Метод половинного деления онлайн excel

Для
того чтобы уточнить корни уравнения
cos(2x)+x-5=0 методом половинного деления,
используя Excel, необходимо выполнить
следующие действия:

  1. Заполнить
    ячейки A1:H1 последовательно следующим
    образом: a, b, c=(a+b)/2, f(a), f(b), f(c), |b-a|<=2*e, e.

  2. Ввести
    в ячейку A2 число 5, в ячейку B2 — число 6.

  3. В
    ячейку C2
    ввести формулу: =(A2+B2)/2.

  4. В
    ячейку D2 ввести формулу: =cos(2*A2)+A2-5,
    скопировать эту формулу в ячейки E2:F2.

  5. Ввести
    в ячейку G2 формулу: =ЕСЛИ(ABS(B2-A2)<=2*$H$2;C2;»-«).

  6. Ввести
    в ячейку H2 число 0,00001.

  7. В
    ячейку A3 ввести формулу: =ЕСЛИ(D2*F2<0;A2;C2).

  8. В
    ячейку B3 ввести формулу: =ЕСЛИ(D2*F2<0;C2;B2).

  9. Диапазон
    ячеек C2:G2 скопировать в диапазон ячеек
    C3:G3.

  10. Выделить
    диапазон ячеек A3:G3 и с помощью маркера
    заполнения заполнить все нижестоящие
    ячейки до получения результата в одной
    из ячеек столбца G (это ячейки A3:G53).

В
итоге получаем следующее:

Ответ:
Корень уравнения cos(2x)+x-5=0 равен 5,32977.

Соседние файлы в папке exel

  • #
  • #
  • #

    22.05.2015157.7 Кб80Копия Лабраб_6rgr.xls

  • #

    22.05.201527.14 Кб126Лабраб_6.xls

  • #
  • #
  • #

Решение уравнений

Аналитическое решение некоторых уравнений, содержащих, например тригонометрические функции может быть получено лишь для единичных частных случаев. Так, например, нет способа решить аналитически даже такое простое уравнение, как cos x=x

Численные методы позволяют найти приближенное значение корня с любой заданной точностью.

Приближённое нахождение обычно состоит из двух этапов:

1) отделение корней, т.е. установление возможно точных промежутков [a,b], в которых содержится только один корень уравнения;

 2) уточнение приближённых корней, т.е. доведение их до заданной степени точности.

Мы будем рассматривать решения уравнений вида f(x)=0. Функция f(x)определена и непрерывна на отрезке [а.Ь]. Значение х0  называется корнем уравнения если  f(х0)=0

Для отделения корней будем исходить из следующих положений:

  • Если  f(a)* f(b] < 0 , то внутри отрезка a, b существует, по крайней мере, один корень
  • Если функция y = f(x) непрерывна на отрезке [a, b], и  f(a)*f(b)<0 и f‘(x) на интервале (a, b) сохраняет знак, то внутри отрезка [а, b] существует единственный корень уравнения

Приближённое отделение корней можно провести и графически. Для этого уравнение (1) заменяют равносильным ему уравнением  р(х) = ф(х), где функции р(х) и ф(х] более простые, чем функция f(x). Тогда, построив графики функций у = р(х) и у = ф(х), искомые корни получим, как абсциссы точек пересечения этих графиков

Метод дихотомии

Для уточнения корня разделим отрезок [а, b] пополам и вычислим значение функции f(х) в точке xsr=(a+b)/2. Выбираем ту из половин [a, xsr ] или [xsr ,b], на концах которых функция f(x) имеет противоположные знаки.. Продолжаем процесс деления отрезка пополам и проводим то же рассмотрение до тех пор, пока. длина [a,b] станет меньше заданной точности. В последнем случае за приближённое значение корня можно принять любую точку отрезка [a,b] (как правило, берут его середину). Алгоритм высокоэффективен, так как на каждом витке (итерации) интервал поиска сокращается вдвое; следовательно, 10 итераций сократят его в тысячу раз. Сложности могут возникнуть с отделением корня у сложных функций.

Для приближенного определения отрезка на котором находится корень можно воспользоваться табличным процессором, построив график функции

ПРИМЕР: Определим графически корень уравнения    . Пусть f1(х) = х,  a и построим графики этих функций. (График). Корень находится на интервале от 1 до 2. Здесь же уточним значение корня с точностью 0,001(на доске шапка таблицы)

 Решение в Excel,

Алгоритм для программной реализации

  1. а:=левая граница b:= правая граница  
  2.  m:= (a+b)/2    середина
  3. определяем f(a) и f(m)
  4. если f(a)*f(m)<0  то b:=m иначе a:=m
  5. если (a-b)/2>e повторяем , начиная с пункта2

Метод хорд.

Точки графика функции на концах интервала соединяются хордой. Точка пересечения хорды и оси Ох (х*) и используется в качестве пробной. Далее рассуждаем так же, как и в предыдущем методе: если f(xa) и f(х*) одного знака на интервале , нижняя граница переносится в точку х*; в противном случае – переносим верхнюю границу. Далее проводим новую хорду и т.д.

Осталось только уточнить, как найти х*. По сути, задача сводится к следующей: через 2 точки с неизвестными координатами (х1, у1) и (х2, у2) проведена прямая; найти точку пересечения этой прямой и оси Ох.

Запишем уравнение прямой по двум точках:

        

В точке пересечения этой прямой и оси Ох у=0, а х=х*, то есть

, откуда

процесс вычисления приближённых значений продолжается до тех пор, пока для двух последовательных приближений корня х„ и хп_1 не будет выполняться условие  abs(xn-xn-1)е — заданная точность

Сходимость метода гораздо выше предыдущего

Алгоритм различается только в пункте вычисления серединной точки- пересечения хорды с осью абсцисс и условия останова (разность между двумя соседними точками пересечения)

Решение в Excel

Уравнения для самостоятельного решения: (отрезок в excel ищем самостоятельно)

  1.  (х=1,261)
  2.  (х=?)
  1. sin(x/2)+1=x^2   (х=1,26)
  1. y=sin3x*cos5x  (х=?)
  2.     (х=0,756)
  1. x-cosx=0  (х=0,739)
  1. x^2+4sinx=0  (х=-1,933)
  1. x=(x+1)3  (х=-2,325)

Решение уравнений в EXCEL методом половинного деления, методом хорд и касательных.

При прохождении темы численные методы учащиеся уже умеют работать с электронными таблицами и составлять программы на языке паскаль. Работа комбинированного характера.Расчитана на 40 минут. Цель работы повторить и закрепить навыки паботы с программами EXCEL, ABCPascal. Материал содержит 2 файла. Один содержит теоретический материал, так как он и предлагается ученику . Во 2-м файле пример работы ученика Иванова Ивана.

Скачать:

Вложение Размер
материал для ученика 57.5 КБ
работа ученика 27 КБ

Предварительный просмотр:

Аналитическое решение некоторых уравнений, содержащих, например тригонометрические функции может быть получено лишь для единичных частных случаев. Так, например, нет способа решить аналитически даже такое простое уравнение, как cos x=x

Численные методы позволяют найти приближенное значение корня с любой заданной точностью.

Приближённое нахождение обычно состоит из двух этапов:

1) отделение корней, т.е. установление возможно точных промежутков [a,b], в которых содержится только один корень уравнения;

2) уточнение приближённых корней, т.е. доведение их до заданной степени точности.

Мы будем рассматривать решения уравнений вида f(x)=0. Функция f(x) определена и непрерывна на отрезке [а.Ь]. Значение х 0 называется корнем уравнения если f(х 0 )=0

Для отделения корней будем исходить из следующих положений:

  • Если f(a)* f(b] a, b существует, по крайней мере, один корень
  • Если функция y = f(x) непрерывна на отрезке [a, b], и f(a)*f(b) и f ‘(x) на интервале (a, b) сохраняет знак, то внутри отрезка [а, b] существует единственный корень уравнения

Приближённое отделение корней можно провести и графически. Для этого уравнение (1) заменяют равносильным ему уравнением р(х) = ф(х), где функции р(х) и ф(х] более простые, чем функция f(x). Тогда, построив графики функций у = р(х) и у = ф(х), искомые корни получим, как абсциссы точек пересечения этих графиков

Для уточнения корня разделим отрезок [а, b] пополам и вычислим значение функции f(х) в точке x sr =(a+b)/2. Выбираем ту из половин [a, x sr ] или [x sr ,b], на концах которых функция f(x) имеет противоположные знаки.. Продолжаем процесс деления отрезка пополам и проводим то же рассмотрение до тех пор, пока. длина [a,b] станет меньше заданной точности . В последнем случае за приближённое значение корня можно принять любую точку отрезка [a,b] (как правило, берут его середину). Алгоритм высокоэффективен, так как на каждом витке (итерации) интервал поиска сокращается вдвое; следовательно, 10 итераций сократят его в тысячу раз. Сложности могут возникнуть с отделением корня у сложных функций.

Для приближенного определения отрезка на котором находится корень можно воспользоваться табличным процессором, построив график функции

ПРИМЕР : Определим графически корень уравнения . Пусть f1(х) = х , a и построим графики этих функций. (График). Корень находится на интервале от 1 до 2. Здесь же уточним значение корня с точностью 0,001(на доске шапка таблицы)

Алгоритм для программной реализации

  1. а:=левая граница b:= правая граница
  2. m:= (a+b)/2 середина
  3. определяем f(a) и f(m)
  4. если f(a)*f(m)
  5. если (a-b)/2>e повторяем , начиная с пункта2

Точки графика функции на концах интервала соединяются хордой. Точка пересечения хорды и оси Ох (х*) и используется в качестве пробной. Далее рассуждаем так же, как и в предыдущем методе: если f(x a ) и f(х*) одного знака на интервале , нижняя граница переносится в точку х*; в противном случае – переносим верхнюю границу. Далее проводим новую хорду и т.д.

Осталось только уточнить, как найти х*. По сути, задача сводится к следующей: через 2 точки с неизвестными координатами (х 1 , у 1 ) и (х 2 , у 2 ) проведена прямая; найти точку пересечения этой прямой и оси Ох.

Запишем уравнение прямой по двум точках:

В точке пересечения этой прямой и оси Ох у=0, а х=х*, то есть

, откуда

процесс вычисления приближённых значений продолжается до тех пор, пока для двух последовательных приближений корня х„ и х п _1 не будет выполняться условие abs(xn-x n-1 ) е — заданная точность

Сходимость метода гораздо выше предыдущего

Алгоритм различается только в пункте вычисления серединной точки- пересечения хорды с осью абсцисс и условия останова (разность между двумя соседними точками пересечения)

Уравнения для самостоятельного решения: (отрезок в excel ищем самостоятельно)

Решение уравнение метод половинного деления excel

Часто в классической математике многое выглядит элементарно. Так, если нужно найти экстремум некоторой функции, то предлагается взять ее производную, приравнять нулю, решить полученное уравнение и т.д. Вне сомнения, что первые два действия в состоянии выполнить многие школьники и студенты. Что касается третьего действия, то позвольте усомниться в его элементарности.

Пусть после взятия производной мы пришли к уравнению tg(x)=1/x. Проведем следующие преобразования:
tg(x)=1/x Ю x tg(x)=1 Ю x2 tg=1 Ю x2= 1 / tg(x) Ю x = ±.

Если в приведённой здесь цепочке преобразований ничто не взволновало вашу мысль, то может быть лучше обучение на этом прекратить и заняться чем-нибудь другим, не требующим уровня знаний выше церковно-приходской школы начала XX века.

В самом деле, мы прекрасно решаем квадратные и биквадратные уравнения, наипростейшие тригонометрические и степенные. Еще водятся «мастодонты», знающие о существовании формул Кардано для кубических уравнений. В общем же случае надежд на простое аналитическое решение нет. Более того, доказано, что даже алгебраическое уравнение выше четвертой степени неразрешимо в элементарных функциях. Поэтому решение уравнения проводят численно в два этапа (здесь разговор идет лишь о вещественных корнях уравнения). На первом этапе производится отделение корней — поиск интервалов, в которых содержится только по одному корню. Второй этап решения связан с уточнением корня в выбранном интервале (определением значения корня с заданной точностью).

1.1. Отделение корней

В общем случае отделение корней уравнения f(x)=0 базируется на известной теореме, утверждающей, что если непрерывная функция f(x) на концах отрезка [a,b] имеет значения разных знаков, т.е. f(a) ґ f(b) Ј 0, то в указан-ном промежутке содержится хотя бы один корень. Например, для уравнения f(x)= x 3 -6x+2=0 видим, что при x ®Ґ f(x)>0, при x ®-Ґ f(x) ґ f(x+h) ґ f(b) Ј 0 (рис. 1), тогда на отрезке имеется хотя бы один корень.

Возьмем середину отрезка с=(a+b)/2. Если f(a) ґ f(c) Ј 0, то корень явно принадлежит отрезку от a до (a+b)/2 и в противном случае от (a+b)/2 до b.

Поэтому берем подходящий из этих отрезков, вычисляем значение функции в его середине и т.д. до тех пор, пока длина очередного отрезка не окажется меньше заданной предельной абсолютной погрешности (b-a) e .

Так как каждое очередное вычисление середины отрезка c и значения функции f(c) сужает интервал поиска вдвое, то при исходном отрезке [a,b] и предельной погрешности e количество вычислений n определяется условием (b-a)/2 n e , или n

log2((b-a)/ e ). Например, при исходном единичном интервале и точности порядка 6 знаков ( e

10 -6 ) после десятичной точки достаточно провести 20 вычислений (итераций) значений функции.

С точки зрения машинной реализации (рис. 2) этот метод наиболее прост и используется во многих стандартных программных средствах, хотя существуют и другие более эффективные по затратам времени методы.

1.3. Уточнение корней методом хорд

В отличие от метода дихотомии, обращающего внимание лишь на знаки значений функции, но не на сами значения, метод хорд использует пропорциональное деление интервала (рис. 3).

Рис. 3. Метод хорд

Здесь вычисляются значения функции на концах отрезка, и строится «хорда», соединяющая точки (a,f(a)) и (b,f(b)). Точка пересечения ее с осью абсцисс

Можно доказать, что истинная погрешность найденного приближения:

1.4. Уточнение корней методом касательных (Ньютона)

Обширную группу методов уточнения корня представляют итерационные методы — методы последовательных приближений. Здесь в отличие от метода дихотомии задается не начальный интервал местонахождения корня, а его начальное приближение.

Наиболее популярным из итерационных методов является метод Ньютона (метод касательных).

Рис. 4. Метод касательных

Пусть известно некоторое приближенное значение Zn корня X * . Применяя формулу Тейлора и ограничиваясь в ней двумя членами, имеем

Геометрически этот метод предлагает построить касательную к кривой y=f(x) в выбранной точке x=Zn, найти точку пересечения её с осью абсцисс и принять эту точку за очередное приближение к корню (рис. 4).

Очевидно, что этот метод обеспечивает сходящийся процесс приближений лишь при выполнении некоторых условий (например при непрерывности и знакопостоянстве первой и второй производной функции в окрестности корня) и при их нарушении либо дает расходящийся процесс (рис. 5), либо приводит к другому корню (рис. 6).

Очевидно, что для функций, производная от которых в окрестности корня близка к нулю, использовать метод Ньютона едва ли разумно.

Если производная функции мало изменяется в окрестности корня, то можно использовать видоизменение метода

Существуют и другие модификации метода Ньютона.

1.5. Уточнение корней методом простой итерации

Другим представителем итерационных методов является метод простой итерации.

Здесь уравнение f(x)=0 заменяется равносильным уравнением x= j (x) и строится последовательность значений

Если функция j (x) определена и дифференцируема на некотором интервале, причем | j /(x)| j (x) на этом интервале.

Геометрическая интерпретация процесса представлена на рис. 7. Здесь первые два рисунка (а, б) демонстрируют одностороннее и двустороннее приближение к корню, третий же (в) выступает иллюстрацией расходящегося процесса (| j /(x)| > 1).

Если f ‘(x)>0, то подбор равносильного уравнения можно свести к замене x=x- l Ч f(x), т.е. к выбору j (x)= x- l Ч f(x), где l >0 подбирается так, чтобы в окрестности корня 0 j ‘(x)=1- l Ч f ‘(x) Ј 1. Отсюда может быть построен итерационный процесс

Можно и искусственно подобрать подходящую форму уравнения, например:

Конспект урока информатики в 11-м классе «Исследование математических моделей. Решение уравнений методом половинного деления»

Цели урока:

  1. Обучающая– формирование новых знаний, умений и навыков по теме “Моделирование. Исследование математических моделей”, формирование общеучебных и специальных умений и навыков, контроль за усвоением учебного материала.
  2. Развивающая– развивать умение выделять главное; развивать мышление учащихся посредством анализа, сравнения и обобщения изучаемого материала; самостоятельность; развитие речи, эмоций, логического мышления учащихся.
  3. Воспитательная – формировать интерес к предмету, навыки контроля и самоконтроля; чувство ответственности, деловые качества учащихся. Активизация познавательной и творческой активности учащихся

Задачи урока:

  • начать изучение исследования математических моделей,
  • начать изучение приближенных методов решения уравнений,
  • познакомить учащихся с методом половинного деления,
  • познакомить учащихся с приближенным методом решения уравнений с помощью электронных таблиц Excel,
  • сформировать у учащихся умение приближенно решать уравнения с помощью электронных таблиц Excel,
  • разработать компьютерную модель нахождения корня уравнения на языке Visual Basic,
  • формировать у учащихся потребность использования информационных технологий в решении задач по математике,
  • развивать межпредметные связи.

Тип урока: урок изучения нового материала.

Оборудование: компьютерный класс, оборудованный компьютерами Pentium I и выше, лицензионное ПО: операционная система Windows 97/2000/XP, MS Office 2000 и выше, среда программирования Visual Basic, интерактивная доска, проектор.

    Организационный момент. Объявление темы, цели и задач урока.

  1. Актуализация знаний, необходимых для изучения нового материала:
  • Что называется уравнением?
  • Что называется корнем уравнения?
  • Что значит “решить уравнение”?
  • Объяснить, как можно графически решить уравнение. (Использовать интерактивную доску, на которой строится график в заранее заготовленной системе координат)
  • Как построить график функции в Excel?
  1. Изучение нового материала.

Решение уравнений методом половинного деления.

Числовой метод половинного деления

Идея метода состоит в выборе точности решения и сведении первоначального отрезка [А;В], на котором существует корень уравнения, к отрезку заданной точности. Процесс сводится к последовательному делению отрезков пополам точкой С=(А+В)/2 и отбрасыванию той половины отрезка ([А;С] или [С;В]), на котором корня нет.

Выбор нужной половины отрезка основывается на проверке знаков значений функции на его краях. Выбирается та половина, на которой произведение значений функции на краях отрицательно, то есть где функция пересекает ось абсцисс.

Процесс продолжается до тех пор, пока длина отрезка не станет меньше удвоенной точности. Деление этого отрезка пополам дает значение корня х=(А+В)/2 с заданной точностью. (Объяснение материала сопровождается презентацией)

Приближенное решение уравнений с помощью электронных таблиц Excel.

Задача: решить уравнение x 3 =cosx

Чтобы решить уравнение графически, введем функцию у= x 3 — cosx

На интерактивной доске демонстрируется таблица значений функции на промежутке

[-2,5; 2,5] с шагом h=0,5 (заготовлена заранее). Построим график этой функции. На промежутке (-2,5; 2,5) график имеет одну точку пересечения с осью абсцисс, значит, на этом промежутке уравнение имеет один корень.

  1. Разработка компьютерной модели нахождения корня уравнения на языке Visual Basic (Приложение 3)

Проект “Приближенное решение уравнения” (Приложение1)

1. Поместить на форму текстовые поля для ввода числовых значений концов отрезка А и В, поле для ввода точности вычислений и поле для вывода значений корня.

2. Поместить на форму кнопку и создать событийную процедуру, вычисляющую корень уравнения методом половинного деления:

Private Sub Комманда1_Click()

dblC = (dblA + dblB) / 2

If (dblA ^ 3 — Cos(dblA)) * (dblC ^ 3 — Cos(dblC)) dblE

Текст8.Text = (dblA + dblB) / 2

End Sub

  1. Закрепление материала. Проверка качества усвоения материала.

Работа на компьютерах. Учащиеся получают задание (Приложение 2) решить уравнения в Excel и проверить правильность выполнения задания, используя программу, разработанную на Visual Basic.

Определить корни уравнения графически. Уточнить один из корней уравнения с точностью e =0,1.

источники:

http://msk.edu.ua/ivk/Informatika/Uch_posobiya/Excel/Equations/Doc/gl1.html

http://urok.1sept.ru/articles/508238

Помогаю со студенческими работами здесь

Решение уравнения методом половинного деления
Написать программу, которая решает заданное уравнение численным методом деления пополам. Должен…

Решение уравнения методом половинного деления
Всем привет! Прошу Вашей помощи написать в паскале решения уравнения методом половинного деления с…

Решение уравнения методом половинного деления
Решить ур-ие методом половинного деления ( дихотомия) с точностью E=10^-4
18 вариант.
51n|1,9-x|…

Решение уравнения методом половинного деления
Решение уравнения методом половинного деления.
sqrt{x} — x + 3 = 0

Программа работает…

Искать еще темы с ответами

Или воспользуйтесь поиском по форуму:

Друзья. Я что-то растерялся и не знаю в какую сторону копать. Прошу Вас подсказать, возможно с примерами.
У меня есть лист, на котором очень сложными формулами и хитростями многоуровнево производится расчёт конечного значения модели (это не суть, но значимый элемент, как мне кажется, в постановке проблемы). Т.е. я не могу произвести обратный расчёт по этим формула. Я лишь могу подставлять данные в модель, смотреть результат и определять устраивает ли он меня или нет.
Теперь сама история:

Бинарный поиск в n-мерном массиве
Пусть модель рассчитывается на основе n числа факторов, определяющих значение комплексной оценки. Каждый фактор изменяется в диапазоне min(n) и max(n). Причём для каждого из факторов данные значения индивидуальный. Таким образом массив имеет вид array(min(1):max(1);…;min(n):max(n)). Массивы отсортированы в порядке возрастания. Шаг изменения отдельного фактора также отличается для каждого (step n).
Простой перебор всех значений модели и поиск нужного значения – весьма ресурсоёмкая и затратная по времени операция, поскольку, например:
— min и max не ограничены;
— step может достигать 0,01;
— количество факторов n также не ограничено.

Что я пытался сделать и что не получилось
Сначала я хотел последовательно перебрать все значения модели, отследить значение комплексной оценки и, если оно меня удовлетворяет, занести его в таблицу подходящих для меня комбинаций значений факторов. (МНЕ, в конечном счёте, НУЖНО ВЫВЕСТИ ВСЕ ВОЗМОЖНЫЕ КОМБИНАЦИИ ФАКТОРОВ, ПРИ КОТОРЫХ КОМПЛЕКСНАЯ ОЦЕНКА БУДЕТ УДОВЛЕТВОРЯТЬ ЗАДАННОМУ УСЛОВИЮ).
Когда я просчитал количество возможных комбинаций и запустил макрос, то мой копм несчастно заныл и повис.
Количество комбинаций весьма значительно. Например, если принять, что модели задействовано всего 5 факторов, а их минимальные и максимальные значения совпадают и равны, соответственно 1 и 4, а также у них совпадает шаг расчёта и равен 0,01, то примерный подсчёт количества возможных комбинаций просто ошеломляет. Потому вариант последовательного перебора в моём случае, просто не выполним.

Какой мне видится вариант решения и я не знаю как его реализовать
Или в школе или в ВУЗе ещё при изучении pascal делали мы в качестве курсовой работы «метод половинного деления» (так его препод называла). Насколько я прочитал в сети — «метод бинарного поиска». Суть, как я помню, в том, что мы проверяем интервалы и если конечное значение функции в проверяемом интервале лежит между полученными интервальными значениями функции, то мы начинаем сужать диапазон и уточнять значения. Когда диапазон становился совсем небольшим, то мы просто перебирали в пределах этого маленького диапазона.
Как мне кажется, в моей проблеме этот вариант подходит.
Необходимо отметить, что для решения задачи мы предполагаем, что рост отдельного фактора на фоне остальных, может вызывать как рост комплексной оценки, так и не влиять на неё, так и уменьшать её.

Чего мне надо (чем помочь)
Если любезная публика не откажется, то мне бы хотелось увидеть  алгоритм и код (или что-то), которые позволили бы мне решить эту страшную задачку и при этом, чтобы моя машина выжила…

Вот как-то так… прошу Вашей подсказки и помощи.

Метод половинного деления

Онлайн калькулятор для решения уравнений (алгебраических и трансцендентных) методом половинного деления (метод дихотомии) один из приближенных методов (числовых методов).

Можно также указывать параметры метода, например интервал, на котором следует искать корень (интервал изоляции корня): 1<=x<=4 .

Синтаксис
основных функций:

xa: x^a
|x|: abs(x)
√x: Sqrt[x]
n√x: x^(1/n)
ax: a^x
logax: Log[a, x]
ln x: Log[x]
cos x: cos[x] или Cos[x]

sin x: sin[x] или Sin[x]
tg: tan[x] или Tan[x]
ctg: cot[x] или Cot[x]
sec x: sec[x] или Sec[x]
cosec x: csc[x] или Csc[x]
arccos x: ArcCos[x]
arcsin x: ArcSin[x]
arctg x: ArcTan[x]
arcctg x: ArcCot[x]
arcsec x: ArcSec[x]

arccosec x: ArcCsc[x]
ch x: cosh[x] или Cosh[x]
sh x: sinh[x] или Sinh[x]
th x: tanh[x] или Tanh[x]
cth x: coth[x] или Coth[x]
sech x: sech[x] или Sech[x]
cosech x: csch[x] или Csch[е]
areach x: ArcCosh[x]
areash x: ArcSinh[x]
areath x: ArcTanh[x]

areacth x: ArcCoth[x]
areasech x: ArcSech[x]
areacosech x: ArcCsch[x]
конъюнкция «И» ∧: &&
дизъюнкция «ИЛИ» ∨: ||
отрицание «НЕ» ¬: !
импликация =>
число π pi : Pi
число e: E
бесконечность ∞: Infinity, inf или oo

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»

Смотрите также

Приближенное решение уравнений в электронных таблицах

Вид занятия: практическая работа с использованием компьютера.

Цель: Научиться решать уравнения с заданной точностью на заданном отрезке.

  • развитие исследовательской, познавательной деятельности учащихся;
  • развитие умений использовать различные программные средства при решении одной задачи;
  • развитие коммуникативных способностей учащихся.

Методы обучения: наглядный, исследовательский, практический.

  1. Организационный момент.
  2. Создание проблемной ситуации.
  3. Использование графического метода для приближенного решения уравнений в электронных таблицах.
  4. Изучение метода половинного деления при решении уравнений.
  5. Моделирование листа электронных таблиц для приближенного решения уравнения методом половинного деления.
  6. Моделирование проекта “Приближенное решение уравнения” на объектно-ориентированном языке Visual Basic 6.0.
  7. Компьютерный эксперимент.
  8. Анализ полученных результатов.
  9. Подведение итогов урока.

– Сегодня нам предстоит решить задачу нахождения приближенного корня уравнения cos(x)=x, используя различные программные средства. Запишите тему урока: “Приближенное решение уравнений разными инструментальными средствами.”

– Пока вы не знаете никаких математических приемов решения этого уравнения, но знаете программу, в которой можно приближенно решить его графическим способом. Какая это программа? (Microsoft Excel.)

3. Использование графического метода для приближенного решения уравнений в электронных таблицах.

– В чем смысл метода? (Нужно построить график функции y = cos(x)–x на некотором отрезке, абсцисса точки пересечения графика с осью OX является корнем уравнения cos(x)=x.)

– Что нужно определить для построения графика? (Отрезок, на котором существует корень.)

– Сделайте это математическим методом. (Множеством значений левой части уравнения, функции y = cos(x), является отрезок [-1; 1]. Поэтому уравнение может иметь корень только на этом отрезке.)

– Итак, найдите приближенный корень уравнения cos(x)=x на отрезке [-1; 1] с шагом, например, 0,1 в программе Microsoft Excel.

Как в Excel Отделить Корни Уравнения • Функция корень

– Приближенный корень уравнения х=0,75. Однако это приближение не обладает высокой точностью. Для нахождения приближенного корня уравнения с указанной заранее точностью используются математические методы, в частности, метод половинного деления.

4. Изучение метода половинного деления при решении уравнений.

Рассмотрим непрерывную функцию f(х), такую, что корень данного уравнения является точкой пересечения графика этой функции с осью ОХ.

Идея метода половинного деления состоит в сведении первоначального отрезка [а; b], на котором существует корень уравнения, к отрезку заданной точности h.

Процесс сводится к последовательному делению отрезка пополам точкой с=(а+b)/2 и отбрасыванию половины отрезка ([a; c] или [c; b]), на которой корня нет. Выбирается тот отрезок, на концах которого функция принимает значения разных знаков, т.е. произведение этих значений отрицательно. Функция на этом отрезке пересекает ось абсцисс. Концам этого отрезка вновь присваивают обозначения a, b.

Это деление продолжается до тех пор, пока длина отрезка не станет меньше удвоенной точности, т.е. пока не выполнится неравенство (b-a)/2 = e

Квадратный корень в excel

​ число были передано​​ Она имеет следующий​
​ дискриминант больше или​ формуле. Иначе будет​ из дискриминанта будет​
​ мыши в правый​
​ свободного падения.​Где:​
​ следующего вида:​ действия.​
​ Для вычисления корня​

специалист

Мнение эксперта

Витальева Анжела, консультант по работе с офисными программами

Со всеми вопросами обращайтесь ко мне!

Задать вопрос эксперту

Для её В первом случае воспользуемся Степень указать число качестве аргумента функции В математических науках об ошибке ЧИСЛО. Если же вам нужны дополнительные объяснения, обращайтесь ко мне!

Описанный выше метод позволяет с легкостью извлекать квадратный корень из числа, однако, для кубического уже не подходит. Но и эта задача в Excel реализуема. Для этого числовое значение нужно возвести в дробную степень, где в числителе будет стоять “1”, а в знаменателе – цифра, означающая степень корня (n).
корни уравнения.

Приближенное решение уравнений в электронных таблицах

​ предмета (например, камня),​ в которую его​ под корнем.​ нажатия кнопки «Вставить​ большинству, то как​=КОРЕНЬ(16)​ ниже.​sqrt​Skip​ =КОРЕНЬ(ABS(-169)) будет число​ на ячейку, содержащую​ решения уравнения, будет​ 0). Следующая функция​ выполняется проверка наличия​ соответствующих ячеек.​Заполним таблицу данных:​Внесем исходные данные в​

Второй способ: поиск корня путем возведения в степень

Основное достоинство этого метода заключается в том, что пользователь может произвести извлечение корня абсолютно любой степени, просто изменив «n» в знаменателе на необходимое ему число.

Первоначально рассмотрим то, как выглядит формула для извлечения корня квадратного: (Число)^(1/2). Несложно догадаться, что тогда формула для вычисления корня кубического выглядит следующим образом: =(Число)^(1/3) и т.д. Разберем этот процесс на конкретном примере. Пошаговое руководство выглядит так:

Стоит отметить, что здесь, как и при работе с оператором КОРЕНЬ, вместо определенного числового значения можно ввести координаты необходимой ячейки.

специалист

Мнение эксперта

Витальева Анжела, консультант по работе с офисными программами

Со всеми вопросами обращайтесь ко мне!

Задать вопрос эксперту

Чтобы воспользоваться ей, нужно в ячейке написать КОРЕНЬ и без пробелов внутри скобки написать значение, от которого нужно найти квадратный корень. Если же вам нужны дополнительные объяснения, обращайтесь ко мне!

За квадратный корень отвечает функция КОРЕНЬ(значение). Чтобы воспользоваться ей, нужно в ячейке написать =КОРЕНЬ и без пробелов внутри скобки написать значение, от которого нужно найти квадратный корень.

Как извлечь корень в Эксель: квадратный, кубический, в степени

  1. Производим выбор того сектора, в котором планируем производить все необходимые нам вычисления.
  2. Нажимаем на кнопку «Вставить функцию», которая располагается рядом со строкой для ввода формул, и выглядит как «fx».
  1. На экране отобразилось небольшое окошко под названием «Вставка функции». Раскрываем обширный список, находящийся рядом с надписью «Категория:». В раскрывшемся перечне выбираем элемент «Математические». В окне «Выберите функцию:» находим функцию «КОРЕНЬ» и выбираем ее нажатием ЛКМ. После проведения всех манипуляций жмем на «ОК».
  1. На экране отобразилось новое окошко под названием «Аргументы функции», которое необходимо заполнить данными. В поле «Число» нужно ввести числовой показатель или же просто указать координаты сектора, в котором хранится нужная числовая информация.
  1. После проведения всех манипуляций щелкаем на кнопку «ОК».
  2. Готово! В заранее выбранном секторе отобразился результат наших преобразований.

​B2 – ячейка с​ квадратного корня из​ возможных алгоритмов решения.​ значение, корень которой​ степени числа, получим​ в скобки, после​ математических науках. Для​ Функционал программы позволяет​ функций, позволяющих решать​ ошибки #ЧИСЛО!.​Код200?’200px’:»+(this.scrollHeight+5)+’px’);»>=((4-6)^2+(5-3)^2)^0,5/4​ квадрате)/4 . Корень​ использовать математический символ​ функции КОРЕНЬ была​Формула в ячейке B7​

Like this post? Please share to your friends:
  • Метод половинного деления дихотомии excel
  • Метод половинного деления в excel это
  • Метод половинного деления в excel пример
  • Метод половинного деления в excel для уравнения
  • Метод половинного деления в excel график