Математическая функция в excel пример

Чтобы просмотреть более подробные сведения о функции, щелкните ее название в первом столбце.

Примечание: Маркер версии обозначает версию Excel, в которой она впервые появилась. В более ранних версиях эта функция отсутствует. Например, маркер версии 2013 означает, что данная функция доступна в выпуске Excel 2013 и всех последующих версиях.

Функция

Описание

ABS

Возвращает модуль (абсолютную величину) числа.

ACOS

Возвращает арккосинус числа.

ACOSH

Возвращает гиперболический арккосинус числа.

ACOT

Excel 2013

Возвращает арккотангенс числа.

ACOTH

Excel 2013

Возвращает гиперболический арккотангенс числа.

АГРЕГАТ

Возвращает агрегат для списка или базы данных.

АРАБСКОЕ

Excel 2013

Преобразует римские числа в арабские в виде числа.

ASIN

Возвращает арксинус числа.

ASINH

Возвращает гиперболический арксинус числа.

ATAN

Возвращает арктангенс числа.

ATAN2

Возвращает арктангенс для заданных координат x и y.

ATANH

Возвращает гиперболический арктангенс числа.

ОСНОВАНИЕ

Excel 2013

Преобразует число в текстовое представление с данным основанием (базой).

ОКРВВЕРХ

Округляет число до ближайшего целого или кратного.

ОКРВВЕРХ.МАТ

Excel 2013

Округляет число в большую сторону до ближайшего целого или кратного.

ОКРВВЕРХ.ТОЧН

Округляет число до ближайшего целого или кратного. Число округляется до большего значения вне зависимости от его знака.

ЧИСЛКОМБ

Возвращает количество комбинаций для заданного числа объектов.

ЧИСЛКОМБА

Excel 2013

Возвращает количество комбинаций с повторами для заданного числа элементов.

COS

Возвращает косинус числа.

COSH

Возвращает гиперболический косинус числа.

COT

Excel 2013

Возвращает котангенс угла.

COTH

Excel 2013

Возвращает гиперболический котангенс числа.

CSC

Excel 2013

Возвращает косеканс угла.

CSCH

Excel 2013

Возвращает гиперболический косеканс угла.

ДЕС

Excel 2013

Преобразует текстовое представление числа в заданном основании в десятичное число.

ГРАДУСЫ

Преобразует радианы в градусы.

ЧЁТН

Округляет число до ближайшего четного целого.

EXP

Возвращает число e, возведенное в указанную степень.

ФАКТР

Возвращает факториал числа.

ДВФАКТР

Возвращает двойной факториал числа.

ОКРВНИЗ

Округляет число до ближайшего меньшего по модулю значения.

ОКРВНИЗ.МАТ

Excel 2013

Округляет число в меньшую сторону до ближайшего целого или кратного.

ОКРВНИЗ.ТОЧН

Округляет число в меньшую сторону до ближайшего целого или кратного. Число округляется в меньшую сторону независимо от знака.

НОД

Возвращает наибольший общий делитель.

ЦЕЛОЕ

Округляет число до ближайшего меньшего целого.

ISO.ОКРВВЕРХ

Excel 2013

Округляет число в большую сторону до ближайшего целого или кратного.

НОК

Возвращает наименьшее общее кратное.

LN

Возвращает натуральный логарифм числа.

LOG

Возвращает логарифм числа по заданному основанию.

LOG10

Возвращает десятичный логарифм числа.

МОПРЕД

Возвращает определитель матрицы массива.

МОБР

Возвращает обратную матрицу массива.

МУМНОЖ

Возвращает матричное произведение двух массивов.

ОСТАТ

Возвращает остаток от деления.

ОКРУГЛТ

Возвращает число, округленное с требуемой точностью.

МУЛЬТИНОМ

Возвращает мультиномиальный коэффициент множества чисел.

МЕДИН

Excel 2013

Возвращает матрицу единицы или заданный размер.

НЕЧЁТ

Округляет число до ближайшего нечетного целого.

ПИ

Возвращает число пи.

СТЕПЕНЬ

Возвращает результат возведения числа в степень.

ПРОИЗВЕД

Возвращает произведение аргументов.

ЧАСТНОЕ

Возвращает целую часть частного при делении.

РАДИАНЫ

Преобразует градусы в радианы.

СЛЧИС

Возвращает случайное число в интервале от 0 до 1.

Функция СЛУЧМАССИВ

Кнопка Office 365

Возвращает массив случайных чисел в интервале от 0 до 1. Но вы можете указать количество заполняемых строк и столбцов, минимальное и максимальное значения, а также какие значения необходимо возвращать: целые или десятичные.

Функция СЛУЧМЕЖДУ

Возвращает случайное число в интервале между двумя заданными числами.

РИМСКОЕ

Преобразует арабские числа в римские в виде текста.

ОКРУГЛ

Округляет число до указанного количества десятичных разрядов.

ОКРУГЛВНИЗ

Округляет число до ближайшего меньшего по модулю значения.

ОКРУГЛВВЕРХ

Округляет число до ближайшего большего по модулю значения.

SEC

Excel 2013

Возвращает секанс угла.

SECH

Excel 2013

Возвращает гиперболический секанс угла.

РЯД.СУММ

Возвращает сумму степенного ряда, вычисленную по формуле.

ЗНАК

Возвращает знак числа.

SIN

Возвращает синус заданного угла.

SINH

Возвращает гиперболический синус числа.

КОРЕНЬ

Возвращает положительное значение квадратного корня.

КОРЕНЬПИ

Возвращает квадратный корень из значения выражения (число * пи).

ПРОМЕЖУТОЧНЫЕ.ИТОГИ

Возвращает промежуточный итог в списке или базе данных.

СУММ

Суммирует аргументы.

СУММЕСЛИ

Суммирует ячейки, удовлетворяющие заданному условию.

СУММЕСЛИМН

Суммирует ячейки в диапазоне, удовлетворяющие нескольким условиям.

СУММПРОИЗВ

Возвращает сумму произведений соответствующих элементов массивов.

СУММКВ

Возвращает сумму квадратов аргументов.

СУММРАЗНКВ

Возвращает сумму разностей квадратов соответствующих значений в двух массивах.

СУММСУММКВ

Возвращает сумму сумм квадратов соответствующих элементов двух массивов.

СУММКВРАЗН

Возвращает сумму квадратов разностей соответствующих значений в двух массивах.

TAN

Возвращает тангенс числа.

TANH

Возвращает гиперболический тангенс числа.

ОТБР

Отбрасывает дробную часть числа.

Важно: Вычисляемые результаты формул и некоторые функции листа Excel могут несколько отличаться на компьютерах под управлением Windows с архитектурой x86 или x86-64 и компьютерах под управлением Windows RT с архитектурой ARM. Подробнее об этих различиях.

Содержание

  • Применение математических функций
    • СУММ
    • СУММЕСЛИ
    • ОКРУГЛ
    • ПРОИЗВЕД
    • ABS
    • СТЕПЕНЬ
    • КОРЕНЬ
    • СЛУЧМЕЖДУ
    • ЧАСТНОЕ
    • РИМСКОЕ
  • Вопросы и ответы

Математические функции в Microsoft Excel

Чаще всего среди доступных групп функций пользователи Экселя обращаются к математическим. С помощью них можно производить различные арифметические и алгебраические действия. Их часто используют при планировании и научных вычислениях. Узнаем, что представляет собой данная группа операторов в целом, и более подробно остановимся на самых популярных из них.

Применение математических функций

С помощью математических функций можно проводить различные расчеты. Они будут полезны студентам и школьникам, инженерам, ученым, бухгалтерам, планировщикам. В эту группу входят около 80 операторов. Мы же подробно остановимся на десяти самых популярных из них.

Открыть список математических формул можно несколькими путями. Проще всего запустить Мастер функций, нажав на кнопку «Вставить функцию», которая размещена слева от строки формул. При этом нужно предварительно выделить ячейку, куда будет выводиться результат обработки данных. Этот метод хорош тем, что его можно реализовать, находясь в любой вкладке.

Перемещение в Мастер фнкуций в Microsoft Excel

Также можно запустить Мастер функций, перейдя во вкладку «Формулы». Там нужно нажать на кнопку «Вставить функцию», расположенную на самом левом краю ленты в блоке инструментов «Библиотека функций».

Вставить функцию в Microsoft Excel

Существует и третий способ активации Мастера функций. Он осуществляется с помощью нажатия комбинации клавиш на клавиатуре Shift+F3.

После того, как пользователь произвел любое из вышеуказанных действий, открывается Мастер функций. Кликаем по окну в поле «Категория».

Переход к выбору функций в Microsoft Excel

Открывается выпадающий список. Выбираем в нем позицию «Математические».

Выбор функций в Microsoft Excel

После этого в окне появляется список всех математических функций в Excel. Чтобы перейти к введению аргументов, выделяем конкретную из них и жмем на кнопку «OK».

Переход к аргументу математической функции в Microsoft Excel

Существует также способ выбора конкретного математического оператора без открытия главного окна Мастера функций. Для этого переходим в уже знакомую для нас вкладку «Формулы» и жмем на кнопку «Математические», расположенную на ленте в группе инструментов «Библиотека функций». Открывается список, из которого нужно выбрать требуемую формулу для решения конкретной задачи, после чего откроется окно её аргументов.

Lumpics.ru

Выбор математических функций в Microsoft Excel

Правда, нужно заметить, что в этом списке представлены не все формулы математической группы, хотя и большинство из них. Если вы не найдете нужного оператора, то следует кликнуть по пункту «Вставить функцию…» в самом низу списка, после чего откроется уже знакомый нам Мастер функций.

Переход к другим функциям в Microsoft Excel

Урок: Мастер функций в Excel

СУММ

Наиболее часто используется функция СУММ. Этот оператор предназначен для сложения данных в нескольких ячейках. Хотя его можно использовать и для обычного суммирования чисел. Синтаксис, который можно применять при ручном вводе, выглядит следующим образом:

=СУММ(число1;число2;…)

В окне аргументов в поля следует вводить ссылки на ячейки с данными или на диапазоны. Оператор складывает содержимое и выводит общую сумму в отдельную ячейку.

Функция СУММ в Microsoft Excel

Урок: Как посчитать сумму в Экселе

СУММЕСЛИ

Оператор СУММЕСЛИ также подсчитывает общую сумму чисел в ячейках. Но, в отличие от предыдущей функции, в данном операторе можно задать условие, которое будет определять, какие именно значения участвуют в расчете, а какие нет. При указании условия можно использовать знаки «>» («больше»), «<» («меньше»), «< >» («не равно»). То есть, число, которое не соответствует заданному условию, во втором аргументе при подсчете суммы в расчет не берется. Кроме того, существует дополнительный аргумент «Диапазон суммирования», но он не является обязательным. Данная операция имеет следующий синтаксис:

=СУММЕСЛИ(Диапазон;Критерий;Диапазон_суммирования)

Функция СУММЕСЛИ в Microsoft Excel

ОКРУГЛ

Как можно понять из названия функции ОКРУГЛ, служит она для округления чисел. Первым аргументом данного оператора является число или ссылка на ячейку, в которой содержится числовой элемент. В отличие от большинства других функций, у этой диапазон значением выступать не может. Вторым аргументом является количество десятичных знаков, до которых нужно произвести округление. Округления проводится по общематематическим правилам, то есть, к ближайшему по модулю числу. Синтаксис у этой формулы такой:

=ОКРУГЛ(число;число_разрядов)

Кроме того, в Экселе существуют такие функции, как ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ, которые соответственно округляют числа до ближайшего большего и меньшего по модулю.

Функция ОКРУГЛ в Microsoft Excel

Урок: Округление чисел в Excel

ПРОИЗВЕД

Задачей оператора ПРИЗВЕД является умножение отдельных чисел или тех, которые расположены в ячейках листа. Аргументами этой функции являются ссылки на ячейки, в которых содержатся данные для перемножения. Всего может быть использовано до 255 таких ссылок. Результат умножения выводится в отдельную ячейку. Синтаксис данного оператора выглядит так:

=ПРОИЗВЕД(число;число;…)

Функция ПРОИЗВЕД в Microsoft Excel

Урок: Как правильно умножать в Excel

ABS

С помощью математической формулы ABS производится расчет числа по модулю. У этого оператора один аргумент – «Число», то есть, ссылка на ячейку, содержащую числовые данные. Диапазон в роли аргумента выступать не может. Синтаксис имеет следующий вид:

=ABS(число)

Функция ABS в Microsoft Excel

Урок: Функция модуля в Excel

СТЕПЕНЬ

Из названия понятно, что задачей оператора СТЕПЕНЬ является возведение числа в заданную степень. У данной функции два аргумента: «Число» и «Степень». Первый из них может быть указан в виде ссылки на ячейку, содержащую числовую величину. Второй аргумент указывается степень возведения. Из всего вышесказанного следует, что синтаксис этого оператора имеет следующий вид:

=СТЕПЕНЬ(число;степень)

Функция СТЕПЕНЬ в Microsoft Excel

Урок: Как возводить в степень в Экселе

КОРЕНЬ

Задачей функции КОРЕНЬ является извлечение квадратного корня. Данный оператор имеет только один аргумент – «Число». В его роли может выступать ссылка на ячейку, содержащую данные. Синтаксис принимает такую форму:

=КОРЕНЬ(число)

Функция КОРЕНЬ в Microsoft Excel

Урок: Как посчитать корень в Экселе

СЛУЧМЕЖДУ

Довольно специфическая задача у формулы СЛУЧМЕЖДУ. Она состоит в том, чтобы выводить в указанную ячейку любое случайное число, находящееся между двумя заданными числами. Из описания функционала данного оператора понятно, что его аргументами является верхняя и нижняя границы интервала. Синтаксис у него такой:

=СЛУЧМЕЖДУ(Нижн_граница;Верхн_граница)

Функция СЛУЧМЕЖДУ в Microsoft Excel

ЧАСТНОЕ

Оператор ЧАСТНОЕ применяется для деления чисел. Но в результатах деления он выводит только четное число, округленное к меньшему по модулю. Аргументами этой формулы являются ссылки на ячейки, содержащие делимое и делитель. Синтаксис следующий:

=ЧАСТНОЕ(Числитель;Знаменатель)

Функция ЧАСТНОЕ в Microsoft Excel

Урок: Формула деления в Экселе

РИМСКОЕ

Данная функция позволяет преобразовать арабские числа, которыми по умолчанию оперирует Excel, в римские. У этого оператора два аргумента: ссылка на ячейку с преобразуемым числом и форма. Второй аргумент не является обязательным. Синтаксис имеет следующий вид:

=РИМСКОЕ(Число;Форма)

Функция РИМСКОЕ в Microsoft Excel

Выше были описаны только наиболее популярные математические функции Эксель. Они помогают в значительной мере упростить различные вычисления в данной программе. При помощи этих формул можно выполнять как простейшие арифметические действия, так и более сложные вычисления. Особенно они помогают в тех случаях, когда нужно производить массовые расчеты.


КУРС

EXCEL ACADEMY

Научитесь использовать все прикладные инструменты из функционала MS Excel.

Microsoft Excel – одна из самых популярных и легкодоступных программ для представителей разный специальностей. Сегодня мы рассмотрим, пожалуй, одну из самых используемых групп формул – математические формулы.

Начнем с того, как найти их среди прочего функционала. Есть несколько путей того, как открыть список математических формул.

Самый простой способ – нажать на кнопку «Формулы» на панели управления. Затем выбрать из перечня тип функций: «Математические».

Перед вами появится выпадающий длинный список всех существующих операторов:

Рис.1 Список математических функций в Excel

Всего в Excel около 80 математических и тригонометрических функций. Мы рассмотрим не все, только самые распространенные из них, а также обратим внимание на некоторые нюансы, о которых вы, возможно, не знали. Если в статье вы не нашли нужную вам функцию, то скачивайте наш бесплатный гайд «Математические функции в Excel».

Для разминки вспомним самые простые формулы.

1. Формулы СУММ(), ПРОИЗВЕД()

Эти операции имеют схожую структуру и одинаковый тип аргументов, поэтому мы их объединили в один блок. СУММ() служит для сложения данных в нескольких ячейках, ПРОИЗВЕД() – очевидно, для нахождения произведения.

Аргументами этих функций могут быть числа, диапазоны, ссылки на ячейку, в которой содержится числовое значение. Количество элементов не может быть больше 30.

СУММ() и ПРОИЗВЕД() пропускают пустые ячейки, ячейки текстового формата и логические значения. Операторы вносят результат вычислений в отдельную, ранее выделенную курсором ячейку:

Рис.2 Применение функции СУММ()
Рис.2 Применение функции СУММ()

Аналогично для формулы ПРОИЗВЕД():

Рис.3 Применение функции ПРОИЗВЕД()
Рис.3 Применение функции ПРОИЗВЕД()

2. Формула ЧАСТНОЕ()

Тоже одна из простых операций в математике. В Excel выполняется тоже несложно: у функции ЧАСТНОЕ() есть два аргумента: делимое и делитель.

В выделенной ячейке выводится частное:

Рис 4. Применение функции ЧАСТНОЕ()

3. Формула СУММЕСЛИ()

Оператор СУММЕСЛИ() находит сумму чисел. Главное отличие этой функции от СУММ() в том, что здесь в качестве аргумента можно задавать условие (только одно), которое будет показывать, какие значения будут использованы в расчетах, а какие – нет.

В качестве условий могут выступать неравенства со знаками больше, меньше или не равно («>», «<», «< >»). Число, которое не соответствует введенному условию, не будет включен в суммирование.

На рисунке 5 изображено суммирование всех чисел, которые больше 0.

Оранжевым выделены те числа, которые будут включены в расчет функцией СУММЕСЛИ().

Остальные числа просто будут игнорироваться:

Рис 5. Применение функции СУММЕСЛИ()
Рис 5. Применение функции СУММЕСЛИ()

Кроме постоянных аргументов, существует еще и дополнительный – «Диапазон суммирования». Он добавляется тогда, когда необходимо просуммировать один диапазон, а условия выбирать по другому диапазону.

Например, нужно посчитать общую стоимость всех проданных фруктов.

Для этого воспользуемся следующей формулой:

Рис. 6 Пример с функцией СУММЕСЛИ() с необязательным аргументом «Диапазон суммирования
Рис. 6 Пример с функцией СУММЕСЛИ() с необязательным аргументом «Диапазон суммирования

То есть сначала пишем диапазон, по которому проверяем условие, затем само ограничение и в конце диапазон чисел, которые надо суммировать. В примере на рисунке 6 выше, соответственно, все строки из категории «Овощи» в расчет включены не будут.

4. Формулы ОКРУГЛ(), ОКРУГЛВВЕРХ(), ОКРУГЛВНИЗ()

Функция ОКРУГЛ() предназначена для округления значения до заданного количества знаков после запятой. В качестве первого аргумента выступают, как обычно, числа или диапазон ячеек, второго – разряд, до которого нужно округлить число.

Например, округление значения до второго знака после запятой:

Рис.7 Применение функции ОКРУГЛ()
Рис.7 Применение функции ОКРУГЛ()

Если в качестве второго аргумента выступает 0, то число будет округляться до ближайшего целого:

Рис. 8 Применение функции ОКРУГЛ() до целого значения
Рис. 8 Применение функции ОКРУГЛ() до целого значения

Второй аргумент может быть и отрицательным, тогда округление будет происходить до требуемого знака перед запятой:

9. Рис. Применение функции ОКРУГЛ(), когда второй аргумент меньше 0
9. Рис. Применение функции ОКРУГЛ(), когда второй аргумент меньше 0

Если необходимо округлить в сторону меньшего или большего по модулю числа используют функции ОКРУГЛВНИЗ(), ОКРУГЛВВЕРХ(), соответственно:

Рис.10 Применение функции ОКРУГЛВНИЗ()
Рис.10 Применение функции ОКРУГЛВНИЗ()
Рис.11 Применение функции ОКРУГЛВВЕРХ()
Рис.11 Применение функции ОКРУГЛВВЕРХ()

Замечание: многие могут решить, что функции округления бесполезны, так как можно просто убрать/добавить дополнительный знак после запятой с помощью кнопок увеличить/уменьшить разрядность.

На самом деле, это не так.

Дело в том, что увеличение или уменьшение разрядности влияет только на «внешний вид» ячейки, то есть на то, как мы число видим.

Само число, при этом, не меняется. Функции округления же полностью меняют вид числа, убирая лишние разряды.

5. Формулы ОТБР(), ЦЕЛОЕ()

Эти функции очень похожи на предыдущие, но работают немного по-другому.

ОТБР() убирает все цифры справа от запятой и у положительных, и у отрицательных чисел. На первом месте в скобках после оператора пишется значение, а на втором – разряд, после которого удалятся все знаки.

Если второй аргумент пропущен, то по умолчанию ставится 0:

Рис.12 Применение функции ОТБР()

ЦЕЛОЕ() – функция, которая выдает в качестве результата наименьшее целое число, стоящее перед аргументом:

Рис.13 Применение функции ЦЕЛОЕ()
Рис.13 Применение функции ЦЕЛОЕ()

На положительные числа операторы влияют почти одинаково, а вот на отрицательные – нет.

Функция ЦЕЛОЕ(-5,6) выдаст результат (-6), а ОТБР(-5,6;0) выдаст (-5), хотя в то же время для числа 5,3 результат обеих функций будет одинаковый – число (5).

6. Формула ABS()

Математическая формула ABS() позволяет получить число по модулю. Как обычно, аргументами оператора является число или ссылка на ячейку.

Рис.14 Применение функции ABS()
Рис.14 Применение функции ABS()

Эту функцию удобно использовать, например, когда необходимо найти количество дней между датами. Из школьной программы многие знают, что нужно из большего вычитать меньшее.

Но что делать если дана огромная таблица, где трудно определить, где какое значение? Здесь нам помогает оператор ABS(), который переводит отрицательное число в положительное.

Рис.15 Применение функции ABS() в работе с датами
Рис.15 Применение функции ABS() в работе с датами

7. Формула КОРЕНЬ()

КОРЕНЬ() – довольно легкая функция с одним аргументом (числом или ссылкой на ячейку), которая находит квадратный корень числа:

Рис.16 Применение функции КОРЕНЬ()
Рис.16 Применение функции КОРЕНЬ()

Замечание. Для извлечения корня другой степени (не квадратного) можно пользоваться функцией СТЕПЕНЬ().

8. Формула СТЕПЕНЬ()

Функция СТЕПЕНЬ() позволяет возвести число в любую степень, в том числе извлечь корень (то есть возвести число в дробную степень).

Например, чтобы извлечь кубический корень из числа 8, необходимо воспользоваться формулой, как на рисунке 17.1.

Рис.17 Применение функции СТЕПЕНЬ()
Рис.17 Применение функции СТЕПЕНЬ()
Рис.17.1 Применение функции СТЕПЕНЬ() для извлечения кубического корня
Рис.17.1 Применение функции СТЕПЕНЬ() для извлечения кубического корня

Помимо математической функции СТЕПЕНЬ(), можно пользоваться оператором “^”, но он выглядит менее опрятно в формулах.

Если вам интересно узнать больше о других математических функциях, напишите об этом ниже в комментариях. Записывайтесь на открытый онлайн-курс «Аналитика в Excel», если хотите научиться выполнять рутинную работу в программе быстрее.


КУРС

EXCEL ACADEMY

Научитесь использовать все прикладные инструменты из функционала MS Excel.

Блог SF Education

Investment Banking

5 примеров экономии времени в Excel

Содержание статьи Что для работодателя главное в сотруднике? Добросовестность, ответственность, профессионализм и, конечно же, умение пользоваться отведенным временем! Предлагаем познакомиться с очень нужными, на…

Как работает сотрудник одной из компаний «большой тройки»?

Ты работаешь в компании «большой тройки (имеются в виду три крупнейших консалтинговых компании: McKinsey, Boston Consulting Group и Bain & Company), в которых мечтают работать тысячи подписчиков наших каналов и читателей vc.ru. Что это значит для тебя?

В программе Excel разработчиками заложено огромное количество различных функций, но, пользователи чаще всего пользуются математическими. Давайте рассмотрим их и подробнее остановимся на самых популярных.

  • Использование математических функций в программе

    • СУММ

    • СУММЕСЛИ

    • ПРОИЗВЕД

    • ЧАСТНОЕ

    • СТЕПЕНЬ

    • КОРЕНЬ

    • ОКРУГЛ

    • ABS

    • LOG

    • ОСТАТОК

  • Заключение

Использование математических функций в программе

В категорию математических функций входит более 60 различных операторов, которые позволяют выполнять различные вычисления.

Вставить функцию в свободную ячейку таблицы можно по-разному:

  1. Жмем кнопку “Вставить функцию” (fx) слева от строки формул. Выполнить данное действие можно, находясь в любой вкладке.Вставка функции в ячейку таблицы Эксель
  2. Переключаемся во вкладку “Формулы”. Здесь также представлена кнопка “Вставить функцию” – в левом углу ленты инструментов.Вставка функции в ячейку таблицы Excel
  3. Нажимаем комбинацию клавиш Shift+F3, чтобы вызвать Мастер функций.

Результатом любого из вышеописанных способов будет открытие окна вставки функции. Здесь мы выбираем категорию “Математические”.

Выбор категории Математические в окне вставки функции в Эксель

Теперь, когда категория выбрана, в поле ниже отмечаем требуемую функцию и щелкаем OK. 

Выбор оператора в категории Математические в окне вставки функции в Эксель

После этого откроется окно с аргументами для заполнения.

Аргументы функции СУММ в Эксель

Примечание: Если мы, находясь во вкладке “Формулы”, в группе инструментов “Библиотека функций” нажмем по значку математических функций, сразу откроется список операторов, которые мы можем выбрать, минуя окно вставки функции.

Вставка функции в Эксель из вкладки Формулы

Стоит учитывать, что в предлагаемом перечне присутствуют не все операторы, но самые необходимые здесь все же есть, и в большинстве случаев их достаточно.

Теперь перейдем к детальному рассмотрению самых популярных функций.

СУММ

Пожалуй, это самая популярная функция, которая используется в Эксель. С помощью нее выполняется суммирование числовых данных. Формула функции:

=СУММ(число1;число2;...)

В аргументах можно указать как конкретные числа, так и ссылки на ячейки, содержащие числовые значения. Причем указать координаты можно вручную (с помощью клавиш клавиатуры) или методом клика/выделения непосредственно в самой таблице.

Аргументы функции СУММ в Excel

Для перехода к заполнению следующего аргумента достаточно кликнуть по полю напротив него или нажать клавишу Tab.

СУММЕСЛИ

Данная функция позволяет считать сумму чисел с заданным условиями, с помощью которых будет выполняться отбор значений, учитывающихся в суммировании. Формула выглядит следующим образом:

=СУММЕСЛИ(Диапазон;Критерий;Диапазон_суммирования)

В аргументах функции указывается диапазон ячеек (вручную или путем выделения в таблице), значения которых нужно просуммировать. В качестве критерия можно задать следующие условия (в кавычках):

  • больше (“>”)
  • меньше (“<“)
  • не равно (“<>”)

Аргументы функции СУММЕСЛИ в Эксель

Аргумент “Диапазон_сумирования” заполнять не обязательно.

ПРОИЗВЕД

С помощью данного оператора выполняется умножение чисел. Синтаксис выглядит следующим образом:

=ПРОИЗВЕД(число;число;…)

В аргументах функции, как и в СУММ, можно указывать как конкретные числа, так и адреса ячеек (диапазоны ячеек), которые содержат числовые значения.

Аргументы функции ПРОИЗВЕД в Эксель

ЧАСТНОЕ

Чаще всего для деления используется формула со знаком “/” между делимым и делителем: =Число1/Число2.

Однако в программе также есть отдельная функция для выполнения деления, синтаксис которой представлен ниже:

=ЧАСТНОЕ(Числитель;Знаменатель)

Заполнить нужно два аргумента: Числитель (Делимое) и Знаменатель (Делитель).

Аргументы функции ЧАСТНОЕ в Эксель

СТЕПЕНЬ

Оператор позволяет возвести число в указанную степень. Формула выглядит так:

=СТЕПЕНЬ(число;степень)

В аргументах функции указывается само число, а также, степень, в которую нужно его возвести.

Аргументы функции СТЕПЕНЬ в Эксель

КОРЕНЬ

С помощью данного оператора можно извлечь квадратный корень из числа. Синтаксис выглядит следующим образом:

=КОРЕНЬ(число)

Заполнить требуется только один аргумент – “Число”.

Аргументы функции КОРЕНЬ в Эксель

ОКРУГЛ

Функция применяется для выполнения еще одного распространенного математического действия – округления чисел (по общематематическим правилам, т.е., к ближайшему по модулю значению). Синтаксис функции представлен ниже:

=ОКРУГЛ(число;число_разрядов)

В аргументе “Число” указывается значение, которое требуется округлить. В числе разрядов, соответственно, пишем количество цифр, которые хотим оставить после запятой.

Аргументы функции ОКРУГЛ в Эксель

Также, в Excel доступны операторы ОКРУГЛВВЕРХ и ОКРУГЛВНИЗ, которые, как следует из их названий, используются для округления до ближайшего верхнего и нижнего числа, соответственно (по модулю).

ABS

Позволяет получить модуль числа. Формула функции представлена ниже:

=ABS(число)

Заполнить нужно всего один аргумент – “Число”, модуль которого требуется найти.

Аргументы функции ABS в Эксель

LOG

С помощью этого оператора определяется логарифм числа по заданному основанию. Синтаксис функции представлен в виде:

=LOG(Число;Основание)

Необходимо заполнить два аргумента: Число и Основание логарифма (если его не указать, программа примет значение по умолчанию, равное 10).

Аргументы функции LOG в Эксель

Также для десятичного логарифма предусмотрена отдельная функция – LOG10.

ОСТАТОК

Применяется для получения остатка от деления чисел. Формула оператора выглядит следующим образом:

=ОСТАТ(чило;делитель)

Для того, чтобы получить результат, требуется заполнить значения двух аргументов: Число и Делитель.

Аргументы функции ОСТАТОК в Эксель

Заключение

Таким образом, мы разобрали самые популярные математические функции, которые используются в Excel. Однако возможности программы гораздо шире, и в ее инструментарии можно найти функцию для успешного выполнения практически любой задачи.

Содержание

  1. Основные математические формулы в Excel (смотрите и учитесь)
  2. Основы Формул
  3. 1. Каждая формула в Excel начинается с “=”
  4. 2. Формулы показываются на панели формул Excel.
  5. 3. Как собрать формулу
  6. Базовая статистика
  7. Среднее
  8. Медиана
  9. Минимум
  10. Максимум
  11. Циклические вычисления
  12. Циклические вычисления и нахождение корней уравнения
  13. Функции ЧЁТН и НЕЧЁТ
  14. Функции ОКРВНИЗ, ОКРВВЕРХ
  15. Функции ЦЕЛОЕ и ОТБР
  16. Функция ПРОИЗВЕД
  17. Функция ОСТАТ
  18. Функция КОРЕНЬ
  19. Функция ЧИСЛОКОМБ
  20. Функция ЕЧИСЛО
  21. Формула ЧАСТНОЕ()
  22. Формула СУММЕСЛИ()
  23. Формулы ОКРУГЛ(), ОКРУГЛВВЕРХ(), ОКРУГЛВНИЗ()
  24. Использование ссылок
  25. ABS
  26. СТЕПЕНЬ
  27. СЛУЧМЕЖДУ
  28. РИМСКОЕ
  29. LOG
  30. Заключение

Если изучение по видеороликам, это ваш стиль, посмотрите видео ниже, чтобы пройти по этому уроку. В противном случае продолжайте читать подробное описание того, как работать с каждой математической формулой Excel.

Основы Формул

Прежде чем мы начнем, давайте рассмотрим, как использовать любую формулу в Microsoft Excel. Независимо от того, работаете ли вы с математическими формулами в этом учебнике или любыми другими, эти советы помогут вам овладеть Excel.

1. Каждая формула в Excel начинается с “=”

Чтобы ввести формулу, щелкните любую ячейку в Microsoft Excel и введите знак равенства на клавиатуре. Так начинается формула.

Каждая базовая формула Excel начинается со знака равенства, а затем идёт сама формула.

После знака равенства вы можете размещать в ячейке невероятно разнообразные вещи. Попробуйте ввести =4+4 в качестве вашей первой формулы и нажмите Enter, чтобы отобразить результат. Excel выведет 8, но формула останется за кулисами электронной таблицы.

2. Формулы показываются на панели формул Excel.

Когда вы вводите формулу в ячейку, вы можете увидеть результат в ячейке сразу после нажатия клавиши ввода. Но когда вы выбираете ячейку, вы можете увидеть формулу для этой ячейки на панели формул.

Нажмите на ячейку в Excel, чтобы показать её формулу, такую ​​как формула умножения, которая содержит значение 125.

Чтобы использовать пример выше, ячейка отобразит «8», но когда мы нажмем на эту ячейку, панель формул покажет, что ячейка складывает 4 и 4.

3. Как собрать формулу

В приведенном выше примере мы набрали простую формулу для складывания двух чисел. Но вам не обязательно вводить числа, вы также можете ссылаться на другие ячейки.

Excel — это сетка ячеек, а столбцы идут слева направо, каждая назначена на букву, а строки пронумерованы. Каждая ячейка является пересечением строки и столбца. Например, ячейка, где пересекаются столбцы A и строка 3, называется A3.

Формулы Excel могут быть записаны для использования значений в нескольких ячейках, таких как умножение A1 и B1, чтобы получить значение в C1, которое составляет 125.

Предположим, что у меня две ячейки с простыми числами, например 1 и 2, и они находятся в ячейках A2 и A3. Когда я набираю формулу, я могу начать формулу с «=», как всегда. Затем я могу ввести:

=A2+A3

…чтобы сложить эти два числа вместе. Очень распространено иметь лист со значениями и отдельный лист, где выполняются вычисления. Соблюдайте все эти советы при работе с этим руководством. Для каждой из формул вы можете ссылаться на ячейки или непосредственно вводить числовые значения в формулу.

Если вам нужно изменить формулу, которую вы уже набрали, дважды щелкните по ячейке. Вы сможете настроить значения в формуле.

Базовая статистика

Используйте вкладку “Basic Statistics” в книге для практики.

Теперь, когда вы знаете основные математические операторы, давайте перейдем к чему-то более продвинутому. Базовая статистика полезна для обзора набора данных и принятия обоснованных решений. Давайте рассмотрим несколько популярных простых статистических формул.

Среднее

Чтобы использовать формулу среднего в Excel, начните формулу с помощью =СРЗНАЧ(, а затем введите свои значения. Разделите каждое число запятой. Когда вы нажмёте клавишу ввода, Excel вычислит и выведет среднее значение.

=СРЗНАЧ(1;3;5;7;10)

Лучший способ рассчитать среднее это ввести ваши значения в отдельные ячейки в одном столбце.

=СРЗНАЧ(A2:A5)

Используйте формулу =СРЗНАЧ, чтобы усреднить список значений, разделенных запятыми, или набор ячеек, как показывает пример выше.

Медиана

Медиана набора данных это значение, которое находится посередине. Если вы взяли числовые значения и выставили их в порядке от наименьшего к самому большому, медиана была бы ровно посередине этого списка.

=МЕДИАНА(1;3;5;7;10)

Я бы рекомендовал ввести ваши значения в список ячеек, а затем использовать формулу медианы над списком ячеек со значениями, введенными в них.

=МЕДИАНА(A2:A5)

Используйте формулу =МЕДИАНА, чтобы найти среднее значение в списке значений, разделяя их точкой с запятой, или используйте формулу по списку ячеек со значениями в них

Минимум

Если у вас есть набор данных и вы хотите держать на виду наименьшее значение, полезно использовать формулу МИН в Excel. Вы можете использовать формулу МИН со списком чисел, разделенных точкой с запятыми, чтобы найти самое маленькое значение в наборе. Это очень полезно при работе с большими наборами данных.

=МИН(1;3;5;7;9)

Возможно, вы захотите найти минимальное значение в списке данных, что вполне возможно с помощью такой формулы, как:

=МИН(A1:E1)

Используйте формулу Excel МИН со списком значений, разделенных точкой с запятой, или с диапазоном ячеек, чтобы отслеживать самое маленькое значение в наборе.

Максимум

Формула МАКС в Excel — полная противоположность МИН

=МАКС(1;3;5;7;9)

Или же, вы можете выбрать список значений в ячейках, и Excel вернет наибольшее из набора с этой формулой:

=МАКС(A1:E1)

Формула Excel МАКС очень похожа на МИН, но поможет вам следить за наибо́льшим значением в наборе и может использоваться в списке значений или списке данных, разделенных точкой с запятой.

Циклические вычисления

Если зависимые ячейки Excel образуют цикл, то говорят, что имеют место циклические ссылки (circular references). В обычном режиме Excel обнаруживает цикл и выдает сообщение о возникшей ситуации, требуя устранить циклические ссылки. Следуя обычной семантике, он не может провести вычисления, так как циклические ссылки порождают бесконечные вычисления. Есть два выхода из этой ситуации, – устранить циклические ссылки или изменить настройку в машине вычислений так, чтобы такие вычисления стали возможными. В последнем случае, естественно, требуется, чтобы число повторений цикла было конечным. Excel допускает переход к новой семантике, обеспечивающей проведение циклических вычислений. Вручную, для этого достаточно на вкладке Вычисления (меню Сервис, пункт Параметры) включить флажок Итерации и при необходимости изменить число повторений цикла в окошке “Максимум итераций”. Можно также задать точность вычислений в окошке “Максимальное изменение”, что также приводит к ограничению числа повторений цикла. По умолчанию максимальное число итераций и точность вычислений соответственно имеют значения 100 и 0,0001. Понятно, что включить циклические вычисления и задать значения параметров, определяющих окончание цикла, можно и программно.

Укажем, особенности семантики циклических вычислений:

  • Формулы, связанные циклическими ссылками, вычисляются многократно.
  • Запись формул на листе определяет порядок их вычисления. Формулы вычисляются сверху вниз, слева направо.
  • Число повторений цикла определяется параметрами, заданными на вкладке Вычисления. Цикл заканчивается при достижении максимального числа итераций или, когда изменения значений во всех ячейках не превосходят заданной точности.

В каких же ситуациях требуется прибегать к циклическим вычислениям? Это, возможно, следует делать, когда речь идет о реализации итерационного процесса, вычислениях по рекуррентным соотношениям. У нас уже были примеры реализации итерационных процессов, например, вычисление суммы ряда, задающего экспоненту, в которых не применялись циклические ссылки. Платой за это было использование дополнительных ячеек таблицы Excel. Правда, появлялись и новые возможности, – возможность построить график, проанализировать процесс сходимости и т.д. Тем не менее, программисту, привыкшему к традиционным языкам, и привыкшему “с детства” экономить на переменных, может показаться странным предложенное решение задачи о нахождении корня уравнения, где на экран выводятся результаты всех приближений. В Excel экономия ячеек не главная задача. Тем не менее, при реализации итерационных процессов можно, конечно, и в Excel иметь одну единственную ячейку X, значение которой изменяется, начиная от начального приближения до искомого результата. Это в большей степени соответствует понятию переменной в языках программирования.

Циклические вычисления и нахождение корней уравнения

Покажем, как можно использовать циклические вычисления на примере задачи нахождения корня уравнения методом Ньютона. Для простоты я начну с квадратного уравнения, а позже рассмотрю и более “серьезные” уравнения. Итак, рассмотрим квадратное уравнение: X2 -5X+6 =0. Найти корень этого (и любого другого уравнения) можно, используя всего одну единственную ячейку Excel. Для этого достаточно включить режим циклических вычислений и ввести в произвольную ячейку с именем, скажем X, рекуррентную формулу, задающую вычисления по Ньютону:

где F и F1 задают соответственно выражения, вычисляющие функцию и производную. Для нашего квадратного уравнения после ввода формулы в ней появится значение 2, соответствующее одному из корней уравнения. А как получить второй корень? Обычно, это можно сделать путем изменения начального приближения. В нашем случае начальное приближение не задавалось, итерационный процесс вычислений начинался со значения, хранимого в ячейке X по умолчанию и равного нулю. Как же задать начальное приближение в циклических вычислениях? Возникшая проблема не связана с данной конкретной задачей. Она возникает всегда в циклических вычислениях, – до начала цикла надо задать начальные установки. В рекуррентных соотношениях всегда есть некоторый начальный отрезок. Решать задачу задания начальных установок в каждом случае можно по-разному. Я продемонстрирую один прием, основанный на использовании функции ЕСЛИ. Вот как выглядит “настоящее” решение этой задачи, использующее 4 ячейки, две из которых нужны по существу дела, а две используются для повышения наглядности процесса вычислений:

  • В ячейку с именем Xinit я ввел начальное приближение.
  • В ячейку Xcur, в которой и будет идти циклический счет, ввел формулу:
    = ЕСЛИ(Xcur =0; Xinit; Xcur - (6- Xcur *(5- Xcur))/(2* Xcur -5))
  • В две другие вспомогательные ячейки я поместил текст этой формулы и формулу, задающую вычисление функции в точке Xcur, позволяющую следить за качеством решения.
  • Заметьте, что на первом шаге вычислений, функция IF (ЕСЛИ) поместит в ячейку Xcur начальное значение, а затем уже начнет счет по формуле на последующих шагах.
  • Чтобы сменить начальное приближение, недостаточно изменить содержимое ячейки Xinit и запустить процесс вычислений. В этом случае вычисления будут продолжены, начиная с последнего вычисленного значения. Чтобы обнулить значение, хранящееся в ячейке Xcur, нужно заново записать туда формулу. Для этого достаточно выбрать ячейку и выделить текст формулы непосредственно в окне ее редактирования. Щелчок по Enter начнет вычисления с новым начальным приближением.

Функции ЧЁТН и НЕЧЁТ

Для выполнения операций округления можно использовать функции ЧЁТН (EVEN) и НЕЧЁТ (ODD). Функция ЧЁТН округляет число вверх до ближайшего четного целого числа. Функция НЕЧЁТ округляет число вверх до ближайшего нечетного целого числа. Отрицательные числа округляются не вверх, а вниз. Функции имеют следующий синтаксис:

=ЧЁТН(число)
=НЕЧЁТ(число)

Функции ОКРВНИЗ, ОКРВВЕРХ

Функции ОКРВНИЗ (FLOOR) и ОКРВВЕРХ (CEILING) тоже можно использовать для выполнения операций округления. Функция ОКРВНИЗ округляет число вниз до ближайшего кратного для заданного множителя, а функция ОКРВВЕРХ округляет число вверх до ближайшего кратного для заданного множителя. Эти функции имеют следующий синтаксис:

=ОКРВНИЗ(число;множитель)
=ОКРВВЕРХ(число;множитель)

Значения число и множитель должны быть числовыми и иметь один и тот же знак. Если они имеют различные знаки, то будет выдана ошибка.

Функции ЦЕЛОЕ и ОТБР

Функция ЦЕЛОЕ (INT) округляет число вниз до ближайшего целого и имеет следующий синтаксис:

=ЦЕЛОЕ(число)

Аргумент – число – это число, для которого надо найти следующее наименьшее целое число.

Рассмотрим формулу:

=ЦЕЛОЕ(10,0001)

Эта формула возвратит значение 10, как и следующая:

=ЦЕЛОЕ(10,999)

Функция ОТБР (TRUNC) отбрасывает все цифры справа от десятичной запятой независимо от знака числа. Необязательный аргумент количество_цифр задает позицию, после которой производится усечение. Функция имеет следующий синтаксис:

=ОТБР(число;количество_цифр)

Если второй аргумент опущен, он принимается равным нулю. Следующая формула возвращает значение 25:

=ОТБР(25,490)

Функции ОКРУГЛ, ЦЕЛОЕ и ОТБР удаляют ненужные десятичные знаки, но работают они различно. Функция ОКРУГЛ округляет вверх или вниз до заданного числа десятичных знаков. Функция ЦЕЛОЕ округляет вниз до ближайшего целого числа, а функция ОТБР отбрасывает десятичные разряды без округления. Основное различие между функциями ЦЕЛОЕ и ОТБР проявляется в обращении с отрицательными значениями. Если вы используете значение -10,900009 в функции ЦЕЛОЕ, результат оказывается равен -11, но при использовании этого же значения в функции ОТБР результат будет равен -10.

Функция ПРОИЗВЕД

Функция ПРОИЗВЕД (PRODUCT) перемножает все числа, задаваемые ее аргументами, и имеет следующий синтаксис:

=ПРОИЗВЕД(число1;число2…)

Эта функция может иметь до 30 аргументов. Excel игнорирует любые пустые ячейки, текстовые и логические значения.

Функция ОСТАТ

Функция ОСТАТ (MOD) возвращает остаток от деления и имеет следующий синтаксис:

=ОСТАТ(число;делитель)

Значение функции ОСТАТ – это остаток, получаемый при делении аргумента число на делитель. Например, следующая функция возвратит значение 1, то есть остаток, получаемый при делении 19 на 14:

=ОСТАТ(19;14)

Если число меньше чем делитель, то значение функции равно аргументу число. Например, следующая функция возвратит число 25:

=ОСТАТ(25;40)

Если число точно делится на делитель, функция возвращает 0. Если делитель равен 0, функция ОСТАТ возвращает ошибочное значение.

Функция КОРЕНЬ

Функция КОРЕНЬ (SQRT) возвращает положительный квадратный корень из числа и имеет следующий синтаксис:

=КОРЕНЬ(число)

Аргумент число должен быть положительным числом. Например, следующая функция возвращает значение 4:

КОРЕНЬ(16)

Если число отрицательное, КОРЕНЬ возвращает ошибочное значение.

Функция ЧИСЛОКОМБ

Функция ЧИСЛОКОМБ (COMBIN) определяет количество возможных комбинаций или групп для заданного числа элементов. Эта функция имеет следующий синтаксис:

=ЧИСЛОКОМБ(число;число_выбранных)

Аргумент число – это общее количество элементов, а число_выбранных – это количество элементов в каждой комбинации. Например, для определения количества команд с 5 игроками, которые могут быть образованы из 10 игроков, используется формула:

=ЧИСЛОКОМБ(10;5)

Результат будет равен 252. Т.е., может быть образовано 252 команды.

Функция ЕЧИСЛО

Функция ЕЧИСЛО (ISNUMBER) определяет, является ли значение числом, и имеет следующий синтаксис:

=ЕЧИСЛО(значение)

Пусть вы хотите узнать, является ли значение в ячейке А1 числом. Следующая формула возвращает значение ИСТИНА, если ячейка А1 содержит число или формулу, возвращающую число; в противном случае она возвращает ЛОЖЬ:

=ЕЧИСЛО(А1)

Формула ЧАСТНОЕ()

Тоже одна из простых операций в математике. В Экселе выполняется тоже несложно: у функции ЧАСТНОЕ() есть два аргумента: делимое и делитель.

В выделенной ячейке выводится частное:

Формула СУММЕСЛИ()

Оператор СУММЕСЛИ() находит сумму чисел. Главное отличие этой функции от СУММ() в том, что здесь в качестве аргумента можно задавать условие (только одно), которое будет показывать, какие значения будут использованы в расчетах, а какие — нет.

В качестве условий могут выступать неравенства со знаками больше, меньше или не равно («>», «<», «< >»). Число, которое не соответствует введенному условию, не будет включен в суммирование.

На рисунке изображено суммирование всех чисел, которые больше 0.

Оранжевым выделены те числа, которые будут включены в расчет функцией СУММЕСЛИ().

Остальные числа просто будут игнорироваться:

 
Кроме постоянных аргументов, существует еще и дополнительный – «Диапазон суммирования». Он добавляется тогда, когда необходимо просуммировать один диапазон, а условия выбирать по другому диапазону.

Например, нужно посчитать общую стоимость всех проданных фруктов.

Для этого воспользуемся следующей формулой:

 
То есть сначала пишем диапазон, по которому проверяем условие, затем само ограничение и в конце диапазон чисел, которые надо суммировать. В примере на рисунке выше, соответственно, все строки из категории «Овощи» в расчет включены не будут.

Формулы ОКРУГЛ(), ОКРУГЛВВЕРХ(), ОКРУГЛВНИЗ()

Функция ОКРУГЛ() предназначена для округления значения до заданного количества знаков после запятой. В качестве первого аргумента выступают, как обычно, числа или диапазон ячеек, второго – разряд, до которого нужно округлить число.

Например, округление значения до второго знака после запятой:

Рис.7 Применение функции ОКРУГЛ()

Если в качестве второго аргумента выступает 0, то число будет округляться до ближайшего целого:

Рис. 8 Применение функции ОКРУГЛ() до целого значения

Второй аргумент может быть и отрицательным, тогда округление будет происходить до требуемого знака перед запятой:

9. Рис. Применение функции ОКРУГЛ(), когда второй аргумент меньше 0

Если необходимо округлить в сторону меньшего или большего по модулю числа используют функции ОКРУГЛВНИЗ(), ОКРУГЛВВЕРХ(), соответственно:

Рис.10 Применение функции ОКРУГЛВНИЗ()
Рис.11 Применение функции ОКРУГЛВВЕРХ()

Замечание: многие могут решить, что функции округления бесполезны, так как можно просто убрать/добавить дополнительный знак после запятой с помощью кнопок увеличить/уменьшить разрядность.

На самом деле, это не так.

Дело в том, что увеличение или уменьшение разрядности влияет только на «внешний вид» ячейки, то есть на то, как мы число видим.

Само число, при этом, не меняется. Функции округления же полностью меняют вид числа, убирая лишние разряды.

Использование ссылок

При работе с Excel можно применять в работе различные виды ссылок. Начинающим пользователям доступны простейшие из них. Важно научиться использовать все форматы в своей работе.

Существуют:

  • простые;
  • ссылки на другой лист;
  • абсолютные;
  • относительные ссылки.

Простые адреса используются чаще всего. Простые ссылки могут быть выражены следующим образом:

  • пересечение столбца и строки (А4);
  • массив ячеек по столбцу А со строки 5 до 20 (А5:А20);
  • диапазон клеток по строке 5 со столбца В до R (В5:R5);
  • все ячейки строки (10:10);
  • все клетки в диапазоне с 10 по 15 строку (10:15);
  • по аналогии обозначаются и столбцы: В:В, В:К;
  • все ячейки диапазона с А5 до С4 (А5:С4).

Следующий формат адресов: ссылки на другой лист. Оформляется это следующим образом: Лист2!А4:С6. Подобный адрес вставляется в любую функцию.

ABS

С помощью математической формулы ABS производится расчет числа по модулю. У этого оператора один аргумент – «Число», то есть, ссылка на ячейку, содержащую числовые данные. Диапазон в роли аргумента выступать не может. Синтаксис имеет следующий вид:

=ABS(число)

СТЕПЕНЬ

Из названия понятно, что задачей оператора СТЕПЕНЬ является возведение числа в заданную степень. У данной функции два аргумента: «Число» и «Степень». Первый из них может быть указан в виде ссылки на ячейку, содержащую числовую величину. Второй аргумент указывается степень возведения. Из всего вышесказанного следует, что синтаксис этого оператора имеет следующий вид:

=СТЕПЕНЬ(число;степень)

СЛУЧМЕЖДУ

Довольно специфическая задача у формулы СЛУЧМЕЖДУ. Она состоит в том, чтобы выводить в указанную ячейку любое случайное число, находящееся между двумя заданными числами. Из описания функционала данного оператора понятно, что его аргументами является верхняя и нижняя границы интервала. Синтаксис у него такой:

=СЛУЧМЕЖДУ(Нижн_граница;Верхн_граница)

РИМСКОЕ

Данная функция позволяет преобразовать арабские числа, которыми по умолчанию оперирует Excel, в римские. У этого оператора два аргумента: ссылка на ячейку с преобразуемым числом и форма. Второй аргумент не является обязательным. Синтаксис имеет следующий вид:

=РИМСКОЕ(Число;Форма)

LOG

С помощью этого оператора определяется логарифм числа по заданному основанию. Синтаксис функции представлен в виде:

=LOG(Число;Основание)

Необходимо заполнить два аргумента: Число и Основание логарифма (если его не указать, программа примет значение по умолчанию, равное 10).

Также для десятичного логарифма предусмотрена отдельная функция – LOG10.

Заключение

Таким образом, мы разобрали самые популярные математические функции, которые используются в Excel. Однако возможности программы гораздо шире, и в ее инструментарии можно найти функцию для успешного выполнения практически любой задачи.

Источники

  • https://business.tutsplus.com/ru/tutorials/how-to-use-excel-math-formulas–cms-27554
  • https://www.intuit.ru/studies/courses/114/114/lecture/3315
  • http://on-line-teaching.com/excel/lsn021.html
  • https://blog.sf.education/matematicheskie-funkczii-v-excel/
  • https://FB.ru/article/445487/matematicheskie-funktsii-v-excel-osobennosti-i-primeryi
  • https://lumpics.ru/mathematical-functions-in-excel/
  • https://MicroExcel.ru/matematicheskie-funktsii/

Like this post? Please share to your friends:
  • Математическая формула в word 2003
  • Математическая формула в microsoft excel
  • Мастер функций в excel это определение
  • Мастер функций в excel разделить
  • Мастер функций в excel позволяет