Построение графика функции в excel с помощью функции если

Построение графика функции с условием
в
MS Excel.

Перед
выполнением задания изучите в п.24  логическую функцию
Excel ЕСЛИ и
запись составных условий через И и ИЛИ.

Задание: Построить
график функции

на отрезке xÎ[-10;10] с шагом для x  0,78.

То есть наша функция F
ведет себя (рассчитывается) по-разному в зависимости от  значения х.

Выполнение:

Все делается как и на прошлом уроке, но для
расчета значений функции используем функцию ЕСЛИ.

В  общем виде она выглядит так :

=ЕСЛИ(условие; значение при выполнении
условия; значение при невыполнении условия)

Условие у нас составное, надо представить
через И или ИЛИ, в данном случае будет И(х>5;
x<=8) –в нашей формуле x заменим на адрес соответствующей ячейки.

Чтобы построить график сначала создадим
таблицу точек  этой функции на данном промежутке(как и на прошлом уроке, но
повторюсь):

A

B

1

X

F

2

-10

=ЕСЛИ(И(А2>5;А2<=8); 
2*А2*А2+3*А2-5 ; 2,5*А2+4)

3

=A2+0,78

Обратите внимание:

1) в ячейке А3 в
формуле к предыдущему значению добавляем наш шаг;

2) в ячейке В2
записываем формулу нашей функции  по всем правилам
Excel,
вместо х у нас ячейка слева, т.е. А2.

Обратите внимание
на синтаксис функции ЕСЛИ: в скобках 1 условие(составное в данном случае),
через ; 2-значение если условие
выполняется (2*А2*А2+3*А2-5), снова ; 3-
значение если условие не выполняется.

Затем для того
чтобы получить остальные точки используем автозаполнение:

Щелкаем по ячейке А3, наводим курсор на
маленький черный квадратик внизу справа этой ячейки –курсор превратится в
черный крестик, зажимаем левую кнопку и тянем мышь вниз. Можно потянуть наугад
до ячейки А30.

Но у нас отрезок от -10 до 10, значит, лишние
данные удаляем.

С помощью
автозаполнения так же получаем значения функции для этих аргументов из ячейки  В2
(её тянем вниз до В27).

Точки готовы.
Теперь выделяем полученные данные, Вставка – Точечная (диаграмма), выбираем
гладкую непрерывную кривую…

В итоге у нас есть точки на данном отрезке и
график нашей функции. Видно, что функция от 5 до 8 ведет себя на графике иначе.

 Если у Вас не получилось, пробуйте снова- тренируйтесь,
на следующем уроке работа на оценку.

Строим график функции, заданный системой уравнений, в EXCEL

history 8 января 2018 г.
    Группы статей

  • Контрольные работы и задания
  • Диаграммы и графики

Построим в MS EXCEL график функции, заданный системой уравнений. Эта задача часто встречается в лабораторных работах и почему-то является «камнем преткновения» для многих учащихся.

Пусть дана система уравнений

Требуется на отрезке [-1; 4] построить график функции f(x). Параметры a = 5 и b = 2 необходимо задать в отдельных ячейках.

Решение (1 ряд данных)

Чтобы построить график функции в MS EXCEL можно использовать диаграмму типа График или Точечная.

СОВЕТ : О построении диаграмм см. статью Основы построения диаграмм в MS EXCEL . О различии диаграмм Точечная и График см. статью График vs Точечная диаграмма в MS EXCEL .

Создадим таблицу с исходными данными для x от -1 до 4, включая граничные значения (см. файл примера, лист Ряд1 ):

Шаг по х выберем равным 0,2, чтобы график содержал более 20 точек.

Чтобы построить диаграмму типа Точечная:

  • выделите любую ячейку таблицы;
  • во вкладке Вставка в группе Диаграммы выберите диаграмму Точечная с прямыми отрезками и маркерами .

Чтобы построить диаграмму типа График:

  • выделите любую столбец f(x) вместе с заголовком;
  • во вкладке Вставка в группе Диаграммы выберите диаграмму График маркерами .

У обеих диаграмм один общий недостаток — обе части графика соединены линией (в диапазоне х от 1 до 1,2). Из этого можно сделать ошибочный вывод, что, например, для х=1,1 значение функции равно около -15. Это, конечно же, не так. Кроме того, обе части графика одного цвета, что не удобно. Поэтому, построим график используя 2 ряда данных .

Решение (2 ряда данных)

Создадим другую таблицу с исходными данными в файле примера, лист График :

Второй и третий столбец таблицы будут использоваться для построения 2-х рядов данных. Первый столбец — для подписей по оси х. Для значений x>1 будет построен второй график (в степени 3/2), для остальных — парабола. Значения #Н/Д (нет данных) использованы для удобства — в качестве исходных данных для ряда можно брать значения из целого столбца. В противном случае пришлось бы указывать диапазоны соответствующих ячеек при построении диаграммы. При изменении шага по х — это вызвало бы необходимость перестроения диаграммы.

У такой диаграммы имеется недостаток — в диапазоне х от 1 до 1,2 на диаграмме теперь нет вообще значений. Чтобы избежать этого недостатка — построим диаграмму типа Точечная с 3-мя рядами данных.

Решение (3 ряда данных)

Для построения графика используем 2 таблицы с данными для каждого уравнения, см. файл примера, лист График .

Первое значение второго графика возьмем чуть больше 1, например, 1,00001, чтобы как можно ближе приблизиться к значению, в котором происходит разрыв двух графиков. Также для точки со значением х=1 построим на диаграмме одну точку (ряд №3), чтобы показать, что для этого х значение второго уравнения не вычисляется (хотя фактически вычисляется).

Решение системы уравнений в Microsoft Excel

Умение решать системы уравнений часто может принести пользу не только в учебе, но и на практике. В то же время, далеко не каждый пользователь ПК знает, что в Экселе существует собственные варианты решений линейных уравнений. Давайте узнаем, как с применением инструментария этого табличного процессора выполнить данную задачу различными способами.

Варианты решений

Любое уравнение может считаться решенным только тогда, когда будут отысканы его корни. В программе Excel существует несколько вариантов поиска корней. Давайте рассмотрим каждый из них.

Способ 1: матричный метод

Самый распространенный способ решения системы линейных уравнений инструментами Excel – это применение матричного метода. Он заключается в построении матрицы из коэффициентов выражений, а затем в создании обратной матрицы. Попробуем использовать данный метод для решения следующей системы уравнений:

  1. Заполняем матрицу числами, которые являются коэффициентами уравнения. Данные числа должны располагаться последовательно по порядку с учетом расположения каждого корня, которому они соответствуют. Если в каком-то выражении один из корней отсутствует, то в этом случае коэффициент считается равным нулю. Если коэффициент не обозначен в уравнении, но соответствующий корень имеется, то считается, что коэффициент равен 1. Обозначаем полученную таблицу, как вектор A.

Отдельно записываем значения после знака «равно». Обозначаем их общим наименованием, как вектор B.

Теперь для нахождения корней уравнения, прежде всего, нам нужно отыскать матрицу, обратную существующей. К счастью, в Эксель имеется специальный оператор, который предназначен для решения данной задачи. Называется он МОБР. Он имеет довольно простой синтаксис:

Аргумент «Массив» — это, собственно, адрес исходной таблицы.

Итак, выделяем на листе область пустых ячеек, которая по размеру равна диапазону исходной матрицы. Щелкаем по кнопке «Вставить функцию», расположенную около строки формул.

Выполняется запуск Мастера функций. Переходим в категорию «Математические». В представившемся списке ищем наименование «МОБР». После того, как оно отыскано, выделяем его и жмем на кнопку «OK».

Запускается окно аргументов функции МОБР. Оно по числу аргументов имеет всего одно поле – «Массив». Тут нужно указать адрес нашей таблицы. Для этих целей устанавливаем курсор в это поле. Затем зажимаем левую кнопку мыши и выделяем область на листе, в которой находится матрица. Как видим, данные о координатах размещения автоматически заносятся в поле окна. После того, как эта задача выполнена, наиболее очевидным было бы нажать на кнопку «OK», но не стоит торопиться. Дело в том, что нажатие на эту кнопку является равнозначным применению команды Enter. Но при работе с массивами после завершения ввода формулы следует не кликать по кнопке Enter, а произвести набор сочетания клавиш Ctrl+Shift+Enter. Выполняем эту операцию.

Теперь нам нужно будет умножить обратную матрицу на матрицу B, которая состоит из одного столбца значений, расположенных после знака «равно» в выражениях. Для умножения таблиц в Экселе также имеется отдельная функция, которая называется МУМНОЖ. Данный оператор имеет следующий синтаксис:

Выделяем диапазон, в нашем случае состоящий из четырех ячеек. Далее опять запускаем Мастер функций, нажав значок «Вставить функцию».

В категории «Математические», запустившегося Мастера функций, выделяем наименование «МУМНОЖ» и жмем на кнопку «OK».

Активируется окно аргументов функции МУМНОЖ. В поле «Массив1» заносим координаты нашей обратной матрицы. Для этого, как и в прошлый раз, устанавливаем курсор в поле и с зажатой левой кнопкой мыши выделяем курсором соответствующую таблицу. Аналогичное действие проводим для внесения координат в поле «Массив2», только на этот раз выделяем значения колонки B. После того, как вышеуказанные действия проведены, опять не спешим жать на кнопку «OK» или клавишу Enter, а набираем комбинацию клавиш Ctrl+Shift+Enter.

  • После данного действия в предварительно выделенной ячейке отобразятся корни уравнения: X1, X2, X3 и X4. Они будут расположены последовательно. Таким образом, можно сказать, что мы решили данную систему. Для того, чтобы проверить правильность решения достаточно подставить в исходную систему выражений данные ответы вместо соответствующих корней. Если равенство будет соблюдено, то это означает, что представленная система уравнений решена верно.
  • Способ 2: подбор параметров

    Второй известный способ решения системы уравнений в Экселе – это применение метода подбора параметров. Суть данного метода заключается в поиске от обратного. То есть, основываясь на известном результате, мы производим поиск неизвестного аргумента. Давайте для примера используем квадратное уравнение

      Принимаем значение x за равное 0. Высчитываем соответствующее для него значение f(x), применив следующую формулу:

    Вместо значения «X» подставляем адрес той ячейки, где расположено число 0, принятое нами за x.

    Переходим во вкладку «Данные». Жмем на кнопку «Анализ «что если»». Эта кнопка размещена на ленте в блоке инструментов «Работа с данными». Открывается выпадающий список. Выбираем в нем позицию «Подбор параметра…».

    Запускается окно подбора параметров. Как видим, оно состоит из трех полей. В поле «Установить в ячейке» указываем адрес ячейки, в которой находится формула f(x), рассчитанная нами чуть ранее. В поле «Значение» вводим число «0». В поле «Изменяя значения» указываем адрес ячейки, в которой расположено значение x, ранее принятое нами за 0. После выполнения данных действий жмем на кнопку «OK».

    После этого Эксель произведет вычисление с помощью подбора параметра. Об этом сообщит появившееся информационное окно. В нем следует нажать на кнопку «OK».

  • Результат вычисления корня уравнения будет находиться в той ячейке, которую мы назначили в поле «Изменяя значения». В нашем случае, как видим, x будет равен 6.
  • Этот результат также можно проверить, подставив данное значение в решаемое выражение вместо значения x.

    Способ 3: метод Крамера

    Теперь попробуем решить систему уравнений методом Крамера. Для примера возьмем все ту же систему, которую использовали в Способе 1:

      Как и в первом способе, составляем матрицу A из коэффициентов уравнений и таблицу B из значений, которые стоят после знака «равно».

    Далее делаем ещё четыре таблицы. Каждая из них является копией матрицы A, только у этих копий поочередно один столбец заменен на таблицу B. У первой таблицы – это первый столбец, у второй таблицы – второй и т.д.

    Теперь нам нужно высчитать определители для всех этих таблиц. Система уравнений будет иметь решения только в том случае, если все определители будут иметь значение, отличное от нуля. Для расчета этого значения в Экселе опять имеется отдельная функция – МОПРЕД. Синтаксис данного оператора следующий:

    Таким образом, как и у функции МОБР, единственным аргументом выступает ссылка на обрабатываемую таблицу.

    Итак, выделяем ячейку, в которой будет выводиться определитель первой матрицы. Затем жмем на знакомую по предыдущим способам кнопку «Вставить функцию».

    Активируется окно Мастера функций. Переходим в категорию «Математические» и среди списка операторов выделяем там наименование «МОПРЕД». После этого жмем на кнопку «OK».

    Запускается окно аргументов функции МОПРЕД. Как видим, оно имеет только одно поле – «Массив». В это поле вписываем адрес первой преобразованной матрицы. Для этого устанавливаем курсор в поле, а затем выделяем матричный диапазон. После этого жмем на кнопку «OK». Данная функция выводит результат в одну ячейку, а не массивом, поэтому для получения расчета не нужно прибегать к нажатию комбинации клавиш Ctrl+Shift+Enter.

    Функция производит подсчет результата и выводит его в заранее выделенную ячейку. Как видим, в нашем случае определитель равен -740, то есть, не является равным нулю, что нам подходит.

    Аналогичным образом производим подсчет определителей для остальных трех таблиц.

    На завершающем этапе производим подсчет определителя первичной матрицы. Процедура происходит все по тому же алгоритму. Как видим, определитель первичной таблицы тоже отличный от нуля, а значит, матрица считается невырожденной, то есть, система уравнений имеет решения.

  • Теперь пора найти корни уравнения. Корень уравнения будет равен отношению определителя соответствующей преобразованной матрицы на определитель первичной таблицы. Таким образом, разделив поочередно все четыре определителя преобразованных матриц на число -148, которое является определителем первоначальной таблицы, мы получим четыре корня. Как видим, они равны значениям 5, 14, 8 и 15. Таким образом, они в точности совпадают с корнями, которые мы нашли, используя обратную матрицу в способе 1, что подтверждает правильность решения системы уравнений.
  • Способ 4: метод Гаусса

    Решить систему уравнений можно также, применив метод Гаусса. Для примера возьмем более простую систему уравнений из трех неизвестных:

      Опять последовательно записываем коэффициенты в таблицу A, а свободные члены, расположенные после знака «равно» — в таблицу B. Но на этот раз сблизим обе таблицы, так как это понадобится нам для работы в дальнейшем. Важным условием является то, чтобы в первой ячейке матрицы A значение было отличным от нуля. В обратном случае следует переставить строки местами.

    Копируем первую строку двух соединенных матриц в строчку ниже (для наглядности можно пропустить одну строку). В первую ячейку, которая расположена в строке ещё ниже предыдущей, вводим следующую формулу:

    Если вы расположили матрицы по-другому, то и адреса ячеек формулы у вас будут иметь другое значение, но вы сможете высчитать их, сопоставив с теми формулами и изображениями, которые приводятся здесь.

    После того, как формула введена, выделите весь ряд ячеек и нажмите комбинацию клавиш Ctrl+Shift+Enter. К ряду будет применена формула массива и он будет заполнен значениями. Таким образом мы произвели вычитание из второй строки первой, умноженной на отношение первых коэффициентов двух первых выражений системы.

    После этого копируем полученную строку и вставляем её в строчку ниже.

    Выделяем две первые строки после пропущенной строчки. Жмем на кнопку «Копировать», которая расположена на ленте во вкладке «Главная».

    Пропускаем строку после последней записи на листе. Выделяем первую ячейку в следующей строке. Кликаем правой кнопкой мыши. В открывшемся контекстном меню наводим курсор на пункт «Специальная вставка». В запустившемся дополнительном списке выбираем позицию «Значения».

    В следующую строку вводим формулу массива. В ней производится вычитание из третьей строки предыдущей группы данных второй строки, умноженной на отношение второго коэффициента третьей и второй строки. В нашем случае формула будет иметь следующий вид:

    После ввода формулы выделяем весь ряд и применяем сочетание клавиш Ctrl+Shift+Enter.

    Теперь следует выполнить обратную прогонку по методу Гаусса. Пропускаем три строки от последней записи. В четвертой строке вводим формулу массива:

    Таким образом, мы делим последнюю рассчитанную нами строку на её же третий коэффициент. После того, как набрали формулу, выделяем всю строчку и жмем сочетание клавиш Ctrl+Shift+Enter.

    Поднимаемся на строку вверх и вводим в неё следующую формулу массива:

    Жмем привычное уже нам сочетание клавиш для применения формулы массива.

    Поднимаемся ещё на одну строку выше. В неё вводим формулу массива следующего вида:

    Опять выделяем всю строку и применяем сочетание клавиш Ctrl+Shift+Enter.

  • Теперь смотрим на числа, которые получились в последнем столбце последнего блока строк, рассчитанного нами ранее. Именно эти числа (4, 7 и 5) будут являться корнями данной системы уравнений. Проверить это можно, подставив их вместо значений X1, X2 и X3 в выражения.
  • Как видим, в Экселе систему уравнений можно решить целым рядом способов, каждый из которых имеет собственные преимущества и недостатки. Но все эти методы можно условно разделить на две большие группы: матричные и с применением инструмента подбора параметров. В некоторых случаях не всегда матричные методы подходят для решения задачи. В частности тогда, когда определитель матрицы равен нулю. В остальных же случаях пользователь сам волен решать, какой вариант он считает более удобным для себя.

    Помимо этой статьи, на сайте еще 12784 полезных инструкций.
    Добавьте сайт Lumpics.ru в закладки (CTRL+D) и мы точно еще пригодимся вам.

    Отблагодарите автора, поделитесь статьей в социальных сетях.

    Решение системы уравнений графическим методом средствами MS Excel

    Цели и задачи.

    1. Развитие приемов умственной деятельности, формирование и развитие функционального мышления учащихся, развитие познавательных потребностей учащихся, создание условий для приобретения опыта работы учащихся в среде ИКТ.
    2. Достижение сознательного усвоения учебного материала учащимися, работа над повышением грамотности устной речи, правильного использования компьютерных терминов.
    3. Научить применять возможности MS Excel в повседневной жизни, в познавательной деятельности.
    4. Закрепить навыки создания таблиц и диаграмм.
    5. Научить решать систему уравнений графическим методом, исследовать график функции.

    Оборудование урока: компьютеры, мультимедиа проектор.

    Программное обеспечение: Windows XP, пакет программ MS Office 2003.

    Тема нашего урока тесно связана с математикой разделы “Графики функций” и “Решение систем уравнений”. Поэтому нам понадобятся ранее полученные навыки. Но мы постараемся упростить нашу задачу с помощью применения современных вычислительных средств.

    Запишите в тетради тему урока и укажите дату.

    Назовите мне кого из класса сегодня нет.

    Давайте вспомним, что такое уравнение, и как его можно решить графически.

    Назовите, пожалуйста, что в математике называют уравнением, решением уравнения и системой уравнений.

    (Учащиеся приводят определения)

    Уравнение – это математическое выражение, содержащее неизвестную величину (переменную) и 0 с правой стороны от знака =.

    Система уравнений – несколько связанных уравнений, имеющих одинаковые обозначения неизвестных величин (переменных).

    Решением уравнения – называют такое значение неизвестной величины, при подстановке которого левая часть выражения принимает значение 0. И мы получаем верное равенство.

    Но, с другой стороны, подобное выражение можно представить как функцию с зависимой и независимой величинами. Если мы слева от знака = поставим Y, а справа заданное выражение. Y – зависимая величина, Х – независимая величина. В этом случае Решением уравнения является точка пересечения графика функции с осью ОХ.

    Для решения уравнения графическим методом необходимо рассчитать значения функции в ключевых точках с координатой Х (Х меняется в диапазоне допустимых значений), нанести эти точки на систему координат, построить график функции и определить координаты точки пересечения графика с осью ОХ.

    Это достаточно сложная задача. Нужно достаточно много вычислений и аккуратное построение графика функции. Также мы заранее не можем сказать, из какого диапазона чисел необходимо брать значения Х.

    Но эту задачу может взять на себя ЭВМ.

    Мы воспользуемся возможностями программы MS Excel.

    Основная часть

    Давайте разобьемся на 2 группы. Сильные ученики, которые уже хорошо владеют средствами MS Excel, попытаются самостоятельно разработать таблицу. А остальные ребята будут вместе со мной последовательно выполнять действия.

    Сильные ученики пересаживаются за дальние компьютеры и самостоятельно разрабатывают таблицу для решения системы уравнений. Они должны получить примерно такую картинку на экране.

    С остальными мы работаем в режиме “Делай как Я”. Я демонстрирую действия на экране проектора и комментирую, вы стараетесь выполнять эти действия у себя на ЭВМ.

    И так. Мы запустили программу MS Excel.

    Мы хотим разработать таблицу для решения системы уравнений:

    Нам необходимо задать диапазон изменения величины Х и рассчитать соответствующее значение Y.

    Сформируем начальные данные.

    В ячейку A1 запишем – нач Х =. В ячейку D1 запишем – шаг Х =. В ячейках B1, E1 их соответствующие значения – (-2,5) и 0,15.

    В ячейках C4, F4 запишем общий вид наших уравнений. В строке 5 сформируем заголовки будущих таблиц значений заданных функций.

    Теперь в столбиках B, E мы должны сформировать значения для величины Х. А в столбиках C, E значения величин Y. У нас должна получиться вот такая картинка. Столбики со значением величины X мы должны сформировать так, чтобы было удобно менять начальное его значение и шаг X, которые мы создали в заголовке.

    Формулы, которые нам нужно ввести приведены на рисунке.

    Заметьте, что большинство формул повторяются, и их можно ввести методом копирования.

    Заполните, пожалуйста, в каждой таблице 20-25 строчек.

    Символ $ в формуле обозначает, что данный адрес ячейки является абсолютным и он не будет изменяться при копировании формулы.

    Проверьте, чтобы ваши расчётные данные совпадали с рисунком 2.

    Нам осталось красиво оформить таблицы. Для этого нужно указать, какие границы отображать в ячейках расположения расчётных таблиц. Выделите их указателем мышки и задайте режим “Все границы”.

    Теперь нам необходимо построить графики заданных функций. Для этого воспользуемся инструментом “Диаграммы”.

    Выберем тип диаграммы Точечная-Сглаженная и на следующем экране укажем необходимые нам диапазоны данных, как указано на рисунке. Незабудем указать название для каждого графика. Легенду расположим снизу. А саму диаграмму “На текущем листе”, поместив её справа от расчётных таблиц.

    Если вы всё сделали правильно, то у вас на экране должна получиться вот такая картинка.

    У кого не получилось, давайте вместе разберёмся в ошибках и добъёмся требуемого результата.

    Теперь изменяя значения в ячейках B1, D1 можно смещать графики функций вдоль оси ОХ и изменять их масштаб.

    Мы видим, что одно из решений нашей системы уравнений равно -1,5.

    Изменяя начальное значение Х, найдите на графике второе решение системы уравнений.

    Сколько у вас получилось?

    Великолепно. У нас получилось. Мы легко решили такую сложную систему уравнений.

    Но можно немного изменить нашу таблицу и усовершенствовать для решения множества подобных систем уравнений или для исследования графиков заданных функций.

    Для этого нужно внести изменения в таблицу и расчётные формулы.

    Можно сделать следующим образом, как показано на рисунке. Формулы в ячейках показаны на следующем рисунке.

    Самостоятельно внесите все необходимые изменения.

    Попробуйте изменять коофициенты A, B, C, D и посмотрите, как меняется форма и положение графиков соответствующих формул.

    Заключительный этап урока

    Ребята, как вы думаете, что удобней самостоятельно строить график функции на бумаге или поручить эту задачу ЭВМ?

    А что легче для вас?

    Конечно же, на данном этапе вам удобней самостоятельно на бумаге построить график функции. Но в конце урока мы получили универсальную таблицу, которая позволяет решать множество подобных заданий.

    Мы ещё раз убедились, что компьютер это мощный инструмент, который позволяет не только приятно проводить время за играми, но и решать серьёзные задачи.

    Надеюсь, что вам понравилось сегодняшняя работа. И вы Довольны достигнутыми результатами.

    источники:

    http://lumpics.ru/how-solve-system-equations-excel/

    http://urok.1sept.ru/articles/617119

    Как строить график функции в Экселе

    Вариант 1: График функции X^2

    В качестве первого примера для Excel рассмотрим самую популярную функцию F(x)=X^2. График от этой функции в большинстве случаев должен содержать точки, что мы и реализуем при его составлении в будущем, а пока разберем основные составляющие.

    1. Создайте строку X, где укажите необходимый диапазон чисел для графика функции.
    2. Создание первой строки для построения графика функции X^2 в Excel

    3. Ниже сделайте то же самое с Y, но можно обойтись и без ручного вычисления всех значений, к тому же это будет удобно, если они изначально не заданы и их нужно рассчитать.
    4. Создание второй строки для построения графика функции X^2 в Excel

    5. Нажмите по первой ячейке и впишите =B1^2, что значит автоматическое возведение указанной ячейки в квадрат.
    6. Создание формулы для автоматического расчета значений при работе с графиком функции X^2 в Excel

    7. Растяните функцию, зажав правый нижний угол ячейки, и приведя таблицу в тот вид, который продемонстрирован на следующем скриншоте.
    8. Растягивание формулы перед создание графика функции X^2 в Excel

    9. Диапазон данных для построения графика функции указан, а это означает, что можно выделять его и переходить на вкладку «Вставка».
    10. Выделение всего диапазона данных для создания графика функции X^2 в Excel

    11. На ней сразу же щелкайте по кнопке «Рекомендуемые диаграммы».
    12. Переход в меню выбора диаграммы для создания графика функции X^2 в Excel

    13. В новом окне перейдите на вкладку «Все диаграммы» и в списке найдите «Точечная».
    14. Выбор точечного графика для создания графика функции X^2 в Excel

    15. Подойдет вариант «Точечная с гладкими кривыми и маркерами».
    16. Добавление выбранного графика на лист для создания графика функции X^2 в Excel

    17. После ее вставки в таблицу обратите внимание, что мы добавили равнозначный диапазон отрицательных и плюсовых значений, чтобы получить примерно стандартное представление параболы.
    18. Проверка созданного графика функции при работе с X^2 в Excel

    19. Сейчас вы можете поменять название диаграммы и убедиться в том, что маркеры значений выставлены так, как это нужно для дальнейшего взаимодействия с этим графиком.
    20. Редактирование графика функции X^2 в Excel после его добавления на лист

    21. Из дополнительных возможностей отметим копирование и перенос графика в любой текстовый редактор. Для этого щелкните в нем по пустому месту ПКМ и из контекстного меню выберите «Копировать».
    22. Кнопка для копирования созданного графика функции X^2 в Excel

    23. Откройте лист в используемом текстовом редакторе и через это же контекстное меню вставьте график или используйте горячую клавишу Ctrl + V.
    24. Успешная вставка построенного графика функции X^2 в Excel в текстовый редактор

    Если график должен быть точечным, но функция не соответствует указанной, составляйте его точно в таком же порядке, формируя требуемые вычисления в таблице, чтобы оптимизировать их и упростить весь процесс работы с данными.

    Вариант 2: График функции y=sin(x)

    Функций очень много и разобрать их в рамках этой статьи просто невозможно, поэтому в качестве альтернативы предыдущему варианту предлагаем остановиться на еще одном популярном, но сложном — y=sin(x). То есть изначально есть диапазон значений X, затем нужно посчитать синус, чему и будет равняться Y. В этом тоже поможет созданная таблица, из которой потом и построим график функции.

    Lumpics.ru

    1. Для удобства укажем всю необходимую информацию на листе в Excel. Это будет сама функция sin(x), интервал значений от -1 до 5 и их шаг весом в 0.25.
    2. Добавление объяснений перед построением графика функции y=sin(x) в Excel

    3. Создайте сразу два столбца — X и Y, куда будете записывать данные.
    4. Добавление двух столбцов при построении графика функции y=sin(x) в Excel

    5. Запишите самостоятельно первые два или три значения с указанным шагом.
    6. Добавление первых значений для X при построении графика функции y=sin(x) в Excel

    7. Далее растяните столбец с X так же, как обычно растягиваете функции, чтобы автоматически не заполнять каждый шаг.
    8. Растягивание значений при построении графика функции y=sin(x) в Excel

    9. Перейдите к столбцу Y и объявите функцию =SIN(, а в качестве числа укажите первое значение X.
    10. Добавление первого числа для формулы при расчете Y для построения графика функции y=sin(x) в Excel

    11. Сама функция автоматически высчитает синус заданного числа.
    12. Добавление первого числа для формулы при расчете Y для построения графика функции y=sin(x) в Excel

    13. Растяните столбец точно так же, как это было показано ранее.
    14. Растягивание формулы перед построением графика функции y=sin(x) в Excel

    15. Если чисел после запятой слишком много, уменьшите разрядность, несколько раз нажав по соответствующей кнопке.
    16. Удаление лишней разрядности перед построением графика функции y=sin(x) в Excel

    17. Выделите столбец с Y и перейдите на вкладку «Вставка».
    18. Выбор стандартного графика для построения графика функции y=sin(x) в Excel

    19. Создайте стандартный график, развернув выпадающее меню.
    20. Выбор диапазона данных для построения графика функции y=sin(x) в Excel

    21. График функции от y=sin(x) успешно построен и отображается правильно. Редактируйте его название и отображаемые шаги для простоты понимания.
    22. Успешное построение графика функции y=sin(x) в Excel и его добавление на лист

    Еще статьи по данной теме:

    Помогла ли Вам статья?

    #Руководства

    • 24 июн 2022

    • 0

    Как из сотни автомобилей выбрать только те, что соответствуют запросу покупателя? Разбираемся на примере функции ЕСЛИ в Excel.

    Иллюстрация: Meery Mary для Skillbox Media

    Ксеня Шестак

    Рассказывает просто о сложных вещах из мира бизнеса и управления. До редактуры — пять лет в банке и три — в оценке имущества. Разбирается в Excel, финансах и корпоративной жизни.

    ЕСЛИ — логическая функция Excel. Она проверяет, выполняются ли заданные условия в выбранном диапазоне таблицы. Пользователь указывает критерий, который нужно проверить, — функция сравнивает этот критерий с данными в ячейках таблицы и выдаёт результат.

    В статье разберёмся:

    • как работает и для чего нужна функция ЕСЛИ в Excel;
    • как запустить функцию ЕСЛИ с одним условием;
    • как запустить функцию с несколькими условиями.

    Функцию ЕСЛИ используют, когда нужно сравнить данные таблицы с критериями пользователя. У функции есть два результата: ИСТИНА и ЛОЖЬ. Первый результат функция выдаёт, когда данные ячейки полностью совпадают с заданным условием, второй — когда данные ячейки условию не соответствуют.

    Например, если нужно определить в таблице значения меньше 500, то значение 265 будет отмечено функцией как истинное, а значение 3426 — как ложное.

    Можно задавать несколько условий одновременно. Например, найти значения меньше 500, но больше 300. В этом случае функция определит значение 265 как ложное, а 402 — как истинное. Так можно проверять не только числовые значения, но и текст.

    Часто функцию ЕСЛИ используют при работе с другими функциями Excel для расширения их возможностей. Например, в случае с ВПР функция ЕСЛИ позволяет настроить поиск сразу по двум критериям.

    Рассмотрим, как работает функция ЕСЛИ в классическом виде на примере.

    Представим, что в автосалон обратился покупатель с просьбой подобрать ему автомобиль. Его запрос — автомобили чёрного или красного цвета, с объёмом двигателя больше 1,5 л, стоимостью до 2,5 млн рублей. Есть каталог автомобилей, но все характеристики и цены расположены в нём вразброс.

    Так выглядит каталог автомобилей
    Скриншот: Excel / Skillbox Media

    Нужно выяснить, какие из представленных в салоне авто подходят покупателю. Разберёмся пошагово, как это можно сделать с помощью функции ЕСЛИ в Excel.


    Готовимся к запуску функции ЕСЛИ

    Для начала рассмотрим, как функция ЕСЛИ работает в классическом виде — для проверки одного условия пользователя. Определим автомобили стоимостью до 2,5 млн рублей.

    Принцип действия функции ЕСЛИ следующий. Алгоритм просматривает выбранный диапазон таблицы и проверяет, соответствуют ли данные его ячеек запросу пользователя. Затем возвращается в отдельную ячейку и оставляет там результат: ИСТИНА или ЛОЖЬ. О том, как настроить алгоритм функции под наши потребности, поговорим ниже. А сейчас на примере покажем, как подготовить таблицу к запуску функции и как вызвать окно для её построения.

    Функция ЕСЛИ приносит результаты в отдельную ячейку, поэтому создадим отдельный столбец для них. Лучше сразу назвать его так, чтобы было понятно, о чём речь. В нашем случае сделаем столбец «До 2,5 млн руб.».

    Создаём столбец, в который функция ЕСЛИ принесёт результат
    Скриншот: Excel / Skillbox Media

    Выделим первую ячейку нового столбца и откроем окно для поиска функций. Это можно сделать двумя способами:

    1. Перейти во вкладку «Формулы» и нажать «Вставить функцию».

    Нажимаем сюда, чтобы вызвать окно для поиска функций
    Скриншот: Excel / Skillbox Media

    2. Нажать на «fx» в строке ссылок на любой вкладке Excel.

    Так окно поиска функции можно открыть с любой вкладки Excel
    Скриншот: Excel / Skillbox Media

    На экране справа появится окно «Построитель формул». В нём через поиск находим функцию ЕСЛИ и нажимаем «Вставить функцию».

    Нажимаем сюда, чтобы открылось окно для построения функции ЕСЛИ
    Скриншот: Excel / Skillbox Media

    Появляется окно для заполнения аргументов функции: «Лог_выражение», «Значение_если_истина», «Значение_если_ложь». Ниже разберёмся, как их заполнить.

    Появилось окно для ввода аргументов функции
    Скриншот: Excel / Skillbox Media

    Функция ЕСЛИ предполагает, что пользователь создаёт запрос и указывает два варианта ответа на него. Этот запрос и варианты ответа — и есть три аргумента функции.

    «Лог_выражение» (логическое выражение) — запрос пользователя, который функция будет проверять. В нашем примере это стоимость автомобилей.

    Нужно, чтобы функция определила автомобили стоимостью менее или равной 2 500 000 рублей. Порядок действий следующий:

    1. Ставим курсор в окно «Лог_выражение» в построителе формул.

    2. Выбираем первое значение столбца «Цена, руб.» — ячейку Е2. Обозначение ячейки переносится в окно «Лог_выражение» построителя формул и одновременно с этим появляется в строке ссылок.

    Выделяем первую ячейку столбца, в котором нужно проверить условие пользователя
    Скриншот: Excel / Skillbox Media

    3. Дополняем значение E2 запросом пользователя: <=2500000. Одновременно с этим формула в строке ссылок принимает вид:fx=ЕСЛИ(E2<=2500000).

    Так выглядит первый аргумент функции после заполнения
    Скриншот: Excel / Skillbox Media

    «Значение_если_истина» — результат, который функция принесёт в ячейку, если значение совпадёт с запросом пользователя. В случае с примером — что напишет функция, если проверяемая стоимость авто будет меньше либо равна 2 500 000 рублей.

    Наша задача — определить, подходят автомобили каталога под запрос клиента или нет. Поэтому в окне аргумента истины введём значение «Подходит» — можно вводить его без кавычек, Excel добавит их самостоятельно.

    Заполняем значение ИСТИНА
    Скриншот: Excel / Skillbox Media

    «Значение_если_ложь» — результат, который функция принесёт в ячейку, если значение не совпадёт с запросом пользователя. В нашем примере — что напишет функция, если проверяемая стоимость авто будет больше 2 500 000 рублей.

    Введём в качестве аргумента ЛОЖЬ значение «Не подходит».

    Итоговая формула в строке ссылок примет вид:
    fx=ЕСЛИ(E2<=2500000;»Подходит»;»Не подходит»).

    Вводим значение третьего аргумента
    Скриншот: Excel / Skillbox Media

    Чтобы получить результат функции, нажимаем кнопку «Готово» в построителе формул.

    Нажмём «Готово» для получения результата
    Скриншот: Excel / Skillbox Media

    В выбранной ячейке появится результат работы функции: «Подходит». Это значит, что первый автомобиль каталога подходит под запрос пользователя, — его цена 1 910 000 рублей.

    Так выглядит результат работы функции ЕСЛИ
    Скриншот: Excel / Skillbox Media

    Дальше нужно протянуть результат первой ячейки вниз до конца таблицы, чтобы функция проверила стоимость всех остальных автомобилей и отметила, подходят они под запрос покупателя или нет.

    Так выглядит результат работы функции для всех остальных строк таблицы
    Скриншот: Excel / Skillbox Media

    Чтобы настроить функцию ЕСЛИ с несколькими условиями, нужно добавить к ней дополнительные операторы Excel — «И», «ИЛИ».

    Они связывают несколько критериев и, в зависимости от того, совпадают они с данными таблицы или нет, выдают результат. Схематично это будет выглядеть так: «ЕСЛИ условие a = 1, И/ИЛИ условие b = 2, И/ИЛИ условие c = 3, то — ИСТИНА, иначе — ЛОЖЬ».

    В нашем примере у покупателя было три условия: цвет автомобиля, цена и объём двигателя. Разберёмся, как настроить функцию ЕСЛИ в этом случае.

    Создадим ещё один столбец для новых результатов работы функции. Назовём его в соответствии с запросом покупателя: «До 2,5 млн руб., чёрный или красный, больше 1,5 л».

    Создадим столбец для результата работы функции с тремя условиями пользователя
    Скриншот: Excel / Skillbox Media

    Вызываем окно построителя формул, как делали выше, и заполняем аргументы функции.

    Отличия от классического варианта использования функции ЕСЛИ будут при заполнении первого аргумента «Лог_выражение»:

    • Ставим курсор в окно «Лог_выражение» в построителе формул, вводим дополнительный аргумент «И» и открываем скобку.
    • Первым условием будем вводить два цвета автомобилей, которые выбрал покупатель, поэтому вводим второй дополнительный аргумент «ИЛИ» и открываем ещё одну скобку.
    • Выбираем первое значение столбца «Цвет» — ячейку B2. Ставим знак равенства и находим в этом же столбце значение из запроса пользователя: «чёрный» — ячейку B5. Ставим знак точки с запятой.
    • Снова выбираем первое значение столбца «Цвет», ставим знак равенства и находим второй цвет из запроса пользователя: «красный» — ячейку B8. Закрываем скобку и ставим знак точки с запятой.
    • Закрепляем выбранные ячейки с цветами. На Windows для этого поочерёдно выбираем значения ячеек в строке ссылок и нажимаем клавишу F4, на macOS — выбираем значения ячеек в строке ссылок и нажимаем клавиши Cmd + T. Закрепить эти ячейки нужно, чтобы в дальнейшем можно было протянуть формулу вниз и она сработала корректно для всех остальных строк.
    • Выбираем первое значение столбца «Объём двигателя, л» — ячейку D2. Дополняем его запросом пользователя: >1,5. Также ставим знак точки с запятой.
    • Выбираем первое значение столбца «Цена, руб.» — ячейку Е2. Дополняем его запросом пользователя: <=2500000, как делали в первом примере. Закрываем скобку.

    Формула в строке ссылок принимает вид:
    fx=ЕСЛИ(И(ИЛИ(B2=$B$5;B2=$B$8);D2>1,5;E2<=2500000)). Она объединит три запроса покупателя оператором «И», а в первом запросе предоставит возможность выбора с помощью оператора «ИЛИ».

    Так выглядит первый аргумент функции ЕСЛИ с несколькими истинными условиями после заполнения
    Скриншот: Excel / Skillbox Media

    Аргументы «Значение_если_истина» и «Значение_если_ложь» оставляем такими же, как в первом случае: «Подходит» и «Не подходит».

    Итоговая формула в строке ссылок принимает вид:
    fx=ЕСЛИ(И(ИЛИ(B2=$B$5;B2=$B$8);D2>1,5;E2<=2500000);Подходит»;»Не подходит»). Нажимаем кнопку «Готово».

    В выбранной ячейке появляется результат: «Не подходит». Это значит, что первый автомобиль каталога не подходит под запрос покупателя — у него жёлтый цвет, а объём двигателя равен 1,5 л.

    Так выглядит результат работы функции ЕСЛИ с несколькими истинными условиями
    Скриншот: Excel / Skillbox Media

    Протягиваем результат первой ячейки вниз до конца таблицы — функция проверяет остальные автомобили в каталоге и отмечает, какие из них подходят под все запросы покупателя.

    Так выглядит результат работы функции ЕСЛИ с несколькими истинными условиями для всех остальных автомобилей
    Скриншот: Excel / Skillbox Media

    Как пользоваться функцией ЕСЛИ в «Google Таблицах»? В них тоже есть функция ЕСЛИ, но нет окна построителя формул. Поэтому нужно прописывать её вручную, добавляя все пробелы и кавычки самостоятельно. Готовая формула будет выглядеть так:
    fx=ЕСЛИ(E2<=»2500000″;»Подходит»;»Не подходит»).

    • Руководство: как сделать ВПР в Excel и перенести данные из одной таблицы в другую
    • Инструкция: как закреплять строки и столбцы в Excel
    • Руководство по созданию выпадающих списков в Excel — как упростить заполнение таблицы повторяющимися данными
    • Гайд о теории ТРИЗ, которую изучают менеджеры по всему миру
    • Статья с советами эксперта, как сохранить бизнес в условиях кризиса, — о рынке, рисках, зарплатах и возможностях

    Научитесь: Excel + Google Таблицы с нуля до PRO
    Узнать больше

    График функции с двумя условиями

    Рассмотрим
    пример построения графика функции при
    x:

    График
    строится по принципам, представленным
    в разд.
    «Построение графика функции»

    ранее в этой главе, за исключением того,
    что в ячейку В1
    вводится формула:

    =ЕСЛИ
    (
    А1<0.5;
    (1+ABS(0.2-A1))/(1+A1+A1^2) ; A1^ (1/3))

    График функции с тремя условиями

    Рассмотрим
    пример построения графика функции y
    при x
    [0;1]:

    График строится
    так, как описано ранее, за исключением
    того, что в ячейку В1 вводится формула.

    =Если(А1<0,2;
    1+LN(1+A1);
    Если
    (
    И(A1>=0.2;A1,=0.8);(1+A1^(1/2))/(1+A1);2*EXP(-2*A1)))

    Тот же самый
    результат можно получить, введя в ячейку
    В1 более простую формулу:

    Если(A1,0.2;1+LN(1+A1);Если(A1,=0.8);(1+A1^(1/2))/(1+A1);2*EXP
    (-2*A1)))

    Лекция №11

    Тема: Технология использования средств Microsoft Excel для финансовых расчетов. Функции Microsoft Excel для расчета операций по кредитам и займам Финансовые функции Мicrosoft excel

    Финансовые
    функции Microsoft
    EXCEL
    предназначены для вычисле­ния базовых
    величин, необходимых при проведении
    сложныхфинансовых расчетов. Методика
    изучения и использования финансовых
    функций Microsoft
    EXCEL
    требует соблюдения определенной
    технологии, последовательно следующих
    шагов.

    На
    рабочем листе в отдельных
    ячейках
    осуществляется подготовка значений
    основных аргументов функции.

    Для
    расчета результата финансовой функции
    Microsoft
    EXCEL
    курсор устанавливается в новую ячейку
    для ввода формулы, ис­пользующей
    встроенную финансовую функцию; если
    финансовая функция вызывается в
    продолжении ввода другой формулы,
    дан­ный пункт опускается.

    Осуществляется
    вызов Мастера
    функции

    с
    помощью
    команды Вставка,
    Функция

    или
    нажатием одноименной кнопки fx
    на
    панели инструментов Стандартная
    (Рис.
    1.1).

    4.
    Выполняется выбор категории Финансовые.
    В списке Функция
    содержится полный перечень доступных
    функций выбранной категории. Поиск
    функции осуществляется путем
    последовательного
    просмотра списка. Для выбора функции
    курсор устанавливается
    на имя функции. В нижней части окна
    приведен краткий
    синтаксис и справка о назначении
    выбираемой функций. Кнопка
    ?
    вызывает
    экран справки для встроенной функции,
    на которой установлен курсор. Кнопка
    Отмена
    прекращает работу Мастера
    функций
    ..

    5.
    Для
    каждой финансовой функции существует
    регламентированный по составу и формату
    значений перечень аргументов.

    6.
    В поля ввода диалогового окна можно
    вводить как ссылки
    на адреса ячеек, содержащих собственно
    значения аргументов, так
    и сами значения аргументов.

    7.
    Если аргумент является результатом
    расчета другой встроенной
    функции Microsoft
    EXCEL,
    возможно организовать вычисление
    вложенной
    встроенной
    функции путем вызова Мастера
    функции

    одноименной
    кнопкой, расположенной перед полем
    ввода
    аргумента.

    8.
    Завершение ввода аргументов и запуск
    расчета значения встроенной функции
    выполняется нажатием кнопки ОК
    .

      1. Именование
        диапазонов и ячеек

    Для
    того чтобы избавиться от расшифровки
    ссылок в формулах следует воспользоваться
    именами ячеек или диапазонов ячеек.
    Например, можно прис-воить итоговой
    области, состоящей из диапазона ячеек
    С2: С10 имя итого.
    Теперь для того, чтобы найти суммарные
    итоги, достаточно воспользоваться
    формулой

    =СУММ(итого)

    вместо формулы

    =СУММ
    (С2:С10).

    Использование имен
    ячеек или диапазонов ячеек позволяет:

    • уменьшить
      вероятность появления ошибок в формулах.
      При вводе неизвестного имени Microsoft
      Excel
      выводит сообщение #имя?;

    • легко читать
      формулы. Например, формула

    Сумма кредита =
    Страховка + Цена всей партии + Накладные
    расходы

    значительно легче
    для понимания, чем

    D20
    =
    A20
    + В20 + С20
    ;

    • при переопределении
      имен автоматически модифицировать все
      использующие их формулы;

    • легко ссылаться
      на один и тот же набор имен во всей
      рабочей книги;

    • облегчить ввод
      ссылок на рабочие листы, находящиеся
      в других книгах. В этом случае нет нужды
      знать ссылку на ячейку, а достаточно
      набрать, например, формулу

    =
    отчет2003.х
    ls!затрат.

    Эта
    формула переносит ин­формацию из
    ячейки с именем затрат
    рабочей книги Отчет2003.х1s.

    Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #

    Like this post? Please share to your friends:
  • Построение графика функции в excel по точкам
  • Построение графика функции в excel на примере
  • Построение графика функции в excel на интервале с шагом
  • Построение графика функции в excel информатика
  • Построение графика функции excel 2010