Построение графика функции одной переменной в excel

Для построения графика функции одной переменной, прежде всего, необходимо задать множество (диапазон) значений независимой переменной и соответствующее множество значений зависимой (функциональной) переменной. После этого следует воспользоваться мастером построения диаграмм программы MS Excel для изображения графика заданной функциональной зависимости. При этом задание значений независимой переменной удобно выполнить с помощью рассмотренной ранее операции автозаполнения. Ниже приводится описание последовательности практических действий для примера построения графика функции: f(x) = 2x2 - Зx - 5 в интервале изменения независимой переменной: х∈[-5, 5].

Для начала рекомендуется создать новую книгу с именем Графики Функций. На отдельном листе в ячейку А1 введем текст «Значения переменной:», а в ячейку В1 введем текст «Значения функции:». Хотя исходная независимая переменная принимает значения из непрерывного интервала действительных чисел [-5, 5], для построения графика необходимо для этой независимой переменной задать дискретные значения. Для наших целей вполне достаточно рассмотреть последовательный диапазон значений от -5 до 5 с интервалом их изменения, равным 0,1.

Для задания этого диапазона значений в ячейку А2 введем наименьшее значение интервала изменения независимой переменной: число -5, а в ячейку А3 — число -4,9. После чего вторым способом автозаполнения запишем диапазон значений независимой переменной в ячейки А2:А102. Далее в ячейку В2 введем формулу: =2*A2^2-3*A2-5, которую с помощью первого способа автозаполнения запишем в ячейки В2:В102. Результат выполнения данной последовательности операций по подготовке исходных данных будет иметь следующий вид (рис. 1).

Рис. 1. Исходные данные для построения графика функции одной переменной

Рис. 1. Исходные данные для построения графика функции одной переменной

Для построения графика необходимо воспользоваться мастером диаграмм, который может быть вызван с помощью кнопки стандартной панели инструментов или операции главного меню: Вставка → Диаграмма (рис. 2). Мастер диаграмм представляет собой самостоятельное диалоговое окно с набором вкладок, обеспечивающих задание отдельных свойств элементам графического изображения.

Рис. 2. Внешний вид диалогового окна мастера диаграмм (шаг 1 из 4)

Рис. 2. Внешний вид диалогового окна мастера диаграмм (шаг 1 из 4)

На первой из вкладок содержится список стандартных диаграмм, которые могут быть использованы дня графического представления рядов данных. На второй вкладке пользователю предлагается выбор диаграммы из списка нестандартных, часть которых появилась в последних версиях программы MS Excel.

На первом шаге построения диаграммы необходимо выбрать тип диаграммы и ее вид. С этой целью следует выделить на вкладке Все диаграммы в левом списке тип диаграммы График, а в правом списке с графическими миниатюрами — первый вид графика, который отражает развитие процесса во времени или по категориям. После выбора типа и разновидности диаграммы следует нажать кнопку Далее и перейти ко второму шагу построения диаграммы с помощью мастера диаграмм (рис. 3).

Рис. 3. Спецификация источника данных для построения графика с помощью мастера диаграмм (шаг 2 из 4)

Рис. 3. Спецификация источника данных для построения графика с помощью мастера диаграмм (шаг 2 из 4)

Первая из вкладок (рис. 3, а) служит для задания диапазона значений рядов данных, которые будут отображены на диаграмме. С этой целью на втором шаге построения диаграммы необходимо выбрать ячейки с данными, которые должны быть отображены на соответствующем графике. Применительно к рассматриваемому примеру это значения функции, которые содержатся в диапазоне ячеек В2:В102. Для указания этих значений следует установить переключатель Строка / столбец так, чтобы в левом окне были Элементы легенды (ряды). После этого выполнить щелчок на строке «Значения функции:», и затем на расположенной выше кнопке Изменить или Добавить.

В результате будет открыто дополнительное небольшое окно, в строке Значения необходимо указать источник данных диаграммы. Для указания источника данных следует на рабочем листе «Квадратный трехчлен» с помощью мыши или клавиатуры выделить диапазон значений функции В2:В102. Он будет иметь специальную рамку в форме мерцающей пунктирной линии, а в соответствующей строке появится надпись с указанием имени рабочего листа и абсолютных адресов ячеек этого диапазона (рис. 3, б). Далее на этом же шаге работы мастера диаграмм следует задать подписи по горизонтальной оси. С этой целью необходимо перейти на строку «Значения функции:» и выполнить щелчок на кнопке с именем Изменить и выбрать строку Имя ряда. Оба шага можно выполнить одновременно.

Рис. 4. Спецификация подписи горизонтальной оси X для построения графика с помощью мастера диаграмм (шаг 2 из 4)

Рис. 4. Спецификация подписи горизонтальной оси X для построения графика с помощью мастера диаграмм (шаг 2 из 4)

В результате будет открыто дополнительное небольшое окно, в единственной строке которого необходимо указать источник данных для независимой переменной графика. Для указания соответствующего источника данных следует на рабочем листе «Квадратный трехчлен» с помощью мыши или клавиатуры выделить диапазон значений функции А2:А102. Выделенный диапазон также приобретет специальную рамку в форме мерцающей пунктирной линии, а в соответствующей строке появится надпись с указанием имени рабочего листа и абсолютных адресов ячеек этого диапазона (рис. 4, б). После выбора спецификации рядов данных и подписей оси X для графика следует перейти к третьему шагу построения диаграммы с помощью мастера диаграмм (рис. 5).

Рис. 5. Спецификация названия диаграммы и выбор варианта ее размещения с помощью мастера диаграмм (шаги 3 и 4 из 4)

Рис. 5. Спецификация названия диаграммы и выбор варианта ее размещения с помощью мастера диаграмм (шаги 3 и 4 из 4)

На третьем шаге на вкладке Работа с диаграммами можно задать заголовки и названия диаграммы и осей, подписи данных и линии сетки. Применительно к рассматриваемому примеру можно указать название графика в соответствующем поле ввода. После спецификации параметров диаграммы следует сохранить изменения и перейти к последнему четвертому шагу построения диаграммы с помощью мастера диаграмм (рис. 5).

На этом шаге следует выбрать один из двух вариантов размещения диаграммы: на отдельном рабочем листе или на текущем рабочем листе, где содержатся ячейки с данными диаграммы. При необходимости можно изменить имя диаграммы, предлагаемой мастером по умолчанию. После этого следует нажать кнопку Готово. В результате будет построена диаграмма в форме графика кривой квадратного трехчлена (рис. 6).

Рис. 6. Результат построения графика функции: f(x) = 2x² - Зx - 5 в интервале изменения независимой переменной: х∈[-5, 5]

Рис. 6. Результат построения графика функции: f(x) = 2x² — Зx — 5 в интервале изменения независимой переменной: х∈[-5, 5]

После построения диаграммы в случае необходимости можно редактировать отдельные ее свойства. Доступ к редактированию свойств построенной диаграммы можно получить либо с помощью контекстного меню диаграммы, либо с помощью операций меню Работа с диаграммами. Удобным оказывается способ получения доступа к выделенным элементам диаграммы с помощью комбинации клавиш: Ctrl+1 или двойного щелчка левой кнопкой мыши.

Так, например, для изменения цвета фона построенного графика квадратного трехчлена можно выполнить двойной щелчок левой кнопкой мыши на фоне соответствующего рисунка. В появившемся диалоговом окне выбрать желаемый цвет фона графика из предлагаемой палитры цветов. Аналогично можно изменить цвет линии кривой графика и интервал отображения промежуточных значений независимой и зависимой переменных. Изображенный на рис. 6 график функции получен после редактирования его свойств в результате изменения цвета фона диаграммы, линии кривой графика и интервала отображения промежуточных значений независимой переменной.

Как строить график функции в Экселе

Вариант 1: График функции X^2

В качестве первого примера для Excel рассмотрим самую популярную функцию F(x)=X^2. График от этой функции в большинстве случаев должен содержать точки, что мы и реализуем при его составлении в будущем, а пока разберем основные составляющие.

  1. Создайте строку X, где укажите необходимый диапазон чисел для графика функции.
  2. Создание первой строки для построения графика функции X^2 в Excel

  3. Ниже сделайте то же самое с Y, но можно обойтись и без ручного вычисления всех значений, к тому же это будет удобно, если они изначально не заданы и их нужно рассчитать.
  4. Создание второй строки для построения графика функции X^2 в Excel

  5. Нажмите по первой ячейке и впишите =B1^2, что значит автоматическое возведение указанной ячейки в квадрат.
  6. Создание формулы для автоматического расчета значений при работе с графиком функции X^2 в Excel

  7. Растяните функцию, зажав правый нижний угол ячейки, и приведя таблицу в тот вид, который продемонстрирован на следующем скриншоте.
  8. Растягивание формулы перед создание графика функции X^2 в Excel

  9. Диапазон данных для построения графика функции указан, а это означает, что можно выделять его и переходить на вкладку «Вставка».
  10. Выделение всего диапазона данных для создания графика функции X^2 в Excel

  11. На ней сразу же щелкайте по кнопке «Рекомендуемые диаграммы».
  12. Переход в меню выбора диаграммы для создания графика функции X^2 в Excel

  13. В новом окне перейдите на вкладку «Все диаграммы» и в списке найдите «Точечная».
  14. Выбор точечного графика для создания графика функции X^2 в Excel

  15. Подойдет вариант «Точечная с гладкими кривыми и маркерами».
  16. Добавление выбранного графика на лист для создания графика функции X^2 в Excel

  17. После ее вставки в таблицу обратите внимание, что мы добавили равнозначный диапазон отрицательных и плюсовых значений, чтобы получить примерно стандартное представление параболы.
  18. Проверка созданного графика функции при работе с X^2 в Excel

  19. Сейчас вы можете поменять название диаграммы и убедиться в том, что маркеры значений выставлены так, как это нужно для дальнейшего взаимодействия с этим графиком.
  20. Редактирование графика функции X^2 в Excel после его добавления на лист

  21. Из дополнительных возможностей отметим копирование и перенос графика в любой текстовый редактор. Для этого щелкните в нем по пустому месту ПКМ и из контекстного меню выберите «Копировать».
  22. Кнопка для копирования созданного графика функции X^2 в Excel

  23. Откройте лист в используемом текстовом редакторе и через это же контекстное меню вставьте график или используйте горячую клавишу Ctrl + V.
  24. Успешная вставка построенного графика функции X^2 в Excel в текстовый редактор

Если график должен быть точечным, но функция не соответствует указанной, составляйте его точно в таком же порядке, формируя требуемые вычисления в таблице, чтобы оптимизировать их и упростить весь процесс работы с данными.

Вариант 2: График функции y=sin(x)

Функций очень много и разобрать их в рамках этой статьи просто невозможно, поэтому в качестве альтернативы предыдущему варианту предлагаем остановиться на еще одном популярном, но сложном — y=sin(x). То есть изначально есть диапазон значений X, затем нужно посчитать синус, чему и будет равняться Y. В этом тоже поможет созданная таблица, из которой потом и построим график функции.

Lumpics.ru

  1. Для удобства укажем всю необходимую информацию на листе в Excel. Это будет сама функция sin(x), интервал значений от -1 до 5 и их шаг весом в 0.25.
  2. Добавление объяснений перед построением графика функции y=sin(x) в Excel

  3. Создайте сразу два столбца — X и Y, куда будете записывать данные.
  4. Добавление двух столбцов при построении графика функции y=sin(x) в Excel

  5. Запишите самостоятельно первые два или три значения с указанным шагом.
  6. Добавление первых значений для X при построении графика функции y=sin(x) в Excel

  7. Далее растяните столбец с X так же, как обычно растягиваете функции, чтобы автоматически не заполнять каждый шаг.
  8. Растягивание значений при построении графика функции y=sin(x) в Excel

  9. Перейдите к столбцу Y и объявите функцию =SIN(, а в качестве числа укажите первое значение X.
  10. Добавление первого числа для формулы при расчете Y для построения графика функции y=sin(x) в Excel

  11. Сама функция автоматически высчитает синус заданного числа.
  12. Добавление первого числа для формулы при расчете Y для построения графика функции y=sin(x) в Excel

  13. Растяните столбец точно так же, как это было показано ранее.
  14. Растягивание формулы перед построением графика функции y=sin(x) в Excel

  15. Если чисел после запятой слишком много, уменьшите разрядность, несколько раз нажав по соответствующей кнопке.
  16. Удаление лишней разрядности перед построением графика функции y=sin(x) в Excel

  17. Выделите столбец с Y и перейдите на вкладку «Вставка».
  18. Выбор стандартного графика для построения графика функции y=sin(x) в Excel

  19. Создайте стандартный график, развернув выпадающее меню.
  20. Выбор диапазона данных для построения графика функции y=sin(x) в Excel

  21. График функции от y=sin(x) успешно построен и отображается правильно. Редактируйте его название и отображаемые шаги для простоты понимания.
  22. Успешное построение графика функции y=sin(x) в Excel и его добавление на лист

Еще статьи по данной теме:

Помогла ли Вам статья?

Excel предоставляет
широкие возможности как для выполнения
вычислений различных уравнений и
функций, так и для наглядного отображения
полученных результатов в виде двух- и
трехмерных графических изображений.
Графики позволяют пользователю не
только получить наглядное отображение,
но и в ряде случаев получить приближенное
графическое решение задачи. Решение
задачи построения графика в Excel состоит
из двух основных этапов:

  • формирования
    данных и результата решения задачи в
    ячейках Excel для построения графика на
    плоскости;

  • построения и
    оформление графика и другого графического
    объекта, например поверхностей в
    пространстве.

Для построения
графиков функций одной переменной, а
также объектов в трех измерениях
необходимо использовать специальный
инструмент Excel
— Мастер диаграмм. Для применения Мастера
диаграмм

необходимо ввести точки реализуемой
функции в электронную таблицу, вызвать
Мастер
диаграмм
,
задать тип диаграммы, диапазоны данных
и подписей соответствующих осей
переменных и функции,
ввести
названия осей. Более подробно использование
Мастера
диаграмм

для этих целей рассмотрим при решении
конкретных задач.

Вычисление функций одной переменной

Рассмотрим
построение функции у=2х+1, представляющей
собой уравнение линии для значений х=
(0; +10) с шагом ∆х=1.
Задача построения прямой, как и любой
диаграммы в Excel
разбивается на несколько этапов в
соответствии.

Этап 1. Ввод
данных.

Прежде, чем построить
прямую, необходимо составить таблицу
данных x
и y
в рабочем
окне таблицы Excel.
Для этого значения x
и y
следует
представить в виде таблицы, где столбцами
являются соответствующие показатели.
Пусть в рассматриваемом примере столбец
А будет использоваться для аргументов
x,
а столбец В
– для значений функции прямой y.
Для введения значений аргумента х в
ячейку А2
вводится первое значение аргумента
(0), а в ячейку A3
— второе значение аргумента с учетом
заданного шага (1). Выделив блок ячеек
А2:АЗ,
и, используя режим автозаполнения,
формируем все значения аргумента (за
правый нижний угол блока протягиваем
до ячейки А12).
Затем в ячейку В2
вводим ее уравнение: =2*A2+1,
а затем копируем эту формулу в диапазон
В2:В12.
В результате должна быть получена
следующая таблица исходных данных
(Рис.4.38.).

Этап 2. Построение
графика прямой.

После запуска
программы Мастер
диаграмм
в
появившемся диалоговом окне Мастер
диаграмм (шаг 1 из 4): тип диаграммы

выбираем тип диаграммы — График,
а вид — График
с маркерами

и нажимаем кнопку Далее
в диалоговом окне.

Этап 3. Указание
диапазона.

В появившемся
диалоговом окне Мастер
диаграмм (шаг 2 из 4)
:
источник данных диаграммы необходимо
выбрать вкладку Диапазон
данных
и в поле Диапазон
указать интервал данных, то есть ввести
ссылку на ячейки, содержащие данные,
которые необходимо представить на
диаграмме.

Рис. 4.38. Вычисление
и построение функции у=2х+1

Определение
диапазона данных является ответственным
моментом построения диаграммы, необходимо
указать только те данные, которые должны
быть изображены на диаграмме. Кроме
того, для введения поясняющих надписей
(легенды), они также должны быть включены
в диапазон (в примере – прямая
у).

Этап 4. Ввод
надписей по оси
X
(горизонтальной)
и У
(вертикальной).

В диалоговом окне
Мастер
диаграмм (шаг 2 из 4): источник данных
диаграммы

необходимо выбрать вкладку Ряд
(щелкнув на ней указателем мыши) и в поле
Подписи оси
X
указать диапазон подписей (в примере —
аргумент
х).
Для этого
следует активизировать поле Подписи
оси х
, щелкнув
в нем указателем мыши, и, наведя его на
левую верхнюю ячейку подписей (А2),
нажать левую кнопку мыши, затем, не
отпуская ее, протянуть указатель мыши
к правой нижней ячейке, содержащей
выносимые на ось X
подписи (А12),
затем отпустить левую кнопку мыши. После
появления требуемой записи диапазона
необходимо нажать кнопку Далее.

Этап 5.
Введение
заголовков.

В третьем окне
Мастер
диаграмм (шаг 3 из 4): параметры диаграммы

требуется ввести заголовок диаграммы
и названия осей. Для этого необходимо
выбрать вкладку Заголовки,
щелкнув на ней указателем мыши. Щелкнув
в рабочем поле Название
диаграммы

указателем мыши, ввести с клавиатуры в
поле название: Прямая.
Затем
аналогичным образом ввести в рабочие
поля Ось X
(категорий)

и Ось Y
(значений)

соответствующие названия: Аргумент
и Значения.
Далее в данном окне необходимо выбрать
вкладку Легенда
и указать ее необходимость для обозначения
функций, для чего устанавливаем флажок
в поле Добавить
легенду
и
нажимаем кнопку Далее.

Этап 6. Выбор
места размещения.

В четвертом окне
Мастер
диаграмм (шаг 4 из 4)
:
размещение
диаграммы

необходимо указать место размещения
диаграммы. Для этого переключатель
Поместить
диаграмму на листе

необходимо установить в нужное положение:
на отдельном или текущем листе. Если
диаграмма имеет желаемый вид,
необходимо
нажать кнопку Готово,
иначе следует нажать кнопку Назад
и изменить установки.

В качестве второго
примера рассмотрим построение функции
одной переменной у=f(x)
на примере уравнения параболы
y=x2
для значений
х=(-5; +5) с шагом ∆х=0.5.

Задача построения
параболы во многом аналогична построению
прямой, поэтому рассмотрим основные
этапы без излишней детализации.

Этап 1. Ввод данных
и вычисление функции.

Для построения
параболы необходимо составить таблицу
данных (х и у).
В рассматриваемом
примере столбец А будет использоваться
для значений аргумента х,
а столбец В
– для значений функции у. В ячейку А1
вводим Аргумент,
а в ячейку В1
Парабола.
Далее в ячейку
А2
вводим первое значение аргумента (-5),
в ячейку A3
вводится второе значение аргумента
(–4,5) и затем,
выделив блок ячеек А2:АЗ,
автозаполнением
вводим все значения аргумента. Далее в
ячейку В2
вводим уравнение параболы: =А2*А2
и копируем эту
формулу в диапазон ячеек В2:В14.
В результате должна быть получена
следующая таблица исходных данных
(рис.4.39).

Рис.4.39. Вычисление
и построение параболы y=x2

Этап 2. Выбор типа
диаграммы.

На панели инструментов
Стандартная
необходимо нажать кнопку Мастер
диаграмм
. В
появившемся диалоговом окне Мастер
диаграмм (шаг 1 из 4): тип диаграммы

указать тип диаграммы. В рассматриваемом
примере выберем тип — График,
вид — График
с маркерами

(левую среднюю диаграмму в правом окне).
После чего нажимаем кнопку Далее
в диалоговом окне.

Этап 3. Указание
диапазона.

В появившемся
диалоговом окне Мастер
диаграмм (шаг 2 из 4)
:
источник данных диаграммы необходимо
выбрать вкладку Диапазон
данных
и в поле Диапазон
указать интервал данных, то есть ввести
ссылку на ячейки, содержащие данные,
которые необходимо представить на
диаграмме. Для этого с помощью клавиши
Delete
необходимо очистить рабочее поле
Диапазон
и, убедившись, что в нем остался только
мигающий курсор, навести указатель мыши
на левую верхнюю ячейку данных (В1),
нажать левую кнопку мыши и, не отпуская
ее, протянуть указатель мыши к правой
нижней ячейке, содержащей выносимые на
диаграмму данные (В12),
затем отпустить левую кнопку мыши. В
рабочем поле должна появиться запись:
=Лист1!$В$1:$В$12.
Здесь наиболее
важным для нас является указание
диапазона В1:В12,
что подтверждает правильное введение
интервала данных. Если с первого раза
не удалось получить требуемую запись
в поле Диапазон,
действия необходимо повторить. Далее
необходимо указать в строках или столбцах
расположены ряды данных. В примере
значения точек параболы расположены в
столбце, поэтому переключатель Ряды
в
с помощью
указателя мыши следует установить в
положение столбцах
(черная точка должна стоять около слова
столбцах).

Этап 4. Ввод
подписей по оси
X
(горизонтальной).

В диалоговом окне
Мастер
диаграмм
(шаг 2 из 4): источник данных диаграммы

необходимо выбрать вкладку Ряд
(щелкнув на ней указателем мыши) и в поле
Подписи оси
X
указать диапазон подписей (в примере —
Аргумент).
Для этого
следует активизировать поле Подписи
оси
X,
щелкнув в нем указателем мыши, и, наведя
указатель мыши на левую верхнюю ячейку
подписей (А2),
нажать левую кнопку мыши, затем, не
отпуская ее, протянуть указатель мыши
к правой нижней ячейке, содержащей
выносимые на ось X
подписи (А12),
затем отпустить левую кнопку мыши. В
рабочем поле должна появиться запись:
=Лист1!$А$2:$А$14.
Здесь, как
и для данных, наиболее важным для нас
является указание диапазона А2:А14,
что подтверждает правильное введение
интервала подписей. После появления
требуемой записи диапазона необходимо
нажать кнопку Далее.

Этап 5. Введение
заголовков.

В третьем окне
Мастер
диаграмм (шаг 3 из 4): параметры диаграммы

требуется ввести заголовок диаграммы
и названия осей. Для этого необходимо
выбрать вкладку Заголовки,
щелкнув па ней указателем мыши. Щелкнув
в рабочем поле Название
диаграммы

указателем мыши, ввести с клавиатуры в
поле название График
параболы. Затем
аналогичным образом ввести в рабочие
поля Ось X
(категорий)

и Ось Y
(значений)

соответствующие названия и
после чего
нажать кнопку Далее.

Этап 6. Выбор
места размещения.

В четвертом окне
Мастер
диаграмм (шаг 4 из 4)
:
размещение диаграммы необходимо указать
место размещения диаграммы. Для этого
переключатель Поместить
диаграмму на листе

установить в нужное положение (на
отдельном или текущем листе). В примере
устанавливаем переключатель в положение
имеющемся
(щелчком указателя мыши черную точку
устанавливаем слева от слова имеющемся).

Этап 7. Завершение.

Если диаграмма в
демонстрационном поле имеет желаемый
вид параболы, необходимо нажать кнопку
Готово.
В противном случае следует нажать кнопку
Назад
и изменить установки.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Простой график для одной переменной 

Проще всего разобраться, как построить график в Эксель по данным таблицы, состоящей всего из двух колонок. Для наглядного примера можно взять названия месяцев и объем полученной за это время прибыли. Ряд будет только один, а осей на графике — две. Строить диаграмму можно по следующей пошаговой инструкции: 

  1. Выделить таблицу с данными. 
  2. Перейти на вкладку «Вставка», где можно выбирать вариант диаграммы: например, простой график функции, круговой или точечный. 
  3. Убедиться в том, что данные в таблице были автоматически распределены так, как это было запланировано. В данном случае ошибки нет: значения указаны по оси X, даты — по OY. 

Если пользователь случайно ошибся при построении графика или хочет изменить информацию, он может поменять настройки, выделив область построения диаграммы и использовав контекстное меню. Попасть в него легко с помощью клика правой кнопкой мыши. Изменению подлежат тип графика, данные для его построения, форматы сетки и каждой оси. 

Перейдя в контекстном меню к пункту «Выбрать данные», можно настроить, какая информация будет отображаться. Например, для указанного примера у пользователя есть возможность выделять данные только для конкретных месяцев. Для этого достаточно убирать галочки с ненужных дат или изменить формулу в графе «Диапазон данных для диаграммы». 

Стоит отметить, что построение графика по представленным в табличной форме данным обеспечит автоматическую перестройку линии при изменении информации. Например, если в показатели прибыли были внесены корректировки на основании более точных сведений, диаграмма станет другой без дополнительных действий со стороны пользователя. Точно так же изменятся и все названия, если откорректировать их на графике. 

Легенду с названием графика при использовании только одного изменяющегося показателя оставлять необязательно. В современных версиях Excel имя ряда данных не будет показано на диаграмме автоматически. В более старых пакетах MS Office легенду можно удалить вручную. 

Чтобы оценивать информацию на графике было проще, стоит выделить линию, в виде которой представлен ряд, и в контекстном меню указать необходимость добавления подписей. Результатом станет появление значений прямо на диаграмме — с той же точностью, с которой они указаны в таблице. 

На вкладке «Конструктор» можно поменять еще больше настроек — выбрать экспресс-макет и готовый шаблон, изменить цвета и добавить дополнительные элементы графика. В том числе — подписи к осям данных, названия которых в последних версиях MS Excel вводятся вручную.

Также читайте, как сделать кнопку в Excel, чтобы быстрее перейти у нужной таблице или графику.  

  • Как создать кнопку в Excel?

График с несколькими переменными 

Узнав, как в Эксель нарисовать график при наличии только одного столбца со значениями, стоит перейти к решению более сложной задачи — составлению диаграмм, на которых будет несколько рядов. 

Если рассматривать тот же пример, вместе с прибылью могут быть представлены еще накладные расходы. Принцип создания будет включать такие шаги: 

  1. Выделить таблицу с данными, захватив все колонки. 
  2. На вкладке «Вставка» выбрать тип диаграммы. 
  3. Проверить, соответствует ли автоматически построенный программой график нужным требованиям. Если нет — изменить настройки вручную. 

Для графика с двумя и большим количеством рядов данных стоит оставить «легенду» с подписями. Она позволит разобраться, каким цветом, оттенком или типом линии отмечен нужный показатель. Однако название диаграммы в этом случае придется вносить вручную — или указать в настройках, в какой ячейке таблицы расположен нужный текст. 

С помощью контекстного меню на состоящем из нескольких рядов графике можно менять различные настройки, характеристики осей и линий, добавлять подписи и менять шрифты. А при изменении информации в таблице это автоматически отразится и на диаграмме. Данные, которые вводились вручную, (например, название оси или графика) придется менять тем же способом.

  • Как закрепить строку в Excel при прокрутке

Добавление второй оси 

Иногда информация может быть представлена в таблице так, что поместить ее на одной общей диаграмме, на первый взгляд, невозможно. Если представить, что накладные расходы указаны не в рублях, а в долларах, график получится некорректным.

Можно построить две разных диаграммы для каждого ряда данных. Или перед тем, как сделать график в Экселе, пересчитать сумму по действующем курсу — но это будет не слишком правильно, если затраты определялись именно в валюте. Решение проблемы — добавить вторую ось со своими единицами измерения. 

Для этого можно выполнить такие действия: 

  1. Построить основу — график, единицы измерения у которого одинаковые для каждого ряда. 
  2. Выделить диаграмму и на вкладке «Конструктор» перейти к изменению ее типа. 
  3. Выбрать вариант «Комбинированная» и второй вариант в списке — гистограмму с группировкой и график на вспомогательной оси. 
  4. Настроить отображение — указать, для какого ряда будет построена вспомогательная ось, изменить виды диаграмм. 
  5. Нажать «ОК» для перехода к дальнейшим настройкам. 

Теперь на графике будет две отличающихся друг от друга диаграммы, каждая из которых имеет свою шкалу с отдельными единицами измерения. Можно сделать так, чтобы на экране были, например, две похожих линии, выбрав соответствующие варианты на этапе изменения типа. Хотя это будет не так удобно даже при наличии легенды. 

Двойная диаграмма с разными шкалами — отличный способ, как в Экселе сделать график по таблице для двух показателей, которые нельзя сравнить друг с другом. Зато оценку их значений и изменений можно провести на одном листе. Например, чтобы выполнить работу по поиску зависимости между разными видами расходов. 

Читайте также:

  • 5 способов как вставить презентацию в презентацию Powerpoint
  • Как очистить оперативную память смартфона на Android

Аннотация:
Цель работы: научиться определять значения функций и строить графики, а также использовать логические функции в табличном процессоре Excel.
Содержание работы:
Построение графика функции с одной переменной.
Построение графика функции с двумя условиями.
Построение графика функции с тремя условиями.
Построение двух графиков в одной системе координат.
Построение поверхности.
Порядок выполнения работы:
Изучить методические указания.
Выполнить задания.
Оформить отчет и ответить на контрольные вопросы.

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

Построение графика функции

Процесс построения графика функции состоит из двух этапов:

  • создание таблицы значений функции
  • непосредственного построения ее графика.

Для построения графика функции необходимо первоначально построить таблицу ее значений при различных значениях аргумента, причем аргумент изменяют обычно с фиксированным шагом. Шаг выбирают небольшим, так чтобы таблица значений функции отражала ее поведение на интервале табуляции.

Рассмотрим технологию построения графика на примере функции $y=cos^{2}(pi x)$ при $xin [0; 1]$ .

Создание таблицы значений функции

В нашем случае возьмем в качестве шага изменения аргумента, например, 0.1. Нам надо найти у(0), у(0.1), у(0.2), …, у(1). С этой целью в ячейки диапазона A1:А11 последовательно введем 0, 0.1, …, 1, т. е. значения переменной х. Отметим, что эта последовательность значений представляет собой арифметическую прогрессию.

Ввести в ячейки диапазона ряд последовательных значений, образующих арифметическую прогрессию, можно двумя способами.

Первый способ заключается в следующем:

  1. В ячейки А1 и А2 введите первый и второй члены арифметической прогрессии, т.е. 0 и 0,1
  2. Выделите диапазон ячеек А1:А2.
  3. Расположите указатель мыши на маркере заполнения выделенного диапазона (рис. 4.1
    рис.
    4.1) и протяните его вниз (в данном случае на диапазон A3:А11) до тех пор, пока не получится числовой ряд нужной длины (рис. 4.2
    рис.
    4.2).

Второй способ позволяет пользоваться диалоговым окном Прогрессия. Для этого:

  1. В ячейку А1 введите первый член арифметической профессии.
  2. Выберите команду Главная > Редактирование > Заполнить > Прогрессия.
  3. В появившемся диалоговом окне Прогрессия (рис. 4.3
    рис.
    4.3) в группе Расположение выбираем переключатель по столбцам, а в группе Тип – переключатель арифметическая. В поле Шаг введите значение 0,1, а в поле Предельное значение – 1.
  4. Нажмите кнопку ОК.

Вид указателя мыши на маркере заполнения

Рис.
4.1.
Вид указателя мыши на маркере заполнения

Арифметическая последовательность, построенная по первым ее двум членам с помощью маркера заполнения

Рис.
4.2.
Арифметическая последовательность, построенная по первым ее двум членам с помощью маркера заполнения

Диалоговое окно Прогрессия

Рис.
4.3.
Диалоговое окно Прогрессия

Диалоговое окно Прогрессия закроется, а на рабочем листе автоматически будет построена требуемая прогрессия.

Примечание. Диалоговое окно Прогрессия, отображаемое на экране выбором команды Главная > Редактировать > Заполнить > Прогрессия, также позволяет создавать геометрические прогрессии.

В ячейку В1 введите формулу: =СОS(ПИ( )*А1)^2.

Ввод формул в ячейку можно производить либо с клавиатуры, либо с помощью диалогового окна Мастер функций, которое отображается на экране либо выбором команды Формулы > Вставить Функцию, либо нажатием кнопки Вставка функции панели инструментов Стандартная. Мастер функций содержит список всех функций рабочего листа, справки по их синтаксису и примеры применения.

Продемонстрируем работу с мастером функций на примере ввода упомянутой выше формулы.

  1. Выберите ячейку В1.
  2. Нажмите кнопку Вставка функции панели инструментов Стандартная, либо выберите команду Формулы > Вставить Функцию. На экране отобразится диалоговое окно Мастер функций – шаг 1 из 2 (рис. 4.4
    рис.
    4.4). Оно состоит из двух частей:
  3. Категория – со списком двенадцати категорий функций;
  4. Функция – со списком имен функций, входящих в выбранную категорию.

Категория Полный алфавитный перечень содержит все встроенные функции и их имена упорядочены в алфавитном порядке, категория 10 недавно использовавшихся содержит имена десяти последних примененных функций. Эта категория ускоряет вызов функций, постоянно используемых пользователем.

  1. Функция cos относится к категории Математические. Выберите эту функцию и нажмите кнопку ОК. На экране отобразится панель формул (рис. 4.5
    рис.
    4.5).

Диалоговое окно Мастер функций – шаг 1 из 2

Рис.
4.4.
Диалоговое окно Мастер функций – шаг 1 из 2

Панель формул

Рис.
4.5.
Панель формул

В поле Число вводится аргумент функции – в рассматриваемом примере это ПИ ()*А1. С помощью клавиатуры в это поле введите только ПИ ( )*, а ссылку на ячейку А1 в формулу добавьте, щелкнув по ячейке А1 на рабочем листе. Конечно, ее можно было также ввести с клавиатуры, но предложенный способ дает дополнительную проверку правильности ввода. После нажатия кнопки ОК в ячейку В1 будет введена формула:

Примечание. При использовании мастера функции перед вводом формулы в ячейку не надо вводить знак =, он вставляется в формулу автоматически.

  1. С помощью клавиатуры добавьте в формуле =COS(ПИ ())*А1 операцию возведения в квадрат функции cos. После всех описанных действий в ячейке В1 должна появиться формула =COS(ПИ()*Al)^2

Таким образом, пока найдено значение функции cos2(x) для значения х из ячейки A1. Теперь нам осталось найти значения этой функции для диапазона ячеек А2:А11.

Для этого:

  1. Выберите ячейку В1.
  2. Расположите указатель мыши на маркере заполнения выделенной ячейки и протяните его вниз на диапазон В2:В11.

Процесс создания таблицы значений функции завершен (рис. 4.6
рис.
4.6).

На рис. 4.6
рис.
4.6 на правом рабочем листе приведены формулы, введенные в ячейки рабочего листа. Для того чтобы в ячейках рабочего листа отображались не значения, а формулы, надо выбрать команду Формулы > Зависимости формул и Показать формулы.

Результат табуляции функции до и после форматирования данных

Рис.
4.6.
Результат табуляции функции до и после форматирования данных

На среднем рабочем листе (рис. 4.6
рис.
4.6) приведен результат табуляции функции. Выглядит он не очень презентабельно: после десятичной точки отображается различное количество десятичных знаков. Кроме того, происходит перемешивание числового и экспоненциального форматов.

А именно, в ячейке В6 вместо 0 отображается 3.75Е-33, что приблизительно и равно нулю. Поэтому форматы надо привести к какому-то общему виду, например, как показано на левом рабочем листе: значения аргумента выводятся в числовом формате с точностью до одного знака после десятичной точки, а значения функции – с точностью до трех знаков после десятичной точки. Отформатируем, например, значения аргумента.

Для этого надо выбрать диапазон A1:A11. Это можно сделать, например, следующим способом. Выберите ячейку А1, а затем при нажатой клавише <Shift> выделите ячейку А11. Диапазон А1:А11 выбран.

Переходим к форматированию данных. Выберите команду Главная > Число. В появившемся диалоговом окне Формат ячеек: Число в списке Числовые форматы выберите Числовой, а в поле Число десятичных знаков введите 1. Нажмите кнопку ОК. Данные в Al:A11 будут отформатированы, как показано на левом рабочем листе (рис. 4.6
рис.
4.6). Аналогичным образом разберитесь с диапазоном В1:В11.

Построение графика

Перейдем теперь к конструированию графика cos2(xх) функции по существующей таблице значений аргументов и соответствующих значений функции. Для этого:

  1. Выберите команду Вставка > Диаграмма.
  2. В появившемся диалоговом окне Мастер диаграмм на выберите вариант График, а в списке Вид укажите стандартный график (рис. 4.7
    рис.
    4.7). Нажмите кнопку Далее.
  3. Чтобы изменить (шаг 2 из 4): источник данных диаграммы (которое позднее переименовывается в окно Исходные данные) необходимо нажать на график, затем выбрать вкладку Конструктор, затем вкладку Данные, Выбрать данные. В поле Диапазон автоматически будет введена ссылка на необходимый диапазон в абсолютном формате. Проверьте его, удалите 1 ряд. В итоге у вас должно получится, что Диапазон, =Лист1!$В1$:$В$11.

Обратите внимание на полученный график функции, отображаемый на вкладке Диапазон данных. В нем по оси ординат откладываются значения функции, а вот по оси абсцисс порядковые номера точек, а не значения аргумента.

Для того чтобы по оси абсцисс откладывались значения аргумента, надо выделить диаграмму и воспользоваться командой Конструктор > Данные > Выбрать данные, далее Подписи горизонтальной оси (категории) > Изменить и указать диапазон ячеек в которых расположен аргумент х функции.

Вкладка Стандартные диалогового окна Мастер диаграмм (шаг 1 из 4): тип диаграммы

Рис.
4.7.
Вкладка Стандартные диалогового окна Мастер диаграмм (шаг 1 из 4): тип диаграммы

Вкладка Диапазон данных диалогового окна Исходные данные

Рис.
4.8.
Вкладка Диапазон данных диалогового окна Исходные данные

Создав диаграмму, можно изменить любой из ее элементов. Например, можно изменить вид осей, добавить название диаграммы, переместить или скрыть легенду, а также добавить дополнительные элементы.

Чтобы изменить диаграмму, выполните одно или несколько из указанных ниже действий.

  • Изменение вида осей диаграммы. Можно указать масштаб осей и изменить промежутки между значениями или категориями. Для удобства чтения диаграммы можно добавить на оси деления указать величину промежутков между ними.
  • Добавление к диаграмме названий и меток данных. Для пояснения отображенных на диаграмме данных можно добавить название диаграммы, названия осей и метки данных.
  • Добавление легенды и таблицы данных Можно отобразить или скрыть легенду, изменить ее расположение или элементы. Для некоторых диаграмм также можно отобразить таблицу данных, в которой содержатся ключи легенды и значения, представленные на диаграмме.
  • Применение специальных параметров для диаграмм разных типов Для различных типов диаграмм можно применять различные специальные линии (например, коридор колебания и линии тренда), полосы (например, полосы повышения и понижения и планки погрешностей), маркеры данных и т.д.

Вместо того чтобы добавлять или изменять элементы диаграммы и форматировать их вручную, можно быстро применить к данным готовый макет или стиль диаграммы. В приложении Excel существует множество полезных готовых макетов и стилей, которые можно адаптировать, изменив вручную макет или формат отдельных элементов диаграммы, таких как область диаграммы, область построения, ряды данных и легенда.

При использовании готового макета диаграммы на ней в определенном порядке отображается заданный набор элементов (например, названия, легенда, таблица данных или метки данных). Можно подобрать подходящий макет из предоставленных для диаграмм конкретного типа.

При использовании готового стиля диаграммы ее форматирование основано на примененной теме документа, поэтому внешний вид диаграммы будет соответствовать цветам темы (набору цветов), шрифтам темы (набору шрифтов заголовков и основного текста) и эффектам темы (набору границ и заливок), принятым в организации или заданным пользователем.

Собственные стили или макеты диаграмм создавать нельзя, но можно создать шаблоны диаграмм, содержащие нужный макет и форматирование.

Помимо применения готового стиля диаграммы можно легко изменить форматирование ее отдельных элементов, например маркеров данных, области диаграммы, области построения, чисел и текста в названиях и подписях, что привлечет внимание и сделает диаграмму оригинальной. Можно также применять стили фигур и стили WordArt или форматировать фигуры и текст в элементах диаграммы вручную.

Чтобы изменить форматирование диаграммы, выполните одно или несколько из указанных ниже действий:

  • Заливка элементов диаграммы. Для привлечения внимания к определенным элементам диаграммы можно залить их цветом, текстурой, рисунком или применить градиентную заливку.
  • Изменение контуров элементов диаграммы. Для выделения элементов диаграммы можно изменить цвет, стиль или толщину линий.
  • Добавление специальных эффектов к элементам диаграммы. Для придания диаграмме завершенности к ее элементам можно применить специальные эффекты, например тень, отражение, свечение, сглаживание краев, рельеф или объемное вращение.
  • Форматирование текста и чисел Текст и числа в названиях, подписях и надписях на диаграмме можно форматировать так же, как текст и числа на листе. Чтобы выделить текст или число, можно даже применять стили WordArt.

Вкладка Конструктор: параметры диаграммы

Рис.
4.9.
Вкладка Конструктор: параметры диаграммы

Диалоговое окно Макет: параметры диаграммы

Рис.
4.10.
Диалоговое окно Макет: параметры диаграммы

Результат построения графика функции

Рис.
4.11.
Результат построения графика функции

Математические функции рабочего листа

Наиболее часто употребляемые стандартные математические функции рабочего листа приведены в табл. 4.1
таблица
4.1.

Таблица
4.1.
Математические функции

Функция (рус.) Функция (англ.) Описание
1 2 3
ABS (число) ABS (number) Возвращает абсолютную величину аргумента
ACOS (число) ACOS (number) Возвращает арккосинус аргумента
ASIN (число) ASIN (number) Возвращает арксинус аргумента
ATAN (число) ATAN (number) Возвращает арктангенс аргумента
COS (число) COS (number) Возвращает косинус аргумента
EXP (число) EXP (number) Возвращает экспоненту аргумента, т.е результат возведения основания натурального логарифма в степень, равную значению аргумента
LN (число) LN (number) Возвращает натуральный логарифм аргумента
LOG (число) LOG (number) Возвращает логарифм аргумента по данному основанию, если основание опущено, то оно полагается равным 10
LOG10 (число; основание) LOG10 (number; base) Возвращает десятичный логарифм аргумента
SIN (число) SIN (number) Возвращает синус аргумента
TAN (число) TAN (number) Возвращает тангенс аргумента
ЗНАК (число) SGN (number) Возвращает знак аргумента
ОСТАТ (число; делитель) MOD (number1; number1) Возвращает остаток от деления числа на делитель
ПИ ( ) PI ( ) Возвращает значение числа ? с точностью до 15 знаков (в данном случае 3.14159265358979). обратите внимание на то, что функция ПИ ( ) не имеет аргумента
СЛЧИС ( ) RND ( ) Возвращает случайное число между 0 и 1. Чтобы получить случайное вещественное число между a и b, можно использовать следующую формулу: СЛЧИС ( )*(b-a)+a
ЦЕЛОЕ (число) INT (number) Округляет число до ближайшего меньшего целого

График функции с двумя условиями

Рассмотрим пример построения графика функции при $хin[0;1]$$:

$$
Y=left{
begin{aligned}
frac{1+|0.2-x|}{1+x+x^{2}},x<0.5 \
x^{frac{1}{3}}, xgeq0.5
end{aligned}
right.
$$

График строится по принципам, представленным в п. 4.1 «Построение графика функции»
«Построение графиков функций и использование логических формул»
, за исключением того, что в ячейку В1 вводится формула:

=ЕСЛИ(А1<0.5;(1+ABS(0.2-А1))/(1+А1+А1^2);А1^ (1/3))

Примечание. Обратите внимание на то, что для возведения в степень в коде используется соответствующая операция, т.е. А1^(1/3), а не функция рабочего листа степень, т. е. степень (А1; 1/3). В обоих случаях получается один и тот же результат, но, применение операции возведения в степень здесь более разумно, т. к. делает код более очевидным.

В коде фигурирует функция логического ветвления Если (IF), которая имеет следующий синтаксис:

ЕСЛИ (лог выражение; значение_если_истина; значение_если_ложь)

Рассмотрим ее аргументы:

  • лог выражение – это любое значение или выражение, принимающее значения истина или ложь. Например, А10=100 – это логическое выражение; если значение в ячейке А10 равно 100, то выражение принимает значение ИСТИНА. В противном случае – ЛОЖЬ. Данный аргумент может быть использован в любом операторе сравнения.
  • значение_если_истина – это значение, которое возвращается, если лог выражение равно ИСТИНА. Например, если этот аргумент – строка «План реализации выполнен» и лог выражение равно ИСТИНА, тогда функция ЕСЛИ отобразит текст План реализации выполнен. Если лог выражение равно, ИСТИНА, а значение_если_истина пусто, то возвращается значение 0. Чтобы отобразить слово ИСТИНА, необходимо использовать логическое значение ИСТИНА для этого аргумента. значение_если_истина может быть формулой.
  • значение_если_ложь – это значение, которое возвращается, если лог выражение равно ЛОЖЬ. Например, если этот аргумент – строка «План реализации перевыполнен» и лог выражение равно ЛОЖЬ, то функция ЕСЛИ отобразит текст План реализации перевыполнен. Если лог выражение равно ЛОЖЬ, а значение_если_ложь опущено (т. е. после значение_если_истина нет точки с запятой), то возвращается логическое значение ЛОЖЬ. Если лог выражение равно ЛОЖЬ, а значение_если_ложь пусто (т. е. после значение_если_истина стоит точка с запятой с последующей закрывающей скобкой), то возвращается значение 0. значение_если_ложь может быть формулой.

Логические функции

В MS Excel имеются функции логических условий, перечисленные в табл. 4.2.
таблица
4.2

Таблица
4.2.
Функции логических условий

Функция (рус.) Функция (англ.) Описание
1 2 3
И (лог знач1; лог знач2; …) AND (arg1, arg2, …) Логическое умножение.
Возвращает значение ИСТИНА, если все аргументы имеют значение ИСТИНА; возвращает значение ЛОЖЬ, если хотя бы один аргумент имеет значение ЛОЖЬ.
Например, И (2+2=4; 2+3=5) возвращает значение ИСТИНА.
Если ячейка В4содержит число из интервала от 1 до 100, то функция И (1<В4; В4<100) возвращает значение ИСТИНА, а в противном случае – ЛОЖЬ.
ИЛИ (лог знач1; лог знач2; …) OR (arg1, arg2, …) Логическое сложение.
Возвращает ИСТИНА, если хотя бы один из аргументов имеет значение ИСТИНА; возвращает ЛОЖЬ, если все аргументы имеют значение ЛОЖЬ.
Например, И (2+2=4; 2+3=6) возвращает значение ИСТИНА.
Если ячейка В4 содержит число меньше 1 или больше 100, то ИЛИ (В4<1; В4>100) возвращает значение ИСТИНА, а в противном случае – ЛОЖЬ.
НЕ (лог знач) NOT (arg) Логическое отрицание. Изменяет на противоположное значение логическое значение своего аргумента. Например, НЕ (2+5=5) возвращает значение ИСТИНА.
Если ячейка В4 содержит число меньше 1 или больше 100, то НЕ (ИЛИ(В4<1;В4>100)) возвращает ЛОЖЬ, а в противном случае – ЛОЖЬ.

Примечание. Кроме функции ЕСЛИ в MS Excel имеются еще две функции, использующие логические условия. Это функции:

СЧЁТЕСЛИ (COUNTIF) – подсчитывает количество ячеек внутри диапазона, удовлетворяющих заданному критерию;

СУММЕСЛИ (SUMIF) – суммирует значения тех ячеек диапазона, удовлетворяющих заданному критерию.

График функции с тремя условиями

Рассмотрим пример построения графика функции у при $xin [0; 1]$ :

$$
Y=left{
begin{aligned}
% nonumber to remove numbering (before each equation)
  1+ln(1+x), x<0.2\
  frac{1+x^{frac{1}{2}}}{1+x}, xin[0.2;0.8]\
  2e^{-2x}, x>0.8
end{aligned}
right.
$$

График строится так, как описано в разд. «Построение графика функции» ранее в этой работе, за исключением того, что в ячейку В1 вводится формула:

=ЕСЛИ(А1<0.2;1+ LN(1+A1); ЕСЛИ(И(А1>=0.2;А1<=0.8);
	(1+А1^(1/2))/(1+А1);2*ЕХР(-2*А1)))

Тот же самый результат можно получить, введя в ячейку В1 более простую формулу:

=ЕСЛИ (A1<0.2; 1+LN (1+A1); ЕСЛИ (А1<=0.8; (1+А1^(1/2))/(1+А1);
	2*ЕХР(-2*А1)))

Два графика в одной системе координат

Рассмотрим пример построения в одной системе координат при $хin [-3; 0]$ графиков следующих двух функций:

  • y = 2sin(x)
  • z = 3 cos(2x) – sin(x)

Итак, начнем процесс построений.

  1. В ячейки А1, В1 и С1 введите соответственно х, у и z.
  2. Выделите диапазон А1:С1. Выберите команду Главная. На вкладке

Выравнивание появившегося диалогового окна Формат ячеек в группе Выравнивание в списке по горизонтали укажите значение по правому краю. Нажмите кнопку ОК. Заголовки столбцов окажутся выровненными по правому краю.

  1. В диапазон ячеек А2:А17 введите значения аргумента х от -3 до 0 с шагом 0.2.
  2. В ячейки В2 и С2 введите формулы: =2*SIN(A2), =3*COS(2*A2)-SIN(A2)
  3. Выделите диапазон В2:С2, расположите указатель мыши на маркере заполнения этого диапазона и пробуксируйте его вниз так, чтобы заполнить диапазон В3:С17.
  4. Выделите диапазон В3:С17. Выберите команду Вставка > Диаграмма.
  5. В появившемся диалоговом окне Мастер диаграмм (шаг 1 из 4): тип диаграммы выберите значение График. Нажмите кнопку Далее.
  6. На вкладке Данные > выбрать данные диалогового окна Исходные данные в поле ввода Подписи оси X укажите ссылку на диапазон А2:А17, значения из которого откладываются по оси абсцисс (рис. 4.12
    рис.
    4.12). В списке Ряд приводятся ряды данных, откладываемых по оси ординат (в нашем случае имеется два ряда данных). Эти ряды автоматически определяются на основе ссылки, указанной в поле ввода Диапазон предыдущего шага алгоритма. В поле Значения автоматически выводится ссылка на диапазон, соответствующий выбранному ряду из списка Ряд. В поле ввода Имя отображается ссылка на ячейку, в которой содержится заголовок соответствующего ряда. Этот заголовок в дальнейшем используется мастером диаграмм для создания легенды.

Вкладка Ряд диалогового окна Исходные данные до задания имен рядов

Рис.
4.12.
Вкладка Ряд диалогового окна Исходные данные до задания имен рядов

  1. Выберите в списке Ряд элемент Ряд1. В поле ввода Имя укажите ссылку на ячейку В1, значение из которой будет использоваться в качестве идентификатора данного ряда. Вводить эту ссылку надо не с клавиатуры, а выбором с рабочего листа ячейки В1. Это приведет к тому, что в поле Имя автоматически будет введена ссылка на ячейку в абсолютном формате. В данном случае, =Лист1!$В$1. Теперь осталось только щелкнуть на элементе Ряд1 списка Ряд. Это приведет к тому, что элемент Ряд1 поменяется на у, т. е. на то значение, которое содержится в ячейке В1. Аналогично поступите с элементом Ряд2 списка Ряд. Сначала выберите его, затем в поле ввода Имя укажите ссылку на ячейку С1, а потом щелкните на элементе Ряд2. На рис. 4.13
    рис.
    4.13 показана вкладка Ряд диалогового окна Исходные данные после задания имен рядов. Теперь можно нажать кнопку Далее.
  2. В появившемся диалоговом окне Мастер диаграмм (шаг 3 из 4): параметры диаграммы на вкладке Заголовки в поле Название диаграммы введите График двух функций, в поле Ось X(категорий) введите х, в поле Ось Y(значений) введите у и z. На вкладке Легенда установите флажок Добавить легенду. Нажмите кнопку Далее.
  3. Нажмите кнопку Готово.

Результат проделанных шагов представлен на рисунке 4.14
рис.
4.14.

Вкладка Ряд диалогового окна Исходные данные после задания имен рядов

Рис.
4.13.
Вкладка Ряд диалогового окна Исходные данные после задания имен рядов

Для большей презентабельности построенной диаграммы в ней были произведены следующие изменения по сравнению с оригиналом:

  • Изменена ориентация подписи оси ординат с вертикальной на горизонтальную. Для этого выберите подпись оси ординат. Нажмите правую кнопку мыши и в появившемся контекстном меню укажите команду Формат названия оси. На вкладке Выравнивание диалогового окна Формат названия оси в группе Ориентация установите горизонтальную ориентацию. Нажмите кнопку ОК.
  • Для того чтобы пользователю было легче отличить, какая линия является графиком функции у, а какая – z, изменен вид графика функции z. С этой целью выделите график функции z. Нажмите правую кнопку мыши и в появившемся контекстном меню выберите команду Формат рядов данных. На вкладке Вид диалогового окна Формат ряда данных, используя элементы управления групп Маркер и Линия, установите необходимый вид линии графика. Нажмите кнопку ОК.
  • Изменен фон графика. С этой целью выделите диаграмму (но не область построения). Нажмите правую кнопку мыши и в появившемся контекстном меню выберите команду Формат области диаграммы. На вкладке Вид диалогового окна Формат области диаграммы установите флажок скругленные углы, а используя элементы управления группы Заливка, установите цвет и вид заливки фона. Нажмите кнопку ОК.

Графики функций у(х) и z(x), построенные в одной системе координат

Рис.
4.14.
Графики функций у(х) и z(x), построенные в одной системе координат

Построение поверхности

Продемонстрируем технологию построения поверхностей на примере следующей функции, зависящей от двух аргументов:

$z = x^{2}-y^{2}$ при $$хin [-2; 2], уin [-1; 1]$ .

Прежде чем воспользоваться мастером диаграмм, надо построить таблицу значений функции z по обоим ее аргументам, например, по аргументу х от -2 до 2 с шагом 0.2, а по у от -1 до 1 с шагом 0.2.

Для этого:

  1. Введите в ячейку А2 значение -2, а в ячейку А3 значение -1.8. Выберите диапазон ячеек А2:А3. Расположите указатель мыши на маркере заполнения этого диапазона и протяните его на диапазон А4:А22. Таким, образом, значения аргумента х протабулированы от -2 до 2 с шагом 0.2.
  2. Введите в ячейку В1 значение -1, а в ячейку С1 значение -0.8. Выберите диапазон ячеек В1:С1. Расположите указатель мыши на маркере заполнения этого диапазона и протяните его на диапазон D1:L1. Значения аргумента у протабулированы от -1 до 1 с шагом 0.2.
  3. В ячейку В2 введите формулу: =$А2^2 – В$1^2.
  4. Выберите ячейку В2, расположите указатель мыши на маркере ее заполнения и протяните его вниз на диапазон В2:L22.

На левом рабочем листе (рис. 4.15
рис.
4.15) показан результат табуляции функции, зависящей от двух аргументов, а на правом – часть формул, которые были введены в ячейке при копировании формулы, введенной в ячейку В2, перемещением маркера заполнения на диапазон В2:L22.

Таблица значений функции, зависящей от двух аргументов

Рис.
4.15.
Таблица значений функции, зависящей от двух аргументов

Примечание. Использование в формуле абсолютной ссылки на строку и столбец существенно. Напомним, что знак $ в имени ячейки, стоящий перед номером строки, создает абсолютную ссылку на строку, а перед именем столбца – абсолютную ссылку на столбец. Поэтому при буксировке формулы из ячейки В2 на диапазоны B2:L22, в ячейках этого диапазона будут найдены значения функции z при соответствующих значениях аргументов х и у.

Перейдем к конструированию поверхности по результатам табуляции. Для этого:

  1. Выберите команду Вставка > Диаграмма.
  2. В появившемся диалоговом окне Мастер диаграмм (шаг 1 из 4): тип диаграммы на вкладке Стандартные в списке Тип выберите значение Поверхность, а в списке Вид укажите стандартную поверхность. Нажмите кнопку Далее.
  3. В следующем диалоговом окне мастера диаграмм на вкладке Диапазон данных выберите переключатель Ряды в столбцах, т. к. данные располагаются в столбцах. В поле ввода Диапазон приведите ссылку на диапазон данных A1:L22, т. е. диапазон, который содержит в себе как значения аргументов, так и значения функции. Нажмите кнопку Далее.
  4. В появившемся диалоговом окне Мастер диаграмм (шаг 1 из 4): в параметры диаграммы на вкладке Заголовки в поле Название диаграммы введите поверхность, в поле Ось X (категорий) укажите х, в поле Ось Y (рядов данных) задайте у, в поле Ось Z (значений) введите z. На вкладке Легенда сбросьте флажок Добавить легенду. Нажмите кнопку Готово.
  5. Поверхность построена, как показано на рисунке 4.16
    рис.
    4.16.

Построенная поверхность и диалоговое окно Формат трехмерной проекции

Рис.
4.16.
Построенная поверхность и диалоговое окно Формат трехмерной проекции

Примечание. MS Excel разрешает пользователю не только изменять размеры рабочей области диаграммы посредством маркеров изменения размеров, но и ориентацию поверхности в пространстве. Для этого достаточно выделить диаграмму, а затем выбрать команду Диаграмма > Объемный вид. На экране отобразится диалоговое окно Формат трехмерной проекции, элементы которого как раз и позволяют изменять ориентацию поверхности в пространстве.

ЗАДАНИЯ

Вариант 1.

1. Построить в разных системах координат при $хin [-2; 2]$ графики функций:

$$y=sin(x)e^{-2x}$$$$
g=left{
begin{aligned}
 frac{1+x^{2}}{sqrt{1+x^{4}}}, xleq 0 \
 2x+frac{sin^{2}(x)}{2+x},x>0 
end{aligned}
right.
$$$$
z=left{
begin{aligned}
frac{1+|x|}{sqrt[3]{1+x+x^{2}}},xleq-1\
2ln(1+x^{2}+frac{1+cos^{4}(x)}{2+x},xin [-1;0]\
(1+x)^{frac{3}{5}}, xgeq0
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [-2; 2]$ графики функций:

$$y = 2sin(x)cos(x);$$$$z = 3 cos^{2}(x)sin(x).$$

3. Построить поверхность $z = х^{2} – 2у^{2}$ при $x,yin[-1; 1]$ .

Вариант 2.

1. Построить в разных системах координат при $хin [-2; 2]$ графики функций:

$$y=frac{1+x^{2}}{1+2x^{2}}$$$$
g=left{
begin{aligned}
3sin(x)-cos^{2}x,xleq0\
3sqrt{1+x^{2}},x>0
end{aligned}
right.
$$$$
z=left{
begin{aligned}
frac{1+x}{sqrt[3]{1+x^{2}}},xleq0\
-x+2e^{-2x},xin(0,1)\
|2-x|^{frac{1}{3}},xgeq1
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [-2; 2]$ графики функций:

$$y=2 sin(pi x)-3 cos(pi x);$$$$у = cos^{2}(2pi x)-2sin(pi x).$$

3. Построить поверхность $z = 3x^{2}-2sin^{2}(y)y^{2}$ при $x, yin [-1; 1]$ .

Вариант 3.

1. Построить в разных системах координат при $xin[-2; 1.5]$ графики функций:

$$y=frac{2+sin^{2}(x)}{1+x^{2}}$$$$
g=left{
begin{aligned}
frac{3x^{2}}{1+x^{2}},xleq0\
sqrt{1+frac{2x}{1+x^{2}}},x>0
end{aligned}
right.
$$$$
z=left{
begin{aligned}
3x+sqrt{1+x^{2}},x<0\
2cos(x)e^{-2x},xin[0,1]\
2sin(3x),x>1
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [-2; 2]$ графики функций:

$$y=5sin(pi x)-cos(3pi x)sin(pi x)$$$$z=cos(2pi x)-2sin^{3}(pi x)$$

3. Построить поверхность $z=5x^{2}cos^{2}(y)-2y^{2}e^{y}$ при $х,yin [-1; 1]$.

Вариант 4.

1. Построить в разных системах координат при $хin [-1.5; 1.5]$ графики функций:

$$y=frac{1+cos(x)}{1+e^{2x}}$$$$
g=left{
begin{aligned}
frac{3+sin^{2}(2x)}{1+cos^{2}x},xleq0\
2sqrt{1+2x},x>1
end{aligned}
right.
$$$$
z=left{
begin{aligned}
sqrt{1+frac{x^{2}}{1+x^{2}}},x<0\
2cos^{2}(x),xin[0,1]\
sqrt{1+|2sin(3x)|^{frac{1}{3}}},x>1
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [-2; 2]$ графики функций:

$$y=3sin(2pi x)cos(pi x)-cos^{2}(3pi x);$$$$z=2cos^{2}(2pi x)-3sin(3pi x)$$

3. Построить поверхность при мммх,yin [-1; 1]/ммм

$$
z=left{
begin{aligned}
2x^{2}-e^{y}, |x+y|<0.5\
xe^{-2x}-y, 0.5leq|x+y|<1\
2e^{x}-ye^{y}, 1leq|x+y|
end{aligned}
right.
$$

Вариант 5.

1. Построить в разных системах координат при $хin [-1.8; 1.8]$ графики функций:

$$y=sqrt[4]{1+e^{3x}}$$$$
g=left{
begin{aligned}
frac{3+sin(x)}{1+x^{2}}, xleq0\
2x^{2}cos^{2}(x), x>0
end{aligned}
right.
$$$$
z=left{
begin{aligned}
|x|^{frac{1}{3}}, x<0\
-2x+frac{x}{1+x}, xin[0,1]\
frac{|3-x|}{1+x}, xgeq1
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [0; 3]$ графики функций:

$$y=2sin(pi x)cos(pi x)$$$$z=cos^{2}(pi x)sin(3pi x)$$

3. Построить поверхность $z = 2x^{2} cos^{2}(x) – 2y^{2}$ при $х,yin [-l; 1]$.

Вариант 6.

1. Построить в разных системах координат при $хin [-2; 1.8]$ графики функций:

$$
g=left{
begin{aligned}
sqrt{1+2x^{2}-sin(x)}, xleq0\
frac{2+x}{sqrt[3]{2+e^{-0.1x}}}, x>0
end{aligned}
right.
$$$$
z=left{
begin{aligned}
frac{1+x}{1+x^{2}}, x<0\
sqrt{1+frac{x}{1+x}}, xin[0,1]\
2|sin(3x)|, xgeq1
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [-3; 0]$ графики функций:

$$y=3sin(3pi x)cos(2pi x)$$$$z=cos^{3}(4pi x)sin(pi x)$$

3. Построить поверхность $z = 2е^{0.2x} х^{2} – 2у^{4}$ при $х,yin [-1; 1]$ .

Вариант 7.

1. Построить в разных системах координат при $хin [-1.7; 1.5]$ графики функций:

$$y=frac{1+x}{1+sqrt{2+x+x^{2}}}$$$$
g=left{
begin{aligned}
sqrt{1+x^{2}}, x<0\
frac{1+x}{1+sqrt[3]{1+e^{-0.2x}}}, x>0
end{aligned}
right.
$$$$
z=left{
begin{aligned}
frac{1+x+x^{2}}{1+x^{2}}, x<0\
sqrt{1+frac{2x}{1+x^{2}}}, xin[0,1]\
2|0.5+sin(x)|, xgeq1
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [-3;0]$ графики функций:

$$y=2sin(2pi x)cos(4pi x)$$$$z=cos^{2}(3pi x)-cos(pi x)sin(pi x)$$

3. Построить поверхность $z = Х^{2} – 2e^{0.2y} y^{2}$ при $х,yin [-1;1]$.

Вариант 8.

1. Построить в разных системах координат при $хin [-1.5; 1.8]$ графики функций:

$$y=frac{1+xe^{-x}}{2+sqrt{x^{2}+sin^{2}(x)}}$$$$
g=left{
begin{aligned}
sqrt{1+|x|}, xleq0\
frac{1+3x}{2+sqrt[3]{1+x}}, x>0
end{aligned}
right.
$$$$
z=left{
begin{aligned}
1+frac{3+x}{1+x^{2}}, x<0\
sqrt{1+(1-x)^{2}},xin[0,1]\
frac{1+x}{1+cos^{2}(x)}, xgeq1
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [0; 2]$ графики функций:

$$y=sin(3pi x)+2sin(2pi x)cos(3pi x)$$$$z=cos(pi x)-cos(3pi x)sin^{2}(pi x)$$

3. Построить поверхность при $х,yin [-1; 1]$

$$
z=left{
begin{aligned}
x-e^{2y}, |x|+|y|<0.5\
2x^{2}-e^{y}, 0.5leq|x|+|y|<1\
e^{2x}-y, 1leq|x|+|y|
end{aligned}
right.
$$

Вариант 9.

1. Построить в разных системах координат при $хin [-1.4; 1.9]$ графики функций:

$$y=frac{1+xe^{-x}}{2+x^{2}}sin^{2}(x)$$$$
g=left{
begin{aligned}
frac{sqrt{1+|x|}}{2+|x|}, xleq0\
frac{1+x}{2+cos^{3}(x)}, x>0
end{aligned}
right.
$$$$
z=left{
begin{aligned}
frac{1+2x}{1+x^{2}}, x<0\
sin^{2}(x)sqrt{1+x},xin[0,1]\
 sin^{2}(x)e^{0.2x}, xgeq1
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [0;2]$ графики функций:

$$y=cos(3pi x)sin(pi x)+2sin(3pi x)cos(2pi x)$$$$z=cos^{2}(pi x)-cos(3pi x)$$

3. Построить поверхность при $х,yin [-1; 1]$$

$$
z=left{
begin{aligned}
x^{2}-3y^{3},x^{2}+y^{2}leq1\
3x^{2}-y^{3},x^{2}+y^{2}geq1
end{aligned}
right.
$$

Вариант 10.

1. Построить в разных системах координат при $хin [-1.4; 1.4]$ графики функций:

$$y=frac{1+x}{1+sqrt{|x|e^{-x}+|sin(x)|}}$$$$
g=left{
begin{aligned}
sqrt[3]{1+x^{2}}, xleq0\
sin^{2}(x)+frac{1+x}{1+cos^{2}(x)}, x>0
end{aligned}
right.
$$$$
z=left{
begin{aligned}
frac{|x|}{1+x^{2}}e^{-2x}, x<0\
sqrt{1+x^{2}},xin[0,1]\
frac{1+sin(x)}{1+x}+3x, xgeq1
end{aligned}
right.
$$

2. Построить в одной системе координат при $хin [0; 2]$ графики функций:

$$y=2sin(2pi x)cos(pi x)+sin(3pi x)$$$$z=cos(2pi x)sin^{2}(pi x)-cos(4pi x)$$

3. Построить поверхность z = 3x2sin2(x) – 5e2yу при $х,yin [-1; 1]$ .

КОНТРОЛЬНЫЕ ВОПРОСЫ

  1. Из каких этапов состоит процесс построения графика функции?
  2. Какими способами можно ввести в ячейки диапазона ряд последовательных значений, образующих арифметическую прогрессию?
  3. Как подписать ось X значениями аргумента?

Понравилась статья? Поделить с друзьями:
  • Построение графика функции заданной параметрически excel
  • Построение графика функции двух переменных excel
  • Построение графика функции в excel с помощью функции если
  • Построение графика функции в excel пример
  • Построение графика функции в excel по точкам