбор параметров

    Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение

      Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:

    Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.

    Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».

    Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».

    После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».

  • Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.
  • Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.

    Способ 3: метод Крамера

    Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:

      Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».

    Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.

    Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:

    Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».

    Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».

    Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.

    Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.

    Аналогичным образом производим подсчет определителей для остальных трех таблиц.

    На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.

  • Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.
  • Способ 4: метод Гаусса

    Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

      Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.

    Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

    После этого копируем полученную строку и вставляем её в строчку ниже.

    Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать», которая расположена на ленте во вкладке «Главная».

    Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».

    В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.

    Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.

    Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

    Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.

  • Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.
  • Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

    Помимо этой статьи, на сайте еще 12784 полезных инструкций.
    Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Решение системы уравнений графическим методом средствами MS Excel

    Цели и задачи.

    1. Развитие приемов умственной деятельности, формирование и развитие функционального мышления учащихся, развитие познавательных потребностей учащихся, создание условий для приобретения опыта работы учащихся в среде ИКТ.
    2. Достижение сознательного усвоения учебного материала учащимися, работа над повышением грамотности устной речи, правильного использования компьютерных терминов.
    3. Научить применять возможности MS Excel в повседневной жизни, в познавательной деятельности.
    4. Закрепить навыки создания таблиц и диаграмм.
    5. Научить решать систему уравнений графическим методом, исследовать график функции.

    Оборудование урока: компьютеры, мультимедиа проектор.

    Программное обеспечение: Windows XP, пакет программ MS Office 2003.

    Тема нашего урока тесно связана с математикой разделы “Графики функций” и “Решение систем уравнений”. Поэтому нам понадобятся ранее полученные навыки. Но мы постараемся упростить нашу задачу с помощью применения современных вычислительных средств.

    Запишите в тетради тему урока и укажите дату.

    Назовите мне кого из класса сегодня нет.

    Давайте вспомним, что такое уравнение, и как его можно решить графически.

    Назовите, пожалуйста, что в математике называют уравнением, решением уравнения и системой уравнений.

    (Учащиеся приводят определения)

    Уравнение – это математическое выражение, содержащее неизвестную величину (переменную) и 0 с правой стороны от знака =.

    Система уравнений – несколько связанных уравнений, имеющих одинаковые обозначения неизвестных величин (переменных).

    Решением уравнения – называют такое значение неизвестной величины, при подстановке которого левая часть выражения принимает значение 0. И мы получаем верное равенство.

    Но, с другой стороны, подобное выражение можно представить как функцию с зависимой и независимой величинами. Если мы слева от знака = поставим Y, а справа заданное выражение. Y – зависимая величина, Х – независимая величина. В этом случае Решением уравнения является точка пересечения графика функции с осью ОХ.

    Для решения уравнения графическим методом необходимо рассчитать значения функции в ключевых точках с координатой Х (Х меняется в диапазоне допустимых значений), нанести эти точки на систему координат, построить график функции и определить координаты точки пересечения графика с осью ОХ.

    Это достаточно сложная задача. Нужно достаточно много вычислений и аккуратное построение графика функции. Также мы заранее не можем сказать, из какого диапазона чисел необходимо брать значения Х.

    Но эту задачу может взять на себя ЭВМ.

    Мы воспользуемся возможностями программы MS Excel.

    Основная часть

    Давайте разобьемся на 2 группы. Сильные ученики, которые уже хорошо владеют средствами MS Excel, попытаются самостоятельно разработать таблицу. А остальные ребята будут вместе со мной последовательно выполнять действия.

    Сильные ученики пересаживаются за дальние компьютеры и самостоятельно разрабатывают таблицу для решения системы уравнений. Они должны получить примерно такую картинку на экране.

    С остальными мы работаем в режиме “Делай как Я”. Я демонстрирую действия на экране проектора и комментирую, вы стараетесь выполнять эти действия у себя на ЭВМ.

    И так. Мы запустили программу MS Excel.

    Мы хотим разработать таблицу для решения системы уравнений:

    Нам необходимо задать диапазон изменения величины Х и рассчитать соответствующее значение Y.

    Сформируем начальные данные.

    В ячейку A1 запишем – нач Х =. В ячейку D1 запишем – шаг Х =. В ячейках B1, E1 их соответствующие значения – (-2,5) и 0,15.

    В ячейках C4, F4 запишем общий вид наших уравнений. В строке 5 сформируем заголовки будущих таблиц значений заданных функций.

    Теперь в столбиках B, E мы должны сформировать значения для величины Х. А в столбиках C, E значения величин Y. У нас должна получиться вот такая картинка. Столбики со значением величины X мы должны сформировать так, чтобы было удобно менять начальное его значение и шаг X, которые мы создали в заголовке.

    Формулы, которые нам нужно ввести приведены на рисунке.

    Заметьте, что большинство формул повторяются, и их можно ввести методом копирования.

    Заполните, пожалуйста, в каждой таблице 20-25 строчек.

    Символ $ в формуле обозначает, что данный адрес ячейки является абсолютным и он не будет изменяться при копировании формулы.

    Проверьте, чтобы ваши расчётные данные совпадали с рисунком 2.

    Нам осталось красиво оформить таблицы. Для этого нужно указать, какие границы отображать в ячейках расположения расчётных таблиц. Выделите их указателем мышки и задайте режим “Все границы”.

    Теперь нам необходимо построить графики заданных функций. Для этого воспользуемся инструментом “Диаграммы”.

    Выберем тип диаграммы Точечная-Сглаженная и на следующем экране укажем необходимые нам диапазоны данных, как указано на рисунке. Незабудем указать название для каждого графика. Легенду расположим снизу. А саму диаграмму “На текущем листе”, поместив её справа от расчётных таблиц.

    Если вы всё сделали правильно, то у вас на экране должна получиться вот такая картинка.

    У кого не получилось, давайте вместе разберёмся в ошибках и добъёмся требуемого результата.

    Теперь изменяя значения в ячейках B1, D1 можно смещать графики функций вдоль оси ОХ и изменять их масштаб.

    Мы видим, что одно из решений нашей системы уравнений равно -1,5.

    Изменяя начальное значение Х, найдите на графике второе решение системы уравнений.

    Сколько у вас получилось?

    Великолепно. У нас получилось. Мы легко решили такую сложную систему уравнений.

    Но можно немного изменить нашу таблицу и усовершенствовать для решения множества подобных систем уравнений или для исследования графиков заданных функций.

    Для этого нужно внести изменения в таблицу и расчётные формулы.

    Можно сделать следующим образом, как показано на рисунке. Формулы в ячейках показаны на следующем рисунке.

    Самостоятельно внесите все необходимые изменения.

    Попробуйте изменять коофициенты A, B, C, D и посмотрите, как меняется форма и положение графиков соответствующих формул.

    Заключительный этап урока

    Ребята, как вы думаете, что удобней самостоятельно строить график функции на бумаге или поручить эту задачу ЭВМ?

    А что легче для вас?

    Конечно же, на данном этапе вам удобней самостоятельно на бумаге построить график функции. Но в конце урока мы получили универсальную таблицу, которая позволяет решать множество подобных заданий.

    Мы ещё раз убедились, что компьютер это мощный инструмент, который позволяет не только приятно проводить время за играми, но и решать серьёзные задачи.

    Надеюсь, что вам понравилось сегодняшняя работа. И вы Довольны достигнутыми результатами.

    источники:

    http://lumpics.ru/how-solve-system-equations-excel/

    http://urok.1sept.ru/articles/617119

    График функции excel

    Строим график функции, заданный системой уравнений, в MS EXCEL

    ​Смотрите также​3. Вставляешь диаграмму.​ до 360 (выделяем​ линейчатые диаграммы, гистограммы,​ отразились цифры на​ «Изменение ряда». Задаем​Создание таблицы с данными.​ измерения одинаковы, пользуемся​

    ​ над ним. Изменить​

    ​15605​ текста, насколько это​ для презентации математических​ функций в Excel​ преподают в школе.​ возьмем чуть больше​ рядов данных. Первый​

    Решение (1 ряд данных)

    ​Чтобы построить диаграмму типа​Построим в MS EXCEL​ Для этого выделяешь​ заполненные ячейки, тянем​ пузырьковые, биржевые и​

    ​ оси), редактируем через​​ имя ряда –​Построение графика.​ предложенной выше инструкцией.​ стиль, сделать заливку​* Цифры условные,​ только возможно.​ функций.​ выберите подходящий график.​

    ​Линейная функция x=y имеет​ 1, например, 1,00001,​ столбец — для​ Точечная: ​ график функции, заданный​ весь полученный диапазон​

    ​ вниз за квадратик​ т.д. Возможности Excel​ вкладку «Выбрать данные».​ функция. Значения Х​

    ​Пример: y=x(√x – 2).​ Если же нужно​

    • ​ и т.д. Все​
    • ​ для учебных целей.​Информация воспринимается легче, если​Примечание. В принципе первый​Выделите диапазон A1:B4 и​ следующие значения: x1=0,​

    ​ чтобы как можно​ подписей по оси​

    • ​выделите любую ячейку таблицы;​ системой уравнений. Эта​
    • ​ значений и выбираешь​ в правом нижнем​

    ​ разнообразны. Вполне достаточно,​А вот наши 2​ – первый столбец​ Шаг – 0,3.​ показать данные разных​ манипуляции – на​Заходим во вкладку «Вставка».​ представлена наглядно. Один​ способ можно было-бы​ выберите инструмент: «Вставка»-«Диаграммы»-«Точечная»-«Точечная​ x2=1, x3=7. Заполните​ ближе приблизиться к​ х. Для значений​во вкладке Вставка в​ задача часто встречается​ «Вставка — Диаграмма»​ углу рамки выделения).​ чтобы наглядно изобразить​ графика функций в​

    Решение (2 ряда данных)

    ​ таблицы с данными.​Составляем таблицу. Первый столбец​ типов, понадобится вспомогательная​ вкладке «Название диаграммы».​

    ​ Предлагается несколько типов​ из способов презентации​ оптимизировать под отображение​ с прямыми отрезками​ таблицу этими значениями​ значению, в котором​ x>1 будет построен​ группе Диаграммы выберите​ в лабораторных работах​ или «Данные -​2. В столбце​ разные типы данных.​ одном поле.​ Значения У –​ – значения Х.​ ось.​Вместо порядкового номера отчетного​ диаграмм:​ отчетов, планов, показателей​ линейной функции, если​ и маркерами».​ как показано на​ происходит разрыв двух​ второй график (в​ диаграмму Точечная с​ и почему-то является​

    ​ Вставить диаграмму», в​ В вбиваем формулу.​Ввести таблицу значений и​Данные одного столбца (строки)​ второй.​ Используем формулы. Значение​Сначала строим график так,​ года нам нужен​Выбираем «График». Во всплывающем​ и другого вида​ таблицу заполнить всеми​

    Решение (3 ряда данных)

    ​Как видно на рисунке​ рисунке:​ графиков. Также для​ степени 3/2), для​ прямыми отрезками и​

    ​ «камнем преткновения» для​ зависимости от версии​ Для этого в​ построить график функции.​ зависят от данных​Жмем ОК и любуемся​ первой ячейки –​ будто у нас​ именно год. Выделяем​ окне – его​ делового материала –​ значениями 0-7. Но​ данный график содержит​Выделите диапазон A1:B4 и​ точки со значением​ остальных — парабола.​ маркерами.​

    Как построить график функции в Excel

    ​ многих учащихся.​ Экселя. Тип -​ ячейке В1 ставим​ В области построения​ другого столбца (строки).​ результатом.​ 1. Второй: =​ одинаковые единицы измерения.​ значения горизонтальной оси.​

    ​ вид. Когда наводишь​ графики и диаграммы.​ это не всегда​ одинаковое количество значений​ выберите инструмент: «Вставка»-«Диаграммы»-«График»-«График​ х=1 построим на​ Значения #Н/Д (нет​

    Построение графиков функций в Excel

    ​Чтобы построить диаграмму типа​Пусть дана система уравнений ​ точечная, подтип -​ знак = (с​диаграммы удалить фон​Построить график зависимости одного​С осью У все​ (имя первой ячейки)​Выделяем ось, для которой​

    ​ Правой кнопкой мыши​ курсор на тот​ В аналитике это​ работающее решение, особенно​ на осях X​ с маркерами».​

    ​ диаграмме одну точку​ данных) использованы для​ График: ​

    ​Требуется на отрезке [-1; 4]​ с гладкими линиями.​ него начинается любая​ и линии сетки,​ столбца от другого​ в порядке. На​ + 0,3. Выделяем​ хотим добавить вспомогательную.​ – «Выбрать данные»​ или иной тип​ незаменимые инструменты.​ в том случае​ и Y. По​В результате у нас​ (ряд №3), чтобы​ удобства — в​выделите любую столбец f(x)​ построить график функции​

    ​4. Доводишь диаграмму​ формула), за ним​ при необходимости перенести​ в Excel можно​ оси Х нет​ правый нижний угол​ Правая кнопка мыши​ — «Изменить подписи​ диаграммы, показывается подсказка:​Построить график в Excel​

    ​ если вместо значений​

    Как построить график линейной функции в Excel

    ​ умолчанию в шаблоне​ созданы 2 линии​ показать, что для​

    ​ качестве исходных данных​ вместе с заголовком;​ f(x). Параметры a =​ до ума -​

    ​ пишем COS (это​ ось y.​ так:​ значений. Проставлены только​ ячейки с формулой​ – «Формат ряда​ горизонтальной оси». В​ где лучше использовать​ по данным таблицы​ будут формулы изменяющие​ данного графика цена​

    ​ можно несколькими способами.​ данные. Одним словом​ делений оси X​

    ​ наложены одна сверх​ второго уравнения не​ брать значения из​ маркерами.​ = 2 необходимо​ сетки и удаляешь,​ открываем скобочку. Так​Юзер честный​

    ​ (E); В =​ нужно исправить. Необходимо​ столько, сколько нужно.​ ряда» — «По​ диапазон. В таблице​ каких данных.​ Каждый из них​ если нужно забить​ равна 2. При​ другой. Так же​ вычисляется (хотя фактически​ целого столбца. В​У обеих диаграмм один​ задать в отдельных​ по фону если​ как функция COS​: А в чем​ f (E); С​ подписать оси графика​

    ​В столбце У прописываем​ вспомогательной оси».​ с данными –​Выбрали – скопировали таблицу​ обладает своими преимуществами​ гвоздь лучше взять​ необходимости ее можно​ мы видим, что​ вычисляется). ​ противном случае пришлось​ общий недостаток -​ ячейках.​ есть и удаляешь.​ требует аргумента в​ проблема-то? Задание элементарное,​ = f (E);​ в excel. Правая​ формулу для расчета​Нажимаем «Закрыть» — на​ первый столбец. Как​ с данными –​

    Построение графиков в Excel по данным таблицы

    ​ и недостатками для​ молоток, чем микроскоп.​ изменить. Для этого:​ линии сломаны, а​Чтобы правильно построить линейный​ бы указывать диапазоны​ обе части графика​Чтобы построить график функции​ Для удаления достаточно​

    ​ радианах, нам надо​ а тем кто​ D = f​ кнопка мыши –​ функции. В нашем​ графике появилась вторая​ показано ниже на​ вставили в область​

    Простейший график изменений

    ​ конкретной ситуации. Рассмотрим​ Несмотря на то,​наведите курсор мышки на​ значит, они не​ график функций в​ соответствующих ячеек при​

    ​ соединены линией (в​ в MS EXCEL​ нажать клавишу Del.​ будет наши градусы​

    ​ Excel «по ошибке»​ ​ (E).​
    ​ «Выбрать данные» -​ ​ примере: =A2*(КОРЕНЬ(A2)-2). Нажимаем​
    ​ ось, которая «подстроилась»​ ​ рисунке:​
    ​ диаграммы. Получается вот​ ​ все по порядку.​
    ​ что теоретически гвозди​ ​ любое значение оси​
    ​ соответствуют презентации школьному​ ​ Excel необходимо выбрать​

    ​ построении диаграммы. При​ диапазоне х от​

    ​ можно использовать диаграмму​ Выделяешь строку X​ преобразовать с помощью​

    ​ открыл их все​Выбираем тип диаграммы. Точечная.​ «Изменить подписи горизонтальной​ «Ввод». Excel посчитал​ под данные кривой.​Можем оставить график в​ такой вариант:​График нужен тогда, когда​ можно забивать и​

    ​ X чтобы появилась​ графику линейной функции.​ точечную диаграмму с​ изменении шага по​ 1 до 1,2).​

    ​ типа График или​ (горизонтальную), нажимаешь Ctrl+1​ функции РАДИАНЫ и​ равно не задают.​ С гладкими кривыми​ оси». И выделяем​ значение. «Размножаем» формулу​Это один из способов.​ таком виде. А​Прямая горизонтальная (синяя) не​ необходимо показать изменения​ микроскопом.​ всплывающая подсказка «Горизонтальная​

    ​ Излом линий, получается,​ прямыми отрезками и​ х — это​ Из этого можно​ Точечная. ​

    ​ (настройки). Задаёшь минимальное​ снова открываем скобочку.​ Столбец значений переменной,​ и маркерами.​ диапазон с нужными​ по всему столбцу​ Есть и другой​

    ​ можем сделать заливку,​ нужна. Просто выделяем​ данных. Начнем с​Не существует универсальных графиков​ ось (значений)» и​ по причине того,​ маркерами. Естественно это​ вызвало бы необходимость​ сделать ошибочный вывод,​СОВЕТ​ значение 0, максимальное​ Так как у​ столбец значений функции​Выбор данных – «Добавить».​

    ​ значениями (в таблице​ (потянув за правый​ – изменение типа​ поменять шрифт, переместить​ ее и удаляем.​ простейшей диаграммы для​ и диаграмм, которыми​

    ​ сделайте двойной щёлочек​

    График с двумя и более кривыми

    ​ что на оси​ не единственный, но​ перестроения диаграммы.​ что, например, для​: О построении диаграмм​

    ​ — 360, шаг​ нас косинус двух​ и по этим​ Имя ряда –​ с данными). График​ нижний угол ячейки).​

    Добавление второй оси

    ​ диаграммы.​ диаграмму на другой​ Так как у​ демонстрации событий в​ можно отобразить любой​ левой кнопкой мышки;​ X у нас​ весьма быстрый и​

    ​У такой диаграммы имеется​ х=1,1 значение функции​ см. статью Основы построения​

    ​ основных делений 30.​ икс, в качестве​ данным — график.​ А. Значения Х​ становится таким, каким​ Таблица с данными​Щелкаем правой кнопкой мыши​

    ​ лист («Конструктор» -​ нас одна кривая​ разные промежутки времени.​ отчет. Для каждого​

    ​в появившемся окне «Формат​ после значений: 0,​ удобный способ.​ недостаток — в​

    ​ равно около -15.​ диаграмм в MS​ Можно также обработать​ аргумента для функции​Kpbicmah​ – значения А.​

    ​ должен быть.​ готова.​ по линии, для​ «Переместить диаграмму»).​

    ​ – легенду (справа​Допустим, у нас есть​ типа отчета наиболее​ оси» выберите пункт​

    Строим график функций в Excel

    ​ 1 сразу идет​Для разного рода данных​

    ​ EXCEL. О различии​ ось Y -​

    ​ РАДИАНЫ пишем 2*А1.​: Ну давай я​ Значения У –​Построить два графика в​Переходим на новый лист​ которой нужна дополнительная​​ от графика) тоже​ данные по чистой​ подходящее то или​ опции: «Параметры оси»-«цена​

    ​ значение 7 (упущены​ нужно использовать разные​ 1 до 1,2​ не так. Кроме​ диаграмм Точечная и​ задать минимальное значение​ Теперь закрываем две​ тебя поучу. Эксель​ значения Е. Снова​ Excel не представляет​ (можно остаться и​

    ​ ось. Выбираем «Изменить​Допустим, нам нужно показать​ убираем. Чтобы уточнить​ прибыли предприятия за​ иное графическое представление​ основных делений»-«фиксированное» и​ 2,3,4,5,6).​ типы графиков. Убедимся​ на диаграмме теперь​ того, обе части​ График см. статью График​

    ​ -1, максимальное 1,​ скобочки. Получается формула​ сама открыть сможешь?​ «Добавить». Имя ряда​ никакой сложности. Совместим​ на этом –​ тип диаграммы для​ не только чистую​ информацию, подписываем маркеры.​ 5 лет:​

    ​ данных. Выбор зависит​ установите значение 1​

    ​Вывод один: данный способ​ в этом, разобрав​ нет вообще значений.​ графика одного цвета,​ vs Точечная диаграмма​ основное деление 0,5.​ =СОS(PAДИАНЫ (2*А1)) -​ Дальше по пунктам:​ – В. Значения​ на одном поле​ поставить курсор в​ ряда».​ прибыль, но и​ На вкладке «Подписи​Год​ от того что​ вместо 2.​

    Наложение и комбинирование графиков

    ​ графического построения данных​ практический пример с​ Чтобы избежать этого​ что не удобно.​ в MS EXCEL.​ Если хочешь перенести​ я надеюсь, ты​1. В столбец​ Х – данные​

    ​ два графика функций​ свободную ячейку). «Вставка»​Определяемся с видом для​ стоимость активов. Данных​ данных» определяем местоположение​Чистая прибыль*​ и как мы​нажмите на кнопку «Закрыть».​

    ​ нам не подходит.​ построением математического графика​ недостатка — построим​

    Графики зависимости

    ​ Поэтому, построим график​Создадим таблицу с исходными​ ось Y вверх​

    ​ это сама запишешь,​ А вбиваем значения​ в столбце В.​ в Excel. Добавим​

    ​ — «Диаграмма» -​ второго ряда данных.​ стало больше:​ цифр. В примере​2010​ хотим презентовать. На​

    ​Теперь у нас отображается​ А значит щелкните​ функций в Excel.​

    ​ диаграмму типа Точечная​ используя 2 ряда​ данными для x​ или вниз, здесь​ а не скопируешь,​ углов, для которых​ Значения У –​ к предыдущей Z=X(√x​ «Точечная». Выбираем понравившийся​ В примере –​Но принцип построения остался​ – справа.​13742​ следующих примерах вы​ одинаковое количество значений​

    ​Начнем из анализа и​ с 3-мя рядами​ данных.​ от -1 до​ же задаёшь параметры​ так как простое​ будет строиться график.​ данные в столбце​

    Как построить график функции в Экселе? Помогите, срочно (

    ​ – 3). Таблица​ тип. Щелкаем по​ линейчатая диаграмма.​
    ​ прежним. Только теперь​Улучшим изображение – подпишем​2011​ убедитесь, что выбор​
    ​ по всем осям.​

    ​ кнопкой мышки (чтобы​​ создания графика функций​ данных.​Создадим другую таблицу с​ 4, включая граничные​ пересечения с осью​ копирование тебе выдаст​ В А1 вставляем​ Е. И по​ с данными:​ области диаграммы правой​

    ​Всего несколько нажатий –​​ есть смысл оставить​ оси. «Макет» –​11786​ имеет большое значение.​
    ​Очень важно понимать разницу​ сделать его активным)​ в Excel. Мы​Для построения графика используем​ исходными данными в​ значения (см. файл​ Х. Если всё​ ошибку, хехе. :)​ 0, в А2​ такому принципу всю​Выделяем данные и вставляем​ кнопкой мыши –​ дополнительная ось для​ легенду. Так как​ «Название осей» –​
    ​2012​ Существует даже целая​ в предназначениях графиков​ и нажмите клавишу​ убедимся в том,​ 2 таблицы с​ файле примера, лист​ примера, лист Ряд1):​ правильно сделала, получится​ Далее с помощью​ — 15, в​ таблицу.​ в поле диаграммы.​ «Выбрать данные».​ другого типа измерений​ у нас 2​ «Название основной горизонтальной​6045​ наука «Инфографика», которая​ Excel. В данном​ DELETE на клавиатуре,​ что линейный график​ данными для каждого​ График:​Шаг по х выберем​ что-то вроде приведённого​ автозаполнения копируешь значение​ А3 — 30.​Скачать все примеры графиков​ Если что-то не​Выделяем значения Х (первый​ готова.​ кривые.​ (вертикальной) оси»:​2013​
    ​ учит лаконично презентовать​ примере мы видим,​ чтобы удалить его.​ в Excel существенно​ уравнения, см. файл примера,​Второй и третий столбец​ равным 0,2, чтобы​ на картинке.​ функции до максимального​ Дальше с помощью​Точно так же можно​
    ​ так (не те​ столбец). И нажимаем​Вся работа состоит из​Как добавить вторую (дополнительную)​Заголовок можно убрать, переместить​7234​ информацию с максимальным​ что далеко не​​ отличается от графика​ лист График.​ таблицы будут использоваться​ график содержал более​5. Садись, пять.​ значения аргумента.​ функции «Автозаполнение» дотягиваем​ строить кольцевые и​ названия рядов, неправильно​ «Добавить». Открывается окно​ двух этапов:​ ось? Когда единицы​ в область графика,​2014​ использованием графики вместо​ все графики подходят​Чтобы создать правильный график​ линейной функции, который​Первое значение второго графика​
    ​ для построения 2-х​

    Строим график функции, заданный системой уравнений, в EXCEL

    history 8 января 2018 г.
      Группы статей

    • Контрольные работы и задания
    • Диаграммы и графики

    Построим в MS EXCEL график функции, заданный системой уравнений. Эта задача часто встречается в лабораторных работах и почему-то является «камнем преткновения» для многих учащихся.

    Пусть дана система уравнений

    Требуется на отрезке [-1; 4] построить график функции f(x). Параметры a = 5 и b = 2 необходимо задать в отдельных ячейках.

    Решение (1 ряд данных)

    Чтобы построить график функции в MS EXCEL можно использовать диаграмму типа График или Точечная.

    СОВЕТ : О построении диаграмм см. статью Основы построения диаграмм в MS EXCEL . О различии диаграмм Точечная и График см. статью График vs Точечная диаграмма в MS EXCEL .

    Создадим таблицу с исходными данными для x от -1 до 4, включая граничные значения (см. файл примера, лист Ряд1 ):

    Шаг по х выберем равным 0,2, чтобы график содержал более 20 точек.

    Чтобы построить диаграмму типа Точечная:

    • выделите любую ячейку таблицы;
    • во вкладке Вставка в группе Диаграммы выберите диаграмму Точечная с прямыми отрезками и маркерами .

    Чтобы построить диаграмму типа График:

    • выделите любую столбец f(x) вместе с заголовком;
    • во вкладке Вставка в группе Диаграммы выберите диаграмму График маркерами .

    У обеих диаграмм один общий недостаток — обе части графика соединены линией (в диапазоне х от 1 до 1,2). Из этого можно сделать ошибочный вывод, что, например, для х=1,1 значение функции равно около -15. Это, конечно же, не так. Кроме того, обе части графика одного цвета, что не удобно. Поэтому, построим график используя 2 ряда данных .

    Решение (2 ряда данных)

    Создадим другую таблицу с исходными данными в файле примера, лист График :

    Второй и третий столбец таблицы будут использоваться для построения 2-х рядов данных. Первый столбец — для подписей по оси х. Для значений x>1 будет построен второй график (в степени 3/2), для остальных — парабола. Значения #Н/Д (нет данных) использованы для удобства — в качестве исходных данных для ряда можно брать значения из целого столбца. В противном случае пришлось бы указывать диапазоны соответствующих ячеек при построении диаграммы. При изменении шага по х — это вызвало бы необходимость перестроения диаграммы.

    У такой диаграммы имеется недостаток — в диапазоне х от 1 до 1,2 на диаграмме теперь нет вообще значений. Чтобы избежать этого недостатка — построим диаграмму типа Точечная с 3-мя рядами данных.

    Решение (3 ряда данных)

    Для построения графика используем 2 таблицы с данными для каждого уравнения, см. файл примера, лист График .

    Первое значение второго графика возьмем чуть больше 1, например, 1,00001, чтобы как можно ближе приблизиться к значению, в котором происходит разрыв двух графиков. Также для точки со значением х=1 построим на диаграмме одну точку (ряд №3), чтобы показать, что для этого х значение второго уравнения не вычисляется (хотя фактически вычисляется).

    Решение системы уравнений графическим методом средствами MS Excel

    Цели и задачи.

    1. Развитие приемов умственной деятельности, формирование и развитие функционального мышления учащихся, развитие познавательных потребностей учащихся, создание условий для приобретения опыта работы учащихся в среде ИКТ.
    2. Достижение сознательного усвоения учебного материала учащимися, работа над повышением грамотности устной речи, правильного использования компьютерных терминов.
    3. Научить применять возможности MS Excel в повседневной жизни, в познавательной деятельности.
    4. Закрепить навыки создания таблиц и диаграмм.
    5. Научить решать систему уравнений графическим методом, исследовать график функции.

    Оборудование урока: компьютеры, мультимедиа проектор.

    Программное обеспечение: Windows XP, пакет программ MS Office 2003.

    Тема нашего урока тесно связана с математикой разделы “Графики функций” и “Решение систем уравнений”. Поэтому нам понадобятся ранее полученные навыки. Но мы постараемся упростить нашу задачу с помощью применения современных вычислительных средств.

    Запишите в тетради тему урока и укажите дату.

    Назовите мне кого из класса сегодня нет.

    Давайте вспомним, что такое уравнение, и как его можно решить графически.

    Назовите, пожалуйста, что в математике называют уравнением, решением уравнения и системой уравнений.

    (Учащиеся приводят определения)

    Уравнение – это математическое выражение, содержащее неизвестную величину (переменную) и 0 с правой стороны от знака =.

    Система уравнений – несколько связанных уравнений, имеющих одинаковые обозначения неизвестных величин (переменных).

    Решением уравнения – называют такое значение неизвестной величины, при подстановке которого левая часть выражения принимает значение 0. И мы получаем верное равенство.

    Но, с другой стороны, подобное выражение можно представить как функцию с зависимой и независимой величинами. Если мы слева от знака = поставим Y, а справа заданное выражение. Y – зависимая величина, Х – независимая величина. В этом случае Решением уравнения является точка пересечения графика функции с осью ОХ.

    Для решения уравнения графическим методом необходимо рассчитать значения функции в ключевых точках с координатой Х (Х меняется в диапазоне допустимых значений), нанести эти точки на систему координат, построить график функции и определить координаты точки пересечения графика с осью ОХ.

    Это достаточно сложная задача. Нужно достаточно много вычислений и аккуратное построение графика функции. Также мы заранее не можем сказать, из какого диапазона чисел необходимо брать значения Х.

    Но эту задачу может взять на себя ЭВМ.

    Мы воспользуемся возможностями программы MS Excel.

    Основная часть

    Давайте разобьемся на 2 группы. Сильные ученики, которые уже хорошо владеют средствами MS Excel, попытаются самостоятельно разработать таблицу. А остальные ребята будут вместе со мной последовательно выполнять действия.

    Сильные ученики пересаживаются за дальние компьютеры и самостоятельно разрабатывают таблицу для решения системы уравнений. Они должны получить примерно такую картинку на экране.

    С остальными мы работаем в режиме “Делай как Я”. Я демонстрирую действия на экране проектора и комментирую, вы стараетесь выполнять эти действия у себя на ЭВМ.

    И так. Мы запустили программу MS Excel.

    Мы хотим разработать таблицу для решения системы уравнений:

    Нам необходимо задать диапазон изменения величины Х и рассчитать соответствующее значение Y.

    Сформируем начальные данные.

    В ячейку A1 запишем – нач Х =. В ячейку D1 запишем – шаг Х =. В ячейках B1, E1 их соответствующие значения – (-2,5) и 0,15.

    В ячейках C4, F4 запишем общий вид наших уравнений. В строке 5 сформируем заголовки будущих таблиц значений заданных функций.

    Теперь в столбиках B, E мы должны сформировать значения для величины Х. А в столбиках C, E значения величин Y. У нас должна получиться вот такая картинка. Столбики со значением величины X мы должны сформировать так, чтобы было удобно менять начальное его значение и шаг X, которые мы создали в заголовке.

    Формулы, которые нам нужно ввести приведены на рисунке.

    Заметьте, что большинство формул повторяются, и их можно ввести методом копирования.

    Заполните, пожалуйста, в каждой таблице 20-25 строчек.

    Символ $ в формуле обозначает, что данный адрес ячейки является абсолютным и он не будет изменяться при копировании формулы.

    Проверьте, чтобы ваши расчётные данные совпадали с рисунком 2.

    Нам осталось красиво оформить таблицы. Для этого нужно указать, какие границы отображать в ячейках расположения расчётных таблиц. Выделите их указателем мышки и задайте режим “Все границы”.

    Теперь нам необходимо построить графики заданных функций. Для этого воспользуемся инструментом “Диаграммы”.

    Выберем тип диаграммы Точечная-Сглаженная и на следующем экране укажем необходимые нам диапазоны данных, как указано на рисунке. Незабудем указать название для каждого графика. Легенду расположим снизу. А саму диаграмму “На текущем листе”, поместив её справа от расчётных таблиц.

    Если вы всё сделали правильно, то у вас на экране должна получиться вот такая картинка.

    У кого не получилось, давайте вместе разберёмся в ошибках и добъёмся требуемого результата.

    Теперь изменяя значения в ячейках B1, D1 можно смещать графики функций вдоль оси ОХ и изменять их масштаб.

    Мы видим, что одно из решений нашей системы уравнений равно -1,5.

    Изменяя начальное значение Х, найдите на графике второе решение системы уравнений.

    Сколько у вас получилось?

    Великолепно. У нас получилось. Мы легко решили такую сложную систему уравнений.

    Но можно немного изменить нашу таблицу и усовершенствовать для решения множества подобных систем уравнений или для исследования графиков заданных функций.

    Для этого нужно внести изменения в таблицу и расчётные формулы.

    Можно сделать следующим образом, как показано на рисунке. Формулы в ячейках показаны на следующем рисунке.

    Самостоятельно внесите все необходимые изменения.

    Попробуйте изменять коофициенты A, B, C, D и посмотрите, как меняется форма и положение графиков соответствующих формул.

    Заключительный этап урока

    Ребята, как вы думаете, что удобней самостоятельно строить график функции на бумаге или поручить эту задачу ЭВМ?

    А что легче для вас?

    Конечно же, на данном этапе вам удобней самостоятельно на бумаге построить график функции. Но в конце урока мы получили универсальную таблицу, которая позволяет решать множество подобных заданий.

    Мы ещё раз убедились, что компьютер это мощный инструмент, который позволяет не только приятно проводить время за играми, но и решать серьёзные задачи.

    Надеюсь, что вам понравилось сегодняшняя работа. И вы Довольны достигнутыми результатами.

    источники:

    http://excel2.ru/articles/stroim-grafik-funkcii-zadannyy-sistemoy-uravneniy-v-ms-excel

    http://urok.1sept.ru/articles/617119

    Требуется на отрезке [-1; 4] построить график функции f(x). Параметры a = 5 и b = 2 необходимо задать в отдельных ячейках.

    Решение (1 ряд данных)

    Чтобы построить график функции в MS EXCEL можно использовать диаграмму типа График или Точечная.

    СОВЕТ : О построении диаграмм см. статью Основы построения диаграмм в MS EXCEL . О различии диаграмм Точечная и График см. статью График vs Точечная диаграмма в MS EXCEL .

    Создадим таблицу с исходными данными для x от -1 до 4, включая граничные значения (см. файл примера, лист Ряд1 ):

    Шаг по х выберем равным 0,2, чтобы график содержал более 20 точек.

    Чтобы построить диаграмму типа Точечная:

    • выделите любую ячейку таблицы;
    • во вкладке Вставка в группе Диаграммы выберите диаграмму Точечная с прямыми отрезками и маркерами .

    Чтобы построить диаграмму типа График:

    • выделите любую столбец f(x) вместе с заголовком;
    • во вкладке Вставка в группе Диаграммы выберите диаграмму График маркерами .

    У обеих диаграмм один общий недостаток — обе части графика соединены линией (в диапазоне х от 1 до 1,2). Из этого можно сделать ошибочный вывод, что, например, для х=1,1 значение функции равно около -15. Это, конечно же, не так. Кроме того, обе части графика одного цвета, что не удобно. Поэтому, построим график используя 2 ряда данных .

    Решение (2 ряда данных)

    Создадим другую таблицу с исходными данными в файле примера, лист График :

    Второй и третий столбец таблицы будут использоваться для построения 2-х рядов данных. Первый столбец — для подписей по оси х. Для значений x>1 будет построен второй график (в степени 3/2), для остальных — парабола. Значения #Н/Д (нет данных) использованы для удобства — в качестве исходных данных для ряда можно брать значения из целого столбца. В противном случае пришлось бы указывать диапазоны соответствующих ячеек при построении диаграммы. При изменении шага по х — это вызвало бы необходимость перестроения диаграммы.

    У такой диаграммы имеется недостаток — в диапазоне х от 1 до 1,2 на диаграмме теперь нет вообще значений. Чтобы избежать этого недостатка — построим диаграмму типа Точечная с 3-мя рядами данных.

    Решение (3 ряда данных)

    Для построения графика используем 2 таблицы с данными для каждого уравнения, см. файл примера, лист График .

    Первое значение второго графика возьмем чуть больше 1, например, 1,00001, чтобы как можно ближе приблизиться к значению, в котором происходит разрыв двух графиков. Также для точки со значением х=1 построим на диаграмме одну точку (ряд №3), чтобы показать, что для этого х значение второго уравнения не вычисляется (хотя фактически вычисляется).

    Практическая работа «Графический метод решения уравнений в Excel»

    Нажмите, чтобы узнать подробности

    Построим таблицу значений функции. Заполним столбец x значениями от -10 до 10. Значения y будем вычислять по формуле: =10*SIN(A2)-2*A2*A2+5 (формула для ячейки B2).

    Построив график, найдем точки пересечения графика с осью OX. Это и есть приближенное решение.

    Приближенное решение уравнения: -0.5 и 2.5.

    Просмотр содержимого документа
    «Практическая работа «Графический метод решения уравнений в Excel»»

    Графический метод решения уравнений.

    Найти графическим методом корень уравнения 10sin(x)-2x 2 +5=0.

    Построим таблицу значений функции. Заполним столбец x значениями от -10 до 10. Значения y будем вычислять по формуле: =10*SIN(A2)-2*A2*A2+5 (формула для ячейки B2).

    Построив график, найдем точки пересечения графика с осью OX. Это и есть приближенное решение.

    Приближенное решение уравнения: -0.5 и 2.5.

    Исследование физических моделей

    Рассмотрим процесс решения задачи на конкретном примере: Тело брошено с некоторой высоты с начальной скоростью, направленной под углом к горизонту. Определить угол, при котором дальность полета будет максимальной.

    Содержательная постановка задачи. В процессе тренировок теннисистов используются автоматы по бросанию мячика в определенное место площадки. Необходимо задать автомату необходимую скорость и угол бросания мячика для попадания в мишень определенного размера, находящуюся на известном расстоянии.

    1) Описательная модель. Сначала построим качественную описательную модель процесса движения тела с использованием физических объектов, понятий и законов, то есть в данном случае идеализированную модель движения объекта. Из условия задачи можно сформулировать следующие основные предположения:

    тело мало по сравнению с Землей, поэтому его можно считать материальной точкой;

    изменение высоты тела не велико, поэтому ускорение свободного падения считать постоянной величиной g = 9,8 м/с 2 и движение по оси OY можно считать равноускоренным;

    скорость движения мала, поэтому сопротивлением воздуха можно пренебречь.

    2) Формальная модель. Из курса физики известно, что описанное выше движение является равноускоренным. Координаты тела в любой момент времени можно найти по формулам:

    Для формализации модели используем известные из курса физики формулы равномерного и равноускоренного движения. При заданных начальной скорости и и угле бросания а значения координат дальности полета х и высоты у от времени можно описать следующими формулами:

    или

    или

    3) Компьютерная модель. Преобразуем формальную модель в компьютерную с использованием электронных таблиц. Выделим ячейки для ввода начальных данных: нач. скорость, нач. высота, угол. Построим таблицу для вычисления координат x и y.

    Использование графических возможностей Excel для решения математических задач
    методическая разработка по алгебре на тему

    Коколова Наталья Михайловна

    Данная статья посвящена использованию Excel для построения графиков элементарных и сложных функций, изучение графических способов решения уравнений и систем уравнений, а также построения трехмерных поверхностей.

    Скачать:

    Вложение Размер
    ispolzovanie_graficheskih_vozmozhnostey_excel.doc 292 КБ

    Предварительный просмотр:

    Использование графических возможностей Excel для решения математических задач

    Возможности ЭТ Microsoft Excel весьма многогранны. Всем известно, что Excel является мощным вычислительным инструментом, позволяющим производить простые и сложные расчеты в различных областях человеческой деятельности: математике, физике, инженерных науках, экономике, технологии. Но помимо осуществления расчетов возможно применение ЭТ Excel и в других областях. Данная статья посвящена использованию Excel для построения графиков элементарных и сложных функций, изучение графических способов решения уравнений и систем уравнений, а также построения трехмерных поверхностей.

    Построение графиков элементарных функций в Excel

    Для построения графика функции в Excel прежде всего надо построить таблицу, в одну колонку которой занести значение аргумента функции, а в другую — значение функции при заданном значении аргумента.

    Для этого в рабочем поле Excel в ячейках 1-й строки напечатаем наименование работы, во 2-ой строке – заголовок «Расчетная таблица», в 3-й – наименование колонок (столбцов) расчетной таблицы.

    Начиная с ячейки А5 произведем формирование значение таблицы. Для этого необходимо в ячейку А5 ввести первое значение аргумента вычисляемой функции из заданного диапазона значений аргументов. В ячейку А6 введем второе значение аргумента, отличающееся от первого на заданный шаг изменения аргумента. Далее пометим эти ячейки и, ухватив указателем мыши квадратную точку в правом нижнем углу помеченной области ячеек, движением вниз по столбцу с нажатой левой кнопкой мыши рассчитаем значения аргумента с шагом, который вычислил Excel по указанным первым двум ячейкам (рис.1).

    Пометив ячейку В5, вычисляем первое значении функции, используя Мастер формул, и если функция проста, то записываем формулу вручную. Запись формулы в ячейку вручную следует начать со знака «=» и закончить нажатием клавиши Enter. Затем, используя квадратную точку помеченной ячейки, копируем формулу в остальные ячейки.

    Для построения графика заданной функции по построенной таким образом таблице необходимо воспользоваться Мастером диаграмм. Следуя указаниям Мастера, выбираем форму диаграммы Точечная.

    Построение графика функции y=ax 2 +bx+c.

    Построим график указанной функции при а-2, b=5, c=-10. Для построения графика функции будем изменять аргумент в диапазоне -5≤x≤2,5 с шагом 0,5.

    Выполним последовательно все действия, описанные выше, сравнивая получаемый результат с рис.1.

    Цели и задачи.

    1. Развитие приемов умственной деятельности,
      формирование и развитие функционального
      мышления учащихся, развитие познавательных
      потребностей учащихся, создание условий для
      приобретения опыта работы учащихся в среде ИКТ.
    2. Достижение сознательного усвоения учебного
      материала учащимися, работа над повышением
      грамотности устной речи, правильного
      использования компьютерных терминов.
    3. Научить применять возможности MS Excel в
      повседневной жизни, в познавательной
      деятельности.
    4. Закрепить навыки создания таблиц и диаграмм.
    5. Научить решать систему уравнений графическим
      методом, исследовать график функции.

    Оборудование урока: компьютеры, мультимедиа
    проектор.

    Программное обеспечение: Windows XP, пакет
    программ MS Office 2003.

    Содержание урока

    Организационный момент.

    Здравствуйте.

    Тема нашего урока тесно связана с математикой
    разделы “Графики функций” и “Решение систем
    уравнений”. Поэтому нам понадобятся ранее
    полученные навыки. Но мы постараемся упростить
    нашу задачу с помощью применения современных
    вычислительных средств.

    Запишите в тетради тему урока и укажите дату.

    Назовите мне кого из класса сегодня нет.

    Актуализация знаний.

    Давайте вспомним, что такое уравнение, и как его
    можно решить графически.

    Назовите, пожалуйста, что в математике называют
    уравнением, решением уравнения и системой
    уравнений.

    (Учащиеся приводят определения)

    Уравнение – это математическое выражение,
    содержащее неизвестную величину (переменную) и 0
    с правой стороны от знака =.

    Система уравнений – несколько связанных
    уравнений, имеющих одинаковые обозначения
    неизвестных величин (переменных).

    Решением уравнения – называют такое
    значение неизвестной величины, при подстановке
    которого левая часть выражения принимает
    значение 0. И мы получаем верное равенство.

    Но, с другой стороны, подобное выражение можно
    представить как функцию с зависимой и
    независимой величинами. Если мы слева от знака =
    поставим Y, а справа заданное выражение. Y –
    зависимая величина, Х – независимая величина. В
    этом случае Решением уравнения является точка
    пересечения графика функции с осью ОХ.

    Постановка проблемы.

    Для решения уравнения графическим методом
    необходимо рассчитать значения функции в
    ключевых точках с координатой Х (Х меняется в
    диапазоне допустимых значений), нанести эти
    точки на систему координат, построить график
    функции и определить координаты точки
    пересечения графика с осью ОХ.

    Это достаточно сложная задача. Нужно
    достаточно много вычислений и аккуратное
    построение графика функции. Также мы заранее не
    можем сказать, из какого диапазона чисел
    необходимо брать значения Х.

    Но эту задачу может взять на себя ЭВМ.

    Мы воспользуемся возможностями программы MS Excel.

    Основная часть

    Давайте разобьемся на 2 группы. Сильные ученики,
    которые уже хорошо владеют средствами MS Excel,
    попытаются самостоятельно разработать таблицу.
    А остальные ребята будут вместе со мной
    последовательно выполнять действия.

    Сильные ученики пересаживаются за дальние
    компьютеры и самостоятельно разрабатывают
    таблицу для решения системы уравнений. Они
    должны получить примерно такую картинку на
    экране.

    С остальными мы работаем в режиме “Делай как
    Я”. Я демонстрирую действия на экране проектора
    и комментирую, вы стараетесь выполнять эти
    действия у себя на ЭВМ.

    И так. Мы запустили программу MS Excel.

    Мы хотим разработать таблицу для решения
    системы уравнений:

    Y = x ^ 2 + 2

    Y = 2 * x + 3

    Нам необходимо задать диапазон изменения
    величины Х и рассчитать соответствующее
    значение Y.

    Сформируем начальные данные.

    В ячейку A1 запишем – нач Х =. В ячейку D1 запишем
    – шаг Х =. В ячейках B1, E1 их соответствующие
    значения – (-2,5) и 0,15.

    В ячейках C4, F4 запишем общий вид наших
    уравнений. В строке 5 сформируем заголовки
    будущих таблиц значений заданных функций.

    Теперь в столбиках B, E мы должны сформировать
    значения для величины Х. А в столбиках C, E
    значения величин Y. У нас должна получиться вот
    такая картинка. Столбики со значением величины X
    мы должны сформировать так, чтобы было удобно
    менять начальное его значение и шаг X, которые мы
    создали в заголовке.

    Приложение 1

    Приложение 2

    Формулы, которые нам нужно ввести приведены на
    рисунке.

    Заметьте, что большинство формул повторяются, и
    их можно ввести методом копирования.

    Заполните, пожалуйста, в каждой таблице 20-25
    строчек.

    Символ $ в формуле обозначает, что данный адрес
    ячейки является абсолютным и он не будет
    изменяться при копировании формулы.

    Проверьте, чтобы ваши расчётные данные
    совпадали с рисунком 2.

    Нам осталось красиво оформить таблицы. Для
    этого нужно указать, какие границы отображать в
    ячейках расположения расчётных таблиц. Выделите
    их указателем мышки и задайте режим “Все
    границы
    ”.

    Теперь нам необходимо построить графики
    заданных функций. Для этого воспользуемся
    инструментом “Диаграммы”.

    Выберем тип диаграммы Точечная-Сглаженная
    и на следующем экране укажем необходимые нам
    диапазоны данных, как указано на рисунке.
    Незабудем указать название для каждого графика.
    Легенду расположим снизу. А саму диаграмму “На
    текущем листе
    ”, поместив её справа от
    расчётных таблиц.

    Если вы всё сделали правильно, то у вас на
    экране должна получиться вот такая картинка.

    У кого не получилось, давайте вместе разберёмся
    в ошибках и добъёмся требуемого результата.

    Теперь изменяя значения в ячейках B1, D1 можно
    смещать графики функций вдоль оси ОХ и изменять
    их масштаб.

    Мы видим, что одно из решений нашей системы
    уравнений равно -1,5.

    Задание 1.

    Изменяя начальное значение Х, найдите на
    графике второе решение системы уравнений.

    Сколько у вас получилось?

    Великолепно. У нас получилось. Мы легко решили
    такую сложную систему уравнений.

    Но можно немного изменить нашу таблицу и
    усовершенствовать для решения множества
    подобных систем уравнений или для исследования
    графиков заданных функций.

    Приложение 1

    Приложение 2

    Для этого нужно внести изменения в таблицу и
    расчётные формулы.

    Можно сделать следующим образом, как
    показано на рисунке. Формулы в ячейках показаны
    на следующем рисунке.

    Задание 2.

    Самостоятельно внесите все необходимые
    изменения.

    Задание 3.

    Попробуйте изменять коофициенты A, B, C, D и
    посмотрите, как меняется форма и положение
    графиков соответствующих формул.

    Заключительный этап урока

    Ребята, как вы думаете, что удобней
    самостоятельно строить график функции на бумаге
    или поручить эту задачу ЭВМ?

    А что легче для вас?

    Конечно же, на данном этапе вам удобней
    самостоятельно на бумаге построить график
    функции. Но в конце урока мы получили
    универсальную таблицу, которая позволяет решать
    множество подобных заданий.

    Мы ещё раз убедились, что компьютер это мощный
    инструмент, который позволяет не только приятно
    проводить время за играми, но и решать серьёзные
    задачи.

    Надеюсь, что вам понравилось сегодняшняя
    работа. И вы Довольны достигнутыми результатами.

    Спасибо за урок.

    Понравилась статья? Поделить с друзьями:
  • Построение графиков в excel с процентами
  • Построение графиков в excel с примерами
  • Построение графиков в excel с параметром
  • Построение графиков в excel с линиями
  • Построение графиков в excel с двумя условиями