Pandas add sheet to excel

I want to use excel files to store data elaborated with python. My problem is that I can’t add sheets to an existing excel file. Here I suggest a sample code to work with in order to reach this issue

import pandas as pd
import numpy as np

path = r"C:UsersfedelDesktopexcelDataPhD_data.xlsx"

x1 = np.random.randn(100, 2)
df1 = pd.DataFrame(x1)

x2 = np.random.randn(100, 2)
df2 = pd.DataFrame(x2)

writer = pd.ExcelWriter(path, engine = 'xlsxwriter')
df1.to_excel(writer, sheet_name = 'x1')
df2.to_excel(writer, sheet_name = 'x2')
writer.save()
writer.close()

This code saves two DataFrames to two sheets, named «x1» and «x2» respectively. If I create two new DataFrames and try to use the same code to add two new sheets, ‘x3’ and ‘x4’, the original data is lost.

import pandas as pd
import numpy as np

path = r"C:UsersfedelDesktopexcelDataPhD_data.xlsx"

x3 = np.random.randn(100, 2)
df3 = pd.DataFrame(x3)

x4 = np.random.randn(100, 2)
df4 = pd.DataFrame(x4)

writer = pd.ExcelWriter(path, engine = 'xlsxwriter')
df3.to_excel(writer, sheet_name = 'x3')
df4.to_excel(writer, sheet_name = 'x4')
writer.save()
writer.close()

I want an excel file with four sheets: ‘x1’, ‘x2’, ‘x3’, ‘x4’.
I know that ‘xlsxwriter’ is not the only «engine», there is ‘openpyxl’. I also saw there are already other people that have written about this issue, but still I can’t understand how to do that.

Here a code taken from this link

import pandas
from openpyxl import load_workbook

book = load_workbook('Masterfile.xlsx')
writer = pandas.ExcelWriter('Masterfile.xlsx', engine='openpyxl') 
writer.book = book
writer.sheets = dict((ws.title, ws) for ws in book.worksheets)

data_filtered.to_excel(writer, "Main", cols=['Diff1', 'Diff2'])

writer.save()

They say that it works, but it is hard to figure out how. I don’t understand what «ws.title», «ws», and «dict» are in this context.

Which is the best way to save «x1» and «x2», then close the file, open it again and add «x3» and «x4»?

В Pandas есть встроенная функция для сохранения датафрейма в электронную таблицу Excel. Все очень просто:

df.to_excel( path ) # где path это путь до файла, куда будем сохранять

Как записать в лист с заданным именем

В этом случае будет создан xls / xlsx файл, а данные сохранятся на лист с именем Sheet1. Если хочется сохранить на лист с заданным именем, то можно использовать конструкцию:

df.to_excel( path, sheet_name=«Лист 1») # где sheet_name название листа

Как записать в один файл сразу два листа

Но что делать, если хочется записать в файл сразу два листа? Логично было бы использовать две команды

df.to_excel  друг за другом, но с одним путем до файла и разными

sheet_name , однако в Pandas это так не работает. Для решения этой задачи придется использовать конструкцию посложнее:

from pandas.io.excel import ExcelWriter

with ExcelWriter(path) as writer:

    df.sample(10).to_excel(writer, sheet_name=«Лист 1»)

    df.sample(10).to_excel(writer, sheet_name=«Лист 2»)

В результате будет создан файл Excel, где будет два листа с именами Лист 1 и Лист 2.

Как добавить ещё один лист у уже существующему файлу

Если использовать предыдущий код, то текущий файл будет перезаписан и в него будет записан новый лист. Старые данные при этом, ожидаемо, будут утеряны. Выход есть, достаточно лишь добавить модификатор «a» (append):

with ExcelWriter(path, mode=«a») as writer:

    df.sample(10).to_excel(writer, sheet_name=«Лист 3»)

Но что, если оставить этот код, удалить существующий файл Excel и попробовать выполнить код? Получим ошибку Файл не найден. В Python существует модификатор «a+», который создает файл, если его нет, и открывает его на редактирование, если файл существует. Но в Pandas такого модификатора не существует, поэтому мы должны выбрать модификатор для ExcelWriter в зависимости от наличия или отсутствия файла. Но это не сложно:

with ExcelWriter(path, mode=«a» if os.path.exists(path) else «w») as writer:

    df.sample().to_excel(writer, sheet_name=«Лист 4»)

К сожалению в Pandas, на момент написания поста, такого функционала нет. Но это можно реализовать с помощью пакета openpyxl. Вот пример такой функции:

def update_spreadsheet(path : str, _df, starcol : int = 1, startrow : int = 1, sheet_name : str =«ToUpdate»):

    »’

    :param path: Путь до файла Excel

    :param _df: Датафрейм Pandas для записи

    :param starcol: Стартовая колонка в таблице листа Excel, куда буду писать данные

    :param startrow: Стартовая строка в таблице листа Excel, куда буду писать данные

    :param sheet_name: Имя листа в таблице Excel, куда буду писать данные

    :return:

    »’

    wb = ox.load_workbook(path)

    for ir in range(0, len(_df)):

        for ic in range(0, len(_df.iloc[ir])):

            wb[sheet_name].cell(startrow + ir, starcol + ic).value = _df.iloc[ir][ic]

    wb.save(path)

Как работает код и пояснения смотри в видео

Если у тебя есть вопросы, что-то не получается или ты знаешь как решить задачи в посте лучше и эффективнее (такое вполне возможно) то смело пиши в комментариях к видео.

Skip to content

Thinking Neuron banner Logo

Home  »  Python   »   Add new sheet to excel using pandas

A data frame can be added as a new sheet to an existing excel sheet. For this operation, the library required is openpyxl.

You can install this library using below command in Jupyter notebook. The same command can be executed in command prompt without the exclamation character “!”.

# Installing library for excel interaction using pandas

!pip install openpyxl

You can add the data from multiple DataFrames, each becoming one sheet.

Below snippet loads a pre-existing excel sheet and adds two more sheets to it using two different data frames.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

import pandas as pd

import numpy as np

from openpyxl import load_workbook

# Defining the path which excel needs to be created

# There must be a pre-existing excel sheet which can be updated

FilePath = «/Users/farukh/Python ML IVY-May-2020/CarPricesData.xlsx»

# Generating workbook

ExcelWorkbook = load_workbook(FilePath)

# Generating the writer engine

writer = pd.ExcelWriter(FilePath, engine = ‘openpyxl’)

# Assigning the workbook to the writer engine

writer.book = ExcelWorkbook

# Creating first dataframe

DataSample1= [[10,‘value1’],

             [20,‘value2’],

             [30,‘value3’]]

SimpleDataFrame1=pd.DataFrame(data=DataSample1, columns=[‘Col1’,‘Col2’])

print(SimpleDataFrame1)

# Creating second dataframe

DataSample2= [[100,‘A’],

             [200,‘B’],

             [300,‘C’]]

SimpleDataFrame2=pd.DataFrame(data=DataSample2, columns=[‘colA’,‘colB’])

print(SimpleDataFrame2)

# Adding the DataFrames to the excel as a new sheet

SimpleDataFrame1.to_excel(writer, sheet_name = ‘Data1’)

SimpleDataFrame2.to_excel(writer, sheet_name = ‘Data2’)

writer.save()

writer.close()


Lead Data Scientist

Farukh is an innovator in solving industry problems using Artificial intelligence. His expertise is backed with 10 years of industry experience. Being a senior data scientist he is responsible for designing the AI/ML solution to provide maximum gains for the clients. As a thought leader, his focus is on solving the key business problems of the CPG Industry. He has worked across different domains like Telecom, Insurance, and Logistics. He has worked with global tech leaders including Infosys, IBM, and Persistent systems. His passion to teach inspired him to create this website!

Improve Article

Save Article

Like Article

  • Read
  • Discuss
  • Improve Article

    Save Article

    Like Article

    In this article, we will see how to export different DataFrames to different excel sheets using python.

    Pandas provide a function called xlsxwriter for this purpose. ExcelWriter() is a class that allows you to write DataFrame objects into Microsoft Excel sheets. Text, numbers, strings, and formulas can all be written using ExcelWriter(). It can also be used on several worksheets.

    Syntax:

    pandas.ExcelWriter(path, date_format=None, mode=’w’)

    Parameter:

    • path: (str) Path to xls or xlsx or ods file.
    • date_format: Format string for dates written into Excel files (e.g. ‘YYYY-MM-DD’).  str, default None
    • mode: {‘w’, ‘a’}, default ‘w’. File mode to use (write or append). Append does not work with fsspec URLs.

    The to_excel() method is used to export the DataFrame to the excel file. To write a single object to the excel file, we have to specify the target file name. If we want to write to multiple sheets, we need to create an ExcelWriter object with target filename and also need to specify the sheet in the file in which we have to write. The multiple sheets can also be written by specifying the unique sheet_name. It is necessary to save the changes for all the data written to the file.

    Syntax:

    DataFrame.to_excel(excel_writer, sheet_name=’Sheet1′,index=True)

    Parameter:

    • excel_writer: path-like, file-like, or ExcelWriter object (new or existing)
    • sheet_name: (str, default ‘Sheet1’). Name of the sheet which will contain DataFrame.
    • index: (bool, default True). Write row names (index).

    Create some sample data frames using pandas.DataFrame function. Now, create a writer variable and specify the path in which you wish to store the excel file and the file name, inside the pandas excelwriter function.

    Example: Write Pandas dataframe to multiple excel sheets

    Python3

    import pandas as pd

    data_frame1 = pd.DataFrame({'Fruits': ['Appple', 'Banana', 'Mango',

                                           'Dragon Fruit', 'Musk melon', 'grapes'],

                                'Sales in kg': [20, 30, 15, 10, 50, 40]})

    data_frame2 = pd.DataFrame({'Vegetables': ['tomato', 'Onion', 'ladies finger',

                                               'beans', 'bedroot', 'carrot'],

                                'Sales in kg': [200, 310, 115, 110, 55, 45]})

    data_frame3 = pd.DataFrame({'Baked Items': ['Cakes', 'biscuits', 'muffins',

                                                'Rusk', 'puffs', 'cupcakes'],

                                'Sales in kg': [120, 130, 159, 310, 150, 140]})

    print(data_frame1)

    print(data_frame2)

    print(data_frame3)

    with pd.ExcelWriter("path to filefilename.xlsx") as writer:

        data_frame1.to_excel(writer, sheet_name="Fruits", index=False)

        data_frame2.to_excel(writer, sheet_name="Vegetables", index=False)

        data_frame3.to_excel(writer, sheet_name="Baked Items", index=False)

    Output:

    The output showing the excel file with different sheets got saved in the specified location.

    Example 2: Another method to store the dataframe in an existing excel file using excelwriter is shown below,

    Create dataframe(s) and Append them to the existing excel file shown above using mode= ‘a’ (meaning append) in the excelwriter function. Using mode ‘a’ will add the new sheet as the last sheet in the existing excel file.

    Python3

    import pandas as pd

    data_frame1 = pd.DataFrame({'Fruits': ['Appple', 'Banana', 'Mango',

                                           'Dragon Fruit', 'Musk melon', 'grapes'],

                                'Sales in kg': [20, 30, 15, 10, 50, 40]})

    data_frame2 = pd.DataFrame({'Vegetables': ['tomato', 'Onion', 'ladies finger',

                                               'beans', 'bedroot', 'carrot'],

                                'Sales in kg': [200, 310, 115, 110, 55, 45]})

    data_frame3 = pd.DataFrame({'Baked Items': ['Cakes', 'biscuits', 'muffins',

                                                'Rusk', 'puffs', 'cupcakes'],

                                'Sales in kg': [120, 130, 159, 310, 150, 140]})

    data_frame4 = pd.DataFrame({'Cool drinks': ['Pepsi', 'Coca-cola', 'Fanta',

                                                'Miranda', '7up', 'Sprite'],

                                'Sales in count': [1209, 1230, 1359, 3310, 2150, 1402]})

    with pd.ExcelWriter("path_to_file.xlsx", mode="a", engine="openpyxl") as writer:

        data_frame4.to_excel(writer, sheet_name="Cool drinks")

    Output:

    Writing Large Pandas DataFrame to excel file in a zipped format.

    If the output dataframe is large, you can also store the excel file as a zipped file. Let’s save the dataframe which we created for this example. as excel and store it as a zip file. The ZIP file format is a common archive and compression standard.

    Syntax:

    ZipFile(file, mode=’r’)

    Parameter:

    • file: the file can be a path to a file (a string), a file-like object, or a path-like object.
    • mode: The mode parameter should be ‘r’ to read an existing file, ‘w’ to truncate and write a new file, ‘a’ to append to an existing file, or ‘x’ to exclusively create and write a new file.

    Import the zipfile package and create sample dataframes. Now, specify the path in which the zip file has to be stored, This creates a zip file in the specified path. Create a file name in which the excel file has to be stored. Use to_excel() function and specify the sheet name and index to store the dataframe in multiple sheets

    Example: Write large dataframes in ZIP format

    Python3

    import zipfile

    import pandas as pd

    data_frame1 = pd.DataFrame({'Fruits': ['Appple', 'Banana', 'Mango',

                                           'Dragon Fruit', 'Musk melon', 'grapes'],

                                'Sales in kg': [20, 30, 15, 10, 50, 40]})

    data_frame2 = pd.DataFrame({'Vegetables': ['tomato', 'Onion', 'ladies finger',

                                               'beans', 'bedroot', 'carrot'],

                                'Sales in kg': [200, 310, 115, 110, 55, 45]})

    data_frame3 = pd.DataFrame({'Baked Items': ['Cakes', 'biscuits', 'muffins',

                                                'Rusk', 'puffs', 'cupcakes'],

                                'Sales in kg': [120, 130, 159, 310, 150, 140]})

    data_frame4 = pd.DataFrame({'Cool drinks': ['Pepsi', 'Coca-cola', 'Fanta',

                                                'Miranda', '7up', 'Sprite'],

                                'Sales in count': [1209, 1230, 1359, 3310, 2150, 1402]})

    with zipfile.ZipFile("path_to_file.zip", "w") as zf:

        with zf.open("filename.xlsx", "w") as buffer:

            with pd.ExcelWriter(buffer) as writer:

                data_frame1.to_excel(writer, sheet_name="Fruits", index=False)

                data_frame2.to_excel(writer, sheet_name="Vegetables", index=False)

                data_frame3.to_excel(writer, sheet_name="Baked Items", index=False)

                data_frame4.to_excel(writer, sheet_name="Cool Drinks", index=False)

     Output:

    Sample output of zipped excel file

    Like Article

    Save Article

    Write Excel with Python Pandas. You can write any data (lists, strings, numbers etc) to Excel, by first converting it into a Pandas DataFrame and then writing the DataFrame to Excel.

    To export a Pandas DataFrame as an Excel file (extension: .xlsx, .xls), use the to_excel() method.

    Related course: Data Analysis with Python Pandas

    installxlwt, openpyxl

    to_excel() uses a library called xlwt and openpyxl internally.

    • xlwt is used to write .xls files (formats up to Excel2003)
    • openpyxl is used to write .xlsx (Excel2007 or later formats).

    Both can be installed with pip. (pip3 depending on the environment)

    1
    2
    $ pip install xlwt
    $ pip install openpyxl

    Write Excel

    Write DataFrame to Excel file

    Importing openpyxl is required if you want to append it to an existing Excel file described at the end.
    A dataframe is defined below:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    import pandas as pd
    import openpyxl

    df = pd.DataFrame([[11, 21, 31], [12, 22, 32], [31, 32, 33]],
    index=['one', 'two', 'three'], columns=['a', 'b', 'c'])

    print(df)




    You can specify a path as the first argument of the to_excel() method.

    Note: that the data in the original file is deleted when overwriting.

    The argument new_sheet_name is the name of the sheet. If omitted, it will be named Sheet1.

    1
    df.to_excel('pandas_to_excel.xlsx', sheet_name='new_sheet_name')

    Python Write Excel

    Related course: Data Analysis with Python Pandas

    If you do not need to write index (row name), columns (column name), the argument index, columns is False.

    1
    df.to_excel('pandas_to_excel_no_index_header.xlsx', index=False, header=False)

    Write multiple DataFrames to Excel files

    The ExcelWriter object allows you to use multiple pandas. DataFrame objects can be exported to separate sheets.

    As an example, pandas. Prepare another DataFrame object.

    1
    2
    3
    4
    5
    6
    df2 = df[['a', 'c']]
    print(df2)




    Then use the ExcelWriter() function like this:

    1
    2
    3
    with pd.ExcelWriter('pandas_to_excel.xlsx') as writer:
    df.to_excel(writer, sheet_name='sheet1')
    df2.to_excel(writer, sheet_name='sheet2')

    You don’t need to call writer.save(), writer.close() within the blocks.

    Append to an existing Excel file

    You can append a DataFrame to an existing Excel file. The code below opens an existing file, then adds two sheets with the data of the dataframes.

    Note: Because it is processed using openpyxl, only .xlsx files are included.

    1
    2
    3
    4
    5
    6
    path = 'pandas_to_excel.xlsx'

    with pd.ExcelWriter(path) as writer:
    writer.book = openpyxl.load_workbook(path)
    df.to_excel(writer, sheet_name='new_sheet1')
    df2.to_excel(writer, sheet_name='new_sheet2')

    Related course: Data Analysis with Python Pandas

    Use pandas to_excel() function to write a DataFrame to an excel sheet with extension .xlsx. By default it writes a single DataFrame to an excel file, you can also write multiple sheets by using an ExcelWriter object with a target file name, and sheet name to write to.

    Note that creating an ExcelWriter object with a file name that already exists will result in the contents of the existing file being erased.

    Related: pandas read Excel Sheet

    pandas to Excel key Points

    • By default, it uses xlsxwriter if it is installed otherwise it uses openpyxl
    • Supports saving multiple DataFrames to single sheet.
    • Save multiple sheets, append existing sheet or file.
    • Use ExcelWriter()

    Let’s create a pandas DataFrame from list and explore usingto_excel() function by using multiple parameters.

    
    import pandas as pd
    import numpy as np
    
    # Create multiple lists
    technologies =  ['Spark','Pandas','Java','Python', 'PHP']
    fee = [25000,20000,15000,15000,18000]
    duration = ['5o Days','35 Days',np.nan,'30 Days', '30 Days']
    discount = [2000,1000,800,500,800]
    columns=['Courses','Fee','Duration','Discount']
    
    # Create DataFrame from multiple lists
    df = pd.DataFrame(list(zip(technologies,fee,duration,discount)), columns=columns)
    print(df)
    
    # Outputs
    #  Courses    Fee Duration  Discount
    #0   Spark  25000  5o Days      2000
    #1  Pandas  20000  35 Days      1000
    #2    Java  15000      NaN       800
    #3  Python  15000  30 Days       500
    #4     PHP  18000  30 Days       800
    

    1. pandas DataFrame to Excel

    Use to_excel() function to write or export pandas DataFrame to excel sheet with extension xslx. Using this you can write excel files to the local file system, S3 e.t.c. Not specifying any parameter it default writes to a single sheet.

    to_excel() takes several optional params that can be used skip columns, skip rows, not to write index, set column names, formatting, and many more.

    
    # Write DataFrame to Excel file
    df.to_excel('Courses.xlsx')
    

    This creates an excel file with the contents as below. By default, It exports column names, indexes, and data to a sheet named 'Sheet1'.

    You can change the name of the sheet from Sheet1 to something that makes sense to your data by using sheet_name param. The below example exports it to the sheet named ‘Technologies‘.

    
    # Write DataFrame to Excel file with sheet name
    df.to_excel('Courses.xlsx', sheet_name='Technologies')
    

    2. Write to Multiple Sheets

    The ExcelWriter class allows you to write or export multiple pandas DataFrames to separate sheets. First, you need to create an object for ExcelWriter.

    The below example writes data from df object to a sheet named Technologies and df2 object to a sheet named Schedule.

    
    # Write to Multiple Sheets
    with pd.ExcelWriter('Courses.xlsx') as writer:
        df.to_excel(writer, sheet_name='Technologies')
        df2.to_excel(writer, sheet_name='Schedule')
    

    3. Append to Existing Excel File

    ExcelWriter can be used to append DataFrame to an excel file. Use mode param with value 'a' to append. The code below opens an existing file and adds data from the DataFrame to the specified sheet.

    
    # Append DataFrame to existing excel file
    with pd.ExcelWriter('Courses.xlsx',mode='a') as writer:  
        df.to_excel(writer, sheet_name='Technologies')
    

    4. Save Selected Columns

    use param columns to save selected columns from DataFrame to excel file. The below example only saves columns Fee, Duration to excel file.

    
    # Save Selected Columns to Excel File
    df.to_excel('Courses.xlsx', columns = ['Fee','Duration'])
    

    Use header param with a list of values if you wanted to write with different column names.

    5. Skip Index

    To skip Index from writing use index=False param. By default, it is set to True meaning write numerical Index to excel sheet.

    
    # Skip Index
    df.to_excel('Courses.xlsx', index = False)
    

    Conclusion

    In this article, you have learned how to write pandas DataFrame to excel file by using to_excel(). Also explored how to write to specific sheets, multiple sheets, and append to existing excel file.

    Related Articles

    • pandas ExcelWriter Usage with Examples
    • pandas write CSV file
    • pandas read Excel
    • Pandas ExcelWriter Explained with Examples
    • Pandas Read Multiple CSV Files into DataFrame
    • How to Read Excel Multiple Sheets in Pandas
    • Pretty Print Pandas DataFrame or Series?
    • Pandas Handle Missing Data in Dataframe
    • How to read CSV without headers in pandas

    References

    • https://stackoverflow.com/questions/38074678/append-existing-excel-sheet-with-new-dataframe-using-python-pandas/38075046#38075046

    In this tutorial, you’ll learn how to save your Pandas DataFrame or DataFrames to Excel files. Being able to save data to this ubiquitous data format is an important skill in many organizations. In this tutorial, you’ll learn how to save a simple DataFrame to Excel, but also how to customize your options to create the report you want!

    By the end of this tutorial, you’ll have learned:

    • How to save a Pandas DataFrame to Excel
    • How to customize the sheet name of your DataFrame in Excel
    • How to customize the index and column names when writing to Excel
    • How to write multiple DataFrames to Excel in Pandas
    • Whether to merge cells or freeze panes when writing to Excel in Pandas
    • How to format missing values and infinity values when writing Pandas to Excel

    Let’s get started!

    The Quick Answer: Use Pandas to_excel

    To write a Pandas DataFrame to an Excel file, you can apply the .to_excel() method to the DataFrame, as shown below:

    # Saving a Pandas DataFrame to an Excel File
    # Without a Sheet Name
    df.to_excel(file_name)
    
    # With a Sheet Name
    df.to_excel(file_name, sheet_name='My Sheet')
    
    # Without an Index
    df.to_excel(file_name, index=False)

    Understanding the Pandas to_excel Function

    Before diving into any specifics, let’s take a look at the different parameters that the method offers. The method provides a ton of different options, allowing you to customize the output of your DataFrame in many different ways. Let’s take a look:

    # The many parameters of the .to_excel() function
    df.to_excel(excel_writer, sheet_name='Sheet1', na_rep='', float_format=None, columns=None, header=True, index=True, index_label=None, startrow=0, startcol=0, engine=None, merge_cells=True, encoding=None, inf_rep='inf', verbose=True, freeze_panes=None, storage_options=None)

    Let’s break down what each of these parameters does:

    Parameter Description Available Options
    excel_writer= The path of the ExcelWriter to use path-like, file-like, or ExcelWriter object
    sheet_name= The name of the sheet to use String representing name, default ‘Sheet1’
    na_rep= How to represent missing data String, default ''
    float_format= Allows you to pass in a format string to format floating point values String
    columns= The columns to use when writing to the file List of strings. If blank, all will be written
    header= Accepts either a boolean or a list of values. If a boolean, will either include the header or not. If a list of values is provided, aliases will be used for the column names. Boolean or list of values
    index= Whether to include an index column or not. Boolean
    index_label= Column labels to use for the index. String or list of strings.
    startrow= The upper left cell to start the DataFrame on. Integer, default 0
    startcol= The upper left column to start the DataFrame on Integer, default 0
    engine= The engine to use to write. openpyxl or xlsxwriter
    merge_cells= Whether to write multi-index cells or hierarchical rows as merged cells Boolean, default True
    encoding= The encoding of the resulting file. String
    inf_rep= How to represent infinity values (as Excel doesn’t have a representation) String, default 'inf'
    verbose= Whether to display more information in the error logs. Boolean, default True
    freeze_panes= Allows you to pass in a tuple of the row, column to start freezing panes on Tuple of integers with length 2
    storage_options= Extra options that allow you to save to a particular storage connection Dictionary
    The many parameters of the Pandas .to_excel() method

    How to Save a Pandas DataFrame to Excel

    The easiest way to save a Pandas DataFrame to an Excel file is by passing a path to the .to_excel() method. This will save the DataFrame to an Excel file at that path, overwriting an Excel file if it exists already.

    Let’s take a look at how this works:

    # Saving a Pandas DataFrame to an Excel File
    import pandas as pd
    df = pd.DataFrame.from_dict(
        {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx')

    Running the code as shown above will save the file with all other default parameters. This returns the following image:

    01 - Saving Pandas DataFrame to Excel with Index

    You can specify a sheetname by using the sheet_name= parameter. By default, Pandas will use 'sheet1'.

    # Specifying a Sheet Name When Saving to Excel
    import pandas as pd
    df = pd.DataFrame.from_dict(
        {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx', sheet_name='Your Sheet')

    This returns the following workbook:

    02 - Saving Pandas DataFrame to Excel with Sheet Name

    In the following section, you’ll learn how to customize whether to include an index column or not.

    How to Include an Index when Saving a Pandas DataFrame to Excel

    By default, Pandas will include the index when saving a Pandas Dataframe to an Excel file. This can be helpful when the index is a meaningful index (such as a date and time). However, in many cases, the index will simply represent the values from 0 through to the end of the records.

    If you don’t want to include the index in your Excel file, you can use the index= parameter, as shown below:

    # How to exclude the index when saving a DataFrame to Excel
    import pandas as pd
    df = pd.DataFrame.from_dict(
        {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx', index=False)

    This returns the following Excel file:

    03- Saving Pandas DataFrame to Excel without Index

    In the following section, you’ll learn how to rename an index when saving a Pandas DataFrame to an Excel file.

    How to Rename an Index when Saving a Pandas DataFrame to Excel

    By default, Pandas will not named the index of your DataFrame. This, however, can be confusing and can lead to poorer results when trying to manipulate the data in Excel, either by filtering or by pivoting the data. Because of this, it can be helpful to provide a name or names for your indices.

    Pandas makes this easy by using the index_label= parameter. This parameter accepts either a single string (for a single index) or a list of strings (for a multi-index). Check out below how you can use this parameter:

    # Providing a name for your Pandas index
    import pandas as pd
    df = pd.DataFrame.from_dict(
        {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx', index_label='Your Index')

    This returns the following sheet:

    04 - Saving Pandas DataFrame to Excel with Labelled Index

    How to Save Multiple DataFrames to Different Sheets in Excel

    One of the tasks you may encounter quite frequently is the need to save multi Pandas DataFrames to the same Excel file, but in different sheets. This is where Pandas makes it a less intuitive. If you were to simply write the following code, the second command would overwrite the first command:

    # The wrong way to save multiple DataFrames to the same workbook
    import pandas as pd
    df = pd.DataFrame.from_dict(
        {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx', sheet_name='Sheet1')
    df.to_excel('filename.xlsx', sheet_name='Sheet2')

    Instead, we need to use a Pandas Excel Writer to manage opening and saving our workbook. This can be done easily by using a context manager, as shown below:

    # The Correct Way to Save Multiple DataFrames to the Same Workbook
    import pandas as pd
    df = pd.DataFrame.from_dict(
        {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
    )
    
    with pd.ExcelWriter('filename.xlsx') as writer:
        df.to_excel(writer, sheet_name='Sheet1')
        df.to_excel(writer, sheet_name='Sheet2')

    This will create multiple sheets in the same workbook. The sheets will be created in the same order as you specify them in the command above.

    This returns the following workbook:

    05 - Saving Multiple Pandas Dataframes to Excel Worksheets

    How to Save Only Some Columns when Exporting Pandas DataFrames to Excel

    When saving a Pandas DataFrame to an Excel file, you may not always want to save every single column. In many cases, the Excel file will be used for reporting and it may be redundant to save every column. Because of this, you can use the columns= parameter to accomplish this.

    Let’s see how we can save only a number of columns from our dataset:

    # Saving Only a Subset of Columns to Excel
    import pandas as pd
    df = pd.DataFrame.from_dict(
        {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx', columns=['A', 'B'])

    This returns the following Excel file:

    06 - Saving Pandas DataFrame to Excel with only some columns

    How to Rename Columns when Exporting Pandas DataFrames to Excel

    Continuing our discussion about how to handle Pandas DataFrame columns when exporting to Excel, we can also rename our columns in the saved Excel file. The benefit of this is that we can work with aliases in Pandas, which may be easier to write, but then output presentation-ready column names when saving to Excel.

    We can accomplish this using the header= parameter. The parameter accepts either a boolean value of a list of values. If a boolean value is passed, you can decide whether to include or a header or not. When a list of strings is provided, then you can modify the column names in the resulting Excel file, as shown below:

    # Modifying Column Names when Exporting a Pandas DataFrame to Excel
    import pandas as pd
    df = pd.DataFrame.from_dict(
        {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx', header=['New_A', 'New_B', 'New_C'])

    This returns the following Excel sheet:

    07 - Saving Pandas DataFrame to Excel with renamed columns.png

    How to Specify Starting Positions when Exporting a Pandas DataFrame to Excel

    One of the interesting features that Pandas provides is the ability to modify the starting position of where your DataFrame will be saved on the Excel sheet. This can be helpful if you know you’ll be including different rows above your data or a logo of your company.

    Let’s see how we can use the startrow= and startcol= parameters to modify this:

    # Changing the Start Row and Column When Saving a DataFrame to an Excel File
    import pandas as pd
    df = pd.DataFrame.from_dict(
        {'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx', startcol=3, startrow=2)

    This returns the following worksheet:

    08 - Specifying starting position for excel

    How to Represent Missing and Infinity Values When Saving Pandas DataFrame to Excel

    In this section, you’ll learn how to represent missing data and infinity values when saving a Pandas DataFrame to Excel. Because Excel doesn’t have a way to represent infinity, Pandas will default to the string 'inf' to represent any values of infinity.

    In order to modify these behaviors, we can use the na_rep= and inf_rep= parameters to modify the missing and infinity values respectively. Let’s see how we can do this by adding some of these values to our DataFrame:

    # Customizing Output of Missing and Infinity Values When Saving to Excel
    import pandas as pd
    import numpy as np
    
    df = pd.DataFrame.from_dict(
        {'A': [1, np.NaN, 3], 'B': [4, 5, np.inf], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx', na_rep='NA', inf_rep='INFINITY')

    This returns the following worksheet:

    09 - Saving Pandas DataFrame to Excel with infinity and missing data

    How to Merge Cells when Writing Multi-Index DataFrames to Excel

    In this section, you’ll learn how to modify the behavior of multi-index DataFrames when saved to Excel. By default Pandas will set the merge_cells= parameter to True, meaning that the cells will be merged. Let’s see what happens when we set this behavior to False, indicating that the cells should not be merged:

    # Modifying Merge Cell Behavior for Multi-Index DataFrames
    import pandas as pd
    import numpy as np
    from random import choice
    
    df = pd.DataFrame.from_dict({
        'A': np.random.randint(0, 10, size=50),
        'B': [choice(['a', 'b', 'c']) for i in range(50)],
        'C': np.random.randint(0, 3, size=50)})
    
    pivot = df.pivot_table(index=['B', 'C'], values='A')
    
    pivot.to_excel('filename.xlsx', merge_cells=False)

    This returns the Excel worksheet below:

    10 - Prevent merging cells when saving Pandas to Excel

    How to Freeze Panes when Saving a Pandas DataFrame to Excel

    In this final section, you’ll learn how to freeze panes in your resulting Excel worksheet. This allows you to specify the row and column at which you want Excel to freeze the panes. This can be done using the freeze_panes= parameter. The parameter accepts a tuple of integers (of length 2). The tuple represents the bottommost row and the rightmost column that is to be frozen.

    Let’s see how we can use the freeze_panes= parameter to freeze our panes in Excel:

    # Freezing Panes in an Excel Workbook Using Pandas
    import pandas as pd
    import numpy as np
    
    df = pd.DataFrame.from_dict(
        {'A': [1, np.NaN, 3], 'B': [4, 5, np.inf], 'C': [7, 8, 9]}
    )
    
    df.to_excel('filename.xlsx', freeze_panes=(3,4))

    This returns the following workbook:

    11 - Saving Pandas DataFrame to Excel with frozen panes

    Conclusion

    In this tutorial, you learned how to save a Pandas DataFrame to an Excel file using the to_excel method. You first explored all of the different parameters that the function had to offer at a high level. Following that, you learned how to use these parameters to gain control over how the resulting Excel file should be saved. For example, you learned how to specify sheet names, index names, and whether to include the index or not. Then you learned how to include only some columns in the resulting file and how to rename the columns of your DataFrame. You also learned how to modify the starting position of the data and how to freeze panes.

    Additional Resources

    To learn more about related topics, check out the tutorials below:

    • How to Use Pandas to Read Excel Files in Python
    • Pandas Dataframe to CSV File – Export Using .to_csv()
    • Introduction to Pandas for Data Science
    • Official Documentation: Pandas to_excel

    New issue

    Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

    By clicking “Sign up for GitHub”, you agree to our terms of service and
    privacy statement. We’ll occasionally send you account related emails.

    Already on GitHub?
    Sign in
    to your account

    Comments

    @ligon

    The ability of ExcelWriter to save different dataframes to different worksheets is great for sharing those dfs with the python-deficient. But this quickly leads to a need to add worksheets to an existing workbook, not just creating one from scratch; something like:

    df0=pd.DataFrame(np.arange(3))
    df0.to_excel('foo.xlsx','Data 0')
    
    df1=pd.DataFrame(np.arange(2))
    df1.to_excel('foo.xlsx','Data 1')
    

    The following little diff to io/parsers.py implements this behavior for *.xlsx files:

    diff --git a/pandas/io/parsers.py b/pandas/io/parsers.py
    index 89f892d..7f010ee 100644
    --- a/pandas/io/parsers.py
    +++ b/pandas/io/parsers.py
    @@ -2099,12 +2099,19 @@ class ExcelWriter(object):
                 self.fm_date = xlwt.easyxf(num_format_str='YYYY-MM-DD')
             else:
                 from openpyxl.workbook import Workbook
    -            self.book = Workbook()  # optimized_write=True)
    -            # open pyxl 1.6.1 adds a dummy sheet remove it
    -            if self.book.worksheets:
    -                self.book.remove_sheet(self.book.worksheets[0])
    +            from openpyxl.reader.excel import load_workbook
    +
    +            try:
    +               self.book=load_workbook(filename = path)
    +               self.sheets={wks.title:wks for wks in self.book.worksheets}
    +            except InvalidFileException:
    +                self.book = Workbook()  # optimized_write=True)
    +                # open pyxl 1.6.1 adds a dummy sheet remove it
    +                if self.book.worksheets:
    +                    self.book.remove_sheet(self.book.worksheets[0])
    +                self.sheets = {}
    +
             self.path = path
    -        self.sheets = {}
             self.cur_sheet = None
    

    Doing this for *.xls files is a little harder.

    @jreback

    @jtratner is this still a bug/needed enhancement?

    @jtratner

    Because of how to_excel is set up, this would mean reading in and then writing the file each time (because to_excel with a path argument saves the file). The right way to do this is to use ExcelWriter:

    import pandas as pd
    writer = pd.ExcelWriter('foo.xlsx')
    df.to_excel(writer, 'Data 0')
    df.to_excel(writer, 'Data 1')
    writer.save()

    I could see (eventually) adding an option to ExcelWriter that doesn’t overwrite the file. But, yet again, that may mean writing in the entire file first. I don’t know.

    aditya436, hukaijun2008, Harvey-W, jakubka, solarzc, fangying, meenaparam, douxl5516, XueqianLv, wwwpig2004, and 2 more reacted with thumbs up emoji

    @jtratner

    I’m going to add something to the docs about this, maybe a test case with this, and I’ll look into adding an option to read in the file, but it depends on how xlwt and openpyxl work.

    @jreback

    @jtratner what about a context manager get_excel?

    with get_excel('foo.xlsx') as e:
        df.to_excel(e,'Data 0)
        df.to_excel(e,'Data 1)
    

    ?

    @jtratner

    how about we just make ExcelWriter into a contextmanager instead? it’ll just call save at the end. Much simpler.

    @jtratner

    @ligon you can do this now this way:

    with ExcelWriter('foo.xlsx') as writer:
        df.to_excel(writer, 'Data 0')
        df2.to_excel(writer, 'Data 1')

    If you don’t use the with statement, just have to call save() at the end.

    @ligon



    Copy link


    Author


    ligon

    commented

    Sep 23, 2013



    edited by jorisvandenbossche

    Excellent. And great that it has an exit method.

    Thanks,
    -Ethan Ligon

    Ethan Ligon, Associate Professor
    Agricultural & Resource Economics
    University of California, Berkeley

    @dylancis

    I was extremely interesting by the request made by @ligon — but seems this is already there.
    However using 0.12.0 pd version, when I am doing:
    df = DataFrame([1,2,3])
    df2 = DataFrame([5,5,6])
    with ExcelWriter(‘foo.xlsx’) as writer:
    df.to_excel(writer, ‘Data 0’)
    df2.to_excel(writer, ‘Data 1’)

    Assumning foo.xlsx was containing a sheet named ‘bar’, basgot delete after the command run. While as per your comment, i was expecting to keep it in my foo excel file. Is that a bug?

    @frenet

    is it hard to add sheets to an existing excel file on the disk?
    import pandas as pd
    import numpy as np
    a=pd.DataFrame(np.random.random((3,1)))
    excel_writer=pd.ExcelWriter(‘c:excel.xlsx’)
    a.to_excel(excel_writer, ‘a1’)
    excel_writer.save()

    excel_writer=pd.ExcelWriter(‘c:excel.xlsx’)
    a.to_excel(excel_writer, ‘a2’)
    excel_writer.save()

    here only sheet ‘a2″ is save, but I like to save both ‘a1’ and ‘a2’.

    I know it is possible to add sheets to an existing workbook.

    @jtratner



    Copy link


    Contributor


    jtratner

    commented

    Apr 4, 2014



    edited by jorisvandenbossche

    It’s definitely possible to add sheets to an existing workbook, but it’s
    not necessarily easy to do it with pandas. I think you’d have to read the
    workbook separately and then pass it into the ExcelWriter class… That
    would be something we could consider supporting.

    @jtratner



    Copy link


    Contributor


    jtratner

    commented

    Apr 4, 2014



    edited by jorisvandenbossche

    And I think if you subclass the ExcelWriter instance you want to use and
    overwrite its__init__ method, as long as you set self.book it should work.
    That said, no guarantee that this would continue to work in future
    versions, since it’s only a quasi-public API

    @ankostis

    This stackoverflow workaround, which is based in openpyxl, may work
    (EDIT: indeed works, checked with pandas-0.17.0):

    import pandas
    from openpyxl import load_workbook
    
    book = load_workbook('Masterfile.xlsx')
    writer = pandas.ExcelWriter('Masterfile.xlsx', engine='openpyxl') 
    writer.book = book
    writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
    
    data_filtered.to_excel(writer, "Main", cols=['Diff1', 'Diff2'])
    
    writer.save()
    kevinsa5, YangJian1992, Moby5, sungjeremy, chansonZ, dspo, billchen2k, clayms, luckyzachary, ztcaoll222, and 5 more reacted with thumbs up emoji
    YangJian1992 and luckyzachary reacted with laugh emoji
    YangJian1992 and luckyzachary reacted with heart emoji

    @jreback

    this would be pretty easy to implement inside ExcelWriter (Oder patch above)

    prob just need to add a mode=kw and default to w and make a be append

    @pylang

    @jreback

    it seems that you can work around it (see above), but I suppose would be nice to actually do it from pandas.

    @andreacassioli

    Hi, any follow up on this issue?
    I can provide a use case: I have excel files with pivot tables and pivot graphs that I need to reach out people not proficient in Python.

    My idea was to use pandas to add a sheet that contains the data for the pivot. But up to know I am stuck and the proposed workaround, thought not difficult, sounds a bit cumbersome . It would make sense to jsut have an option whether overwrite an existing file.

    @zeluspudding

    Let me echo @jreback , it would be super nice if I could just add a sheet to an excel workbook from pandas.

    @jorisvandenbossche

    To be clear, we agree that this would be a nice functionality, and would certainly welcome a contribution from the community.
    Best way to have this in pandas is to make a PR!

    @aa3222119

    @jmcnamara how to use pandas.to_excel(Writer maybe use pandas.ExcelWriter) to add some data to an existed file , but not rewrite it??

    @jorisvandenbossche

    @aa3222119 That is exactly what this issue is about: an enhancement request to add this ability, which is not yet possible today.

    (BTW, it is not needed to post the same question in multiple issues)

    @aa3222119

    @jmcnamara

    BTW will that be possible some day later? @jmcnamara

    This isn’t and won’t be possible when using XlsxWriter as the engine. It should be possible when using OpenPyXL. I’ve seen some examples on SO like this one: jmcnamara/excel-writer-xlsx#157

    @aa3222119

    3Q very much! @jmcnamara
    it is exactly what you said . use openpyxl 👍

    import pandas as pd
    from openpyxl import load_workbook
    book = load_workbook(‘text.xlsx’)
    writer = pd.ExcelWriter(‘text.xlsx’, engine=’openpyxl’)
    writer.book = book
    pd.DataFrame(userProfile,index=[1]).to_excel(writer,’sheet111′,startrow=7,startcol=7)
    pd.DataFrame(userProfile,index=[1]).to_excel(writer,’sheet123′,startrow=0,startcol=0)
    writer.save()
    pd.DataFrame(userProfile,index=[1]).to_excel(writer,’sheet123′,startrow=3,startcol=3)
    writer.save()

    all can be added to text.xlsx.
    https://github.com/pandas-dev/pandas/issues/3441

    @Themanwithoutaplan

    @jgonzale

    @ankostis, @aa3222119 when I follow the steps you comment, I always reach the following error:

    Traceback (most recent call last):
    File «./name_manipulation.py», line 60, in
    df.to_excel(excel_writer, ‘iadatasheet’, startcol=0, startrow=5, columns=[‘codes’, ‘Zona Basica de Salud’, month+»-«+year], index=False)
    File «/Users/jgonzalez.iacs/Projects/SIIDI/PYTHON_ETLs/venv/lib/python3.4/site-packages/pandas/core/frame.py», line 1464, in to_excel
    startrow=startrow, startcol=startcol)
    File «/Users/jgonzalez.iacs/Projects/SIIDI/PYTHON_ETLs/venv/lib/python3.4/site-packages/pandas/io/excel.py», line 1306, in write_cells
    wks = self.book.create_sheet()
    AttributeError: ‘str’ object has no attribute ‘create_sheet’

    So, there is not solution yet, right?

    Thanks

    @ankostis

    Maybe the API has changed — it definitely worked back then.

    @Themanwithoutaplan

    @aa3222119

    @jgonzale by what python said , your excel_writer.book maybe just a str but not a workbook?

    @jgonzale

    @aa3222119 Oh geez! You were right! Messing around with very similar names!

    Thank you very much! 👏 👏 👏

    @wxl3322335

    @BLMeltdown

    Hello
    I have some use case where it would be useful:
    Even with the ExcelWriter trick as:

    with ExcelWriter(‘foo.xlsx’) as writer:
    df.to_excel(writer, ‘Data 0’)
    df2.to_excel(writer, ‘Data 1’)

    you can’t add a plot that you need without saving the file and reopening it. With the risk of meddling with any formatting you have in the workbook.

    There is indeed the workaround to use the plotting functions from pandas to save these in the files, but (there is a but), when you need something a little more sophisticated like showing a PCA components graph you built from scikitlearn PCA and matplotlib, then it becomes tedious.

    Hence
    a pandas.nondf_manager (non df object or filename).to_excel(usual syntax)
    would be exceedingly fine.
    Thanks.

    @orbitalz

    I don’t know how it is possible, however, it works for me

    create_excel = 0
    if plot_spectra != 0:
        for x in range(min_sigma, max_sigma, step_size):
            # apply gaussian
            df1 = gaussian_filter(df, sigma=x, mode=padding_mode)
            df2 = pd.DataFrame(df1)
            if save_file:
                if save_csv:
                    df2.to_csv('{} {}{}.csv'.format(Output_file, 'sigma_', x,))
                if save_xlsx:
                    if os.path.isfile('{}.xlsx'.format(Output_file)):
                        print("Warning! Excel file is exist")
                        break
                    if create_excel == 0:
                        xlsx_writer = pd.ExcelWriter('{}.xlsx'.format(Output_file), engine='xlsxwriter')                                          
                        create_excel += 1
                    df2.to_excel(xlsx_writer, '{}{}'.format('sigma_', x))
                    if x == max_sigma-1:
                        xlsx_writer.save()
    

    At the end, I got the excel file which have several work sheets.

    @jorisvandenbossche

    @orbitalz you are creating an excel file the first time (xlsx_writer = pd.ExcelWriter(..)), and then adding multiple sheets to that file object. That is supported, but this issue is about adding sheets to an existing excel file.

    @orbitalz

    I’m sorry for misunderstanding the topic and Thank you for pointing me out :)

    @tlysecust

    @orbitalz You solve my problem ,but I don’t known how it works

    @ivoska

    mode={‘a’} does not work as the documentation suggests
    this is still a buggy mess

    @codewithpatch

    Appending in the existing worksheet seems to work with
    writer = pd.ExcelWriter(‘filename.xlsx’, mode=’a’)

    But, this only appends and does not overwrite sheets with the same sheetname

    Example, my existing workbook has a sheetname ‘mySheet’
    If I try to do:
    df.to_excel(writer, ‘mySheet’)
    It will create a new sheet ‘mySheet1’ instead of rewriting the existing ‘mySheet’

    I wonder if there’s any other way to append in the existing workbook, but overwriting sheets that you want to overwrite.

    Hope someone helps.

    @anvesha-nextsteps

    By using openpyxl as engine in ExcelWriter
    writer = pd.ExcelWriter(filename, engine=’openpyxl’)
    df.to_excel(writer, sheet_name)
    at writer.save() i am getting this error
    TypeError: got invalid input value of type <class ‘xml.etree.ElementTree.Element’>, expected string or Element

    @irishun

    By using openpyxl as engine in ExcelWriter
    writer = pd.ExcelWriter(filename, engine=’openpyxl’)
    df.to_excel(writer, sheet_name)
    at writer.save() i am getting this error
    TypeError: got invalid input value of type <class ‘xml.etree.ElementTree.Element’>, expected string or Element

    I have met the same error. Has anyone solved this issue?

    @LittleMoDel

    engine should change to openyxl,because the default engine’xlsxwriter’ NOT support append mode !

    `
    import pandas as pd

    df= pd.DataFrame({‘lkey’: [‘foo’, ‘bar’, ‘baz’, ‘foo’], ‘value’: [1, 2, 3, 5]})

    #engine should change to openyxl,because the default engine’xlsxwriter’ NOT support append mode !

    writer = pd.ExcelWriter(‘exist.xlsx’,mode=’a’,engine=’openpyxl’)

    df.to_excel(writer, sheet_name =’NewSheet’)

    writer.save()

    writer.close()

    `


    Pandas chooses an Excel writer via two methods:

    the engine keyword argument
    the filename extension (via the default specified in config options)
    By default, pandas uses the XlsxWriter for .xlsx, openpyxl for .xlsm, and xlwt for .xls files. If you have multiple engines installed, you can set the default engine through setting the config options io.excel.xlsx.writer and io.excel.xls.writer. pandas will fall back on openpyxl for .xlsx files if Xlsxwriter is not available.

    To specify which writer you want to use, you can pass an engine keyword argument to to_excel and to ExcelWriter. The built-in engines are:

    • openpyxl: version 2.4 or higher is required
    • xlsxwriter
    • xlwt

    @macifTest

    Hello,
    I have an issue with the use of Pandas + ExcelWriter + load_workbook.
    My need is to be able to modify data from an existing excel file (without deleting the rest).
    It works partly, but when I check the size of the produced file and the original one the size is quite different.
    Moreover, it seems to lack some properties. Which leads to an error message when I want to integrate the modified file into an application.
    The code bellow :

    data_filtered = pd.DataFrame([date, date, date, date], index=[2,3,4,5])
    book = openpyxl.load_workbook(file_origin)
    writer = pd.ExcelWriter(file_modif, engine=’openpyxl’,datetime_format=’dd/mm/yyyy hh:mm:ss’, date_format=’dd/mm/yyyy’)
    writer.book = book
    ## ExcelWriter for some reason uses writer.sheets to access the sheet.
    ## If you leave it empty it will not know that sheet Main is already there
    ## and will create a new sheet.
    writer.sheets = dict((ws.title, ws) for ws in book.worksheets)
    data_filtered.to_excel(writer, sheet_name=»PCA pour intégration», index=False, startrow=2, startcol=5, header=False, verbose=True)
    writer.save()`

    1. Syntax of pandas.DataFrame.to_excel()
    2. Example Codes: Pandas DataFrame.to_excel()
    3. Example Codes: Pandas DataFrame.to_excel() With ExcelWriter
    4. Example Codes: Pandas DataFrame.to_excel to Append to an Existing Excel File
    5. Example Codes: Pandas DataFrame.to_excel to Write Multiple Sheets
    6. Example Codes: Pandas DataFrame.to_excel With header Parameter
    7. Example Codes: Pandas DataFrame.to_excel With index=False
    8. Example Codes: Pandas DataFrame.to_excel With index_label Parameter
    9. Example Codes: Pandas DataFrame.to_excel With float_format Parameter
    10. Example Codes: Pandas DataFrame.to_excel With freeze_panes Parameter

    Pandas DataFrame DataFrame.to_excel() Function

    Python Pandas DataFrame.to_excel(values) function dumps the dataframe data to an Excel file, in a single sheet or multiple sheets.

    Syntax of pandas.DataFrame.to_excel()

    DataFrame.to_excel(excel_writer, 
                   sheet_name='Sheet1', 
                   na_rep='', 
                   float_format=None, 
                   columns=None, 
                   header=True, 
                   index=True, 
                   index_label=None, 
                   startrow=0, 
                   startcol=0, 
                   engine=None, 
                   merge_cells=True, 
                   encoding=None, 
                   inf_rep='inf', 
                   verbose=True, 
                   freeze_panes=None) 
    

    Parameters

    excel_writer Excel file path or the existing pandas.ExcelWriter
    sheet_name Sheet name to which the dataframe dumps
    na_rep Representation of null values.
    float_format Format of floating numbers
    header Specify the header of the generated excel file.
    index If True, write dataframe index to the Excel.
    index_label Column label for index column.
    startrow The upper left cell row to write the data to the Excel.
    Default is 0
    startcol The upper left cell column to write the data to the Excel.
    Default is 0
    engine Optional parameter to specify the engine to use. openyxl or xlswriter
    merge_cells Merge MultiIndex to merged cells
    encoding Encoding of the output Excel file. Only necessary if xlwt writer is used, other writers support Unicode natively.
    inf_rep Representation of infinity. Default is inf
    verbose If True, error logs consist of more information
    freeze_panes Specify the bottommost and rightmost of the frozen pane. It is one-based, but not zero-based.

    Return

    None

    Example Codes: Pandas DataFrame.to_excel()

    import pandas as pd
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    dataframe.to_excel('test.xlsx')
    

    The caller DataFrame is

       Attendance    Name  Marks
    0          60  Olivia     90
    1         100    John     75
    2          80   Laura     82
    3          78     Ben     64
    4          95   Kevin     45
    

    test.xlsx is created.

    Pandas DataFrame to_excel.png

    Example Codes: Pandas DataFrame.to_excel() With ExcelWriter

    The above example uses the file path as the excel_writer, and we could also use pandas.Excelwriter to specify the excel file the dataframe dumps.

    import pandas as pd
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    with pd.ExcelWriter('test.xlsx') as writer:
        dataframe.to_excel(writer)
    

    Example Codes: Pandas DataFrame.to_excel to Append to an Existing Excel File

    import pandas as pd
    import openpyxl
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    with pd.ExcelWriter('test.xlsx', mode='a', engine='openpyxl') as writer:
        dataframe.to_excel(writer, sheet_name="new")
    

    We should specify the engine as openpyxl but not default xlsxwriter; otherwise, we will get the error that xlswriter doesn’t support append mode.

    ValueError: Append mode is not supported with xlsxwriter!
    

    openpyxl shall be installed and imported because it is not part of pandas.

    Pandas DataFrame to_excel - append sheet

    Example Codes: Pandas DataFrame.to_excel to Write Multiple Sheets

    import pandas as pd
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    with pd.ExcelWriter('test.xlsx') as writer:
        dataframe.to_excel(writer, sheet_name="Sheet1")
        dataframe.to_excel(writer, sheet_name="Sheet2")
    

    It dumps the dataframe object to both Sheet1 and Sheet2.

    You could also write different data to multiple sheets if you specify the columns parameter.

    import pandas as pd
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    with pd.ExcelWriter('test.xlsx') as writer:
        dataframe.to_excel(writer, 
                           columns=["Name","Attendance"],
                           sheet_name="Sheet1")
        dataframe.to_excel(writer, 
                           columns=["Name","Marks"],
                           sheet_name="Sheet2")
    

    Example Codes: Pandas DataFrame.to_excel With header Parameter

    import pandas as pd
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    with pd.ExcelWriter('test.xlsx') as writer:
        dataframe.to_excel(writer, header=["Student", "First Name", "Score"])
    

    The default header in the created Excel file is the same as dataframe’s column names. The header parameter specifies the new header to replace the default one.

    Pandas DataFrame to_excel - change header name

    Example Codes: Pandas DataFrame.to_excel With index=False

    import pandas as pd
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    with pd.ExcelWriter('test.xlsx') as writer:
        dataframe.to_excel(writer, index=False)
    

    index = False specifies that DataFrame.to_excel() generates an Excel file without header row.

    Example Codes: Pandas DataFrame.to_excel With index_label Parameter

    import pandas as pd
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    with pd.ExcelWriter('test.xlsx') as writer:
        dataframe.to_excel(writer, index_label='id')
    

    index_label='id' sets the column name of the index column to be id.

    Pandas DataFrame to_excel - set index label

    Example Codes: Pandas DataFrame.to_excel With float_format Parameter

    import pandas as pd
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    with pd.ExcelWriter('test.xlsx') as writer:
        dataframe.to_excel(writer, float_format="%.1f")
    

    float_format="%.1f" specifies the floating number to have two floating digits.

    Example Codes: Pandas DataFrame.to_excel With freeze_panes Parameter

    import pandas as pd
    
    dataframe= pd.DataFrame({'Attendance': [60, 100, 80, 78, 95],
                        'Name': ['Olivia', 'John', 'Laura', 'Ben', 'Kevin'],
                        'Marks': [90, 75, 82, 64, 45]})
    
    with pd.ExcelWriter('test.xlsx') as writer:
        dataframe.to_excel(writer, freeze_panes=(1,1))
    

    freeze_panes=(1,1) specifies that the excel file has the frozen top row and frozen first column.

    Pandas DataFrame to_excel - freeze_panes

    Like this post? Please share to your friends:
  • Panda функция read excel
  • Palo excel что это такое
  • Palindrome is a word number phrase
  • Pal word for friend
  • Painting with word and music