Мнк в excel график


Метод наименьших квадратов (МНК) основан на минимизации суммы квадратов отклонений выбранной функции от исследуемых данных. В этой статье аппроксимируем имеющиеся данные с помощью линейной функции

y

=

a

x

+

b

.


Метод наименьших квадратов

(англ.

Ordinary

Least

Squares

,

OLS

) является одним из базовых методов регрессионного анализа в части оценки неизвестных параметров

регрессионных моделей

по выборочным данным.

Рассмотрим приближение функциями, зависящими только от одной переменной:

  • Линейная: y=ax+b (эта статья)
  • Логарифмическая

    : y=a*Ln(x)+b

  • Степенная

    : y=a*x

    m

  • Экспоненциальная

    : y=a*EXP(b*x)+с

  • Квадратичная

    : y=ax

    2

    +bx+c


Примечание

: Случаи приближения полиномом с 3-й до 6-й степени рассмотрены в этой статье. Приближение тригонометрическим полиномом рассмотрено здесь.

Линейная зависимость

Нас интересует связь 2-х переменных

х

и

y

. Имеется предположение, что

y

зависит от

х

по линейному закону

y

=

ax

+

b

. Чтобы определить параметры этой взаимосвязи исследователь провел наблюдения: для каждого значения х

i

произведено измерение y

i

(см.

файл примера

). Соответственно, пусть имеется 20 пар значений (х

i

; y

i

).

Для наглядности рекомендуется построить диаграмму рассеяния.


Примечание:

Если шаг изменения по

х

постоянен, то для построения

диаграммы рассеяния

можно использовать

тип График

, если нет, то необходимо использовать тип диаграммы

Точечная

.

Из диаграммы очевидно, что связь между переменными близка к линейной. Чтобы понять какая из множества прямых линий наиболее «правильно» описывает зависимость между переменными, необходимо определить критерий, по которому будут сравниваться линии.

В качестве такого критерия используем выражение:

где

ŷ

i

=

a

*

x

i

+

b

;

n – число пар значений (в нашем случае n=20)

Вышеуказанное выражение представляет собой сумму квадратов расстояний между наблюденными значениями y

i

и ŷ

i

и часто обозначается как SSE (

Sum

of

Squared

Errors

(

Residuals

), сумма квадратов ошибок (остатков)

)

.


Метод наименьших квадратов

заключается в подборе такой линии

ŷ

=

ax

+

b

, для которой вышеуказанное выражение принимает минимальное значение.


Примечание:

Любая линия в двухмерном пространстве однозначно определяется значениями 2-х параметров:

a

(наклон) и

b

(сдвиг).

Считается, что чем меньше сумма квадратов расстояний, тем соответствующая линия лучше аппроксимирует имеющиеся данные и может быть в дальнейшем использована для прогнозирования значений y от переменной х. Понятно, что даже если в действительности никакой взаимосвязи между переменными нет или связь нелинейная, то МНК все равно подберет «наилучшую» линию. Таким образом, МНК ничего не говорит о наличии реальной взаимосвязи переменных, метод просто позволяет подобрать такие параметры функции

a

и

b

, для которых вышеуказанное выражение минимально.

Проделав не очень сложные математические операции (подробнее см.

статью про квадратичную зависимость

), можно вычислить параметры

a

и

b

:

Как видно из формулы, параметр

a

представляет собой отношение ковариации и

дисперсии

, поэтому в MS EXCEL для вычисления параметра

а

можно использовать следующие формулы (см.

файл примера лист Линейная

):

=

КОВАР(B26:B45;C26:C45)/ ДИСП.Г(B26:B45)

или

=

КОВАРИАЦИЯ.В(B26:B45;C26:C45)/ДИСП.В(B26:B45)

Также для вычисления параметра

а

можно использовать формулу =

НАКЛОН(C26:C45;B26:B45)

. Для параметра

b

используйте формулу =

ОТРЕЗОК(C26:C45;B26:B45)

.

И наконец, функция

ЛИНЕЙН()

позволяет вычислить сразу оба параметра. Для ввода формулы

ЛИНЕЙН(C26:C45;B26:B45)

необходимо выделить в строке 2 ячейки и нажать

CTRL

+

SHIFT

+

ENTER

(см. статью про

формулы массива, возвращающими несколько значений

). В левой ячейке будет возвращено значение

а

, в правой –

b

.


Примечание

: Чтобы не связываться с вводом

формул массива

потребуется дополнительно использовать функцию

ИНДЕКС()

. Формула =

ИНДЕКС(ЛИНЕЙН(C26:C45;B26:B45);1)

или просто =

ЛИНЕЙН(C26:C45;B26:B45)

вернет параметр, отвечающий за наклон линии, т.е.

а

. Формула =

ИНДЕКС(ЛИНЕЙН(C26:C45;B26:B45);2)

вернет параметр, отвечающий за пересечение линии с осью Y, т.е.

b

.

Вычислив параметры, на

диаграмме рассеяния

можно построить соответствующую линию.

Инструмент диаграммы Линия тренда

Еще одним способом построения прямой линии по методу наименьших квадратов является инструмент диаграммы

Линия тренда

. Для этого выделите диаграмму, в меню выберите

вкладку Макет

, в

группе Анализ

нажмите

Линия тренда

, затем

Линейное приближение

.

Поставив в диалоговом окне галочку в поле «показывать уравнение на диаграмме» можно убедиться, что найденные выше параметры совпадают со значениями на диаграмме.


Примечание

: Для того, чтобы параметры совпадали необходимо, чтобы тип у диаграммы был

Точечная, а не График

. Дело в том, что при построении диаграммы

График

значения по оси Х не могут быть заданы пользователем (пользователь может указать только подписи, которые не влияют на расположение точек). Вместо значений Х используется последовательность 1; 2; 3; … (для нумерации категорий). Поэтому, если строить

линию тренда

на диаграмме типа

График

, то вместо фактических значений Х будут использованы значения этой последовательности, что приведет к неверному результату (если, конечно, фактические значения Х не совпадают с последовательностью 1; 2; 3; …).


СОВЕТ

: Подробнее о построении диаграмм см. статьи

Основы построения диаграмм

и

Основные типы диаграмм

.

  • Редакция Кодкампа

17 авг. 2022 г.
читать 2 мин


Метод наименьших квадратов — это метод, который мы можем использовать для поиска линии регрессии, которая лучше всего соответствует заданному набору данных.

В следующем видео представлено краткое объяснение этого метода:

Чтобы использовать метод наименьших квадратов для подбора линии регрессии в Excel, мы можем использовать функцию =ЛИНЕЙН() .

В следующем пошаговом примере показано, как использовать эту функцию на практике.

Шаг 1: Создайте набор данных

Во-первых, давайте создадим следующий набор данных в Excel:

Шаг 2: Используйте метод наименьших квадратов для подбора линии регрессии

Мы можем использовать функцию =LINEST(known_ys, known_xs) , чтобы использовать метод наименьших квадратов, чтобы подобрать линию регрессии к этому набору данных:

Как только мы нажмем ENTER , появятся коэффициенты регрессионной модели:

Шаг 3: интерпретируйте результаты

Используя коэффициенты из функции =LINEST() , мы можем написать следующую подобранную линию регрессии:

у = 11,55211 + 1,07949(х)

Мы можем использовать это уравнение для оценки значения y на основе значения x.

Например, если x = 10, то мы оценили бы, что y будет равно 22,347 :

у = 11,55211 + 1,07949(10) = 22,347

Шаг 4: Нанесите результаты на график

Наконец, мы можем использовать следующие шаги для построения набора данных вместе с подобранной линией регрессии:

  • Выделите ячейки A2:B16 .
  • Щелкните вкладку « Вставка » на верхней ленте. Затем щелкните первый параметр диаграммы под названием « Вставить точечную (X, Y)» или «Пузырьковую диаграмму » в группе «Диаграммы».
  • После того, как диаграмма появится, нажмите знак плюс «+» в правом верхнем углу. В раскрывающемся меню установите флажок рядом с линией тренда , чтобы добавить на график подобранную линию регрессии.

Дополнительные ресурсы

Как выполнить множественную линейную регрессию в Excel
Как выполнить квадратичную регрессию в Excel
Как выполнить полиномиальную регрессию в Excel
Подбор кривой в Excel (с примерами)

Содержание

  • Использование метода в Экселе
    • Включение надстройки «Поиск решения»
    • Условия задачи
    • Решение
  • Вопросы и ответы

Метод наименьших квадратов в Microsoft Excel

Метод наименьших квадратов представляет собой математическую процедуру построения линейного уравнения, которое бы наиболее точно соответствовало набору двух рядов чисел. Целью применения данного способа является минимизация общей квадратичной ошибки. В программе Excel имеются инструменты, с помощью которых можно применять данный метод при вычислениях. Давайте разберемся, как это делается.

Использование метода в Экселе

Метод наименьших квадратов (МНК) является математическим описанием зависимости одной переменной от второй. Его можно использовать при прогнозировании.

Включение надстройки «Поиск решения»

Для того, чтобы использовать МНК в Экселе, нужно включить надстройку «Поиск решения», которая по умолчанию отключена.

  1. Переходим во вкладку «Файл».
  2. Переход во вкладку Файл в Microsoft Excel

  3. Кликаем по наименованию раздела «Параметры».
  4. Переход в раздел параметры в Microsoft Excel

  5. В открывшемся окне останавливаем выбор на подразделе «Надстройки».
  6. Переход в подраздел надстройки в Microsoft Excel

  7. В блоке «Управление», который расположен в нижней части окна, устанавливаем переключатель в позицию «Надстройки Excel» (если в нём выставлено другое значение) и жмем на кнопку «Перейти…».
  8. Переход к надстройкам Excel в Microsoft Excel

  9. Открывается небольшое окошко. Ставим в нём галочку около параметра «Поиск решения». Жмем на кнопку «OK».

Включение поиска решения в Microsoft Excel

Теперь функция Поиск решения в Excel активирована, а её инструменты появились на ленте.

Урок: Поиск решения в Экселе

Условия задачи

Опишем применение МНК на конкретном примере. Имеем два ряда чисел x и y, последовательность которых представлена на изображении ниже.

Переменные числа в Microsoft Excel

Наиболее точно данную зависимость может описать функция:

y=a+nx

Lumpics.ru

При этом, известно что при x=0 y тоже равно 0. Поэтому данное уравнение можно описать зависимостью y=nx.

Нам предстоит найти минимальную сумму квадратов разности.

Решение

Перейдем к описанию непосредственного применения метода.

  1. Слева от первого значения x ставим цифру 1. Это будет приближенная величина первого значения коэффициента n.
  2. Значение  коэффициента n в Microsoft Excel

  3. Справа от столбца y добавляем ещё одну колонку – nx. В первую ячейку данного столбца записываем формулу умножения коэффициента n на ячейку первой переменной x. При этом, ссылку на поле с коэффициентом делаем абсолютной, так как это значение меняться не будет. Кликаем по кнопке Enter.
  4. Значение nx в Microsoft Excel

  5. Используя маркер заполнения, копируем данную формулу на весь диапазон таблицы в столбце ниже.
  6. Копирование формулы в Microsoft Excel

  7. В отдельной ячейке высчитываем сумму разностей квадратов значений y и nx. Для этого кликаем по кнопке «Вставить функцию».
  8. Переход в мастер функций в Microsoft Excel

  9. В открывшемся «Мастере функций» ищем запись «СУММКВРАЗН». Выбираем её и жмем на кнопку «OK».
  10. Мастер функций в Microsoft Excel

  11. Открывается окно аргументов. В поле «Массив_x» вводим диапазон ячеек столбца y. В поле «Массив_y» вводим диапазон ячеек столбца nx. Для того, чтобы ввести значения, просто устанавливаем курсор в поле и выделяем соответствующий диапазон на листе. После ввода жмем на кнопку «OK».
  12. Ввод аргументов функции в Microsoft Excel

  13. Переходим во вкладку «Данные». На ленте в блоке инструментов «Анализ» жмем на кнопку «Поиск решения».
  14. Переход в поиск решения в Microsoft Excel

  15. Открывается окно параметров данного инструмента. В поле «Оптимизировать целевую функцию» указываем адрес ячейки с формулой «СУММКВРАЗН». В параметре «До» обязательно выставляем переключатель в позицию «Минимум». В поле «Изменяя ячейки» указываем адрес со значением коэффициента n. Жмем на кнопку «Найти решение».
  16. Поиск решения методом наименьшего квадрата в Microsoft Excel

  17. Решение будет отображаться в ячейке коэффициента n. Именно это значение будет являться наименьшим квадратом функции. Если результат удовлетворяет пользователя, то следует нажать на кнопку «OK» в дополнительном окне.

Подтверждение результата в Microsoft Excel

Как видим, применение метода наименьших квадратов довольно сложная математическая процедура. Мы показали её в действии на простейшем примере, а существуют гораздо более сложные случаи. Впрочем, инструментарий Microsoft Excel призван максимально упростить производимые вычисления.

Еще статьи по данной теме:

Помогла ли Вам статья?

Программа Excel – мощный табличный редактор, позволяющий выполнять огромное количество различных операций и задач. В данной статье мы разберем, как можно применить метод наименьших квадратов (МНК), который используется для решения различных задач с минимизацией суммы квадратов отклонений некоторых функций от искомых переменных.

Содержание

  • Подготовительный этап: активируем надстройку “Поиск Решения”
  • Этап 1: исходные данные
  • Этап 2: решаем задачу с применением МНК
  • Заключение

Подготовительный этап: активируем надстройку “Поиск Решения”

Прежде, чем приступить к решению основной задачи, потребуется активировать надстройку “Поиск решения” в программе.

  1. Идем в меню “Файл”.Переход в меню Файл в Эксель
  2. В перечне слева выбираем пункт “Параметры”.Переход к параметрам Excel
  3. В правой части подраздела “Надстройки” выбираем для параметра “Управление” вариант “Надстройки Excel” и жмем “Перейти”.Переход к управлению надстройками в Эксель
  4. Появится окно для выбора нужных надстроек. Устанавливаем галочку напротив пункта “Поиск решения” и щелкаем OK.Включение надстройки Поиск решения в Excel

Этап 1: исходные данные

Давайте разберем применение метода наименьших квадратов, решив конкретный пример. Допустим, у нас есть два ряда числовых значений – X и Y.

Исходная таблица с рядами X и Y в Эксель

Данная зависимость может быть описана уравнением ниже:

Y=A+NX

Также, мы знаем, что если X=0, то и Y=0. А значит, данное уравнение можно записать так:

Y=NX

Приступим к выполнению нашей задачи, которая заключается в нахождении суммы квадратов разности.

Этап 2: решаем задачу с применением МНК

  1. Столбцу, находящемся слева от X, задаем имя N пишем число “1” (примерное значение первого коэф. N) напротив первого значения ряда X.Заполнение столбца в Эксель
  2. Столбцу с правой стороны от Y задаем название NX. Затем в самой верхней ячейке (напротив первых значений рядов X и Y) пишем формулу произведения коэф. N на соответствующее ему значение из столбца X. При этом адрес ячейки с коэффициентом нужно сделать абсолютным, чтобы он не менялся при копировании формулы. По готовности жмем Enter.Заполнение столбца в Excel
  3. Наводим указатель мыши на ячейку с полученным результатом. Как только появится черный плюсик (маркер заполнения), зажав левую кнопку мыши тянем его вниз до последней строки таблицы.Копирование формулы с помощью маркера заполнения в Эксель
  4. Получаем результаты расчетов в каждой ячейке столбца NX.Результат копирования формулы с помощью маркера заполнения в Excel
  5. Теперь нужно посчитать сумму разностей квадратов значений Y и NX. Встаем в самую верхнюю ячейку столбца справа от NX (не считая шапки таблицы) и щелкаем по значку “Вставить функцию” (fx).Вставка функции в ячейку таблицы Эксель
  6. В окне вставки функции выбираем категорию “Математические”, находим оператор “СУММКВРАЗН” и щелкаем OK.Выбор оператора СУММКВРАЗН для вставки в ячейку таблицы Excel
  7. Теперь нужно заполнить аргументы функции:
    • в поле “Массив_x”  указываем координаты диапазона ячеек столбца Y (без шапки). Адреса ячеек можно указать как вручную, напечатав их с клавиатуры, так и путем выделения с помощью зажатой левой кнопки мыши в самой таблице.
    • в поле “Массив_y” указываем диапазон ячеек столбца NX.
    • жмем Enter, когда все готово.Заполнение аргументов функции СУММКВРАЗН в Эксель
  8. Переключаемся во вкладку “Данные”. В группе “Анализ” щелкаем по функции “Поиск решения”.Активация функции Поиск решения в Эксель
  9. Нам предстоит заполнить параметры поиска решения:
    • в поле “Оптимизировать целевую функцию” следует указать ссылку на ячейку с функцией “СУММКВРАЗН”. Сделать это можно вручную или выбрав элемент в таблице.
    • для опции “До” выбираем вариант – “Минимум”.
    • в поле “Изменяя ячейки переменных” нужно указать координаты ячейки, в которой находится соответствующее значение коэф. N.
    • по готовности нажимаем “Найти решение”.Заполнение параметров Поиска решения в Excel
  10. После выполнения функции появится окно с результатами поиска решения и произойдет замена значения в столбце N. Найденная величина является наименьшим квадратом функции. Нажимаем OK, если полученный результат удовлетворителен.Результаты поиска решения в Эксель

Заключение

Итак, мы только что разобрали на практическом примере, каким образом можно применить метод наименьших квадратов в Эксель. На практике могут встречаться более сложные задачи, однако, в целом логика действий схожа с той, что мы описали.

Содержание

  1. Постановка задачи на конкретном примере
  2. Наборы данных
  3. Графическая иллюстрация метода наименьших квадратов (мнк).
  4. Сглаживание ряда методом наименьших квадратов
  5. Суть метода
  6. Применение надстройки поиск решения
  7. Аппроксимация функции одной переменной методом наименьших квадратов с дополнительными условиями
  8. Оценка точности
  9. Вывод формул для нахождения коэффициентов.
  10. Как реализоавать метод наименьших квадратов в Excel
  11. Заключение

Постановка задачи на конкретном примере

Предположим, имеются два показателя X и Y. Причем Y зависит от X. Так как МНК интересует нас с точки зрения регрессионного анализа (в Excel его методы реализуются с помощью встроенных функций), то стоит сразу же перейти к рассмотрению конкретной задачи.

Итак, пусть X — торговая площадь продовольственного магазина, измеряемая в квадратных метрах, а Y — годовой товарооборот, определяемый в миллионах рублей.

Требуется сделать прогноз, какой товарооборот (Y) будет у магазина, если у него та или иная торговая площадь. Очевидно, что функция Y = f (X) возрастающая, так как гипермаркет продает больше товаров, чем ларек.

Наборы данных

Метод наименьших квадратов используется для обработки набора данных и прогнозирования будущих значений. Пусть у нас есть массивы данных X = {10, 12, 14, 16, 18, 20} и Y = {18, 22, 24, 26, 27, 28}, при этом значение Y зависит от X. Придадим этим массивам смысл. К примеру, массив X ​– это мощность паровой машины парохода, а Y — его ходовая скорость в узлах. Это означает, что при мощности энергетической установки в 10 тысяч лошадиных сил, пароход развивает скорость на уровне 18 морских миль в час, и так далее, так как каждое значение игрека соответствует своему иксу.

Эти данные можно представить в виде точек на декартовой плоскости, например как V1(X1, Y1), V2(X2, Y2) и так далее. Если соединить эти точки, то мы получим некую кривую, которую можем описать соответствующим уравнением y = f(x). Данное уравнение должно быть достаточно простым, но при этом максимально близко описывать полученную зависимость.

Получив кривую, мы можем продлить ее в любую сторону и узнать приблизительное значение игреков для любых иксов или наоборот. Например, аппроксимировав данные нашего примера, мы сможем узнать, какая мощность установки требуется для достижения скорости в 15 узлов. Или какую мы получим скорость, установив на борт установку мощностью в 22 тысячи лошадиных сил. Для того чтобы определить эту волшебную y = f(x), нам и необходим метод наименьших квадратов.

Графическая иллюстрация метода наименьших квадратов (мнк).

На графиках все прекрасно видно. Красная линия – это найденная прямая y = 0.165x+2.184, синяя линия – это , розовые точки – это исходные данные.

Для чего это нужно, к чему все эти аппроксимации?

Я лично использую для решения задач сглаживания данных, задач интерполяции и экстраполяции (в исходном примере могли бы попросить найти занчение наблюдаемой величины y при x=3 или при x=6 по методу МНК). Но подробнее поговорим об этом позже в другом разделе сайта.

К началу страницы

Доказательство.

Чтобы при найденных а и b функция принимала наименьшее значение, необходимо чтобы в этой точке матрица квадратичной формы дифференциала второго порядка для функции была положительно определенной. Покажем это.

Дифференциал второго порядка имеет вид:

То есть

Следовательно, матрица квадратичной формы имеет вид

причем значения элементов не зависят от а и b .

Покажем, что матрица положительно определенная. Для этого нужно, чтобы угловые миноры были положительными.

Угловой минор первого порядка . Неравенство строгое, так как точки несовпадающие. В дальнейшем это будем подразумевать.

Угловой минор второго порядка

Докажем, что методом математической индукции.

  1. Проверим справедливость неравенства для любого значения n, например для n=2.

    Получили верное неравенство для любых несовпадающих значений и .

  2. Предполагаем, что неравенство верное для n.

    – верное.

  3. Докажем, что неравенство верное для n+1.

    То есть, нужно доказать, что исходя из предположения что – верное.

    Поехали.

    Выражение в фигурных скобках положительно по предположению пункта 2), а остальные слагаемые положительны, так как представляют собой квадраты чисел. Этим доказательство завершено.

Вывод : найденные значения а и b соответствуют наименьшему значению функции , следовательно, являются искомыми параметрами для метода наименьших квадратов.

Сглаживание ряда методом наименьших квадратов

Задание.
1. Постройте прогноз численности наличного населения города Б на 2010-2011 гг., используя методы: скользящей средней, экспоненциального сглаживания, наименьших квадратов.
2. Постройте график фактического и расчетных показателей.
3. Рассчитайте ошибки полученных прогнозов при использовании каждого метода.
4. Сравните полученные результаты, сделайте вывод.

Решение.
1. Находим параметры уравнения методом наименьших квадратов. Линейное уравнение тренда имеет вид y = bt + a
Система уравнений МНК:
a0n + a1∑t = ∑y
a0∑t + a1∑t2 = ∑y•t

t y t2 y2 t•y
1 58.8 1 3457.44 58.8
2 58.7 4 3445.69 117.4
3 59 9 3481 177
4 59 16 3481 236
5 58.8 25 3457.44 294
6 58.3 36 3398.89 349.8
7 57.9 49 3352.41 405.3
8 57.5 64 3306.25 460
9 56.9 81 3237.61 512.1
45 524.9 285 30617.73 2610.4

Для наших данных система уравнений имеет вид:
9a0 + 45a1 = 524.9
45a0 + 285a1 = 2610.4
Из первого уравнения выражаем а0 и подставим во второе уравнение
Получаем a0 = -0.24, a1 = 59.5
Уравнение тренда:
y = -0.24 t + 59.5
Эмпирические коэффициенты тренда a и b являются лишь оценками теоретических коэффициентов βi, а само уравнение отражает лишь общую тенденцию в поведении рассматриваемых переменных.
Коэффициент тренда b = -0.24 показывает среднее изменение результативного показателя (в единицах измерения у) с изменением периода времени t на единицу его измерения. В данном примере с увеличением t на 1 единицу, y изменится в среднем на -0.24.
Ошибка аппроксимации.
Оценим качество уравнения тренда с помощью ошибки абсолютной аппроксимации.

Ошибка аппроксимации в пределах 5%-7% свидетельствует о хорошем подборе уравнения тренда к исходным данным.

Поскольку ошибка меньше 7%, то данное уравнение можно использовать в качестве тренда.
Однофакторный дисперсионный анализ.
Средние значения



Дисперсия


Среднеквадратическое отклонение


Коэффициент эластичности.
Коэффициент эластичности представляет собой показатель силы связи фактора t с результатом у, показывающий, на сколько процентов изменится значение у при изменении значения фактора на 1%.


Коэффициент эластичности меньше 1. Следовательно, при изменении t на 1%, Y изменится менее чем на 1%. Другими словами – влияние t на Y не существенно.
Эмпирическое корреляционное отношение.
Эмпирическое корреляционное отношение вычисляется для всех форм связи и служит для измерение тесноты зависимости. Изменяется в пределах [0;1].

где (y-yt)² = 4.4-1.08 = 3.31
В отличие от линейного коэффициента корреляции он характеризует тесноту нелинейной связи и не характеризует ее направление. Изменяется в пределах [0;1].
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 0.3 0.5 0.7 0.9 Полученная величина свидетельствует о том, что изменение временного периода t существенно влияет на y.
Коэффициент детерминации.


т.е. в 75.39% случаев влияет на изменение данных. Другими словами – точность подбора уравнения тренда – высокая.

t y y(t) (y-ycp)2 (y-y(t))2 (t-tp)2 (y-y(t)) : y
1 58.8 59.26 0.23 0.21 16 0.00786
2 58.7 59.03 0.14 0.11 9 0.00557
3 59 58.79 0.46 0.0431 4 0.00352
4 59 58.56 0.46 0.2 1 0.0075
5 58.8 58.32 0.23 0.23 0 0.00813
6 58.3 58.09 0.0004 0.0452 1 0.00365
7 57.9 57.85 0.18 0.0022 4 0.000825
8 57.5 57.62 0.68 0.0137 9 0.00204
9 56.9 57.38 2.02 0.23 16 0.00847
45 524.9 524.9 4.4 1.08 60 0.0476

Интервальный прогноз.
Определим среднеквадратическую ошибку прогнозируемого показателя.

m = 1 – количество влияющих факторов в уравнении тренда.
Uy=yn+L±K
где
L – период упреждения; уn+L – точечный прогноз по модели на (n + L)-й момент времени; n – количество наблюдений во временном ряду; Sy – стандартная ошибка прогнозируемого показателя; Tтабл – табличное значение критерия Стьюдента для уровня значимости α и для числа степеней свободы, равного n-2.
По таблице Стьюдента находим Tтабл
Tтабл (n-m-1;α/2) = (7;0.025) = 2.365
Точечный прогноз, t = 10: y(10) = -0.24*10 + 59.5 = 57.15

57.15 – 1.08 = 56.07 ; 57.15 + 1.08 = 58.23
Интервальный прогноз:
t = 10: (56.07;58.23)
Точечный прогноз, t = 11: y(11) = -0.24*11 + 59.5 = 56.91

56.91 – 1.14 = 55.77 ; 56.91 + 1.14 = 58.05
Интервальный прогноз:
t = 11: (55.77;58.05)

2. Сглаживаем ряд методом скользящей средней. Одним из эмпирических методов является метод скользящей средней. Этот метод состоит в замене абсолютных уровней ряда динамики их средними арифметическими значениями за определенные интервалы. Выбираются эти интервалы способом скольжения: постепенно исключаются из интервала первые уровни и включаются последующие.

t y ys Формула
1 58.8 58.75 (58.8 + 58.7)/2
2 58.7 58.85 (58.7 + 59)/2
3 59 59 (59 + 59)/2
4 59 58.9 (59 + 58.8)/2
5 58.8 58.55 (58.8 + 58.3)/2
6 58.3 58.1 (58.3 + 57.9)/2
7 57.9 57.7 (57.9 + 57.5)/2
8 57.5 57.2 (57.5 + 56.9)/2
9 56.9

Стандартная ошибка (погрешность) рассчитывается по формуле:

где i = (t-m-1, t)

3. Построим прогноз численности с использованием экспоненциального сглаживания. Важным методом стохастических прогнозов является метод экспоненциального сглаживания. Этот метод заключается в том, что ряд динамики сглаживается с помощью скользящей средней, в которой веса подчиняются экспоненциальному закону.
Эту среднюю называют экспоненциальной средней и обозначают St.
Она является характеристикой последних значений ряда динамики, которым присваивается наибольший вес.
Экспоненциальная средняя вычисляется по рекуррентной формуле:
St = α*Yt + (1- α)St-1
где St – значение экспоненциальной средней в момент t;
St-1 – значение экспоненциальной средней в момент (t = 1);
Что касается начального параметра S0, то в задачах его берут или равным значению первого уровня ряда у1, или равным средней арифметической нескольких первых членов ряда.
Yt – значение экспоненциального процесса в момент t;
α – вес t-ого значения ряда динамики (или параметр сглаживания).
Последовательное применение формулы дает возможность вычислить экспоненциальную среднюю через значения всех уровней данного ряда динамики.
Наиболее важной характеристикой в этой модели является α, по величине которой практически и осуществляется прогноз. Чем значение этого параметра ближе к 1, тем больше при прогнозе учитывается влияние последних уровней ряда динамики.
Если α близко к 0, то веса, по которым взвешиваются уровни ряда динамики убывают медленно, т.е. при прогнозе учитываются все прошлые уровни ряда.
В специальной литературе отмечается, что обычно на практике значение α находится в пределах от 0,1 до 0,3. Значение 0,5 почти никогда не превышается.
Экспоненциальное сглаживание применимо, прежде всего, при постоянном объеме потребления (α = 0,1 – 0,3). При более высоких значениях (0,3 – 0,5) метод подходит при изменении структуры потребления, например, с учетом сезонных колебаний.
В качестве S0 берем первое значение ряда, S0 = y1 = 58.8

t y St Формула
1 58.8 58.8 (1 – 0.1)*58.8 + 0.1*58.8
2 58.7 58.71 (1 – 0.1)*58.7 + 0.1*58.8
3 59 58.97 (1 – 0.1)*59 + 0.1*58.71
4 59 59 (1 – 0.1)*59 + 0.1*58.97
5 58.8 58.82 (1 – 0.1)*58.8 + 0.1*59
6 58.3 58.35 (1 – 0.1)*58.3 + 0.1*58.82
7 57.9 57.95 (1 – 0.1)*57.9 + 0.1*58.35
8 57.5 57.54 (1 – 0.1)*57.5 + 0.1*57.95
9 56.9 56.96 (1 – 0.1)*56.9 + 0.1*57.54

Прогнозирование данных с использованием экспоненциального сглаживания.
Методы прогнозирования под названием “сглаживание” учитывают эффекты выброса функции намного лучше, чем способы, использующие регрессивный анализ.
Базовое уравнение имеет следующий вид:
F(t+1) = F(t)(1 – α) + αY(t)
F(t) – это прогноз, сделанный в момент времени t; F(t+1) отражает прогноз во временной период, следующий непосредственно за моментом времени t
Стандартная ошибка (погрешность) рассчитывается по формуле:

где i = (t – 2, t)

Пример. Методом наименьших квадратов найти функции вида y=ax+b, y=ax²+bx+c, аппроксимирующие экспериментальную функцию y=f(x). В обоих случаях найти суммы квадратов невязок ∑bi². В декартовой системе координат построить экспериментальные точки и графики найденных функций y=ax+b,y=ax^2+bx+c.
Пример №5

Пример №6

Пример №3. Функция y=y(x) задана таблицей своих значений:
x: -2 -1 0 1 2
y: -0,8 -1,6 -1,3 0,4 3,2
Применяя метод наименьших квадратов, приблизить функцию многочленами 1-ой и 2-ой степеней. Для каждого приближения определить величину среднеквадратичной погрешности. Построить точечный график функции и графики многочленов.

Решение. Функция многочлена 2-ой степени имеет вид y = ax2+ bx + c.
1. Находим параметры уравнения методом наименьших квадратов. Система уравнений МНК:
a0n + a1∑x + a2∑x2= ∑y
a0∑x + a1∑x2+ a2∑x3= ∑yx
a0∑x2+ a1∑x3+ a2∑x4= ∑yx2

x y x2 y2 x y x3 x4 x2y
0 0 0 0 0 0 0 0
-2 -0.8 4 0.64 1.6 -8 16 -3.2
-1 -1.6 1 2.56 1.6 -1 1 -1.6
0 -1.3 0 1.69 0 0 0 0
1 0.4 1 0.16 0.4 1 1 0.4
2 3.2 4 10.24 6.4 8 16 12.8
0 -0.1 10 15.29 10 0 34 8.4

Для наших данных система уравнений имеет вид
6a0+ 0a1+ 10a2= -0.1
0a0+ 10a1+ 0a2= 10
10a0+ 0a1+ 34a2= 8.4
Получаем a0= 0.494, a1= 1, a2= -0.84
Уравнение: y = 0.494x2+x-0.84

Суть метода

Данные таблицы можно изобразить на декартовой плоскости в виде точек M1 (x1, y1), … Mn (xn, yn). Теперь решение задачи сведется к подбору аппроксимирующей функции y = f (x), имеющей график, проходящий как можно ближе к точкам M1, M2, ..Mn.

Конечно, можно использовать многочлен высокой степени, но такой вариант не только труднореализуем, но и просто некорректен, так как не будет отражать основную тенденцию, которую и нужно обнаружить. Самым разумным решением является поиск прямой у = ax + b, которая лучше всего приближает экспериментальные данные, a точнее, коэффициентов – a и b.

Применение надстройки поиск решения

1. Если не включили надстройку «поиск решения», то возвращаемся к пункту Как включить надстройку «поискрешения» и включаем

2. В ячейку А1 введем значение «1». Эта единица будет первым приближением к реальному значению коэффициента (k) нашей функциональной зависимости y=kx.

3. В столбце B у нас расположились значения параметра X, в столбце C — значения параметра Y. В ячейках столбца D вводим формулу: «коэффициент k умножить на значение Х». Например, в ячейке D1 вводим «=A1*B1», в ячейке D2 вводим “=A1*B2” и т.д.

4. Мы считаем, что коэффициент к равен единице и функция f (x)=у=1*х – это первое приближение к нашему решению. Можем рассчитать сумму квадратов разностей между измеренными значениями величины Y и рассчитанными по формуле y=1*х . Можем все это сделать вручную, вбивая в формулу соответствующие ссылки на ячейки: “=(D2-C2)^2+(D3-C3)^2+(D4-C4)^2… и т.д. В конце концов ошибаемся и понимаем, что потеряли кучу времени. В Excel для расчета суммы квадратов разностей есть специальная формула, «СУММКВРАЗН», которая все за нас и сделает. Введем ее в ячейку А2 и зададим исходные данные: диапазон измеренных значений Y (столбец C) и диапазон рассчитанных значений Y (столбец D).

4. Сумму разностей квадратов рассчитали – теперь идем во вкладку «Данные» и выбираем «Поиск решения».

5. В появившемся меню в качестве изменяемой ячейки выбираем ячейку A1 (та, что с коэффициентом k).

6. В качестве целевой выбираем ячейку A2 и задаем условие «установить равной минимальному значению». Помним, что это ячейка, где у нас производится расчёт суммы квадратов разностей расчетного и измеренного значений, и сумма эта должна быть минимальной. Нажимаем «выполнить».

7. Коэффициент k подобран. Теперь можно убедиться, что рассчитанные значения теперь очень близки к измеренным.

Аппроксимация функции одной переменной методом наименьших квадратов с дополнительными условиями

Данный калькулятор использует метод наименьших квадратов (МНК) для аппроксимации функции одной переменной, аналогично калькулятору Аппроксимация функции одной переменной. Но, в отличии от указанного калькулятора, данный калькулятор поддерживает аппроксимацию функции с использованием ограничений на ее значения. То есть, можно задать условия равенства аппроксимирующей функции определенным значениям в определенных точках. Формулы аппроксимации будут выведены с учетом этих условий.

Используемый метод (метод множителей Лагранжа) накладывает ограничения на набор аппроксимирующих функций, так что этот калькулятор не поддерживает экспоненциальную аппроксимацию, аппроксимацию степенной функцией и показательную аппроксимацию. Одним словом поддерживается только линейная регрессия. Зато в него были добавлены аппроксимация полиномами 4-ой и 5-ой степени. Формулы и немного теории можно найти под калькулятором.

Если не ввести значения x, калькулятор будет считать, что значение x меняется начиная с 0 с шагом 1.

Оценка точности

При любой аппроксимации особую важность приобретает оценка ее точности. Обозначим через ei разность (отклонение) между функциональными и экспериментальными значениями для точки xi, т. е. ei = yi – f (xi).

Очевидно, что для оценки точности аппроксимации можно использовать сумму отклонений, т. е. при выборе прямой для приближенного представления зависимости X от Y нужно отдавать предпочтение той, у которой наименьшее значение суммы ei во всех рассматриваемых точках. Однако, не все так просто, так как наряду с положительными отклонениями практически будут присутствовать и отрицательные.

Решить вопрос можно, используя модули отклонений или их квадраты. Последний метод получил наиболее широкое распространение. Он используется во многих областях, включая регрессионный анализ (в Excel его реализация осуществляется с помощью двух встроенных функций), и давно доказал свою эффективность.

Вывод формул для нахождения коэффициентов.

Составляется и решается система из двух уравнений с двумя неизвестными. Находим частные производные функции по переменным а и b, приравниваем эти производные к нулю.

Решаем полученную систему уравнений любым методом (например методом подстановки или методом Крамера) и получаем формулы для нахождения коэффициентов по методу наименьших квадратов (МНК).

При данных а и b функция принимает наименьшее значение. Доказательство этого факта приведено ниже по тексту в конце страницы .

Вот и весь метод наименьших квадратов. Формула для нахождения параметра a содержит суммы , , , и параметр n – количество экспериментальных данных. Значения этих сумм рекомендуем вычислять отдельно. Коэффициент b находится после вычисления a.

Пришло время вспомнить про исходый пример.

Решение.

В нашем примере n=5 . Заполняем таблицу для удобства вычисления сумм, которые входят в формулы искомых коэффициентов.

Значения в четвертой строке таблицы получены умножением значений 2-ой строки на значения 3-ей строки для каждого номера i .

Значения в пятой строке таблицы получены возведением в квадрат значений 2-ой строки для каждого номера i .

Значения последнего столбца таблицы – это суммы значений по строкам.

Используем формулы метода наименьших квадратов для нахождения коэффициентов а и b. Подставляем в них соответствующие значения из последнего столбца таблицы:

Следовательно, y = 0.165x+2.184 – искомая аппроксимирующая прямая.

Осталось выяснить какая из линий y = 0.165x+2.184 или лучше аппроксимирует исходные данные, то есть произвести оценку методом наименьших квадратов.

Как реализоавать метод наименьших квадратов в Excel

В “Эксель” имеется функция для расчета значения по МНК. Она имеет следующий вид: «ТЕНДЕНЦИЯ» (известн. значения Y; известн. значения X; новые значения X; конст.). Применим формулу расчета МНК в Excel к нашей таблице.

Для этого в ячейку, в которой должен быть отображен результат расчета по методу наименьших квадратов в Excel, введем знак «=» и выберем функцию «ТЕНДЕНЦИЯ». В раскрывшемся окне заполним соответствующие поля, выделяя:

  • диапазон известных значений для Y (в данном случае данные для товарооборота);
  • диапазон x1, …xn, т. е. величины торговых площадей;
  • и известные, и неизвестные значения x, для которого нужно выяснить размер товарооборота (информацию об их расположении на рабочем листе см. далее).

Кроме того, в формуле присутствует логическая переменная «Конст». Если ввести в соответствующее ей поле 1, то это будет означать, что следует осуществить вычисления, считая, что b = 0.

Если нужно узнать прогноз для более чем одного значения x, то после ввода формулы следует нажать не на «Ввод», а нужно набрать на клавиатуре комбинацию «Shift» + «Control»+ «Enter» («Ввод»).

Заключение

Метод наименьших квадратов — удобный метод для представления данных в виде функции. Благодаря такому представлению вы можете определить любое значение функции, оперируя небольшим набором данных или измерений.

Источники

  • https://FB.ru/article/342215/metod-naimenshih-kvadratov-v-excel-regressionnyiy-analiz
  • https://BBF.ru/calculators/69/
  • http://www.cleverstudents.ru/articles/mnk.html
  • https://math.semestr.ru/trend/least-square-method.php
  • http://metallovedeniye.ru/analiz-dannyx-v-excel/metod-naimenshix-kvadratov-i-poisk-resheniya-v-excel.html
  • https://planetcalc.ru/8735/?thanks=1

Like this post? Please share to your friends:
  • Мнимое число в excel
  • Мне тебя обещали word
  • Мне нужна таблица в excel
  • Мне нужна программа word excel
  • Мне нужен только excel