Обратное распределение стьюдента в excel

Excel для Microsoft 365 Excel для Microsoft 365 для Mac Excel для Интернета Excel 2021 Excel 2021 для Mac Excel 2019 Excel 2019 для Mac Excel 2016 Excel 2016 для Mac Excel 2013 Excel Web App Excel 2010 Excel для Mac 2011 Excel Starter 2010 Еще…Меньше

В этой статье описаны синтаксис формулы и использование функции СТЬЮДЕНТ.ОБР в Microsoft Excel.

Возвращает левостороннее обратное t-распределение Стьюдента.

Синтаксис

СТЬЮДЕНТ.ОБР(вероятность;степени_свободы)

Аргументы функции СТЬЮДЕНТ.ОБР описаны ниже.

  • Вероятность     Обязательный. Вероятность, соответствующая t-распределению Стьюдента.

  • Степени_свободы     Обязательный. Число степеней свободы, характеризующее распределение.

Замечания

  • Если хотя бы один из аргументов не является числом, то ОКВЕР возвращает #VALUE! значение ошибки #ЗНАЧ!.

  • Если вероятность <= 0 или вероятность > 1, то ОКП возвращает #NUM! значение ошибки #ЗНАЧ!.

  • Если значение «степени_свободы» не является целым, оно усекается.

  • Если deg_freedom < 1, возвращается #NUM! значение ошибки #ЗНАЧ!.

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Формула

Описание

Результат

=СТЬЮДЕНТ.ОБР(0,75;2)

Левостороннее обратное t-распределение Стьюдента с вероятностью 75 % и 2 степенями свободы.

0,8164966

Нужна дополнительная помощь?


Рассмотрим Распределение Стьюдента (t-распределение). С помощью функции MS EXCEL

СТЬЮДЕНТ.РАСП()

построим графики функции распределения и плотности вероятности, поясним применение этого распределения для целей математической статистики.


Распределение Стьюдента

(также называется

t

-распределением

) применяется в различных методах математической статистики:

  • при построении

    доверительных интервалов для среднего

    (используется функция

    ДОВЕРИТ.СТЬЮДЕНТ()

    );

  • для

    оценки различия двух выборочных средних

    (используется функция

    СТЬЮДЕНТ.ТЕСТ()

    );

  • при

    проверке гипотез (выборка небольшого размера, стандартное отклонение не известно)

    ,

  • в линейном регрессионном анализе (при проверке гипотез на значимость отдельных регрессионных коэффициентов).


Определение

: Если случайная величина Z распределена по

стандартному нормальному закону

N(0;1) и случайная величина U имеет

распределение ХИ-квадрат

с ν степенями свободы, то случайная величина T=Z/√(U/v) имеет

t-распределение

.

Плотность распределения

Стьюдента

выражается формулой:

при −∞ < t < ∞


СОВЕТ

: Подробнее о

Функции распределения

и

Плотности вероятности

см. статью

Функция распределения и плотность вероятности в MS EXCEL

.


Распределение

Стьюдента

(англ.

Student



s

t



distribution

)

зависит от одного параметра, который называется

степенью свободы

(

df

,

degrees

of

freedom

). Например, при

построении доверительного интервала для среднего

число степеней свободы

равно df=n-1, где n – размер

выборки

. При увеличении

числа степеней свободы

это распределение стремится к

стандартному нормальному распределению

.

В центральной части распределения (около 0) при df=25, относительная разница со

стандартным нормальным распределением

составляет порядка 1%, а при df=100 разница составляет 0,25%.

По аналогии со

стандартным нормальным распределением

,

t

-распределение

часто называется «стандартизированным», т.к. у него нет параметра отвечающего за положение (

среднее

всегда равно 0).

Дисперсию

t

-распределения

можно вычислить по формуле =df/(df-2)

Графики функций

В

файле примера на листе График

приведены

графики плотности распределения

вероятности и

интегральной функции распределения

.

График

плотности распределения Стьюдента

, как и

стандартного

нормального распределения

, является симметричным и колоколообразным, но с более тяжелыми хвостами.

Ниже для сравнения приведены графики

плотности стандартного нормального распределения

и

распределения Стьюдента.


Примечание

: Для построения

функции распределения

и

плотности вероятности

можно использовать диаграмму типа

График

или

Точечная

(со сглаженными линиями и без точек). Подробнее о построении диаграмм читайте статью

Основные типы диаграмм

.

t-распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для

t-распределения

имеется функция

СТЬЮДЕНТ.РАСП()

, английское название — T.DIST(), которая позволяет вычислить

плотность вероятности

(см. формулу выше) и

интегральную функцию распределения

(вероятность, что случайная величина Х, имеющая

распределение Стьюдента

, примет значение меньше или равное х, P(X <= x)).


Примечание

: В

файле примера на листе Функции

приведены основные функции MS EXCEL, связанные с этим распределением.

Кроме этой функции в MS EXCEL имеется еще довольно много других функций, относящихся к данному распределению, но по большому счету их функционал покрывается функцией

СТЬЮДЕНТ.РАСП()

.

Кроме того,

СТЬЮДЕНТ.РАСП()

является единственной функцией, которая возвращает

плотность вероятности

(третий аргумент должен быть равным ЛОЖЬ). Остальные функции возвращают

интегральную функцию распределения

, т.е. вероятность того, что случайная величина примет значение из указанного диапазона: P(X <= x), P(X > x) или даже P(|X| > x).

Очевидно, что справедливо равенство


=СТЬЮДЕНТ.РАСП.ПХ(x;n)+СТЬЮДЕНТ.РАСП(x;n;ИСТИНА)=1

т.к. первое слагаемое вычисляет вероятность P(X > x), а второе P(X <= x).

До MS EXCEL 2010 в EXCEL была только функция

СТЬЮДРАСП()

, которая позволяет вычислить

функцию распределения

(точнее — правостороннюю вероятность, т.е. P(X>x)) и объединяет возможности нескольких новых функций MS EXCEL 2010:

СТЬЮДЕНТ.РАСП(x; n; ЛОЖЬ)

,

СТЬЮДЕНТ.РАСП.ПХ()

,

СТЬЮДЕНТ.РАСП.2Х()

. Функция

СТЬЮДРАСП()

оставлена в MS EXCEL 2010 для совместимости.

  • Если значение аргумента «хвосты» = 1, функция

    СТЬЮДРАСП()

    вычисляет правостороннюю вероятность P(X > x), где X — случайная переменная, соответствующая t-распределению. Под термином «хвост» подразумевается «хвост» распределения, в данном случае правый. На графике

    плотности вероятности

    этому «хвосту» будет соответствовать площадь фигуры под графиком (выделена синим), которая ограничена слева вертикальной линией X = x.

  • Если значение аргумента «хвосты» = 2, функция

    СТЬЮДРАСП()

    вычисляет вероятность P(|X| > x) или другими словами P(X > x или X < -x). Т.е. формула

    =СТЬЮДРАСП(x;n;2)

    эквивалентна

    =СТЬЮДРАСП(x;n;1)*2
  • Функцией

    СТЬЮДРАСП()

    значения x < 0 не поддерживаются и нельзя записать

    СТЬЮДРАСП(-x;n;1)

    . Чтобы вычислить вероятность P(X <= x), в том числе и для отрицательных х, используйте формулу

    =ЕСЛИ(x>0;СТЬЮДРАСП(x;n;1);1-СТЬЮДРАСП(-x;n;1))

    .

Примеры

Найдем вероятность, что случайная величина Х примет значение меньше или равное заданного

x

: P(X <=

x

). Это можно сделать несколькими функциями:


  • =СТЬЮДЕНТ.РАСП(x; n; ИСТИНА)

    или

    =1-СТЬЮДЕНТ.РАСП(-x; n; ИСТИНА)

    , используется свойство симметричности плотности распределения относительно оси Х.

  • =1-СТЬЮДЕНТ.РАСП.ПХ(x;n)

    или

    =СТЬЮДЕНТ.РАСП.ПХ(-x;n)

    , функция

    СТЬЮДЕНТ.РАСП.ПХ()

    возвращает вероятность P(X > x), так называемую правостороннюю вероятность, поэтому, чтобы найти P(X <= x), необходимо вычесть ее результат от 1 или воспользоваться свойством t-распределения t(-х)=1-t(x).

  • =1-СТЬЮДЕНТ.РАСП.2Х(x;n)/2

    или

    =1-СТЬЮДРАСП(x;n;2)/2

    , в этой формуле

    х

    может принимать только положительные значения (подробнее об этой функции см. ниже);

  • =1-СТЬЮДРАСП(x; n; 1)

    , в этой формуле

    х

    может принимать только положительные значения, функция

    СТЬЮДРАСП()

    , как и

    СТЬЮДЕНТ.РАСП.ПХ()

    , возвращает «правостороннюю вероятность», т.е. P(X > x).

Аналогичные вычисления для P(X > x) и P(|X| > x) приведены в

файле примера на листе Функции

, в том числе и для x<0.

Обратная функция t-распределения

Обратная функция используется для вычисления

альфа

квантилей

, т.е. для вычисления значений

x

при заданной вероятности

альфа

, причем

х

должен удовлетворять выражению P{X<=x}=

альфа

.

Функция

СТЬЮДЕНТ.ОБР()

используется для вычисления как двухсторонних, так и

односторонних доверительных интервалов

. А функции

СТЬЮДЕНТ.ОБР.2Х()

и

СТЬЮДРАСПОБР()

созданы специально для вычисления

квантилей

, необходимых для расчета двусторонних

доверительных интервалов:

в качестве аргумента нужно указывать

уровень значимости

альфа

, а не

альфа/2

, как для

СТЬЮДЕНТ.ОБР()

.

Вышеуказанные функции можно взаимозаменять, т.к. нижеуказанные формулы возвращают одинаковый результат:

=СТЬЮДЕНТ.ОБР(альфа;n) =-СТЬЮДРАСПОБР(альфа*2;n) =-СТЬЮДЕНТ.ОБР.2Х(альфа*2;n)

Некоторые примеры расчетов приведены в

файле примера на листе Функции

.


Примечание

: Ниже приведено соответствие русских и английских названий функций:

СТЬЮДЕНТ.РАСП.ПХ()

— англ. название T.DIST.RT, т.е. T-DISTribution Right Tail, the right-tailed Student’s t-distribution

СТЬЮДЕНТ.РАСП.2Х()

— англ. название T.DIST.2T, т.е. T-DISTribution 2 Tails

СТЬЮДЕНТ.ОБР()

— англ. название T.INV, т.е. T-distribution INVerse

СТЬЮДРАСП()

— англ. название TDIST, т.е. T-DISTribution

СТЬЮДРАСПОБР()

— англ. название TINV, т.е. T-distribution INVerse (the right-tailed inverse of the Student’s t-distribution)

СТЬЮДЕНТ.ОБР.2Х()

— англ. название T.INV.2T

Функции MS EXCEL, использующие t-распределение

Как было сказано выше, при

построении доверительных интервалов

используется функция

ДОВЕРИТ.СТЬЮДЕНТ()

— англ. название CONFIDENCE.T.

Например, формула

=ДОВЕРИТ.СТЬЮДЕНТ(альфа;СТАНДОТКЛОН.В(B20:B79); СЧЁТ(B20:B79))

эквивалентна классической формуле для вычисления доверительного интервала

=СТЬЮДЕНТ.ОБР(1-альфа/2; СЧЁТ(B20:B79)-1)* СТАНДОТКЛОН.В(B20:B79)/КОРЕНЬ(СЧЁТ(B20:B79))

где предполагается, что

выборка

находится в диапазоне

B20:B79

.

Как видим, особых преимуществ в использовании

ДОВЕРИТ.СТЬЮДЕНТ()

нет.

Другая функция —

СТЬЮДЕНТ.ТЕСТ()

— англ. название T.TEST, используется для

оценки различия двух выборочных средних

.

Оценка параметров распределения

Т.к. обычно

t-распределение

используется для целей математической статистики (вычисление

доверительных интервалов,

проверки гипотез и др.),

и практически никогда для построения моделей реальных величин, то для этого распределения обсуждение оценки параметров распределения здесь не производится.


СОВЕТ

: О других распределениях MS EXCEL можно прочитать в статье

Распределения случайной величины в MS EXCEL

.

Функция СТЮДРАСПОБР предназначена для расчета значения квантиля уровня, соответствующего известной вероятности (указывается в качестве первого аргумента), распределения Стьюдента для известных степеней свободы и возвращает обратное t-распределение.

Распределение Стьюдента и нормальное распределение в Excel

Рассматриваемая функция возвращает значение t, соответствующее условию P(|x|>t)=p. Здесь x является значением некоторой случайной величины с распределением Стьюдента, у которого число степеней свобод соответствует k (второй аргумент функции СТЮДРАСПОБР).

Примечания:

  1. Распределение Стьюдента является одним из видов распределения случайной величины, близкое к нормальному распределению с характерным отличием – сниженная концентрацией отклонений в средней части распределения. Иное название – t-распределение.
  2. Квантилем считается некоторое значение, которое с определенной вероятностью (фиксированной) не будет превышено случайной величиной.
  3. Функция СТЮДРАСПОБР считается устаревшей начиная с версии MS Office 2010. Она оставлена для обеспечения совместимости с другими табличными редакторами и документами, созданными в более старых версиях табличного редактора. В новых версиях следует использовать усовершенствованные аналоги: СТЬЮДЕНТ.ОБР.2Х или СТЬЮДЕНТ.ОБР.

Подробнее о нормальном распределении читайте: НОРМСТРАСП функция стандартного нормального распределения в Excel.

Ниже рассмотрим примеры использования функции СТЮДРАСПОБР в Excel.



Определение одностороннего и двустороннего t распределение Стьюдента

Пример 1. Определить односторонне и двустороннее t-значения для распределения Стьюдента, характеризующееся вероятностью 0,17 и числом степени свобод 16.

Вид таблицы данных:

Пример 1.

Для расчета двустороннего t-значения используем функцию:

=СТЬЮДРАСПОБР(B2;B1)

Результат вычислений:

СТЬЮДРАСПОБР.

Для двустороннего t используем удвоенное значение вероятности:

=СТЬЮДРАСПОБР(2*B2;B1)

В результате получим:

Определение двустороннего t распределение.

Число степеней свободы в распределении Стьюдента

Пример 2. Сгенерировать 8 случайных чисел с использованием функции СЛЧИС, для которых распределение Стьюдента имеет 4 степени свободы.

Поскольку вероятность того, что случайна величина примет как отрицательное, так и положительное значение является одинаковой и равна 0,5 (распределение Стьюдента симметрично относительно вертикальной оси графика), используем функцию ЕСЛИ для проверки значений.

Выделим 8 ячеек и запишем следующую функцию (вводить как формулу массива CTRL+SHIFT+Enter):

То есть, если случайное значение вероятности, сгенерированное функцией СЛЧИС меньше 0,5, будет сгенерировано отрицательное t-значение, иначе – положительное.

Результат вычислений:

4 степени свободы.

Как пользоваться функцией распределения Стьюдента СТЮДРАСПОБР В EXCEL

Функция имеет следующий синтаксис:

=СТЬЮДРАСПОБР(вероятность;степени_свободы)

Описание аргументов:

  • вероятность – обязательный для заполнения, принимает числовое значение вероятности для двустороннего распределения Стьюдента из диапазона от 0 (не включительно) до 1.
  • степени_свободы – обязательный для заполнения, принимает числовое значение степеней свободы, которые определяют исследуемое распределение.

Примечания:

  1. Если один из аргументов функции указан в виде значения нечислового типа данных, результатом выполнения рассматриваемой функции будет код ошибки #ЗНАЧ!. Логические значения, имена и текстовые строки, преобразуемые в числа, не приводят к возникновению ошибки. Например, функция =СТЮДРАСПОБР(“0,4”;ИСТИНА) вернет значение 1,32638.
  2. Если аргумент вероятность задан числом, не находящимся в промежутке от 0 (не включительно) до 1, функция СТЮДРАСПОБР вернет код ошибки #ЧИСЛО!. Аналогичная ошибка возникает, если аргумент степени_свободы задан числом, которое меньше 1.
  3. Для расчета односторонней t-величины следует в качестве аргумента вероятность указать значение удвоенной вероятности.

Проверка статистической гипотезы позволяет сделать строгий вывод о характеристиках генеральной совокупности на основе выборочных данных. Гипотезы бывают разные. Одна из них – это гипотеза о средней (математическом ожидании). Суть ее в том, чтобы на основе только имеющейся выборки сделать корректное заключение о том, где может или не может находится генеральная средняя (точную правду мы никогда не узнаем, но можем сузить круг поиска).

Распределение Стьюдента

Общий подход в проверке гипотез описан здесь, поэтому сразу к делу. Предположим для начала, что выборка извлечена из нормальной совокупности случайных величин X с генеральной средней μ и дисперсией σ2. Средняя арифметическая из этой выборки, очевидно, сама является случайной величиной. Если извлечь много таких выборок и посчитать по ним средние, то они также будут иметь нормальное распределение с математическим ожиданием μ и дисперсией

Генеральная дисперсия средней

Тогда случайная величина

Нормированное отклонение выборочное средней

имеет стандартное нормальное распределение со всеми вытекающими отсюда последствиями. Например, с вероятностью 95% ее значение не выйдет за пределы ±1,96.

Однако такой подход будет корректным, если известна генеральная дисперсия. В реальности, как правило, она не известна. Вместо нее берут оценку – несмещенную выборочную дисперсию:

Оценка дисперсии средней

где

Выборочная несмещенная дисперсия

Возникает вопрос: будет ли генеральная средняя c вероятностью 95% находиться в пределах ±1,96s. Другими словами, являются ли распределения случайных величин

Нормированное отклонение выборочное средней

и

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

эквивалентными.

Впервые этот вопрос был поставлен (и решен) одним химиком, который трудился на пивной фабрике Гиннесса в г. Дублин (Ирландия). Химика звали Уильям Сили Госсет и он брал пробы пива для проведения химического анализа. В какой-то момент, видимо, Уильяма стали терзать смутные сомнения на счет распределения средних. Оно получалось немного более размазанным, чем должно быть у нормального распределения.

Собрав математическое обоснование и рассчитав значения функции обнаруженного им распределения, химик из Дублина Уильям Госсет написал заметку, которая была опубликована в мартовском выпуске 1908 года журнала «Биометрика» (главред – Карл Пирсон). Гиннесс строго-настрого запретил выдавать секреты пивоварения, и Госсет подписался псевдонимом Стьюдент.

Несмотря на то что, К. Пирсон уже изобрел распределение Хи-квадрат, все-таки всеобщее представление о нормальности еще доминировало. Никто не собирался думать, что распределение выборочных оценок может быть не нормальным. Поэтому статья У. Госсета осталась практически не замеченной и забытой. И только Рональд Фишер по достоинству оценил открытие Госсета. Фишер использовал новое распределение в своих работах и дал ему название t-распределение Стьюдента. Критерий для проверки гипотез, соответственно, стал t-критерием Стьюдента. Так произошла «революция» в статистике, которая шагнула в эру анализа выборочных данных. Это был краткий экскурс в историю.

Посмотрим, что же мог увидеть У. Госсет. Сгенерируем 20 тысяч нормальных выборок из 6-ти наблюдений со средней () 50 и среднеквадратичным отклонением (σ) 10. Затем нормируем выборочные средние, используя генеральную дисперсию:

Нормирование средней с использование генеральной дисперсии

Получившиеся 20 тысяч средних сгруппируем в интервалы длинной 0,1 и подсчитаем частоты. Изобразим на диаграмме фактическое (Norm) и теоретическое (ENorm) распределение частот выборочных средних.

Распределение средней арифметической

Точки (наблюдаемые частоты) практически совпадают с линией (теоретическими частотами). Оно и понятно, ведь данные взяты из одной и то же генеральной совокупности, а отличия – это лишь ошибки выборки.

Проведем новый эксперимент. Нормируем средние, используя выборочную дисперсию.

Нормирование средней с использование выборочной дисперсии

Снова подсчитаем частоты и нанесем их на диаграмму в виде точек, оставив для сравнения линию стандартного нормального распределения. Обозначим эмпирическое частоты средних, скажем, через букву t.

Отличие распределения средних от нормального закона

Видно, что распределения на этот раз не очень-то и совпадают. Близки, да, но не одинаковы. Хвосты стали более «тяжелыми».

У Госсета-Стьюдента не было последней версии MS Excel, но именно этот эффект он и заметил. Почему так получается? Объяснение заключается в том, что случайная величина

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

зависит не только от ошибки выборки (числителя), но и от стандартной ошибки средней (знаменателя), которая также является случайной величиной.

Давайте немного разберемся, какое распределение должно быть у такой случайной величины. Вначале придется кое-что вспомнить (или узнать) из математической статистики. Есть такая теорема Фишера, которая гласит, что в выборке из нормального распределения:

1. средняя и выборочная дисперсия s2 являются независимыми величинами;

2. соотношение выборочной и генеральной дисперсии, умноженное на количество степеней свободы, имеет распределение χ2(хи-квадрат) с таким же количеством степеней свободы, т.е.

Теорема Фишера

где k – количество степеней свободы (на английском degrees of freedom (d.f.))

Вернемся к распределению средней. Разделим числитель и знаменатель выражения

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

на σ. Получим

Вывод t-критерия

Числитель – это стандартная нормальная случайная величина (обозначим ξ (кси)). Знаменатель выразим из теоремы Фишера.

Вывод t-критерия 2

Тогда исходное выражение примет вид

t-критерий Стьюдента

Это и есть t-критерий Стьюдента в общем виде (стьюдентово отношение). Вывести функцию его распределения можно уже непосредственно, т.к. распределения обеих случайных величин в данном выражении известны. Оставим это удовольствие математикам.

Функция t-распределения Стьюдента имеет довольно сложную для понимания формулу, поэтому не имеет смысла ее разбирать. Вероятности и квантили t-критерия приведены в специальных таблицах распределения Стьюдента и забиты в функции разных ПО вроде Excel.

Итак, вооружившись новыми знаниями, вы сможете понять официальное определение распределения Стьюдента.
Случайной величиной, подчиняющейся распределению Стьюдента с k степенями свободы, называется отношение независимых случайных величин

t-критерий Стьюдента

где ξ распределена по стандартному нормальному закону, а χ2k подчиняется распределению χ2 c k степенями свободы.

Таким образом, формула критерия Стьюдента для средней арифметической

Нормированное отклонение выборочной средней относительно оценки стандартной ошибки

есть частный случай стьюдентова отношения

t-критерий Стьюдента

Из формулы и определения следует, что распределение т-критерия Стьюдента зависит лишь от количества степеней свободы.

Зависимость t-распределения Стьюдента от количества степеней свободы

При k > 30 t-критерий практически не отличается от стандартного нормального распределения.

В отличие от хи-квадрат, t-критерий может быть одно- и двусторонним. Обычно пользуются двусторонним, предполагая, что отклонение может происходить в обе стороны от средней. Но если условие задачи допускает отклонение только в одну сторону, то разумно применять односторонний критерий. От этого немного увеличивается мощность критерия.

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Распределение хи-квадрат

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Относительная устойчивость t-распределения к ненормальности исходных данных

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Больше всего t-критерий «боится» выбросов, т.е. аномальных отклонений. Возьмем 20 тыс. нормальных выборок по 15 наблюдений и в часть из них добавим по одному случайном выбросу.

Влияние аномальных выбросов на распределение средней

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП – «классическое» левостороннее t-распределение Стьюдента. На вход подается значение t-критерия, количество степеней свободы и опция (0 или 1), определяющая, что нужно рассчитать: плотность или значение функции. На выходе получаем, соответственно, плотность или вероятность того, что случайная величина окажется меньше указанного в аргументе t-критерия, т.е. левосторонний p-value.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия (по модулю), т.е. фактический уровень значимости (p-value).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-value.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α, а для правого 1 — α.

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α. Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-value.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

H0: μ = 50 кг

Ha: μ ≠ 50 кг

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двусторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Фактический t-критерий при 9-ти наблюдениях

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей для критерия Стьюдента (есть в любом учебнике по статистике).

Таблица t-распределения Стьюдента

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двусторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-value попробовать найти, но он будет приближенным. А, как правило, именно p-value используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Расчет t-критерия Стьюдента в Excel

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двусторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Сравнение расчетного и табличного значения t-критерия Стьюдента

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-value, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

Расчет p-value для t-критерия

P-value равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-value оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.

Расчет t-критерия для выборки из 25 наблюдений
Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Отклонения гипотезы

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-value (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Расчет доверительного интервала для математического ожидания с помощью t-распределения Стьюдента в Excel

С проверкой гипотез тесно связан еще один статистический метод – расчет доверительных интервалов. Если в полученный интервал попадает значение, соответствующее нулевой гипотезе, то это равносильно тому, что нулевая гипотеза не отклоняется. В противном случае, гипотеза отклоняется с соответствующей доверительной вероятностью. В некоторых случаях аналитики вообще не проверяют гипотез в классическом виде, а рассчитывают только доверительные интервалы. Такой подход позволяет извлечь еще больше полезной информации.

Рассчитаем доверительные интервалы для средней при 9 и 25 наблюдениях. Для этого воспользуемся функцией Excel ДОВЕРИТ.СТЬЮДЕНТ. Здесь, как ни странно, все довольно просто. В аргументах функции нужно указать только уровень значимости α, стандартное отклонение по выборке и размер выборки. На выходе получим полуширину доверительного интервала, то есть значение которое нужно отложить по обе стороны от средней. Проведя расчеты и нарисовав наглядную диаграмму, получим следующее.

Проверка гипотезы через доверительные интервалы

Как видно, при выборке в 9 наблюдений значение 50 попадает в доверительный интервал (гипотеза не отклоняется), а при 25-ти наблюдениях не попадает (гипотеза отклоняется). При этом в эксперименте с 25-ю мешками можно утверждать, что с вероятностью 97,5% генеральная средняя превышает 50,1 кг (нижняя граница доверительного интервала равна 50,094кг). А это довольно ценная информация.

Таким образом, мы решили одну и ту же задачу тремя способами:

1. Древним подходом, сравнивая расчетное и табличное значение t-критерия
2. Более современным, рассчитав p-value, добавив степень уверенности при отклонении гипотезы.
3. Еще более информативным, рассчитав доверительный интервал и получив минимальное значение генеральной средней.

Важно помнить, что t-критерий относится к параметрическим методам, т.к. основан на нормальном распределении (у него два параметра: среднее и дисперсия). Поэтому для его успешного применения важна хотя бы приблизительная нормальность исходных данных и отсутствие выбросов.

Напоследок предлагаю видеоролик о том, как рассчитать критерий Стьюдента и проверить гипотезу о генеральной средней в Excel.

Иногда просят объяснить, как делаются такие наглядные диаграммы с распределением. Ниже можно скачать файл, где проводились расчеты для этой статьи.

Скачать файл с примером.

Всего доброго, будьте здоровы.

Поделиться в социальных сетях:

Рассматриваемая функция возвращает значение t, соответствующее условию P(|x|>t)=p. Здесь x является значением некоторой случайной величины с распределением Стьюдента, у которого число степеней свобод соответствует k (второй аргумент функции СТЮДРАСПОБР).

Пример 1. Определить односторонне и двустороннее t-значения для распределения Стьюдента, характеризующееся вероятностью 0,17 и числом степени свобод 16.

Теперь перейдем непосредственно к вопросу, как рассчитать данный показатель в Экселе. Его можно произвести через функцию СТЬЮДЕНТ.ТЕСТ. В версиях Excel 2007 года и ранее она называлась ТТЕСТ. Впрочем, она была оставлена и в позднейших версиях в целях совместимости, но в них все-таки рекомендуется использовать более современную — СТЬЮДЕНТ.ТЕСТ. Данную функцию можно использовать тремя способами, о которых подробно пойдет речь ниже.

Проще всего производить вычисления данного показателя через Мастер функций.

Выполняется расчет, а результат выводится на экран в заранее выделенную ячейку.

Функцию СТЬЮДЕНТ.ТЕСТ можно вызвать также путем перехода во вкладку «Формулы» с помощью специальной кнопки на ленте.

Этапы статистического вывода (statistic inference)

  1. Первый из них – это вопрос, который мы хотим изучить с помощью статистических методов. То есть первый этап: что изучаем? И какие у нас есть предположения относительно результата? Этот этап называется этап статистических гипотез.
  2. Второй этап – нужно определиться с тем, какие у нас есть в реальности данные для того, чтобы ответить на первый вопрос. Этот этап – тип данных.
  3. Третий этап состоит в том, чтобы выбрать корректный для применения в данной ситуации статистический критерий.
  4. Четвертый этап это логичный этап применения интерпретации любой формулы, какие результаты мы получили.
  5. Пятый этап это создание, синтез выводов относительно первого, второго, третьего, четвертого, пятого этапа, то есть что же получили и что же это в реальности значит.

Пример использования т-критерия Стьюдента

А пример будет достаточно простой: мне интересно, стали ли люди выше за последние 100 лет. Для этого нужно подобрать некоторые данные. Я обнаружил интересную информацию в достаточно известной статье The Guardian (Tall storys men and women have grown taller over last century, Study Shows (The Guardian, July 2016), которая сравнивает средний возраст человека в разных странах в 1914 году и в аналогичных странах в 2014 году.

Там приведены данные практически по всем государствам. Однако, я взял лишь 5 стран для простоты вычислений: это Россия, Германия, Китай, США и ЮАР, соответственно 1914 год и 2014 год.

Общее количество наблюдений – 5 в 1914 году в группе 1914 года и общее значение также 5 в 2014 году. Будем думать опять же для простоты, что эти данные сопоставимы, и с ними можно работать.

Дальше нужно выбрать критерии – критерии, по которым мы будем давать ответ. Равны ли средние по росту в 1914 году x̅1914 и в 2014 году x̅2014. Я считаю, что нет. Поэтому моя гипотеза это то, что они не равны (x̅1914≠x̅2014). Соответственно альтернативная гипотеза моему предположению, так называемая нулевая гипотеза (нулевая гипотеза консервативна, обратная вашей, часто говорит об отсутствии статистически значимых связей/зависимостей) будет говорить о том, что они между собой на самом деле равны (x̅1914=x̅2014), то есть о том, что все эти находки случайны, и я, по сути, не прав.

Для чего используется t-критерий Стьюдента?

t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата). В последнем случае рассчитывается парный t-критерий Стьюдента

В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение. Также имеет значение равенство дисперсий (распределения) сравниваемых групп (гомоскедастичность). При неравных дисперсиях применяется t-критерий в модификации Уэлча (Welch’s t).

При отсутствии нормального распределения сравниваемых выборок вместо t-критерия Стьюдента используются аналогичные методы непараметрической статистики, среди которых наиболее известными является U-критерий Манна — Уитни.

Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n1 и n2). Находим число степеней свободы f по следующей формуле:

f = (n1 + n2) – 2

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже).

Сравниваем критическое и рассчитанное значения критерия:

  • Если рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами.
  • Если значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы.

Внесите исходные данные группы

Вы можете внести данные для расчета критерия Т-Стьюдента поочередно вручную или скопировать их из вашего Excel файла.

Внесите исходные данные группы

Вы можете внести данные поочередно вручную или скопировать их из вашего Excel файла.

Критические точки распределения Стьюдента

Число степеней свободы
k
Уровень значимости α (двусторонняя критическая область)
0.10 0.05 0.02 0.01 0.002 0.001
1 6.31 12.7 31.82 63.7 318.3 637.0
2 2.92 4.30 6.97 9.92 22.33 31.6
3 2.35 3.18 4.54 5.84 10.22 12.9
4 2.13 2.78 3.75 4.60 7.17 8.61
5 2.01 2.57 3.37 4.03 5.89 6.86
6 1.94 2.45 3.14 3.71 5.21 5.96
7 1.89 2.36 3.00 3.50 4.79 5.40
8 1.86 2.31 2.90 3.36 4.50 5.04
9 1.83 2.26 2.82 3.25 4.30 4.78
10 1.81 2.23 2.76 3.17 4.14 4.59
11 1.80 2.20 2.72 3.11 4.03 4.44
12 1.78 2.18 2.68 3.05 3.93 4.32
13 1.77 2.16 2.65 3.01 3.85 4.22
14 1.76 2.14 2.62 2.98 3.79 4.14
15 1.75 2.13 2.60 2.95 3.73 4.07
16 1.75 2.12 2.58 2.92 3.69 4.01
17 1.74 2.11 2.57 2.90 3.65 3.95
18 1.73 2.10 2.55 2.88 3.61 3.92
19 1.73 2.09 2.54 2.86 3.58 3.88
20 1.73 2.09 2.53 2.85 3.55 3.85
21 1.72 2.08 2.52 2.83 3.53 3.82
22 1.72 2.07 2.51 2.82 3.51 3.79
23 1.71 2.07 2.50 2.81 3.59 3.77
24 1.71 2.06 2.49 2.80 3.47 3.74
25 1.71 2.06 2.49 2.79 3.45 3.72
26 1.71 2.06 2.48 2.78 3.44 3.71
27 1.71 2.05 2.47 2.77 3.42 3.69
28 1.70 2.05 2.46 2.76 3.40 3.66
29 1.70 2.05 2.46 2.76 3.40 3.66
30 1.70 2.04 2.46 2.75 3.39 3.65
40 1.68 2.02 2.42 2.70 3.31 3.55
60 1.67 2.00 2.39 2.66 3.23 3.46
120 1.66 1.98 2.36 2.62 3.17 3.37
1.64 1.96 2.33 2.58 3.09 3.29
0.05 0.025 0.01 0.005 0.001 0.0005
Уровень значимости α (односторонняя критическая область)

Условия применения t-критерия Стьюдента

Несмотря на то, что открытие Стьюдента в свое время совершило переворот в статистике, t-критерий все же довольно сильно ограничен в возможностях применения, т.к. сам по себе происходит из предположения о нормальном распределении исходных данных. Если данные не являются нормальными (что обычно и бывает), то и t-критерий уже не будет иметь распределения Стьюдента. Однако в силу действия центральной предельной теоремы средняя даже у ненормальных данных быстро приобретает колоколообразную форму распределения.

Рассмотрим, для примера, данные, имеющие выраженный скос вправо, как у распределения хи-квадрат с 5-ю степенями свободы.

Теперь создадим 20 тысяч выборок и будет наблюдать, как меняется распределение средних в зависимости от их объема.

Отличие довольно заметно в малых выборках до 15-20-ти наблюдений. Но дальше оно стремительно исчезает. Таким образом, ненормальность распределения – это, конечно, нехорошо, но некритично.

Больше всего t-критерий «боится» выбросов, т.е. аномальных отклонений. Возьмем 20 тыс. нормальных выборок по 15 наблюдений и в часть из них добавим по одному случайном выбросу.

Картина получается нерадостная. Фактические частоты средних сильно отличаются от теоретических. Использование t-распределения в такой ситуации становится весьма рискованной затеей.

Итак, в не очень малых выборках (от 15-ти наблюдений) t-критерий относительно устойчив к ненормальному распределению исходных данных. А вот выбросы в данных сильно искажают распределение t-критерия, что, в свою очередь, может привести к ошибкам статистического вывода, поэтому от аномальных наблюдений следует избавиться. Часто из выборки удаляют все значения, выходящие за пределы ±2 стандартных отклонения от средней.

Пример проверки гипотезы о математическом ожидании с помощью t- критерия Стьюдента в MS Excel

В Excel есть несколько функций, связанных с t-распределением. Рассмотрим их.

СТЬЮДЕНТ.РАСП – «классическое» левостороннее t-распределение Стьюдента. На вход подается значение t-критерия, количество степеней свободы и опция (0 или 1), определяющая, что нужно рассчитать: плотность или значение функции. На выходе получаем, соответственно, плотность или вероятность того, что случайная величина окажется меньше указанного в аргументе t-критерия, т.е. левосторонний p-value.

СТЬЮДЕНТ.РАСП.2Х – двухсторонне распределение. В качестве аргумента подается абсолютное значение (по модулю) t-критерия и количество степеней свободы. На выходе получаем вероятность получить такое или еще больше значение t-критерия (по модулю), т.е. фактический уровень значимости (p-value).

СТЬЮДЕНТ.РАСП.ПХ – правостороннее t-распределение. Так, 1-СТЬЮДЕНТ.РАСП(2;5;1) = СТЬЮДЕНТ.РАСП.ПХ(2;5) = 0,05097. Если t-критерий положительный, то полученная вероятность – это p-value.

СТЬЮДЕНТ.ОБР – используется для расчета левостороннего обратного значения t-распределения. В качестве аргумента подается вероятность и количество степеней свободы. На выходе получаем соответствующее этой вероятности значение t-критерия. Отсчет вероятности идет слева. Поэтому для левого хвоста нужен сам уровень значимости α, а для правого 1 — α.

СТЬЮДЕНТ.ОБР.2Х – обратное значение для двухстороннего распределения Стьюдента, т.е. значение t-критерия (по модулю). Также на вход подается уровень значимости α. Только на этот раз отсчет ведется с двух сторон одновременно, поэтому вероятность распределяется на два хвоста. Так, СТЬЮДЕНТ.ОБР(1-0,025;5) = СТЬЮДЕНТ.ОБР.2Х(0,05;5) = 2,57058

СТЬЮДЕНТ.ТЕСТ – функция для проверки гипотезы о равенстве математических ожиданий в двух выборках. Заменяет кучу расчетов, т.к. достаточно указать лишь два диапазона с данными и еще пару параметров. На выходе получим p-value.

ДОВЕРИТ.СТЬЮДЕНТ – расчет доверительного интервала средней с учетом t-распределения.

Рассмотрим такой учебный пример. На предприятии фасуют цемент в мешки по 50кг. В силу случайности в отдельно взятом мешке допускается некоторое отклонение от ожидаемой массы, но генеральная средняя должна оставаться 50кг. В отделе контроля качества случайным образом взвесили 9 мешков и получили следующие результаты: средняя масса () составила 50,3кг, среднеквадратичное отклонение (s) – 0,5кг.

Согласуется ли полученный результат с нулевой гипотезой о том, что генеральная средняя равна 50кг? Другими словами, можно ли получить такой результат по чистой случайности, если оборудование работает исправно и выдает среднее наполнение 50 кг? Если гипотеза не будет отклонена, то полученное различие вписывается в диапазон случайных колебаний, если же гипотеза будет отклонена, то, скорее всего, в настройках аппарата, заполняющего мешки, произошел сбой. Требуется его проверка и настройка.

Краткое условие в обще принятых обозначениях выглядит так.

H0: μ = 50 кг

Ha: μ ≠ 50 кг

Есть основания предположить, что распределение заполняемости мешков подчиняются нормальному распределению (или не сильно от него отличается). Значит, для проверки гипотезы о математическом ожидании можно использовать t-критерий Стьюдента. Случайные отклонения могут происходить в любую сторону, значит нужен двусторонний t-критерий.

Вначале применим допотопные средства: ручной расчет t-критерия и сравнение его с критическим табличным значением. Расчетный t-критерий:

Теперь определим, выходит ли полученное число за критический уровень при уровне значимости α = 0,05. Воспользуемся таблицей для критерия Стьюдента (есть в любом учебнике по статистике).

По столбцам идет вероятность правой части распределения, по строкам – число степеней свободы. Нас интересует двусторонний t-критерий с уровнем значимости 0,05, что равносильно t-значению для половины уровня значимости справа: 1 — 0,05/2 = 0,975. Количество степеней свободы – это объем выборки минус 1, т.е. 9 — 1 = 8. На пересечении находим табличное значение t-критерия – 2,306. Если бы мы использовали стандартное нормальное распределение, то критической точкой было бы значение 1,96, а тут она больше, т.к. t-распределение на небольших выборках имеет более приплюснутый вид.

Сравниваем фактическое (1,8) и табличное значение (2.306). Расчетный критерий оказался меньше табличного. Следовательно, имеющиеся данные не противоречат гипотезе H0 о том, что генеральная средняя равна 50 кг (но и не доказывают ее). Это все, что мы можем узнать, используя таблицы. Можно, конечно, еще p-value попробовать найти, но он будет приближенным. А, как правило, именно p-value используется для проверки гипотез. Поэтому далее переходим в Excel.

Готовой функции для расчета t-критерия в Excel нет. Но это и не страшно, ведь формула t-критерия Стьюдента довольно проста и ее можно легко соорудить прямо в ячейке Excel.

Получили те же 1,8. Найдем вначале критическое значение. Альфа берем 0,05, критерий двусторонний. Нужна функция обратного значения t-распределения для двухсторонней гипотезы СТЬЮДЕНТ.ОБР.2Х.

Полученное значение отсекает критическую область. Наблюдаемый t-критерий в нее не попадает, поэтому гипотеза не отклоняется.

Однако это тот же способ проверки гипотезы с помощью табличного значения. Более информативно будет рассчитать p-value, т.е. вероятность получить наблюдаемое или еще большее отклонение от средней 50кг, если эта гипотеза верна. Потребуется функция распределения Стьюдента для двухсторонней гипотезы СТЬЮДЕНТ.РАСП.2Х.

P-value равен 0,1096, что больше допустимого уровня значимости 0,05 – гипотезу не отклоняем. Но теперь можно судить о степени доказательства. P-value оказался довольно близок к тому уровню, когда гипотеза отклоняется, а это наводит на разные мысли. Например, что выборка оказалась слишком мала для обнаружения значимого отклонения.

Пусть через некоторое время отдел контроля снова решил проверить, как выдерживается стандарт заполняемости мешков. На этот раз для большей надежности было отобрано не 9, а 25 мешков. Интуитивно понятно, что разброс средней уменьшится, а, значит, и шансов найти сбой в системе становится больше.

Допустим, были получены те же значения средней и стандартного отклонения по выборке, что и в первый раз (50,3 и 0,5 соответственно). Рассчитаем t-критерий.


Критическое значение для 24-х степеней свободы и α = 0,05 составляет 2,064. На картинке ниже видно, что t-критерий попадает в область отклонения гипотезы.

Можно сделать вывод о том, что с доверительной вероятностью более 95% генеральная средняя отличается от 50кг. Для большей убедительности посмотрим на p-value (последняя строка в таблице). Вероятность получить среднюю с таким или еще большим отклонением от 50, если гипотеза верна, составляет 0,0062, или 0,62%, что при однократном измерении практически невозможно. В общем, гипотезу отклоняем, как маловероятную.

Источники

  • https://exceltable.com/funkcii-excel/raspredeleniya-styudenta-styudraspobr
  • https://lumpics.ru/calculation-student-test-in-excel/
  • https://lit-review.ru/biostatistika/t-kriterijj-styudenta-za-12-minut/
  • https://medstatistic.ru/methods/methods.html
  • https://statpsy.ru/t-student/onlajn-raschet-kriteriya-t-styudenta-dlya-nezavisimyh-vyborok/
  • https://math.semestr.ru/corel/table-student.php
  • https://statanaliz.info/statistica/proverka-gipotez/raspredelenie-t-kriteriya-styudenta-dlya-proverki-gipotezy-i-rascheta-doveritelnogo-intervala-v-ms-excel/

Понравилась статья? Поделить с друзьями:
  • Обратное действие в excel
  • Обратная функция сцепить расцепить текст в excel
  • Обратная функция символ excel
  • Обратная функция если в excel
  • Обратная матрица в excel это