Математический анализ данных в excel


Рассмотрим инструмент Описательная статистика, входящий в надстройку Пакет Анализа. Рассчитаем показатели выборки: среднее, медиана, мода, дисперсия, стандартное отклонение и др.

Задача

описательной статистики

(descriptive statistics) заключается в том, чтобы с использованием математических инструментов свести сотни значений

выборки

к нескольким итоговым показателям, которые дают представление о

выборке

.В качестве таких статистических показателей используются:

среднее

,

медиана

,

мода

,

дисперсия, стандартное отклонение

и др.

Опишем набор числовых данных с помощью определенных показателей. Для чего нужны эти показатели? Эти показатели позволят сделать определенные

статистические выводы о распределении

, из которого была взята

выборка

. Например, если у нас есть

выборка

значений толщины трубы, которая изготавливается на определенном оборудовании, то на основании анализа этой

выборки

мы сможем сделать, с некой определенной вероятностью, заключение о состоянии процесса изготовления.

Содержание статьи:

  • Надстройка Пакет анализа;
  • Среднее выборки

    ;

  • Медиана выборки

    ;

  • Мода выборки

    ;

  • Мода и среднее значение

    ;

  • Дисперсия выборки

    ;

  • Стандартное отклонение выборки

    ;

  • Стандартная ошибка

    ;

  • Ассиметричность

    ;

  • Эксцесс выборки

    ;

  • Уровень надежности

    .

Надстройка Пакет анализа

Для вычисления статистических показателей одномерных

выборок

, используем

надстройку Пакет анализа

. Затем, все показатели рассчитанные надстройкой, вычислим с помощью встроенных функций MS EXCEL.


СОВЕТ

: Подробнее о других инструментах надстройки

Пакет анализа

и ее подключении – читайте в статье

Надстройка Пакет анализа MS EXCEL

.


Выборку

разместим на

листе

Пример

в файле примера

в диапазоне

А6:А55

(50 значений).


Примечание

: Для удобства написания формул для диапазона

А6:А55

создан

Именованный диапазон

Выборка.

В диалоговом окне

Анализ данных

выберите инструмент

Описательная статистика

.

После нажатия кнопки

ОК

будет выведено другое диалоговое окно,

в котором нужно указать:


  • входной интервал

    (Input Range) – это диапазон ячеек, в котором содержится массив данных. Если в указанный диапазон входит текстовый заголовок набора данных, то нужно поставить галочку в поле

    Метки в первой строке (

    Labels

    in

    first

    row

    ).

    В этом случае заголовок будет выведен в

    Выходном интервале.

    Пустые ячейки будут проигнорированы, поэтому нулевые значения необходимо обязательно указывать в ячейках, а не оставлять их пустыми;

  • выходной интервал

    (Output Range). Здесь укажите адрес верхней левой ячейки диапазона, в который будут выведены статистические показатели;

  • Итоговая статистика (

    Summary

    Statistics

    )

    . Поставьте галочку напротив этого поля – будут выведены основные показатели выборки:

    среднее, медиана, мода, стандартное отклонение

    и др.;
  • Также можно поставить галочки напротив полей

    Уровень надежности (

    Confidence

    Level

    for

    Mean

    )

    ,

    К-й наименьший

    (Kth Largest) и

    К-й наибольший

    (Kth Smallest).

В результате будут выведены следующие статистические показатели:

Все показатели выведены в виде значений, а не формул. Если массив данных изменился, то необходимо перезапустить расчет.

Если во

входном интервале

указать ссылку на несколько столбцов данных, то будет рассчитано соответствующее количество наборов показателей. Такой подход позволяет сравнить несколько наборов данных. При сравнении нескольких наборов данных используйте заголовки (включите их во

Входной интервал

и установите галочку в поле

Метки в первой строке

). Если наборы данных разной длины, то это не проблема — пустые ячейки будут проигнорированы.

Зеленым цветом на картинке выше и в

файле примера

выделены показатели, которые не требуют особого пояснения. Для большинства из них имеется специализированная функция:


  • Интервал

    (Range) — разница между максимальным и минимальным  значениями;

  • Минимум

    (Minimum) – минимальное значение в диапазоне ячеек, указанном во

    Входном интервале

    (см.

    статью про функцию

    МИН()

    );


  • Максимум

    (Maximum)– максимальное значение (см.

    статью про функцию

    МАКС()

    );


  • Сумма

    (Sum) – сумма всех значений (см.

    статью про функцию

    СУММ()

    );


  • Счет

    (Count) – количество значений во

    Входном интервале

    (пустые ячейки игнорируются, см.

    статью про функцию

    СЧЁТ()

    );


  • Наибольший

    (Kth Largest) – выводится К-й наибольший. Например, 1-й наибольший – это максимальное значение (см.

    статью про функцию

    НАИБОЛЬШИЙ()

    );


  • Наименьший

    (Kth Smallest) – выводится К-й наименьший. Например, 1-й наименьший – это минимальное значение (см.

    статью про функцию

    НАИМЕНЬШИЙ()

    ).

Ниже даны подробные описания остальных показателей.

Среднее выборки


Среднее

(mean, average) или

выборочное среднее

или

среднее выборки

(sample average) представляет собой

арифметическое среднее

всех значений массива. В MS EXCEL для вычисления среднего выборки используется функция

СРЗНАЧ()

.

Выборочное среднее

является «хорошей» (несмещенной и эффективной) оценкой

математического ожидания

случайной величины (подробнее см. статью

Среднее и Математическое ожидание в MS EXCEL

).

Медиана выборки


Медиана

(Median) – это число, которое является серединой множества чисел (в данном случае выборки): половина чисел множества больше, чем

медиана

, а половина чисел меньше, чем

медиана

. Для определения

медианы

необходимо сначала

отсортировать множество чисел

. Например,

медианой

для чисел 2, 3, 3,

4

, 5, 7, 10 будет 4.

Если множество содержит четное количество чисел, то вычисляется

среднее

для двух чисел, находящихся в середине множества. Например,

медианой

для чисел 2, 3,

3

,

5

, 7, 10 будет 4, т.к. (3+5)/2.

Если имеется длинный хвост распределения, то

Медиана

лучше, чем

среднее значение

, отражает «типичное» или «центральное» значение. Например, рассмотрим несправедливое распределение зарплат в компании, в которой руководство получает существенно больше, чем основная масса сотрудников.


Очевидно, что средняя зарплата (71 тыс. руб.) не отражает тот факт, что 86% сотрудников получает не более 30 тыс. руб. (т.е. 86% сотрудников получает зарплату в более, чем в 2 раза меньше средней!). В то же время медиана (15 тыс. руб.) показывает, что

как минимум

у 50% сотрудников зарплата меньше или равна 15 тыс. руб.

Для определения

медианы

в MS EXCEL существует одноименная функция

МЕДИАНА()

, английский вариант — MEDIAN().


Медиану

также можно вычислить с помощью формул

=КВАРТИЛЬ.ВКЛ(Выборка;2) =ПРОЦЕНТИЛЬ.ВКЛ(Выборка;0,5).

Подробнее о

медиане

см. специальную статью

Медиана в MS EXCEL

.


СОВЕТ

: Подробнее про

квартили

см. статью, про

перцентили (процентили)

см. статью.

Мода выборки


Мода

(Mode) – это наиболее часто встречающееся (повторяющееся) значение в

выборке

. Например, в массиве (1; 1;

2

;

2

;

2

; 3; 4; 5) число 2 встречается чаще всего – 3 раза. Значит, число 2 – это

мода

. Для вычисления

моды

используется функция

МОДА()

, английский вариант MODE().


Примечание

: Если в массиве нет повторяющихся значений, то функция вернет значение ошибки #Н/Д. Это свойство использовано в статье

Есть ли повторы в списке?

Начиная с

MS EXCEL 2010

вместо функции

МОДА()

рекомендуется использовать функцию

МОДА.ОДН()

, которая является ее полным аналогом. Кроме того, в MS EXCEL 2010 появилась новая функция

МОДА.НСК()

, которая возвращает несколько наиболее часто повторяющихся значений (если количество их повторов совпадает). НСК – это сокращение от слова НеСКолько.

Например, в массиве (1; 1;

2

;

2

;

2

; 3;

4

;

4

;

4

; 5) числа 2 и 4 встречаются наиболее часто – по 3 раза. Значит, оба числа являются

модами

. Функции

МОДА.ОДН()

и

МОДА()

вернут значение 2, т.к. 2 встречается первым, среди наиболее повторяющихся значений (см.

файл примера

, лист

Мода

).

Чтобы исправить эту несправедливость и была введена функция

МОДА.НСК()

, которая выводит все

моды

. Для этого ее нужно ввести как

формулу массива

.

Как видно из картинки выше, функция

МОДА.НСК()

вернула все три

моды

из массива чисел в диапазоне

A2:A11

: 1; 3 и 7. Для этого, выделите диапазон

C6:C9

, в

Строку формул

введите формулу

=МОДА.НСК(A2:A11)

и нажмите

CTRL+SHIFT+ENTER

. Диапазон

C

6:

C

9

охватывает 4 ячейки, т.е. количество выделяемых ячеек должно быть больше или равно количеству

мод

. Если ячеек больше чем м

о

д, то избыточные ячейки будут заполнены значениями ошибки #Н/Д. Если

мода

только одна, то все выделенные ячейки будут заполнены значением этой

моды

.

Теперь вспомним, что мы определили

моду

для выборки, т.е. для конечного множества значений, взятых из

генеральной совокупности

. Для

непрерывных случайных величин

вполне может оказаться, что выборка состоит из массива на подобие этого (0,935; 1,211; 2,430; 3,668; 3,874; …), в котором может не оказаться повторов и функция

МОДА()

вернет ошибку.

Даже в нашем массиве с

модой

, которая была определена с помощью

надстройки Пакет анализа

, творится, что-то не то. Действительно,

модой

нашего массива значений является число 477, т.к. оно встречается 2 раза, остальные значения не повторяются. Но, если мы посмотрим на

гистограмму распределения

, построенную для нашего массива, то увидим, что 477 не принадлежит интервалу наиболее часто встречающихся значений (от 150 до 250).

Проблема в том, что мы определили

моду

как наиболее часто встречающееся значение, а не как наиболее вероятное. Поэтому,

моду

в учебниках статистики часто определяют не для выборки (массива), а для функции распределения. Например, для

логнормального распределения

мода

(наиболее вероятное значение непрерывной случайной величины х), вычисляется как

exp

(

m



s

2

)

, где m и s параметры этого распределения.

Понятно, что для нашего массива число 477, хотя и является наиболее часто повторяющимся значением, но все же является плохой оценкой для

моды

распределения, из которого взята

выборка

(наиболее вероятного значения или для которого плотность вероятности распределения максимальна).

Для того, чтобы получить оценку

моды

распределения, из

генеральной совокупности

которого взята

выборка

, можно, например, построить

гистограмму

. Оценкой для

моды

может служить интервал наиболее часто встречающихся значений (самого высокого столбца). Как было сказано выше, в нашем случае это интервал от 150 до 250.


Вывод

: Значение

моды

для

выборки

, рассчитанное с помощью функции

МОДА()

, может ввести в заблуждение, особенно для небольших выборок. Эта функция эффективна, когда случайная величина может принимать лишь несколько дискретных значений, а размер

выборки

существенно превышает количество этих значений.

Например, в рассмотренном примере о распределении заработных плат (см. раздел статьи выше, о Медиане),

модой

является число 15 (17 значений из 51, т.е. 33%). В этом случае функция

МОДА()

дает хорошую оценку «наиболее вероятного» значения зарплаты.


Примечание

: Строго говоря, в примере с зарплатой мы имеем дело скорее с

генеральной совокупностью

, чем с

выборкой

. Т.к. других зарплат в компании просто нет.

О вычислении

моды

для распределения

непрерывной случайной величины

читайте статью

Мода в MS EXCEL

.

Мода и среднее значение

Не смотря на то, что

мода

– это наиболее вероятное значение случайной величины (вероятность выбрать это значение из

Генеральной совокупности

максимальна), не следует ожидать, что

среднее значение

обязательно будет близко к

моде

.


Примечание

:

Мода

и

среднее

симметричных распределений совпадает (имеется ввиду симметричность

плотности распределения

).

Представим, что мы бросаем некий «неправильный» кубик, у которого на гранях имеются значения (1; 2; 3; 4; 6; 6), т.е. значения 5 нет, а есть вторая 6.

Модой

является 6, а среднее значение – 3,6666.

Другой пример. Для

Логнормального распределения

LnN(0;1)

мода

равна =EXP(m-s2)= EXP(0-1*1)=0,368, а

среднее значение

1,649.

Дисперсия выборки


Дисперсия выборки

или

выборочная дисперсия (

sample

variance

) характеризует разброс значений в массиве, отклонение от

среднего

.

Из формулы №1 видно, что

дисперсия выборки

это сумма квадратов отклонений каждого значения в массиве

от среднего

, деленная на размер выборки минус 1.

В MS EXCEL 2007 и более ранних версиях для вычисления

дисперсии выборки

используется функция

ДИСП()

. С версии MS EXCEL 2010 рекомендуется использовать ее аналог — функцию

ДИСП.В()

.


Дисперсию

можно также вычислить непосредственно по нижеуказанным формулам (см.

файл примера

):

=КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1) =(СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/ (СЧЁТ(Выборка)-1)

– обычная формула

=СУММ((Выборка -СРЗНАЧ(Выборка))^2)/ (СЧЁТ(Выборка)-1)

формула массива


Дисперсия выборки

равна 0, только в том случае, если все значения равны между собой и, соответственно, равны

среднему значению

.

Чем больше величина

дисперсии

, тем больше разброс значений в массиве относительно

среднего

.

Размерность

дисперсии

соответствует квадрату единицы измерения исходных значений. Например, если значения в выборке представляют собой измерения веса детали (в кг), то размерность

дисперсии

будет кг

2

. Это бывает сложно интерпретировать, поэтому для характеристики разброса значений чаще используют величину равную квадратному корню из

дисперсии – стандартное отклонение

.

Подробнее о

дисперсии

см. статью

Дисперсия и стандартное отклонение в MS EXCEL

.

Стандартное отклонение выборки


Стандартное отклонение выборки

(Standard Deviation), как и

дисперсия

, — это мера того, насколько широко разбросаны значения в выборке

относительно их среднего

.

По определению,

стандартное отклонение

равно квадратному корню из

дисперсии

:


Стандартное отклонение

не учитывает величину значений в

выборке

, а только степень рассеивания значений вокруг их

среднего

. Чтобы проиллюстрировать это приведем пример.

Вычислим стандартное отклонение для 2-х

выборок

: (1; 5; 9) и (1001; 1005; 1009). В обоих случаях, s=4. Очевидно, что отношение величины стандартного отклонения к значениям массива у

выборок

существенно отличается.

В MS EXCEL 2007 и более ранних версиях для вычисления

Стандартного отклонения выборки

используется функция

СТАНДОТКЛОН()

. С версии MS EXCEL 2010 рекомендуется использовать ее аналог

СТАНДОТКЛОН.В()

.


Стандартное отклонение

можно также вычислить непосредственно по нижеуказанным формулам (см.

файл примера

):

=КОРЕНЬ(КВАДРОТКЛ(Выборка)/(СЧЁТ(Выборка)-1)) =КОРЕНЬ((СУММКВ(Выборка)-СЧЁТ(Выборка)*СРЗНАЧ(Выборка)^2)/(СЧЁТ(Выборка)-1))

Подробнее о

стандартном отклонении

см. статью

Дисперсия и стандартное отклонение в MS EXCEL

.

Стандартная ошибка

В

Пакете анализа

под термином

стандартная ошибка

имеется ввиду

Стандартная ошибка среднего

(Standard Error of the Mean, SEM).

Стандартная ошибка среднего

— это оценка

стандартного отклонения

распределения

выборочного среднего

.


Примечание

: Чтобы разобраться с понятием

Стандартная ошибка среднего

необходимо прочитать о

выборочном распределении

(см. статью

Статистики, их выборочные распределения и точечные оценки параметров распределений в MS EXCEL

) и статью про

Центральную предельную теорему

.


Стандартное отклонение распределения выборочного среднего

вычисляется по формуле σ/√n, где n — объём

выборки, σ — стандартное отклонение исходного

распределения, из которого взята

выборка

. Т.к. обычно

стандартное отклонение

исходного распределения неизвестно, то в расчетах вместо

σ

используют ее оценку

s



стандартное отклонение выборки

. А соответствующая величина s/√n имеет специальное название —

Стандартная ошибка среднего.

Именно эта величина вычисляется в

Пакете анализа.

В MS EXCEL

стандартную ошибку среднего

можно также вычислить по формуле

=СТАНДОТКЛОН.В(Выборка)/ КОРЕНЬ(СЧЁТ(Выборка))

Асимметричность


Асимметричность

или

коэффициент асимметрии

(skewness) характеризует степень несимметричности распределения (

плотности распределения

) относительно его

среднего

.

Положительное значение

коэффициента асимметрии

указывает, что размер правого «хвоста» распределения больше, чем левого (относительно среднего). Отрицательная асимметрия, наоборот, указывает на то, что левый хвост распределения больше правого.

Коэффициент асимметрии

идеально симметричного распределения или выборки равно 0.


Примечание

:

Асимметрия выборки

может отличаться расчетного значения асимметрии теоретического распределения. Например,

Нормальное распределение

является симметричным распределением (

плотность его распределения

симметрична относительно

среднего

) и, поэтому имеет асимметрию равную 0. Понятно, что при этом значения в

выборке

из соответствующей

генеральной совокупности

не обязательно должны располагаться совершенно симметрично относительно

среднего

. Поэтому,

асимметрия выборки

, являющейся оценкой

асимметрии распределения

, может отличаться от 0.

Функция

СКОС()

, английский вариант SKEW(), возвращает коэффициент

асимметрии выборки

, являющейся оценкой

асимметрии

соответствующего распределения, и определяется следующим образом:

где n – размер

выборки

, s –

стандартное отклонение выборки

.

В

файле примера на листе СКОС

приведен расчет коэффициента

асимметрии

на примере случайной выборки из

распределения Вейбулла

, которое имеет значительную положительную

асимметрию

при параметрах распределения W(1,5; 1).

Эксцесс выборки


Эксцесс

показывает относительный вес «хвостов» распределения относительно его центральной части.

Для того чтобы определить, что относится к хвостам распределения, а что к его центральной части, можно использовать границы μ +/-

σ

.


Примечание

: Не смотря на старания профессиональных статистиков, в литературе еще попадается определение

Эксцесса

как меры «остроконечности» (peakedness) или сглаженности распределения. Но, на самом деле, значение

Эксцесса

ничего не говорит о форме пика распределения.

Согласно определения,

Эксцесс

равен четвертому

стандартизированному моменту:

Для

нормального распределения

четвертый момент равен 3*σ

4

, следовательно,

Эксцесс

равен 3. Многие компьютерные программы используют для расчетов не сам

Эксцесс

, а так называемый Kurtosis excess, который меньше на 3. Т.е. для

нормального распределения

Kurtosis excess равен 0. Необходимо быть внимательным, т.к. часто не очевидно, какая формула лежит в основе расчетов.


Примечание

: Еще большую путаницу вносит перевод этих терминов на русский язык. Термин Kurtosis происходит от греческого слова «изогнутый», «имеющий арку». Так сложилось, что на русский язык оба термина Kurtosis и Kurtosis excess переводятся как

Эксцесс

(от англ. excess — «излишек»). Например, функция MS EXCEL

ЭКСЦЕСС()

на самом деле вычисляет Kurtosis excess.

Функция

ЭКСЦЕСС()

, английский вариант KURT(), вычисляет на основе значений выборки несмещенную оценку

эксцесса распределения

случайной величины и определяется следующим образом:

Как видно из формулы MS EXCEL использует именно Kurtosis excess, т.е. для выборки из

нормального распределения

формула вернет близкое к 0 значение.

Если задано менее четырех точек данных, то функция

ЭКСЦЕСС()

возвращает значение ошибки #ДЕЛ/0!

Вернемся к

распределениям случайной величины

.

Эксцесс

(Kurtosis excess) для

нормального распределения

всегда равен 0, т.е. не зависит от параметров распределения μ и σ. Для большинства других распределений

Эксцесс

зависит от параметров распределения: см., например,

распределение Вейбулла

или

распределение Пуассона

, для котрого

Эксцесс

= 1/λ.

Уровень надежности


Уровень

надежности

— означает вероятность того, что

доверительный интервал

содержит истинное значение оцениваемого параметра распределения.

Вместо термина

Уровень

надежности

часто используется термин

Уровень доверия

. Про

Уровень надежности

(Confidence Level for Mean) читайте статью

Уровень значимости и уровень надежности в MS EXCEL

.

Задав значение

Уровня

надежности

в окне

надстройки Пакет анализа

, MS EXCEL вычислит половину ширины

доверительного интервала для оценки среднего (дисперсия неизвестна)

.

Тот же результат можно получить по формуле (см.

файл примера

):

=ДОВЕРИТ.СТЬЮДЕНТ(1-0,95;s;n)

s —

стандартное отклонение выборки

, n – объем

выборки

.

Подробнее см. статью про

построение доверительного интервала для оценки среднего (дисперсия неизвестна)

.

Математические методы анализа данных

В
табл. 4 приведена классификация наиболее
популярных количественных методов
анализа данных.

Таблица
4

Раздел
математики

Методы

Элементарная
математика

Элементарные
функции (пропорции, балансовые
уравнения, расширение и сокращение
дробей и т.п.)

Классический
математический анализ

Дифференциальное
исчисление

Интегральное
исчисление

Вариационное
исчисление

Математическая
статистика

Индексы

Корреляционный
анализ (регрессионный анализ, ряды
динамики, производственные функции,
межотраслевой баланс, национальное
счетоводство, факторный анализ)

Эконометрика

Математическая
статистика

Математическое
программирование

Линейное
программирование

Нелинейное
программирование

Динамическое
программирование

Исследование
операций и теория массового обслуживания
(ТМО)

Управление
запасами

Теория
расписаний

Сетевое
планирование и управление

Методы
ТМО

Системный
анализ

Экономическая
кибернетика

Имитационное
моделирование

Методы
распознавания образов

Эвристические
методы

Методы
аналогий (экспертные оценки, мозговая
атака)

Детерминированные
модели описывают функциональную
зависимость от аргументов (факторов)
результирующего признака (функции). Для
целей анализа выполняется тождественное
преобразование функционала. По виду
функционала модели классифицируются
следующим образом:

  1. Аддитивные
    модели:

  1. Мультипликативные
    модели:

  1. Кратные
    модели:

Для
реализации моделей вычислений и анализа
данных в Microsoft Office наиболее часто
используется электронная таблица Excel.
Осуществляется специальная подготовка
данных на листе рабочей книги Microsoft
Excel, включая размещение исходных данных,
ввод формул для вычисления параметров
модели, выбор базовых информационных
технологий для моделирования.

Результаты
анализа данных зависят от достоверности
исходных данных. Если предполагается
непосредственный ввод исходных данных
в ячейки листа, используются средства
проверки вводимых значений с учетом
характер данных, вида функционала. Так,
для функционалов вида
не допустимо нулевое значение параметраb=0.
Исходные данных проверяются на диапазон
значений чисел, форматы вводимых данных
и т.п. Для этих целей используются команды
меню Microsoft Excel:

  • ДанныеПроверка

    задание условий проверки для данных,
    вводимых в ячейки таблицы;

  • ФорматУсловное
    форматирование –
    изменение формата данных в ячейке, в
    зависимости от выполнения заданных
    условий.

Для анализа
данных часто выполняется тождественное
преобразование функционала к виду,
более удобному для анализа, позволяющему
получить дополнительную информацию.

  • Детализация
    параметра функционала.

Если
числитель дроби можно представить как
сумму отдельных слагаемых, имеющих
самостоятельный экономический смысл,
например, ,тофункционал
вида:
заменяется на функционал аддитивного
вида:.

При
этом необходимо обеспечить контроль
соответствия числителя сумме слагаемых.

Каждому
параметру
на листе рабочей книги будет соответствовать
отдельный столбец таблицы (рис. 3).

Параметр
b

Y

a1

a1/b

a2

a2/b

a3

a4/b

a4

a4/b

a

Результат

Проверка

Y1

Y2

Y3

Рисунок
3

В
ячейках столбца «Проверка» введены
формулы вида:
=ЕСЛИ(СУММ( «a1»; «a2»;
«a3»;
«a4»)
– «a»=0;
0; «Ошибка ввода»).

 В реальной
формуле следует использовать не имена
параметров, а ссылки на их адреса.

Ячейка,
соответствующая параметру b,
может содержать список значений для
выбора. Такой список может быть создан
с помощью команды меню ДанныеПроверка.
Это
дает возможность моделировать расчеты,
изменяя значение b.
В
ячейках промежуточных результатов
введены формулы вида: аj/b,
которые представляют интерес для анализа
данных. В ячейках результата содержатся
формулы вида: =СУММ(«a1/b»;«a2/b»;«a3/b»;«a4/b»).

  • Включение
    новых параметров в модель.

Если
и числитель, и знаменатель дроби исходного
функционала видаможно умножить на одно и то же выражение,
функционал заменяется на функционал
мультипликативного вида:

Дополнительные
параметры подбираются таким образом,
чтобы была обеспечена определенность
всех отношений. Последовательность
разложения учитывает экономический
смысл этих параметров. На рабочем листе
группа дополнительных параметров (c,
d,
…) вводится однократно. Для моделирования
расчетов можно применить сценарный
подход, с помощью которого задаются
взаимосвязанные значения дополнительных
параметров (c,
d.
…). Промежуточные показатели (c/d,
…) должны иметь определенный экономический
смысл и являются константами.

с

d

c/d

Y

a

b

A/c

d/b

Результат

Y1

Y2

Y3

Рисунок
4

Формулы
вычислений a/c
и d/b
используют абсолютные ссылки на
неизменяемые параметры. Результат
вычисляется как произведение отношений:
a/c,
c/d,
d/b.
Наибольший интерес для анализа данных
представляют столбцы a/c
и d/b,
а также константа c/d.

  • Тождественное
    преобразование параметров модели.

Если
числитель и знаменатель исходного
функционала вида:
можно разделить на одно и то же выражение,
функционал заменяется на функционал
кратного вида:.
Обязательные условия:b
и с
отличны от нуля.

с

Y

A

b

a/c

b/c

Результат

Y1

Y2

Y3

Рисунок
5

Значение
выражения c
может выбираться из списка, который
создается командой меню ДанныеПроверка.
Интерес
для анализа представляются столбцы a/c
и b/c.

Общим
приемом анализа факторных моделей
является определение величин абсолютного
и относительного
изменения
функции за счет изменения параметров
(факторов) с учетом их приоритетности,
используются метод цепных подстановок
и индексный метод.

Для
цепных
подстановок

последовательно заменяется базисное
значение фактора на фактическое значение
для определения его влияния на функционал.
В каждый момент анализируется влияние
только одного фактора и исключается
влияние остальных.

В
общем виде влияние отдельного фактора
изучается следующим образом (частные
производные):

В
зависимости от вида функционала, цепные
подстановки выполняются следующим
образом:

  • Для
    функционала аддитивного вида:

1
– фактическое значение, 0 – базисное
значение параметра.

  • Для
    функционала мультипликативного вида:

  • Для
    кратного функционала:

Индексы
– относительные
величины, применяемые для характеристики
динамики развития экономических
процессов, анализа структурных пропорций.
Различают индивидуальные и общие
индексы. Индивидуальные индексы
характеризуют изменение функционала
вследствие изменения отдельных факторов,
общие индексы – изменение функционала
от всех факторов одновременно. Общие
индексы могут исчисляться как по
агрегатной, так и по средней форме, в
зависимости от характера исходных
данных. Наиболее часто индексный метод
применяется для функционалов
мультипликативного вида, например,
объем выручки (V)
зависит от реализации продукции по цене
(p)
в количестве (q)
единиц:

Индивидуальные
индексы показывают изменение отдельных
факторов в динамике:

Агрегатный
общий индекс по цене (индекс Пааше):

В
качестве измерителя выбран количественный
показатель количества реализации (q).
Характеризует влияние изменения цен
на стоимость товаров, реализованных в
отчетном году.

Общий
индекс может быть рассчитан и иным
способом (индекс Ласпейреса):

Характеризует
влияние изменения цен на стоимость
товаров, реализованных в базисном году.
Этот индекс используется для прогнозирования
объемов товарооборота в связи с
изменениями цен на товары в будущем.

Если
соизмерителями цен базисного и отчетного
года являются средние величины количества
реализации, вычисляется общий индекс
(индекс Лоу):

Таблица
5

Индекс
Пааше

Характеристика
влияния изменения фактора на функционал,
измеритель – на уровне отчетного
периода (определение экономического
эффекта изменения значения фактора).

Индекс
Ласпейреса

Характеристика
влияния фактора на функционал,
измеритель – на уровне базисного года
(прогнозирование значений функционала
на будущие периоды).

Индекс
Лоу

Характеристика
влияния изменения фактора, измеритель
– усредненное значение (в расчетах
на длительную перспективу).

При
использовании в анализе индексного
метода учитывается одновременность
действия всех факторов, их различная
направленность, обобщенная формула
связи индексов факторов и функционала:

Для
функции из двух переменных вида
полное
приращение функции вычисляется по
формуле:

Для
факторной модели вида
абсолютное
изменение показателяZ
за счет
факторов X
и Y
определяется по формулам:

Для
непрерывно дифференцируемых функций
вычисляются приращения:

Таблица
6

Функционал

Вычисляемое
выражение

U=X
Y

U=X
Y Z

U=X
/ Y

Содержание

  1. Использование описательной статистики
  2. Подключение «Пакета анализа»
  3. Размах вариации
  4. Вычисление коэффициента вариации
  5. Шаг 1: расчет стандартного отклонения
  6. Шаг 2: расчет среднего арифметического
  7. Шаг 3: нахождение коэффициента вариации
  8. Простая формула для расчета объема выборки
  9. Пример расчета объема выборки
  10. Задачи о генеральной доле
  11. По части судить о целом
  12. Как рассчитать объем выборки
  13. Как определить статистические выбросы и сделать выборку для их удаления в Excel
  14. Способ 1: применение расширенного автофильтра
  15. Способ 2: применение формулы массива
  16. СРЗНАЧ()
  17. СРЗНАЧЕСЛИ()
  18. МАКС()
  19. МИН()

Использование описательной статистики

Под описательной статистикой понимают систематизацию эмпирических данных по целому ряду основных статистических критериев. Причем на основе полученного результата из этих итоговых показателей можно сформировать общие выводы об изучаемом массиве данных.

В Экселе существует отдельный инструмент, входящий в «Пакет анализа», с помощью которого можно провести данный вид обработки данных. Он так и называется «Описательная статистика». Среди критериев, которые высчитывает данный инструмент следующие показатели:

  • Медиана;
  • Мода;
  • Дисперсия;
  • Среднее;
  • Стандартное отклонение;
  • Стандартная ошибка;
  • Асимметричность и др.

Рассмотрим, как работает данный инструмент на примере Excel 2010, хотя данный алгоритм применим также в Excel 2007 и в более поздних версиях данной программы.

Подключение «Пакета анализа»

Как уже было сказано выше, инструмент «Описательная статистика» входит в более широкий набор функций, который принято называть Пакет анализа. Но дело в том, что по умолчанию данная надстройка в Экселе отключена. Поэтому, если вы до сих пор её не включили, то для использования возможностей описательной статистики, придется это сделать.

  1. Переходим во вкладку «Файл». Далее производим перемещение в пункт «Параметры».
  2. В активировавшемся окне параметров перемещаемся в подраздел «Надстройки». В самой нижней части окна находится поле «Управление». Нужно в нем переставить переключатель в позицию «Надстройки Excel», если он находится в другом положении. Вслед за этим жмем на кнопку «Перейти…».
  3. Запускается окно стандартных надстроек Excel. Около наименования «Пакет анализа» ставим флажок. Затем жмем на кнопку «OK».

После вышеуказанных действий надстройка Пакет анализа будет активирована и станет доступной во вкладке «Данные» Эксель. Теперь мы сможем использовать на практике инструменты описательной статистики.

Размах вариации

Размах вариации – разница между максимальным и минимальным значением:

Ниже приведена графическая интерпретация размаха вариации.

Видно максимальное и минимальное значение, а также расстояние между ними, которое и соответствует размаху вариации.

С одной стороны, показатель размаха может быть вполне информативным и полезным. К примеру, максимальная и минимальная стоимость квартиры в городе N, максимальная и минимальная зарплата по профессии в регионе и проч. С другой стороны, размах может быть очень широким и не иметь практического смысла, т.к. зависит лишь от двух наблюдений. Таким образом, размах вариации очень неустойчивая величина.

Вычисление коэффициента вариации

Этот показатель представляет собой отношение стандартного отклонения к среднему арифметическому. Полученный результат выражается в процентах.

В Экселе не существует отдельно функции для вычисления этого показателя, но имеются формулы для расчета стандартного отклонения и среднего арифметического ряда чисел, а именно они используются для нахождения коэффициента вариации.

Шаг 1: расчет стандартного отклонения

Стандартное отклонение, или, как его называют по-другому, среднеквадратичное отклонение, представляет собой квадратный корень из дисперсии. Для расчета стандартного отклонения используется функция СТАНДОТКЛОН. Начиная с версии Excel 2010 она разделена, в зависимости от того, по генеральной совокупности происходит вычисление или по выборке, на два отдельных варианта: СТАНДОТКЛОН.Г и СТАНДОТКЛОН.В.

Синтаксис данных функций выглядит соответствующим образом:

= СТАНДОТКЛОН(Число1;Число2;…)
= СТАНДОТКЛОН.Г(Число1;Число2;…)
= СТАНДОТКЛОН.В(Число1;Число2;…)

  1. Для того, чтобы рассчитать стандартное отклонение, выделяем любую свободную ячейку на листе, которая удобна вам для того, чтобы выводить в неё результаты расчетов. Щелкаем по кнопке «Вставить функцию». Она имеет внешний вид пиктограммы и расположена слева от строки формул.

Выполняется активация Мастера функций, который запускается в виде отдельного окна с перечнем аргументов. Переходим в категорию «Статистические» или «Полный алфавитный перечень». Выбираем наименование «СТАНДОТКЛОН.Г» или «СТАНДОТКЛОН.В», в зависимости от того, по генеральной совокупности или по выборке следует произвести расчет. Жмем на кнопку «OK».

Открывается окно аргументов данной функции. Оно может иметь от 1 до 255 полей, в которых могут содержаться, как конкретные числа, так и ссылки на ячейки или диапазоны. Ставим курсор в поле «Число1». Мышью выделяем на листе тот диапазон значений, который нужно обработать. Если таких областей несколько и они не смежные между собой, то координаты следующей указываем в поле «Число2» и т.д. Когда все нужные данные введены, жмем на кнопку «OK»

  • В предварительно выделенной ячейке отображается итог расчета выбранного вида стандартного отклонения.
  • Шаг 2: расчет среднего арифметического

    Среднее арифметическое является отношением общей суммы всех значений числового ряда к их количеству. Для расчета этого показателя тоже существует отдельная функция – СРЗНАЧ. Вычислим её значение на конкретном примере.

      Выделяем на листе ячейку для вывода результата. Жмем на уже знакомую нам кнопку «Вставить функцию».

    В статистической категории Мастера функций ищем наименование «СРЗНАЧ». После его выделения жмем на кнопку «OK».

    Запускается окно аргументов СРЗНАЧ. Аргументы полностью идентичны тем, что и у операторов группы СТАНДОТКЛОН. То есть, в их качестве могут выступать как отдельные числовые величины, так и ссылки. Устанавливаем курсор в поле «Число1». Так же, как и в предыдущем случае, выделяем на листе нужную нам совокупность ячеек. После того, как их координаты были занесены в поле окна аргументов, жмем на кнопку «OK».

  • Результат вычисления среднего арифметического выводится в ту ячейку, которая была выделена перед открытием Мастера функций.
  • Шаг 3: нахождение коэффициента вариации

    Теперь у нас имеются все необходимые данные для того, чтобы непосредственно рассчитать сам коэффициент вариации.

      Выделяем ячейку, в которую будет выводиться результат. Прежде всего, нужно учесть, что коэффициент вариации является процентным значением. В связи с этим следует поменять формат ячейки на соответствующий. Это можно сделать после её выделения, находясь во вкладке «Главная». Кликаем по полю формата на ленте в блоке инструментов «Число». Из раскрывшегося списка вариантов выбираем «Процентный». После этих действий формат у элемента будет соответствующий.

    Снова возвращаемся к ячейке для вывода результата. Активируем её двойным щелчком левой кнопки мыши. Ставим в ней знак «=». Выделяем элемент, в котором расположен итог вычисления стандартного отклонения. Кликаем по кнопке «разделить» (/) на клавиатуре. Далее выделяем ячейку, в которой располагается среднее арифметическое заданного числового ряда. Для того, чтобы произвести расчет и вывести значение, щёлкаем по кнопке Enter на клавиатуре.

  • Как видим, результат расчета выведен на экран.
  • Таким образом мы произвели вычисление коэффициента вариации, ссылаясь на ячейки, в которых уже были рассчитаны стандартное отклонение и среднее арифметическое. Но можно поступить и несколько по-иному, не рассчитывая отдельно данные значения.

      Выделяем предварительно отформатированную под процентный формат ячейку, в которой будет выведен результат. Прописываем в ней формулу по типу:

    Вместо наименования «Диапазон значений» вставляем реальные координаты области, в которой размещен исследуемый числовой ряд. Это можно сделать простым выделением данного диапазона. Вместо оператора СТАНДОТКЛОН.В, если пользователь считает нужным, можно применять функцию СТАНДОТКЛОН.Г.

  • После этого, чтобы рассчитать значение и показать результат на экране монитора, щелкаем по кнопке Enter.
  • Существует условное разграничение. Считается, что если показатель коэффициента вариации менее 33%, то совокупность чисел однородная. В обратном случае её принято характеризовать, как неоднородную.

    Как видим, программа Эксель позволяет значительно упростить расчет такого сложного статистического вычисления, как поиск коэффициента вариации. К сожалению, в приложении пока не существует функции, которая высчитывала бы этот показатель в одно действие, но при помощи операторов СТАНДОТКЛОН и СРЗНАЧ эта задача очень упрощается. Таким образом, в Excel её может выполнить даже человек, который не имеет высокого уровня знаний связанных со статистическими закономерностями.

    Разделы: Математика

    • Совершенствование умений и навыков нахождения статистических характеристик случайной величины, работа с расчетами в Excel;
    • применение информационно коммутативных технологий для анализа данных; работа с различными информационными носителями.
    1. Сегодня мы научимся рассчитывать статистические характеристики для больших по объему выборок, используя возможности современных компьютерных технологий.
    2. Для начала вспомним:

    – что называется случайной величиной? (Случайной величиной называют переменную величину, которая в зависимости от исхода испытания принимает одно значение из множества возможных значений.)

    – Какие виды случайных величин мы знаем? (Дискретные, непрерывные.)

    – Приведите примеры непрерывных случайных величин (рост дерева), дискретных случайных величин (количество учеников в классе).

    – Какие статистические характеристики случайных величин мы знаем (мода, медиана, среднее выборочное значение, размах ряда).

    – Какие приемы используются для наглядного представления статистических характеристик случайной величины (полигон частот, круговые и столбчатые диаграммы, гистограммы).

    1. Рассмотрим, применение инструментов Excel для решения статистических задач на конкретном примере.

    Пример. Проведена проверка в 100 компаниях. Даны значения количества работающих в компании (чел.):

    23 25 24 25 30 24 30 26 28 26
    32 33 31 31 25 33 25 29 30 28
    23 30 29 24 33 30 30 28 26 25
    26 29 27 29 26 28 27 26 29 28
    29 30 27 30 28 32 28 26 30 26
    31 27 30 27 33 28 26 30 31 29
    27 30 30 29 27 26 28 31 29 28
    33 27 30 33 26 31 34 28 32 22
    29 30 27 29 34 29 32 29 29 30
    29 29 36 29 29 34 23 28 24 28
    рассчитать числовые характеристики:

    • моду
    • медиану
    • размах ряда
    • построить полигон частот
    • построить столбчатую и круговую диаграммы
    • раскрыть смысловую сторону каждой характеристики

    1. Занести данные в EXCEL, каждое число в отдельную ячейку.

    23 25 24 25 30 24 30 26 28 26
    32 33 31 31 25 33 25 29 30 28
    23 30 29 24 33 30 30 28 26 25
    26 29 27 29 26 28 27 26 29 28
    29 30 27 30 28 32 28 26 30 26
    31 27 30 27 33 28 26 30 31 29
    27 30 30 29 27 26 28 31 29 28
    33 27 30 33 26 31 34 28 32 22
    29 30 27 29 34 29 32 29 29 30
    29 29 36 29 29 34 23 28 24 28

    2. Для расчета числовых характеристик используем опцию Вставка – Функция. И в появившемся окне в строке категория выберем – статистические, в списке: МОДА

    В поле Число 1 ставим курсор и мышкой выделяем нашу таблицу:

    Нажимаем клавишу ОК. Получили Мо = 29 (чел) – Фирм у которых в штате 29 человек больше всего.

    Используя тот же путь вычисляем медиану.

    Вставка – Функция – Статистические – Медиана.

    В поле Число 1 ставим курсор и мышкой выделяем нашу таблицу:

    Нажимаем клавишу ОК. Получили Ме = 29 (чел) – среднее значение сотрудников в фирме.

    Размах ряда чисел – разница между наименьшим и наибольшим возможным значением случайной величины. Для вычисления размаха ряда нужно найти наибольшее и наименьшее значения нашей выборки и вычислить их разность.

    Вставка – Функция – Статистические – МАКС.

    В поле Число 1 ставим курсор и мышкой выделяем нашу таблицу:

    Нажимаем клавишу ОК. Получили наибольшее значение = 36.

    Вставка – Функция – Статистические – МИН.

    В поле Число 1 ставим курсор и мышкой выделяем нашу таблицу:

    Нажимаем клавишу ОК. Получили наименьшее значение = 22.

    36 – 22 = 14 (чел) – разница между фирмой с наибольшим штатом сотрудников и фирмой с наименьшим штатом сотрудников.

    Для построения диаграммы и полигона частот необходимо задать закон распределения, т.е. составить таблицу значений случайной величины и соответствующих им частот. Мы ухе знаем, что наименьшее число сотрудников в фирме = 22, а наибольшее = 36. Составим таблицу, в которой значения xi случайной величины меняются от 22 до 36 включительно шагом 1.

    xi 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
    ni

    Чтобы сосчитать частоту каждого значения воспользуемся

    Вставка – Функция – Статистические – СЧЕТЕСЛИ.

    В окне Диапазон ставим курсор и выделяем нашу выборку, а в окне Критерий ставим число 22

    Нажимаем клавишу ОК, получаем значение 1, т.е. число 22 в нашей выборке встречается 1 раз и его частота =1. Аналогичным образом заполняем всю таблицу.

    xi 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
    ni 1 3 4 5 11 9 13 18 16 6 4 6 3 0 1

    Для проверки вычисляем объем выборки, сумму частот (Вставка – Функция – Математические – СУММА). Должно получиться 100 (количество всех фирм).

    Чтобы построить полигон частот выделяем таблицу – Вставка – Диаграмма – Стандартные – Точечная (точечная диаграмма на которой значения соединены отрезками)

    Нажимаем клавишу Далее, в Мастере диаграмм указываем название диаграммы (Полигон частот), удаляем легенду, редактируем шкалу и характеристики диаграммы для наибольшей наглядности.

    Для построения столбчатой и круговой диаграмм используем тот же путь (выбирая нужный нам тип диаграммы).

    Диаграмма – Стандартные – Круговая.

    Диаграмма – Стандартные – Гистограмма.

    4. Сегодня на уроке мы научились применять компьютерные технологии для анализа и обработки статистической информации.

    Простая формула для расчета объема выборки

    где: n – объем выборки;

    z – нормированное отклонение, определяемое исходя из выбранного уровня доверительности. Этот показатель характеризует возможность, вероятность попадания ответов в специальный – доверительный интервал. На практике уровень доверительности часто принимают за 95% или 99%. Тогда значения z будут соответственно 1,96 и 2,58;

    p – вариация для выборки, в долях. По сути, p – это вероятность того, что респонденты выберут той или иной вариант ответа. Допустим, если мы считаем, что четверть опрашиваемых выберут ответ «Да», то p будет равно 25%, то есть p = 0,25;

    q = (1 – p);

    e – допустимая ошибка, в долях.

    Пример расчета объема выборки

    Компания планирует провести социологическое исследование с целью выявить долю курящих лиц в населении города. Для этого сотрудники компании будут задавать прохожим один вопрос: «Вы курите?». Возможных вариантов ответа, таким образом, только два: «Да» и «Нет».

    Объем выборки в этом случае рассчитывается следующим образом. Уровень доверительности принимается за 95%, тогда нормированное отклонение z = 1,96. Вариацию принимаем за 50%, то есть условно считаем, что половина респондентов может ответить на вопрос о том, курят ли они – «Да». Тогда p = 0,5. Отсюда находим q = 1 – p = 1 – 0,5 = 0,5. Допустимую ошибку выборки принимаем за 10%, то есть e = 0,1.

    Подставляем эти данные в формулу и считаем:

    Получаем объем выборки n = 96 человек.

    Задачи о генеральной доле

    На вопрос «Накрывает ли доверительный интервал заданное значение p0?» — можно ответить, проверив статистическую гипотезу H0:p=p0. При этом предполагается, что опыты проводятся по схеме испытаний Бернулли (независимы, вероятность p появления события А постоянна). По выборке объема n определяют относительную частоту p* появления события A: где m — количество появлений события А в серии из n испытаний. Для проверки гипотезы H0 используется статистика, имеющая при достаточно большом объеме выборки стандартное нормальное распределение (табл. 1).
    Таблица 1 – Гипотезы о генеральной доле

    Гипотеза

    H0:p=p0 H0:p1=p2
    Предположения Схема испытаний Бернулли Схема испытаний Бернулли
    Оценки по выборке
    Статистика K
    Распределение статистики K Стандартное нормальное N(0,1) Стандартное нормальное N(0,1)

    Пример №1. С помощью случайного повторного отбора руководство фирмы провело выборочный опрос 900 своих служащих. Среди опрошенных оказалось 270 женщин. Постройте доверительный интервал, с вероятностью 0.95 накрывающий истинную долю женщин во всем коллективе фирмы.
    Решение. По условию выборочная доля женщин составляет (относительная частота женщин среди всех опрошенных). Так как отбор является повторным, и объем выборки велик (n=900) предельная ошибка выборки определяется по формуле
    (относительная частота женщин среди всех опрошенных). Так как отбор является повторным, и объем выборки велик (n=900) предельная ошибка выборки определяется по формуле

    Значение uкр находим по таблице функции Лапласа из соотношения 2Ф(uкр)=γ, т.е. Функция Лапласа (приложение 1) принимает значение 0.475 при uкр=1.96. Следовательно, предельная ошибка Функция Лапласа (приложение 1) принимает значение 0.475 при uкр=1.96. Следовательно, предельная ошибка и искомый доверительный интервал
    (p – ε, p + ε) = (0.3 – 0.18; 0.3 + 0.18) = (0.12; 0.48)
    Итак, с вероятностью 0.95 можно гарантировать, что доля женщин во всем коллективе фирмы находится в интервале от 0.12 до 0.48.

    Пример №2. Владелец автостоянки считает день «удачным», если автостоянка заполнена более, чем на 80 %. В течение года было проведено 40 проверок автостоянки, из которых 24 оказались «удачными». С вероятностью 0.98 найдите доверительный интервал для оценки истинной доли «удачных» дней в течение года.
    Решение. Выборочная доля «удачных» дней составляет
    По таблице функции Лапласа найдем значение uкр при заданной
    доверительной вероятности
    По таблице функции Лапласа найдем значение uкр при заданной
    доверительной вероятности

    Ф(2.23) = 0.49, uкр = 2.33.
    Считая отбор бесповторным (т.е. две проверки в один день не проводилось), найдем предельную ошибку:
    где n=40, N = 365 (дней). Отсюда
    где n=40, N = 365 (дней). Отсюда

    и доверительный интервал для генеральной доли: (p – ε, p + ε) = (0.6 – 0.17; 0.6 + 0.17) = (0.43; 0.77)
    С вероятностью 0.98 можно ожидать, что доля «удачных» дней в течение года находится в интервале от 0.43 до 0.77.

    Пример №3. Проверив 2500 изделий в партии, обнаружили, что 400 изделий высшего сорта, а n–m – нет. Сколько надо проверить изделий, чтобы с уверенностью 95% определить долю высшего сорта с точностью до 0.01?
    Решение ищем по формуле определения численности выборки для повторного отбора.

    Ф(t) = γ/2 = 0.95/2 = 0.475 и этому значению по таблице Лапласа соответствует t=1.96
    Выборочная доля w = 0.16; ошибка выборки ε = 0.01

    Пример №4. Партия изделий принимается, если вероятность того, что изделие окажется соответствующим стандарту, составляет не менее 0.97. Среди случайно отобранных 200 изделий проверяемой партии оказалось 193 соответствующих стандарту. Можно ли на уровне значимости α=0,02 принять партию?
    Решение. Сформулируем основную и альтернативную гипотезы.
    H0:p=p0=0,97 — неизвестная генеральная доля p равна заданному значению p0=0,97. Применительно к условию — вероятность того, что деталь из проверяемой партии окажется соответствующей стандарту, равна 0.97; т.е. партию изделий можно принять.
    H1:p<0,97 – вероятность того, что деталь из проверяемой партии окажется соответствующей стандарту, меньше 0.97; т.е. партию изделий нельзя принять. При такой альтернативной гипотезе критическая область будет левосторонней.
    Наблюдаемое значение статистики K (таблица) вычислим при заданных значениях p0=0,97, n=200, m=193


    Критическое значение находим по таблице функции Лапласа из равенства


    По условию α=0,02 отсюда Ф(Ккр)=0,48 и Ккр=2,05. Критическая область левосторонняя, т.е. является интервалом (-∞;-Kkp)= (-∞;-2,05). Наблюдаемое значение Кнабл=-0,415 не принадлежит критической области, следовательно, на данном уровне значимости нет оснований отклонять основную гипотезу. Партию изделий принять можно.

    Пример №5. Два завода изготавливают однотипные детали. Для оценки их качества сделаны выборки из продукции этих заводов и получены следующие результаты. Среди 200 отобранных изделий первого завода оказалось 20 бракованных, среди 300 изделий второго завода — 15 бракованных.
    На уровне значимости 0.025 выяснить, имеется ли существенное различие в качестве изготавливаемых этими заводами деталей.
    Решение. Это задача о сравнении генеральных долей двух совокупностей. Сформулируем основную и альтернативную гипотезы.
    H0:p1=p2 — генеральные доли равны. Применительно к условию — вероятность появления бракованного изделия в продукции первого завода равна вероятности появления бракованного изделия в продукции второго завода (качество продукции одинаково).
    H0:p1≠p2 — заводы изготавливают детали разного качества.
    Для вычисления наблюдаемого значения статистики K (таблица) рассчитаем оценки по выборке.


    Наблюдаемое значение равно


    Так как альтернативная гипотеза двусторонняя, то критическое значение статистики K≈ N(0,1) находим по таблице функции Лапласа из равенства
    Так как альтернативная гипотеза двусторонняя, то критическое значение статистики K≈ N(0,1) находим по таблице функции Лапласа из равенства

    По условию α=0,025 отсюда Ф(Ккр)=0,4875 и Ккр=2,24. При двусторонней альтернативе область допустимых значений имеет вид (-2,24;2,24). Наблюдаемое значение Kнабл=2,15 попадает в этот интервал, т.е. на данном уровне значимости нет оснований отвергать основную гипотезу. Заводы изготавливают изделия одинакового качества.

    По части судить о целом

    О возможности судить о целом по части миру рассказал российский математик П.Л. Чебышев. «Закон больших чисел» простым языком можно сформулировать так: количественные закономерности массовых явлений проявляются только при

    достаточном числе наблюдений

    . Чем больше выборка, тем лучше случайные отклонения компенсируют друг друга и проявляется общая тенденция.
    А.М. Ляпунов чуть позже сформулировал центральную предельную теорему. Она стала фундаментом для создания формул, которые позволяют рассчитать вероятность ошибки (при оценке среднего по выборке) и размер выборки, необходимый для достижения заданной точности.
    Строгие формулировки:

    С увеличением числа случайных величин их среднее арифметическое стремится к среднему арифметическому математических ожиданий и перестает быть случайным. Общий смысл закона больших чисел — совместное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая.
    Таким образом з.б.ч. гарантирует устойчивость для средних значений некоторых случайных событий при достаточно длинной серии экспериментов.

    Распределение случайной величины, которая получена в результате сложения большого числа независимых случайных величин (ни одно из которых не доминирует, не вносит в сумму определяющего вклада и имеет дисперсию значительно меньшею по сравнению с дисперсией суммы) имеет распределение, близкое к нормальному.
    Из ц.п.т. следует, что ошибки выборки также подчиняется нормальному распределению.

    Еще раз: чтобы корректно оценивать популяцию по выборке, нам нужна не обычная выборка, а репрезентативная выборка достаточного размера. Начнем с определения этого самого размера.

    Как рассчитать объем выборки

    Достаточный размер выборки зависит от следующих составляющих:

    • изменчивость признака (чем разнообразней показания, тем больше наблюдений нужно, чтобы это уловить);
    • размер эффекта (чем меньшие эффекты мы стремимся зафиксировать, тем больше наблюдений необходимо);
    • уровень доверия (уровень вероятности при который мы готовы отвергнуть нулевую гипотезу)

    ЗАПОМНИТЕ
    Объем выборки зависит от изменчивости признака и планируемой строгости эксперимента

    Формулы для расчета объема выборки:

    Формулы расчета объема выборки

    Ошибка выборки значительно возрастает, когда наблюдений меньше ста. Для исследований в которых используется 30-100 объектов применяется особая статистическая методология: критерии, основанные на распределении Стьюдента или бутстрэп-анализ. И наконец, статистика совсем слаба, когда наблюдений меньше 30.

    График зависимости ошибки выборки от ее объема при оценке доли признака в г.с.

    Чем больше неопределенность, тем больше ошибка. Максимальная неопределенность при оценке доли — 50% (например, 50% респондентов считают концепцию хорошей, а другие 50% плохой). Если 90% опрошенных концепция понравится — это, наоборот, пример согласованности. В таких случаях оценить долю признака по выборке проще.

    Для экспонирования и выделения цветом значений статистических выбросов от медианы можно использовать несколько простых формул и условное форматирование.

    Первым шагом в поиске значений выбросов статистики является определение статистического центра диапазона данных. С этой целью необходимо сначала определить границы первого и третьего квартала. Определение границ квартала – значит разделение данных на 4 равные группы, которые содержат по 25% данных каждая. Группа, содержащая 25% наибольших значений, называется первым квартилем.

    Границы квартилей в Excel можно легко определить с помощью простой функции КВАРТИЛЬ. Данная функция имеет 2 аргумента: диапазон данных и номер для получения желаемого квартиля.

    В примере показанному на рисунке ниже значения в ячейках E1 и E2 содержат показатели первого и третьего квартиля данных в диапазоне ячеек B2:B19:

    Вычитая от значения первого квартиля третьего, можно определить набор 50% статистических данных, который называется межквартильным диапазоном. В ячейке E3 определен размер межквартильного диапазона.

    В этом месте возникает вопрос, как сильно данное значение может отличаться от среднего значения 50% данных и оставаться все еще в пределах нормы? Статистические аналитики соглашаются с тем, что для определения нижней и верхней границы диапазона данных можно смело использовать коэффициент расширения 1,5 умножив на значение межквартильного диапазона. То есть:

    1. Нижняя граница диапазона данных равна: значение первого квартиля – межкваритльный диапазон * 1,5.
    2. Верхняя граница диапазона данных равна: значение третьего квартиля + расширенных диапазон * 1,5.

    Как показано на рисунке ячейки E5 и E6 содержат вычисленные значения верхней и нижней границы диапазона данных. Каждое значение, которое больше верхней границы нормы или меньше нижней границы нормы считается значением статистического выброса.

    Чтобы выделить цветом для улучшения визуального анализа данных можно создать простое правило для условного форматирования.

    Способ 1: применение расширенного автофильтра

    Наиболее простым способом произвести отбор является применение расширенного автофильтра. Рассмотрим, как это сделать на конкретном примере.

    1. Выделяем область на листе, среди данных которой нужно произвести выборку. Во вкладке «Главная» щелкаем по кнопке «Сортировка и фильтр». Она размещается в блоке настроек «Редактирование». В открывшемся после этого списка выполняем щелчок по кнопке «Фильтр».

      Есть возможность поступить и по-другому. Для этого после выделения области на листе перемещаемся во вкладку «Данные». Щелкаем по кнопке «Фильтр», которая размещена на ленте в группе «Сортировка и фильтр».

    2. После этого действия в шапке таблицы появляются пиктограммы для запуска фильтрования в виде перевернутых острием вниз небольших треугольников на правом краю ячеек. Кликаем по данному значку в заглавии того столбца, по которому желаем произвести выборку. В запустившемся меню переходим по пункту «Текстовые фильтры». Далее выбираем позицию «Настраиваемый фильтр…».
    3. Активируется окно пользовательской фильтрации. В нем можно задать ограничение, по которому будет производиться отбор. В выпадающем списке для столбца содержащего ячейки числового формата, который мы используем для примера, можно выбрать одно из пяти видов условий:
      • равно;
      • не равно;
      • больше;
      • больше или равно;
      • меньше.

      Давайте в качестве примера зададим условие так, чтобы отобрать только значения, по которым сумма выручки превышает 10000 рублей. Устанавливаем переключатель в позицию «Больше». В правое поле вписываем значение «10000». Чтобы произвести выполнение действия, щелкаем по кнопке «OK».

    4. Как видим, после фильтрации остались только строчки, в которых сумма выручки превышает 10000 рублей.
    5. Но в этом же столбце мы можем добавить и второе условие. Для этого опять возвращаемся в окно пользовательской фильтрации. Как видим, в его нижней части есть ещё один переключатель условия и соответствующее ему поле для ввода. Давайте установим теперь верхнюю границу отбора в 15000 рублей. Для этого выставляем переключатель в позицию «Меньше», а в поле справа вписываем значение «15000».

      Кроме того, существует ещё переключатель условий. У него два положения «И» и «ИЛИ». По умолчанию он установлен в первом положении. Это означает, что в выборке останутся только строчки, которые удовлетворяют обоим ограничениям. Если он будет выставлен в положение «ИЛИ», то тогда останутся значения, которые подходят под любое из двух условий. В нашем случае нужно выставить переключатель в положение «И», то есть, оставить данную настройку по умолчанию. После того, как все значения введены, щелкаем по кнопке «OK».

    6. Теперь в таблице остались только строчки, в которых сумма выручки не меньше 10000 рублей, но не превышает 15000 рублей.
    7. Аналогично можно настраивать фильтры и в других столбцах. При этом имеется возможность сохранять также фильтрацию и по предыдущим условиям, которые были заданы в колонках. Итак, посмотрим, как производится отбор с помощью фильтра для ячеек в формате даты. Кликаем по значку фильтрации в соответствующем столбце. Последовательно кликаем по пунктам списка «Фильтр по дате» и «Настраиваемый фильтр».
    8. Снова запускается окно пользовательского автофильтра. Выполним отбор результатов в таблице с 4 по 6 мая 2016 года включительно. В переключателе выбора условий, как видим, ещё больше вариантов, чем для числового формата. Выбираем позицию «После или равно». В поле справа устанавливаем значение «04.05.2016». В нижнем блоке устанавливаем переключатель в позицию «До или равно». В правом поле вписываем значение «06.05.2016». Переключатель совместимости условий оставляем в положении по умолчанию – «И». Для того, чтобы применить фильтрацию в действии, жмем на кнопку «OK».
    9. Как видим, наш список ещё больше сократился. Теперь в нем оставлены только строчки, в которых сумма выручки варьируется от 10000 до 15000 рублей за период с 04.05 по 06.05.2016 включительно.
    10. Мы можем сбросить фильтрацию в одном из столбцов. Сделаем это для значений выручки. Кликаем по значку автофильтра в соответствующем столбце. В выпадающем списке щелкаем по пункту «Удалить фильтр».
    11. Как видим, после этих действий, выборка по сумме выручки будет отключена, а останется только отбор по датам (с 04.05.2016 по 06.05.2016).
    12. В данной таблице имеется ещё одна колонка – «Наименование». В ней содержатся данные в текстовом формате. Посмотрим, как сформировать выборку с помощью фильтрации по этим значениям.

      Кликаем по значку фильтра в наименовании столбца. Последовательно переходим по наименованиям списка «Текстовые фильтры» и «Настраиваемый фильтр…».

    13. Опять открывается окно пользовательского автофильтра. Давайте сделаем выборку по наименованиям «Картофель» и «Мясо». В первом блоке переключатель условий устанавливаем в позицию «Равно». В поле справа от него вписываем слово «Картофель». Переключатель нижнего блока так же ставим в позицию «Равно». В поле напротив него делаем запись – «Мясо». И вот далее мы выполняем то, чего ранее не делали: устанавливаем переключатель совместимости условий в позицию «ИЛИ». Теперь строчка, содержащая любое из указанных условий, будет выводиться на экран. Щелкаем по кнопке «OK».
    14. Как видим, в новой выборке существуют ограничения по дате (с 04.05.2016 по 06.05.2016) и по наименованию (картофель и мясо). По сумме выручки ограничений нет.
    15. Полностью удалить фильтр можно теми же способами, которые использовались для его установки. Причем неважно, какой именно способ применялся. Для сброса фильтрации, находясь во вкладке «Данные» щелкаем по кнопке «Фильтр», которая размещена в группе «Сортировка и фильтр».

      Второй вариант предполагает переход во вкладку «Главная». Там выполняем щелчок на ленте по кнопке «Сортировка и фильтр» в блоке «Редактирование». В активировавшемся списке нажимаем на кнопку «Фильтр».

    При использовании любого из двух вышеуказанных методов фильтрация будет удалена, а результаты выборки – очищены. То есть, в таблице будет показан весь массив данных, которыми она располагает.

    Способ 2: применение формулы массива

    Сделать отбор можно также применив сложную формулу массива. В отличие от предыдущего варианта, данный метод предусматривает вывод результата в отдельную таблицу.

    1. На том же листе создаем пустую таблицу с такими же наименованиями столбцов в шапке, что и у исходника.
    2. Выделяем все пустые ячейки первой колонки новой таблицы. Устанавливаем курсор в строку формул. Как раз сюда будет заноситься формула, производящая выборку по указанным критериям. Отберем строчки, сумма выручки в которых превышает 15000 рублей. В нашем конкретном примере, вводимая формула будет выглядеть следующим образом:

      =ИНДЕКС(A2:A29;НАИМЕНЬШИЙ(ЕСЛИ(15000<=C2:C29;СТРОКА(C2:C29);"");СТРОКА()-СТРОКА($C$1))-СТРОКА($C$1))

      Естественно, в каждом конкретном случае адрес ячеек и диапазонов будет свой. На данном примере можно сопоставить формулу с координатами на иллюстрации и приспособить её для своих нужд.

    3. Так как это формула массива, то для того, чтобы применить её в действии, нужно нажимать не кнопку Enter, а сочетание клавиш Ctrl+Shift+Enter. Делаем это.
    4. Выделив второй столбец с датами и установив курсор в строку формул, вводим следующее выражение:

      =ИНДЕКС(B2:B29;НАИМЕНЬШИЙ(ЕСЛИ(15000<=C2:C29;СТРОКА(C2:C29);"");СТРОКА()-СТРОКА($C$1))-СТРОКА($C$1))

      Жмем сочетание клавиш Ctrl+Shift+Enter.

    5. Аналогичным образом в столбец с выручкой вписываем формулу следующего содержания:

      =ИНДЕКС(C2:C29;НАИМЕНЬШИЙ(ЕСЛИ(15000<=C2:C29;СТРОКА(C2:C29);"");СТРОКА()-СТРОКА($C$1))-СТРОКА($C$1))

      Опять набираем сочетание клавиш Ctrl+Shift+Enter.

      Во всех трех случаях меняется только первое значение координат, а в остальном формулы полностью идентичны.

    6. Как видим, таблица заполнена данными, но внешний вид её не совсем привлекателен, к тому же, значения даты заполнены в ней некорректно. Нужно исправить эти недостатки. Некорректность даты связана с тем, что формат ячеек соответствующего столбца общий, а нам нужно установить формат даты. Выделяем весь столбец, включая ячейки с ошибками, и кликаем по выделению правой кнопкой мыши. В появившемся списке переходим по пункту «Формат ячейки…».
    7. В открывшемся окне форматирования открываем вкладку «Число». В блоке «Числовые форматы» выделяем значение «Дата». В правой части окна можно выбрать желаемый тип отображения даты. После того, как настройки выставлены, жмем на кнопку «OK».
    8. Теперь дата отображается корректно. Но, как видим, вся нижняя часть таблицы заполнена ячейками, которые содержат ошибочное значение «#ЧИСЛО!». По сути, это те ячейки, данных из выборки для которых не хватило. Более привлекательно было бы, если бы они отображались вообще пустыми. Для этих целей воспользуемся условным форматированием. Выделяем все ячейки таблицы, кроме шапки. Находясь во вкладке «Главная» кликаем по кнопке «Условное форматирование», которая находится в блоке инструментов «Стили». В появившемся списке выбираем пункт «Создать правило…».
    9. В открывшемся окне выбираем тип правила «Форматировать только ячейки, которые содержат». В первом поле под надписью «Форматировать только ячейки, для которых выполняется следующее условие» выбираем позицию «Ошибки». Далее жмем по кнопке «Формат…».
    10. В запустившемся окне форматирования переходим во вкладку «Шрифт» и в соответствующем поле выбираем белый цвет. После этих действий щелкаем по кнопке «OK».
    11. На кнопку с точно таким же названием жмем после возвращения в окно создания условий.

    Теперь у нас имеется готовая выборка по указанному ограничению в отдельной надлежащим образом оформленной таблице.

    СРЗНАЧ()

    Статистическая функция СРЗНАЧ возвращает среднее арифметическое своих аргументов.

    Данная функция может принимать до 255 аргументов и находить среднее сразу в нескольких несмежных диапазонах и ячейках:

    Если в рассчитываемом диапазоне встречаются пустые или содержащие текст ячейки, то они игнорируются. В примере ниже среднее ищется по четырем ячейкам, т.е. (4+15+11+22)/4 = 13

    Если необходимо вычислить среднее, учитывая все ячейки диапазона, то можно воспользоваться статистической функцией СРЗНАЧА. В следующем примере среднее ищется уже по 6 ячейкам, т.е. (4+15+11+22)/6 = 8,6(6).

    Статистическая функция СРЗНАЧ может использовать в качестве своих аргументов математические операторы и различные функции Excel:

    СРЗНАЧЕСЛИ()

    Если необходимо вернуть среднее арифметическое значений, которые удовлетворяют определенному условию, то можно воспользоваться статистической функцией СРЗНАЧЕСЛИ. Следующая формула вычисляет среднее чисел, которые больше нуля:

    В данном примере для подсчета среднего и проверки условия используется один и тот же диапазон, что не всегда удобно. На этот случай у функции СРЗНАЧЕСЛИ существует третий необязательный аргумент, по которому можно вычислять среднее. Т.е. по первому аргументу проверяем условие, по третьему – находим среднее.

    Допустим, в таблице ниже собрана статистика по стоимости лекарств в городе. В одной аптеке лекарство стоит дороже, в другой дешевле. Чтобы посчитать стоимость анальгина в среднем по городу, воспользуемся следующей формулой:

    Если требуется соблюсти несколько условий, то всегда можно применить статистическую функцию СРЗНАЧЕСЛИМН, которая позволяет считать среднее арифметическое ячеек, удовлетворяющих двум и более критериям.

    МАКС()

    Статистическая функция МАКС возвращает наибольшее значение в диапазоне ячеек:

    МИН()

    Статистическая функция МИН возвращает наименьшее значение в диапазоне ячеек:

    Источники

    • https://lumpics.ru/descriptive-statistics-in-excel/
    • https://statanaliz.info/statistica/opisanie-dannyx/variatsiya-razmakh-srednee-linejnoe-otklonenie/
    • https://www.hd01.ru/info/kak-poschitat-razmah-v-excel/
    • http://galyautdinov.ru/post/formula-vyborki-prostaya
    • https://math.semestr.ru/group/interval-estimation-share.php
    • https://tidydata.ru/sample-size
    • https://exceltable.com/formuly/raschet-statisticheskih-vybrosov
    • https://lumpics.ru/how-to-make-a-sample-in-excel/
    • https://office-guru.ru/excel/statisticheskie-funkcii-excel-kotorye-neobhodimo-znat-96.html

    Инфоурок


    Другое

    ПрезентацииСтатистический анализ данных в MS Excel



    Скачать материал

    Статистический анализ данных в MS Excel1. Обзор и характеристика основных ста...



    Скачать материал

    • Сейчас обучается 264 человека из 64 регионов

    Описание презентации по отдельным слайдам:

    • Статистический анализ данных в MS Excel1. Обзор и характеристика основных ста...

      1 слайд

      Статистический анализ данных в MS Excel
      1. Обзор и характеристика основных статистических функций, входящих в MS Excel.
      2. Работа с пакетом анализа данных в MS Excel.
      Литература:
      1. Г.И. Просветов Анализ данных с помощью Excel. Задачи и решения. М: 2009
      2. А.Ю. Козлов, В.С. Мхитарян, В.Ф. Шишов Статистический анализ данных в MS Excel М: 2012

    • Понятие анализа данныхАнализ данных – область математики и информатики, заним...

      2 слайд

      Понятие анализа данных
      Анализ данных – область математики и информатики, занимающая построением и исследованием наиболее общих математических методов и вычислительных алгоритмов извлечения знаний из экспериментальных данных.
      Анализ данных – это процесс исследования, фильтрации, преобразования и моделирования данных с целью извлечения полезной информации и принятия решения.

    • Статистические функции MS ExcelВсе статистические функции, входящие в MS Exce...

      3 слайд

      Статистические функции MS Excel
      Все статистические функции, входящие в MS Excel можно разбить на восемь подразделов:
      1.Предварительная обработка данных;
      2.Определение характеристик положения;
      3.Определение корреляции, ковариации;
      4.Определение характеристик рассеивания
      5.Интервальное оценивание (определение вероятности попадания дискретной случайной величины в интервал);
      6.Определения параметров распределения непрерывной случайной величины;
      7.Определение параметров распределения дискретной случайной величины;
      8.Построение уравнения регрессии и прогнозирования.

    • Предварительная обработка данныхПодсчет количества значений (СЧЕТ).Определен...

      4 слайд

      Предварительная обработка данных
      Подсчет количества значений (СЧЕТ).
      Определение экстремальных значений совокупности данных (МАКС, МИН)
      Подсчет частот из массива данных, попадающих в заданные интервалы (ЧАСТОТА)
      Оценка относительного положения точки (ПРОЦЕНТРАНГ)
      Определение величины, соответствующей ее относительному положению (ПЕРСЕНТИЛЬ)
      Определение числа перестановок (ПЕРЕСТ)
      Определение ранга чисел в списке чисел (РАНГ)

    • Предварительная обработка данныхМассив данныхСЧЕТМАКСЧАСТОТАПРОЦЕНТРАНГПЕРСЕН...

      5 слайд

      Предварительная обработка данных
      Массив данных
      СЧЕТ
      МАКС
      ЧАСТОТА
      ПРОЦЕНТРАНГ
      ПЕРСЕНТИЛЬ
      РАНГ

    • Определение характеристик положенияОпределение среднего (СРЗНАЧ, СРГЕОМ)Опре...

      6 слайд

      Определение характеристик положения
      Определение среднего (СРЗНАЧ, СРГЕОМ)
      Определение моды в интервале данных или массиве (МОДА)
      Определение медианы (МЕДИАНА)
      Определение квартилей (КВАРТИЛЬ)

    • Определение характеристик положенияМассив данныхСРГЕОМСРЗНАЧМОДАМЕДИАНАКВАРТИЛЬ

      7 слайд

      Определение характеристик положения
      Массив данных
      СРГЕОМ
      СРЗНАЧ
      МОДА
      МЕДИАНА
      КВАРТИЛЬ

    • Определение характеристик рассеиванияОпределение среднего линейного отклонени...

      8 слайд

      Определение характеристик рассеивания
      Определение среднего линейного отклонения (СРОТКЛ)
      Определение суммы квадратов отклонения (ДИСП)
      Вычисление стандартного (среднего квадратического) отклонения (СТАНДОТКЛОН)
      Определения асимметрии распределения (СКОС)
      Определения эксцесса (ЭКСЦЕСС)

    • Определение характеристик рассеиванияМассив данныхСРОТКЛКВАДРОТКЛДИСПСТАНДОТК...

      9 слайд

      Определение характеристик рассеивания
      Массив данных
      СРОТКЛ
      КВАДРОТКЛ
      ДИСП
      СТАНДОТКЛОН
      СКОС
      ЭКСЦЕСС

    • Зависимость случайных величинОпределение ковариации (КОВАР)Определение коэфф...

      10 слайд

      Зависимость случайных величин
      Определение ковариации (КОВАР)
      Определение коэффициента корреляции (КОРРЕЛ)

    • Зависимость случайных величинМассив данныхКОВАРКОРРЕЛ

      11 слайд

      Зависимость случайных величин
      Массив данных
      КОВАР
      КОРРЕЛ

    • Интервальное оцениваниеОпределение доверительного интервала для среднего (ДОВ...

      12 слайд

      Интервальное оценивание
      Определение доверительного интервала для среднего (ДОВЕРИТ)
      Определение вероятности попадания дискретной случайной величины в интервал (ВЕРОЯТНОСТЬ)

    • Интервальное оцениваниеМассив данныхДОВЕРИТВЕРОЯТНОСТЬ

      13 слайд

      Интервальное оценивание
      Массив данных
      ДОВЕРИТ
      ВЕРОЯТНОСТЬ

    • Определение параметров распределения непрерывных случайных величинОпределение...

      14 слайд

      Определение параметров распределения непрерывных случайных величин
      Определение значения функции распределения и функции плотности нормального распределения (НОРМРАСПР)
      Определение аргумента по значению функции распределения (НОРМОБР)
      Определение вероятности статистики z при проверке гипотизы о равенстве статистической оценки математического ожидания заданному значению (ZТЕСТ)
      Определение значений функций распределения отличных от нормальных (ЛОГНОРМРАСП, СТЬЮДРАСП…)
      Проверка гипотезы о равенстве дисперсий (ФТЕСТ)

    • Определение параметров распределения непрерывных случайных величинНОРМРАСПНОР...

      15 слайд

      Определение параметров распределения непрерывных случайных величин
      НОРМРАСП
      НОРМОБР
      Массив данных
      ZТЕСТ
      ФТЕСТ

    • Построение уравнения регрессии и прогнозированиеОпределение параметров линейн...

      16 слайд

      Построение уравнения регрессии и прогнозирование
      Определение параметров линейной регрессии (ЛИНЕЙН)
      Определение значений результативного признака по линейному уравнению регрессии (ТЕНДЕНЦИЯ)
      Определение значения уравнения регрессии вида y=b0+b1x в заданной точке (ПРЕДСКАЗ)

    • Построение уравнения регрессии и прогнозированиеЛИНЕЙНТЕНДЕНЦИЯМассив данныхП...

      17 слайд

      Построение уравнения регрессии и прогнозирование
      ЛИНЕЙН
      ТЕНДЕНЦИЯ
      Массив данных
      ПРЕДСКАЗ

    • Работа с пакетом анализа данных в MS Excel.

      18 слайд

      Работа с пакетом анализа данных в MS Excel.

    • Работа с пакетом анализа данных в MS Excel.В пакет анализа данных входят след...

      19 слайд

      Работа с пакетом анализа данных в MS Excel.
      В пакет анализа данных входят следующие инструменты:
      1.Генерация случайных чисел
      2.Выборка
      3.Гистограмма
      4.Описательная статистика
      5.Скользящее среднее
      6.Экспоненциальное сглаживание
      7.Ковариционный анализ
      8.Корреляционный анализ
      9.Двухвыборочный F-тест для дисперсий
      10. Двухвыборочныйz-тест для средних
      11.Парный двухвыборочный t-тест для средних
      12. Двухвыборочный t-тест с одинаковыми дисперсиями
      13. Двухвыборочный t-тест с разными дисперсиями
      14. Дисперсионный анализ
      15. Регрессия
      16.Ранг и персентиль
      17. Анализ Фурье

    • Генерация случайных чиселОкно инструмента Генерация случайных чисел содержит...

      20 слайд

      Генерация случайных чисел
      Окно инструмента Генерация случайных чисел содержит следующие основные параметры:
      -Число переменных При помощи этого параметра можно получать многомерную выборку (количество столбцов)
      -Число случайных чисел Определяется число точек данных (число реализаций), которое вы хотите генерировать для каждой переменной
      -Случайное рассеивание Вводится произвольное значение, для которого необходимо генерировать случайные числа. Применяется для повторной генерации (повторное получение той же совокупности)

    • ВыборкаВ пакете Анализ данных инструмент Выборка используется для создания вы...

      21 слайд

      Выборка
      В пакете Анализ данных инструмент Выборка используется для создания выборки из генеральной совокупности, рассматривая входной диапазон как генеральную совокупность

    • ГистограммаГистограмма применяется для графического изображения интервального...

      22 слайд

      Гистограмма
      Гистограмма применяется для графического изображения интервального вариационного ряда

    • Описательная статистикаОписательная статистика использует совокупность методо...

      23 слайд

      Описательная статистика
      Описательная статистика использует совокупность методов, позволяющих делать научно обоснованные выводы о числовых параметрах распределения генеральной совокупности по случайной выборке из нее

    Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

    6 211 223 материала в базе

    • Выберите категорию:

    • Выберите учебник и тему

    • Выберите класс:

    • Тип материала:

      • Все материалы

      • Статьи

      • Научные работы

      • Видеоуроки

      • Презентации

      • Конспекты

      • Тесты

      • Рабочие программы

      • Другие методич. материалы

    Найти материалы

    Другие материалы

    • 27.12.2020
    • 4749
    • 2
    • 27.12.2020
    • 4951
    • 11
    • 27.12.2020
    • 5787
    • 13
    • 27.12.2020
    • 5022
    • 9
    • 27.12.2020
    • 4058
    • 1
    • 27.12.2020
    • 3883
    • 0
    • 27.12.2020
    • 3906
    • 1
    • 27.12.2020
    • 3300
    • 4

    Вам будут интересны эти курсы:

    • Курс повышения квалификации «Основы туризма и гостеприимства»

    • Курс повышения квалификации «Организация научно-исследовательской работы студентов в соответствии с требованиями ФГОС»

    • Курс повышения квалификации «Формирование компетенций межкультурной коммуникации в условиях реализации ФГОС»

    • Курс повышения квалификации «Экономика предприятия: оценка эффективности деятельности»

    • Курс профессиональной переподготовки «Клиническая психология: теория и методика преподавания в образовательной организации»

    • Курс повышения квалификации «Введение в сетевые технологии»

    • Курс профессиональной переподготовки «Логистика: теория и методика преподавания в образовательной организации»

    • Курс повышения квалификации «Применение MS Word, Excel в финансовых расчетах»

    • Курс повышения квалификации «Основы менеджмента в туризме»

    • Курс повышения квалификации «Психодинамический подход в консультировании»

    • Курс профессиональной переподготовки «Корпоративная культура как фактор эффективности современной организации»

    • Курс профессиональной переподготовки «Деятельность по хранению музейных предметов и музейных коллекций в музеях всех видов»

    • Курс профессиональной переподготовки «Организация системы менеджмента транспортных услуг в туризме»

    • Курс профессиональной переподготовки «Техническая диагностика и контроль технического состояния автотранспортных средств»

    • Настоящий материал опубликован пользователем Гущина Мадина Ивановна. Инфоурок является
      информационным посредником и предоставляет пользователям возможность размещать на сайте
      методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
      сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

      Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
      сайта, Вы можете оставить жалобу на материал.

      Удалить материал

    • Гущина Мадина Ивановна

      • На сайте: 2 года и 3 месяца
      • Подписчики: 0
      • Всего просмотров: 47096
      • Всего материалов:

        217

    Содержание

    • Статистические функции
      • МАКС
      • МИН
      • СРЗНАЧ
      • СРЗНАЧЕСЛИ
      • МОДА.ОДН
      • МЕДИАНА
      • СТАНДОТКЛОН
      • НАИБОЛЬШИЙ
      • НАИМЕНЬШИЙ
      • РАНГ.СР
    • Вопросы и ответы

    Статистические функции в Microsoft Excel

    Статистическая обработка данных – это сбор, упорядочивание, обобщение и анализ информации с возможностью определения тенденции и прогноза по изучаемому явлению. В Excel есть огромное количество инструментов, которые помогают проводить исследования в данной области. Последние версии этой программы в плане возможностей практически ничем не уступают специализированным приложениям в области статистики. Главными инструментами для выполнения расчетов и анализа являются функции. Давайте изучим общие особенности работы с ними, а также подробнее остановимся на отдельных наиболее полезных инструментах.

    Статистические функции

    Как и любые другие функции в Экселе, статистические функции оперируют аргументами, которые могут иметь вид постоянных чисел, ссылок на ячейки или массивы.

    Выражения можно вводить вручную в определенную ячейку или в строку формул, если хорошо знать синтаксис конкретного из них. Но намного удобнее воспользоваться специальным окном аргументов, которое содержит подсказки и уже готовые поля для ввода данных. Перейти в окно аргумента статистических выражений можно через «Мастер функций» или с помощью кнопок «Библиотеки функций» на ленте.

    Запустить Мастер функций можно тремя способами:

    1. Кликнуть по пиктограмме «Вставить функцию» слева от строки формул.
    2. Вставить функцию в Microsoft Excel

    3. Находясь во вкладке «Формулы», кликнуть на ленте по кнопке «Вставить функцию» в блоке инструментов «Библиотека функций».
    4. Переход к вставке формулы в Microsoft Excel

    5. Набрать на клавиатуре сочетание клавиш Shift+F3.

    При выполнении любого из вышеперечисленных вариантов откроется окно «Мастера функций».

    Мастер функций в Microsoft Excel

    Затем нужно кликнуть по полю «Категория» и выбрать значение «Статистические».

    выбор статистической функции в Microsoft Excel

    После этого откроется список статистических выражений. Всего их насчитывается более сотни. Чтобы перейти в окно аргументов любого из них, нужно просто выделить его и нажать на кнопку «OK».

    Переход в окно аргументов в Microsoft Excel

    Для того, чтобы перейти к нужным нам элементам через ленту, перемещаемся во вкладку «Формулы». В группе инструментов на ленте «Библиотека функций» кликаем по кнопке «Другие функции». В открывшемся списке выбираем категорию «Статистические». Откроется перечень доступных элементов нужной нам направленности. Для перехода в окно аргументов достаточно кликнуть по одному из них.

    Переход к статистическим функциям в Microsoft Excel

    Lumpics.ru

    Урок: Мастер функций в Excel

    МАКС

    Оператор МАКС предназначен для определения максимального числа из выборки. Он имеет следующий синтаксис:

    =МАКС(число1;число2;…)

    Аргументы функции МАКС в Microsoft Excel

    В поля аргументов нужно ввести диапазоны ячеек, в которых находится числовой ряд. Наибольшее число из него эта формула выводит в ту ячейку, в которой находится сама.

    МИН

    По названию функции МИН понятно, что её задачи прямо противоположны предыдущей формуле – она ищет из множества чисел наименьшее и выводит его в заданную ячейку. Имеет такой синтаксис:

    =МИН(число1;число2;…)

    Аргументы функции МИН в Microsoft Excel

    СРЗНАЧ

    Функция СРЗНАЧ ищет число в указанном диапазоне, которое ближе всего находится к среднему арифметическому значению. Результат этого расчета выводится в отдельную ячейку, в которой и содержится формула. Шаблон у неё следующий:

    =СРЗНАЧ(число1;число2;…)

    Аргументы функции СРЗНАЧ в Microsoft Excel

    СРЗНАЧЕСЛИ

    Функция СРЗНАЧЕСЛИ имеет те же задачи, что и предыдущая, но в ней существует возможность задать дополнительное условие. Например, больше, меньше, не равно определенному числу. Оно задается в отдельном поле для аргумента. Кроме того, в качестве необязательного аргумента может быть добавлен диапазон усреднения. Синтаксис следующий:

    =СРЗНАЧЕСЛИ(число1;число2;…;условие;[диапазон_усреднения])

    Аргументы функции СРЗНАЧЕСЛИ в Microsoft Excel

    МОДА.ОДН

    Формула МОДА.ОДН выводит в ячейку то число из набора, которое встречается чаще всего. В старых версиях Эксель существовала функция МОДА, но в более поздних она была разбита на две: МОДА.ОДН (для отдельных чисел) и МОДА.НСК(для массивов). Впрочем, старый вариант тоже остался в отдельной группе, в которой собраны элементы из прошлых версий программы для обеспечения совместимости документов.

    =МОДА.ОДН(число1;число2;…)

    =МОДА.НСК(число1;число2;…)

    Аргументы функции МОДА.ОДН в Microsoft Excel

    МЕДИАНА

    Оператор МЕДИАНА определяет среднее значение в диапазоне чисел. То есть, устанавливает не среднее арифметическое, а просто среднюю величину между наибольшим и наименьшим числом области значений. Синтаксис выглядит так:

    =МЕДИАНА(число1;число2;…)

    Аргументы функции МЕДИАНА в Microsoft Excel

    СТАНДОТКЛОН

    Формула СТАНДОТКЛОН так же, как и МОДА является пережитком старых версий программы. Сейчас используются современные её подвиды – СТАНДОТКЛОН.В и СТАНДОТКЛОН.Г. Первая из них предназначена для вычисления стандартного отклонения выборки, а вторая – генеральной совокупности. Данные функции используются также для расчета среднего квадратичного отклонения. Синтаксис их следующий:

    =СТАНДОТКЛОН.В(число1;число2;…)

    =СТАНДОТКЛОН.Г(число1;число2;…)

    Аргументы функции СТАНДОТКЛОН в Microsoft Excel

    Урок: Формула среднего квадратичного отклонения в Excel

    НАИБОЛЬШИЙ

    Данный оператор показывает в выбранной ячейке указанное в порядке убывания число из совокупности. То есть, если мы имеем совокупность 12,97,89,65, а аргументом позиции укажем 3, то функция в ячейку вернет третье по величине число. В данном случае, это 65. Синтаксис оператора такой:

    =НАИБОЛЬШИЙ(массив;k)

    В данном случае, k — это порядковый номер величины.

    Аргументы функции НАИБОЛЬШИЙ в Microsoft Excel

    НАИМЕНЬШИЙ

    Данная функция является зеркальным отражением предыдущего оператора. В ней также вторым аргументом является порядковый номер числа. Вот только в данном случае порядок считается от меньшего. Синтаксис такой:

    =НАИМЕНЬШИЙ(массив;k)

    Аргументы функции НАИМЕНЬШИЙ в Microsoft Excel

    РАНГ.СР

    Эта функция имеет действие, обратное предыдущим. В указанную ячейку она выдает порядковый номер конкретного числа в выборке по условию, которое указано в отдельном аргументе. Это может быть порядок по возрастанию или по убыванию. Последний установлен по умолчанию, если поле «Порядок» оставить пустым или поставить туда цифру 0. Синтаксис этого выражения выглядит следующим образом:

    =РАНГ.СР(число;массив;порядок)

    Аргументы функции РАНГ в Microsoft Excel

    Выше были описаны только самые популярные и востребованные статистические функции в Экселе. На самом деле их в разы больше. Тем не менее, основной принцип действий у них похожий: обработка массива данных и возврат в указанную ячейку результата вычислительных действий.

    Like this post? Please share to your friends:
  • Математические функции ms excel используются для
  • Математический анализ в word
  • Математические функции excel пример
  • Математический анализ в excel примеры
  • Математические функции excel как категория функций