Квантиль распределения стьюдента в excel


Рассмотрим вычисление квантилей для некоторых функций распределений, представленных в

MS

EXCEL

.

Понятие

Квантиля

основано на определении

Функции распределения

. Поэтому, перед изучением

Квантилей

рекомендуем освежить в памяти понятия из статьи

Функция распределения вероятности

.

Содержание статьи:

  • Определение
  • Квантили специальных видов
  • Квантили стандартного нормального распределения
  • Квантили распределения Стьюдента
  • Квантили распределения ХИ-квадрат
  • Квантили F-распределения
  • Квантили распределения Вейбулла
  • Квантили экспоненциального распределения

Сначала дадим формальное определение

квантиля,

затем приведем примеры их вычисления в MS EXCEL.

Определение

Пусть случайная величина

X

, имеет

функцию распределения

F

(

x

).

α-квантилем

(

альфа-

квантиль,

x

a

,

квантиль

порядка

α, нижний

α-

квантиль

) называют решение уравнения

x

a

=F

-1

(α), где

α

— вероятность, что случайная величина х примет значение меньшее или равное x

a

, т.е. Р(х<= x

a

)=

α.

Из определения ясно, что нахождение

квантиля

распределения является обратной операцией нахождения вероятности. Т.е. если при вычислении

функции распределения

мы находим вероятность

α,

зная x

a

, то при нахождении

квантиля

мы, наоборот, ищем

x

a

зная

α

.

Чтобы пояснить определение, используем график функции

стандартного нормального распределения

(см.

файл примера Лист Определение

):


Примечание

: О построении графиков в MS EXCEL можно прочитать статью

Основные типы диаграмм в MS EXCEL

.

Например, с помощью графика вычислим 0,21-ю

квантиль

, т.е. такое значение случайной величины, что Р(X<=x

0,21

)=0,21.

Для этого найдем точку пересечения горизонтальной линии на уровне вероятности равной 0,21 с

функцией распределения

. Абсцисса этой точки равна -0,81. Соответственно, 0,21-я

квантиль

равна -0,81. Другими словами, вероятность того, что случайная величина, распределенная

стандартному нормальному закону,

примет значение

меньше

-0,81, равна 0,21 (21%).


Примечание

: При вычислении

квантилей

в MS EXCEL используются

обратные функции распределения

:

НОРМ.СТ.ОБР()

,

ЛОГНОРМ.ОБР()

,

ХИ2.ОБР(),

ГАММА.ОБР()

и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье

Распределения случайной величины в MS EXCEL

.

Точное значение

квантиля

в нашем случае можно найти с помощью формулы

=НОРМ.СТ.ОБР(0,21)


СОВЕТ

: Процедура вычисления

квантилей

имеет много общего с вычислением

процентилей

выборки

(см. статью

Процентили в MS EXCEL

).

Квантили специальных видов

Часто используются

Квантили

специальных видов:

  • процентили

    x

    p/100

    , p=1, 2, 3, …, 99

  • квартили

    x

    p/4

    , p=1, 2, 3

  • медиана

    x

    1/2

В качестве примера вычислим

медиану (0,5-квантиль)

логнормального распределения

LnN(0;1) (см.

файл примера лист Медиана

).

Это можно сделать с помощью формулы

=ЛОГНОРМ.ОБР(0,5; 0; 1)

Квантили стандартного нормального распределения

Необходимость в вычислении квантилей

стандартного нормального распределения

возникает при

проверке статистических гипотез

и при

построении доверительных интервалов.


Примечание

: Про

проверку статистических гипотез

см. статью

Проверка статистических гипотез в MS EXCEL

. Про

построение доверительных интервалов

см. статью

Доверительные интервалы в MS EXCEL

.

В данных задачах часто используется специальная терминология:


  • Нижний квантиль уровня

    альфа

    (

    α

    percentage point)

    ;

  • Верхний квантиль уровня альфа (upper

    α

    percentage point)

    ;

  • Двусторонние квантили уровня

    альфа

    .


Нижний квантиль уровня альфа

— это обычный

α-квантиль.

Чтобы пояснить название «

нижний» квантиль

, построим график

плотности вероятности

и

функцию вероятности

стандартного нормального

распределения

(см.

файл примера лист Квантили

).

Выделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение меньше

α-квантиля

. Из определения

квантиля

эта вероятность равна

α

. Из графика

функции распределения

становится понятно, откуда происходит название »

нижний квантиль» —

выделенная область расположена в нижней части графика.

Для

α=0,05,

нижний 0,05-квантиль

стандартного нормального распределения

равен -1,645. Вычисления в MS EXCEL можно сделать по формуле:

=НОРМ.СТ.ОБР(0,05)

Однако, при

проверке гипотез

и построении

доверительных интервалов

чаще используется «верхний»

α-квантиль.

Покажем почему.


Верхним

α



квантилем

называют такое значение x

α

, для которого вероятность, того что случайная величина X примет значение

больше или равное

x

α

равна

альфа:

P(X>= x

α

)=

α

. Из определения понятно, что

верхний альфа



квантиль

любого распределения равен

нижнему (1-

α)



квантилю.

А для распределений, у которых

функция плотности распределения

является четной функцией,

верхний

α



квантиль

равен

нижнему

α



квантилю

со знаком минус

.

Это следует из свойства четной функции f(-x)=f(x), в силу симметричности ее относительно оси ординат.

Действительно, для

α=0,05,

верхний 0,05-квантиль

стандартного нормального распределения

равен 1,645. Т.к.

функция плотности вероятности

стандартного нормального

распределения

является четной функцией, то вычисления в MS EXCEL

верхнего квантиля

можно сделать по двум формулам:

=НОРМ.СТ.ОБР(1-0,05)


=-НОРМ.СТ.ОБР(0,05)

Почему применяют понятие

верхний

α



квантиль?

Только из соображения удобства, т.к. он при

α<0,5

всегда положительный (в случае

стандартного нормального

распределения

). А при проверке гипотез

α

равно

уровню значимости

, который обычно берут равным 0,05, 0,1 или 0,01. В противном случае, в процедуре

проверки гипотез

пришлось бы записывать условие отклонения

нулевой гипотезы

μ>μ

0

как Z

0

>Z

1-

α

, подразумевая, что Z

1-

α



обычный

квантиль

порядка

1-

α

(или как Z

0

>-Z

α

). C верхнем квантилем эта запись выглядит проще Z

0

>Z

α

.


Примечание

: Z

0

— значение

тестовой статистики

, вычисленное на основе

выборки

. Подробнее см. статью

Проверка статистических гипотез в MS EXCEL о равенстве среднего значения распределения (дисперсия известна)

.

Чтобы пояснить название «

верхний»

квантиль

, построим график

плотности вероятности

и

функцию вероятности

стандартного нормального

распределения

для

α=0,05.

Выделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение больше

верхнего 0,05-квантиля

, т.е.

больше

значения 1,645. Эта вероятность равна 0,05.

На графике

плотности вероятности

площадь выделенной области равна 0,05 (5%) от общей площади под графиком (равна 1). Из графика

функции распределения

становится понятно, откуда происходит название «верхний»

квантиль



выделенная область расположена в верхней части графика. Если Z

0

больше

верхнего квантиля

, т.е. попадает в выделенную область, то

нулевая гипотеза

отклоняется.

Также при

проверке двухсторонних гипотез

и построении соответствующих

доверительных интервалов

иногда используется понятие «двусторонний»

α-квантиль.

В этом случае условие отклонения

нулевой гипотезы

звучит как |Z

0

|>Z

α

/2

, где Z

α

/2



верхний

α/2-квантиль

. Чтобы не писать

верхний

α/2-квантиль

, для удобства используют «двусторонний»

α-квантиль.

Почему двусторонний? Как и в предыдущих случаях, построим график

плотности вероятности стандартного нормального распределения

и график

функции распределения

.

Невыделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение

между

нижним квантилем уровня α

/2 и

верхним квантилем

уровня α

/2, т.е. будет между значениями -1,960 и 1,960 при α=0,05. Эта вероятность равна в нашем случае 1-(0,05/2+0,05/2)=0,95. Если Z

0

попадает в одну из выделенных областей, то

нулевая гипотеза

отклоняется.

Вычислить

двусторонний

0,05



квантиль

это можно с помощью формул MS EXCEL:

=НОРМ.СТ.ОБР(1-0,05/2)

или

=-НОРМ.СТ.ОБР(0,05/2)

Другими словами,

двусторонние α-квантили

задают интервал, в который рассматриваемая случайная величина попадает с заданной вероятностью α.

Квантили распределения Стьюдента

Аналогичным образом

квантили

вычисляются и для

распределения Стьюдента

. Например, вычислять

верхний

α/2-

квантиль

распределения Стьюдента с

n

-1 степенью свободы

требуется, если проводится

проверка двухсторонней гипотезы

о

среднем значении

распределения при

неизвестной

дисперсии

(

см. эту статью

).

Для

верхних квантилей

распределения Стьюдента

часто используется запись t

α/2,n-1

. Если такая запись встретилась в статье про

проверку гипотез

или про построение

доверительного интервала

, то это именно

верхний квантиль

.


Примечание

:

Функция плотности вероятности распределения Стьюдента

, как и

стандартного нормального распределения

, является четной функцией.

Чтобы вычислить в MS EXCEL

верхний

0,05/2



квантиль

для t-распределения с 10 степенями свободы (или тоже самое

двусторонний

0,05-квантиль

), необходимо записать формулу

=СТЬЮДЕНТ.ОБР.2Х(0,05; 10)

или

=СТЬЮДРАСПОБР(0,05; 10)

или

=СТЬЮДЕНТ.ОБР(1-0,05/2; 10)

или

=-СТЬЮДЕНТ.ОБР(0,05/2; 10)

.2X означает 2 хвоста, т.е.

двусторонний квантиль

.

Квантили распределения ХИ-квадрат

Вычислять

квантили

распределения ХИ-квадрат

с

n

-1 степенью свободы

требуется, если проводится

проверка гипотезы

о

дисперсии нормального распределения

(см. статью

Проверка статистических гипотез в MS EXCEL о дисперсии нормального распределения

).

При

проверке таких гипотез

также используются

верхние квантили.

Например, при

двухсторонней гипотезе

требуется вычислить 2

верхних

квантиля

распределения

ХИ

2

: χ

2

α/2,n-1

и

χ

2

1-

α/2,n-1

. Почему требуется вычислить два

квантиля

, не один, как при

проверке гипотез о среднем

, где используется

стандартное нормальное распределение

или

t-распределение

?

Дело в том, что в отличие от

стандартного нормального распределения

и

распределения Стьюдента

, плотность распределения

ХИ

2

не является четной (симметричной относительно оси х). У него все

квантили

больше 0, поэтому

верхний альфа-квантиль

не равен

нижнему (1-альфа)-квантилю

или по-другому:

верхний альфа-квантиль

не равен

нижнему альфа-квантилю

со знаком минус.

Чтобы вычислить

верхний

0,05/2



квантиль

для

ХИ

2

-распределения

с

числом степеней свободы

10, т.е.

χ

2

0,05/2,n-1

, необходимо в MS EXCEL записать формулу

=ХИ2.ОБР.ПХ(0,05/2; 10)

или

=ХИ2.ОБР(1-0,05/2; 10)

Результат равен 20,48. .ПХ означает правый хвост распределения, т.е. тот который расположен вверху на графике

функции распределения

.

Чтобы вычислить

верхний

(1-0,05/2)-

квантиль

при том же

числе степеней свободы

, т.е.

χ

2

1-0,05/2,n-1

и необходимо записать формулу

=ХИ2.ОБР.ПХ(1-0,05/2; 10)

или

=ХИ2.ОБР(0,05/2; 10)

Результат равен 3,25.

Квантили F-распределения

Вычислять

квантили

распределения Фишера

с

n

1

-1 и

n

2

-1 степенями свободы

требуется, если проводится

проверка гипотезы

о равенстве

дисперсий двух нормальных распределений

(см. статью

Двухвыборочный тест для дисперсии: F-тест в MS EXCEL

).

При

проверке таких гипотез

используются, как правило,

верхние квантили.

Например, при

двухсторонней гипотезе

требуется вычислить 2

верхних

квантиля

F

-распределения:

F

α/2,n1-1,

n

2

-1

и

F

1-α/2,n1-1,

n

2

-1

. Почему требуется вычислить два

квантиля

, не один, как при

проверке гипотез о среднем

? Причина та же, что и для распределения ХИ

2

– плотность

F-распределения

не является четной

.

Эти

квантили

нельзя выразить один через другой как для

стандартного нормального распределения

.

Верхний альфа-квантиль

F

-распределения

не равен

нижнему альфа-квантилю

со знаком минус.

Чтобы вычислить

верхний

0,05/2-квантиль

для

F

-распределения

с

числом степеней свободы

10 и 12, необходимо записать формулу

=F.ОБР.ПХ(0,05/2;10;12) =FРАСПОБР(0,05/2;10;12) =F.ОБР(1-0,05/2;10;12)

Результат равен 3,37. .ПХ означает правый хвост распределения, т.е. тот который расположен вверху на графике

функции распределения

.

Квантили распределения Вейбулла

Иногда

обратная функция распределения

может быть представлена в явном виде с помощью элементарных функций, например как для

распределения Вейбулла

. Напомним, что функция этого распределения задается следующей формулой:

После логарифмирования обеих частей выражения, выразим x через соответствующее ему значение F(x) равное P:


Примечание

: Вместо обозначения

α-квантиль

может использоваться

p



квантиль.

Суть от этого не меняется.

Это и есть обратная функция, которая позволяет вычислить

P



квантиль

(

p



quantile

). Для его вычисления в формуле нужно подставить известное значение вероятности P и вычислить значение х

p

(вероятность того, что случайная величина Х примет значение меньше или равное х

p

равна P).

Квантили экспоненциального распределения


Задача

:

Случайная величина имеет

экспоненциальное распределение

:


Требуется выразить

p

-квантиль

x

p

через параметр распределения λ и заданную вероятность

p

.


Примечание

: Вместо обозначения

α-квантиль

может использоваться

p-квантиль

. Суть от этого не меняется.


Решение

: Вспоминаем, что

p

-квантиль

– это такое значение x

p

случайной величины X, для которого P(X<=x

p

)=

p

. Т.е. вероятность, что случайная величина X примет значение меньше или равное x

p

равна

p

. Запишем это утверждение с помощью формулы:

По сути, мы записали

функцию вероятности экспоненциального распределения

: F(x

p

)=

p

.

Из определения

квантиля

следует, что для его нахождения нам потребуется

обратная функция распределения

.

Проинтегрировав вышеуказанное выражение, получим:

Используя это уравнение, выразим x

p

через λ и вероятность

p

.

Конечно, явно выразить

обратную функцию распределения

можно не для всех

функций распределений

.

Функция СТЮДРАСПОБР предназначена для расчета значения квантиля уровня, соответствующего известной вероятности (указывается в качестве первого аргумента), распределения Стьюдента для известных степеней свободы и возвращает обратное t-распределение.

Распределение Стьюдента и нормальное распределение в Excel

Рассматриваемая функция возвращает значение t, соответствующее условию P(|x|>t)=p. Здесь x является значением некоторой случайной величины с распределением Стьюдента, у которого число степеней свобод соответствует k (второй аргумент функции СТЮДРАСПОБР).

Примечания:

  1. Распределение Стьюдента является одним из видов распределения случайной величины, близкое к нормальному распределению с характерным отличием – сниженная концентрацией отклонений в средней части распределения. Иное название – t-распределение.
  2. Квантилем считается некоторое значение, которое с определенной вероятностью (фиксированной) не будет превышено случайной величиной.
  3. Функция СТЮДРАСПОБР считается устаревшей начиная с версии MS Office 2010. Она оставлена для обеспечения совместимости с другими табличными редакторами и документами, созданными в более старых версиях табличного редактора. В новых версиях следует использовать усовершенствованные аналоги: СТЬЮДЕНТ.ОБР.2Х или СТЬЮДЕНТ.ОБР.

Подробнее о нормальном распределении читайте: НОРМСТРАСП функция стандартного нормального распределения в Excel.

Ниже рассмотрим примеры использования функции СТЮДРАСПОБР в Excel.



Определение одностороннего и двустороннего t распределение Стьюдента

Пример 1. Определить односторонне и двустороннее t-значения для распределения Стьюдента, характеризующееся вероятностью 0,17 и числом степени свобод 16.

Вид таблицы данных:

Пример 1.

Для расчета двустороннего t-значения используем функцию:

=СТЬЮДРАСПОБР(B2;B1)

Результат вычислений:

СТЬЮДРАСПОБР.

Для двустороннего t используем удвоенное значение вероятности:

=СТЬЮДРАСПОБР(2*B2;B1)

В результате получим:

Определение двустороннего t распределение.

Число степеней свободы в распределении Стьюдента

Пример 2. Сгенерировать 8 случайных чисел с использованием функции СЛЧИС, для которых распределение Стьюдента имеет 4 степени свободы.

Поскольку вероятность того, что случайна величина примет как отрицательное, так и положительное значение является одинаковой и равна 0,5 (распределение Стьюдента симметрично относительно вертикальной оси графика), используем функцию ЕСЛИ для проверки значений.

Выделим 8 ячеек и запишем следующую функцию (вводить как формулу массива CTRL+SHIFT+Enter):

То есть, если случайное значение вероятности, сгенерированное функцией СЛЧИС меньше 0,5, будет сгенерировано отрицательное t-значение, иначе – положительное.

Результат вычислений:

4 степени свободы.

Как пользоваться функцией распределения Стьюдента СТЮДРАСПОБР В EXCEL

Функция имеет следующий синтаксис:

=СТЬЮДРАСПОБР(вероятность;степени_свободы)

Описание аргументов:

  • вероятность – обязательный для заполнения, принимает числовое значение вероятности для двустороннего распределения Стьюдента из диапазона от 0 (не включительно) до 1.
  • степени_свободы – обязательный для заполнения, принимает числовое значение степеней свободы, которые определяют исследуемое распределение.

Примечания:

  1. Если один из аргументов функции указан в виде значения нечислового типа данных, результатом выполнения рассматриваемой функции будет код ошибки #ЗНАЧ!. Логические значения, имена и текстовые строки, преобразуемые в числа, не приводят к возникновению ошибки. Например, функция =СТЮДРАСПОБР(“0,4”;ИСТИНА) вернет значение 1,32638.
  2. Если аргумент вероятность задан числом, не находящимся в промежутке от 0 (не включительно) до 1, функция СТЮДРАСПОБР вернет код ошибки #ЧИСЛО!. Аналогичная ошибка возникает, если аргумент степени_свободы задан числом, которое меньше 1.
  3. Для расчета односторонней t-величины следует в качестве аргумента вероятность указать значение удвоенной вероятности.

Содержание

  1. Медиана и квартили
  2. Математическое описание
  3. Среднее значение
  4. Отклонение от среднего
  5. Квантиль
  6. Построение интервалов
  7. Двусторонний доверительный интервал
  8. Первый квартиль
  9. Третий квартиль
  10. Квартили непрерывного распределения
  11. Квартили в MS EXCEL
  12. Моменты случайной величины
  13. Статистический анализ роста доли дохода в Excel за период
  14. Анализ статистики случайно сгенерированных чисел в Excel
  15. Расчет квартилей в R и SAS
  16. Расчет децилей для дискретного ряда
  17. Квантили специальных видов
  18. Квантили стандартного нормального распределения
  19. Квантили распределения Стьюдента
  20. Квантили распределения ХИ-квадрат

Квантили нормального распределения

Основная статья: Медиана (статистика)

  • 0,25-квантиль называется первым (или нижним) квартилем (от лат. quarta — четверть);
  • 0,5-квантиль называется медианой (от лат. mediāna — середина) или вторым квартилем
  • 0,75-квантиль называется третьим (или верхним) квартилем.

Интерквартильным размахом (англ. Interquartile range) называется разность между третьим и первым квартилями. Интерквартильный размах является характеристикой разброса распределения величины и является робастным аналогом дисперсии. Вместе, медиана и интерквартильный размах могут быть использованы вместо математического ожидания и дисперсии в случае распределений с большими выбросами, либо при невозможности вычисления последних.

Математическое описание

Смотря на закон распределения, мы можем понять, какова вероятность того или иного события, можем сказать, какова вероятность, что произойдёт группа событий, а в этой статье мы рассмотрим, как наши выводы “на глаз” перевести в математически обоснованное утверждение.

Крайне важное определение: математическое ожидание – это площадь под графиком распределения. Если мы говорим о дискретном распределении – это сумма событий умноженных на соответсвующие вероятности, также известно как момент:

(2) E(X) = Σ(pi•Xi) E – от английского слова Expected (ожидание)
Для математического ожидания справедливы равенства:
(3) E(X + Y) = E(X) + E(Y)
(4) E(X•Y) = E(X) • E(Y)

Момент степени k:

(5) νk = E(Xk)

Центральный момент степени k:

(6) μk = E[X – E(X)]k

Среднее значение

Среднее значение (μ) закона распределения – это математическое ожидание случайной величины (случайная величина – это событие), например, сколько в среднем посетителей заходит в магазин в час:

Кол-во посетителей 0 1 2 3 4 5 6
Количество наблюдений 114 115 52 52 24 13 30
Таблица 1. Количество посетителей в час

График 1. Количество посетителей в час

Чтобы найти среднее значение всех результатов необходимо сложить всё вместе и разделить на количество результатов:

μ = (114 • 0 + 115 • 1 + 52 • 2 + 52 • 3 + 24 • 4 + 13 • 5 + 30 • 6) / 400 = 716/400 = 1.79

То же самое мы можем проделать используя формулу 2:

μ = M(X) = Σ(Xi•pi) = 0 • 0.29 + 1 • 0.29 + 2 • 0.13 + 3 • 0.13 + 4 • 0.06 + 5 • 0.03 + 6 • 0.08 = 1.79 Момент первой степени, формула (5)

Собственно, формула 2 представляет собой среднее арифметическое всех значений
Итог: в среднем, 1.79 посетителя в час

Количество посетителей 0 1 2 3 4 5 6
Вероятность (%) 28.5 28.8 13 13 6 3.3 7.5
Таблица 2. Закон распределения количества посетителей

Отклонение от среднего

Посмотрите на это распределение, можно предположить, что в среднем случайная величина равна 100±5, поскольку кажется, что таких значений несравнимо больше чем тех, что меньше 95 или больше 105:

График 2. График функции вероятности. Распределение ≈ 100±5

Среднее значение по формуле (2): μ = 99.95, но как посчитать, насколько далеко все значения находятся от среднего? Вам должна быть знакома запись 100±5. Что бы получить это значение ±, нам необходимо определить диапазон значений вокруг среднего. И мы могли бы использовать в качестве меры удалённости “разность” между средним и случайными величинами:

(7) xi – μ

но сумма таких расстояний, а следовательно и любое производное от этого числа, будет равно нулю, поэтому в качестве меры выбрали квадрат разниц между величинами и средним значением:

(8) (xi – μ)2

Соответственно, среднее значение удалённости – это математическое ожидание квадратов удалённости:

(9) σ2 = E[(X – E(X))2] Поскольку вероятности любой удалённости равносильны – вероятность каждого из них – 1/n, откуда: (10) σ2 = E[(X – E(X))2] = ∑[(Xi – μ)2]/n Она же формула центрального момента (6) второй степени

σ возведена в квадрат, поскольку вместо расстояний мы взяли квадрат расстояний. σ2 называется дисперсией. Корень из дисперсии называется средним квадратическим отклонением, или среднеквадратическим отклоненим, и его используют в качестве меры разброса:

(11) μ±σ
(12) σ = √(σ2) = √[∑[(Xi – μ)2]/n]

Возвращаясь к примеру, посчитаем среднеквадратическое отклонение для графика 2:

σ = √(∑(x-μ)2/n) = √{[(90 – 99.95)2 + (91 – 99.95)2 + (92 – 99.95)2 + (93 – 99.95)2 + (94 – 99.95)2 + (95 – 99.95)2 + (96 – 99.95)2 + (97 – 99.95)2 + (98 – 99.95)2 + (99 – 99.95)2 + (100 – 99.95)2 + (101 – 99.95)2 + (102 – 99.95)2 + (103 – 99.95)2 + (104 – 99.95)2 + (105 – 99.95)2 + (106 – 99.95)2 + (107 – 99.95)2 + (108 – 99.95)2 + (109 – 99.95)2 + (110 – 99.95)2]/21} = 6.06
Итак, для графика 2 мы получили:
X = 99.95±6.06 ≈ 100±6 , что немного отличается от полученного “на глаз”

Квантиль

График 3. Функция распределения. Медиана

График 4. Функция распределения. 4-квантиль или квартиль

График 5. Функция распределения. 0.34-квантиль

Для анализа функции распределения ввели понятие квантиль. Квантиль – это случайная величина при заданном уровне вероятности, т.е.: квантиль для уровня вероятности 50% – это случайная величина на графике плотности вероятности, которая имеет вероятность 50%. На примере с графиком 3, квантиль уровня 0.5 = 99 (ближайшее значение, поскольку распределение дискретно и события со значением 99.3 просто не существует)

  • 2-квантиль – медиана
  • 4-квантиль – квартиль
  • 10-квантиль – дециль
  • 100-квантиль – перцентиль

То есть, если мы говорим о дециле (10-квантиле), то это означает, что мы разбили график на 10 частей, что соответствует девяти линяям, и для каждого дециля нашли значение случайной величины.

Также, используется обозначение x-квантиль, где х – дробное число, например, 0.34-квантиль, такая запись означает значение случайной величины при p = 0.34.

Для дискретного распределения квантиль необходимо выбирать следующим образом: квантиль гарантирует вероятность, поэтому, если рассчитанный квантиль не совпадает с одним и значений, необходимо выбирать меньшее значение.

Построение интервалов

Квантили используют для построения доверительных интервалов, которые необходимы для исследования статистики не одного конкретного события (например, интерес – случайное число = 98), а для группы событий (например, интерес – случайное число между 96 и 99). Доверительный интервал бывает двух видов: односторонний и двусторонний. Параметр доверительного интервала – уровень доверия. Уровень доверия означает процент событий, которые можно считать успешными.

Двусторонний доверительный интервал

Двусторонний доверительный интервал строится следующим образом: мы задаёмся уровнем значимости, например, 10%, и выделяем область на графике так, что 90% всех событий попадут в эту область. Поскольку интервал двусторонний, то мы отсекаем по 5% с каждой стороны, т.е. мы ищем 5й перцентиль, 95й перцентиль и значения случайной величины между ними будут являться доверительной областью, значения за пределами доверительной области называются “критическая область

Первый квартиль

Значение квартиля Q1 находится в интервале 68,98 – 71,70, соответствующего частоте fQ1 = 150:4 = 37,5

Третий квартиль

Значение квартиля находится в интервале 68,98 – 71,70, соответствующего частоте fQ3 = (3*150):4 = 112,5

Квартили непрерывного распределения

Если функция распределения F (х) случайной величины х непрерывна, то 1-й квартиль является решением уравнения F(х) =0,25, второй – F(х) =0,5, а третий F(х) =0,75.

Примечание : Подробнее о Функции распределения см. статью Функция распределения и плотность вероятности в MS EXCEL .

Если известна функция плотности вероятности p (х) , то 1-й квартиль можно найти из уравнения:

Например, решив аналитическим способом это уравнение для Логнормального распределения lnN(μ; σ 2 ), получим, что медиана (2-й квартиль ) вычисляется по формуле e μ или в MS EXCEL =EXP(μ). При μ=1, медиана равна 2,718.

Обратите внимание на точку Функции распределения , для которой F(х)=0,5 (см. картинку выше или файл примера , лист Квартиль-распределение) . Абсцисса этой точки равна 2,718. Это и есть значение 2-го квартиля ( медианы ), что естественно совпадает с ранее вычисленным значением по формуле e μ .

Примечание : Напомним, что интеграл от функции плотности вероятности по всей области задания случайной величины равен единице:

Поэтому, линии квартилей ( х=квартиль ) делят площадь под графиком функции плотности вероятности на 4 равные части.

Квартили в MS EXCEL

Чтобы вычислить в MS EXCEL квартили заданного распределения необходимо использовать соответствующую обратную функцию распределения .

При вычислении квартилей в MS EXCEL используются обратные функции распределения : НОРМ.СТ.ОБР() , ЛОГНОРМ.ОБР() , ХИ2.ОБР() , ГАММА.ОБР() и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье Распределения случайной величины в MS EXCEL .

Например, в MS EXCEL 1-й квартиль для логнормального распределения LnN(1;1) можно вычислить по формуле =ЛОГНОРМ.ОБР(0,25;1;1) , а 3-й квартиль для стандартного нормального распределения по формуле =НОРМ.СТ.ОБР(0,75) .

Моменты случайной величины

Моменты случайно величины описывают различные аспекты характера и формы нашего распределения.

#1 — первый момент случайной величины — среднее значение данных, которое показывает место распределения.

#2 — второй момент случайной величины — дисперсия, которая показывает разброс распределения. Большие значения имеют больший размах, чем маленькие.

#3 — третий момент случайной величины — коэффициент асимметрии — мера того, насколько неравномерным является распределение. Коэффициент асимметрии положителен, если распределение наклонено влево и левый хвост короче правого. То есть среднее значение находится правее. И наоборот:

Асимметрия

#4 — четвертый момент случайной величины — коэффициент эксцесса, который описывает то, насколько толстый хвост и насколько острый пик распределения. Этот коэффициент показывает, насколько вероятно найти точки экстремума в данных. Чем выше значение, тем вероятнее выбросы. Это похоже на разброс (дисперсию), но между ними есть отличия.

Коэффициент эксцесса трех кривых

Как видно на графике, чем выше значение пики, тем выше коэффициент эксцесса, т.е. у верхней кривой коэффициент эксцесса выше, чем у нижней.

Статистический анализ роста доли дохода в Excel за период

Пример 2. В таблице приведены данные о доходах предпринимателя за год. Доказать, что примерно 75% значений меньше, чем третий квартиль доходов.

Вид исходной таблицы:

Определим 3-й по формуле:

Определим соотношение чисел, меньше полученного числа, к общему количеству значений по формуле:

=СЧЁТЕСЛИ(B2:B13;”<“&B15)/СЧЁТ(B2:B13)

Полученные результаты:

Анализ статистики случайно сгенерированных чисел в Excel

Пример 3. Имеется диапазон случайных чисел, отсортированный в порядке возрастания. Определить соотношение суммы чисел, которые меньше 1-го квартиля, к сумме чисел, которые превышают значение 1-го квартиля.

Чтобы сгенерировать случайное число в Excel воспользуемся функцией:

=СЛУЧМЕЖДУ(0;1000)

После генерации отсортируем случайно сгенерированные числа по возрастанию. Вид исходной таблицы данных со случайными числами:

Формула для расчета имеет следующий вид (формула массива CTRL+SHIFT+ENTER):

Функции СУММ с вложенными функциями ЕСЛИ выполняют расчет суммы только тех чисел, которые меньше и больше соответственно значения, возвращаемого функцией для исследуемого диапазона. Из полученных значений вычисляется частное. Результат расчетов:

Общая сумма чисел исследуемого диапазона, которые меньше 1-го квартиля, составляет всего 8,57% от общей суммы чисел, которые больше 1-го квартиля.

Расчет квартилей в R и SAS

Функция quantile в R использует все девять алгоритмов расчета квантилей, в соответствии с нумерацией, предложенной Hyndman and Fan в работе 1996 г. (рис. 15; если вы не знакомы с R, рекомендую начать с Алексей Шипунов. Наглядная статистика. Используем R!). Квантиль при i-м методе расчета:

где i – номер метода, 1 ≤ i ≤ 9, (j–m)/n ≤ p < (j–m+1)/n, хj – j-ый порядковый элемент упорядоченного ряда, n – размер выборки, γ является функцией двух параметров: j = floor(np + m) и g = np + m – j, где floor – функция возвращающая наибольшее целое, но всё еще меньшее, чем аргумент функции (аналог в Excel – ОКРВНИЗ.МАТ), m – константа, определяемая типом алгоритма расчета квантиля. Если вас интересуют подробности, обратитесь к справочной системе R.

SAS предлгает 5 методов расчета квантилей.

Расчет децилей для дискретного ряда

  1. Определяем номер дециля по формуле: ,

  2. Если номер дециля – целое число, то значение дециля будет равно величине элемента ряда, которое обладает накопленной частотой равной номеру дециля. Например, если номер дециля равен 20, его значение будет равно значению признака с S =20 (накопленной частотой равной 20).

Если номер дециля – нецелое число, то дециль попадает между двумя наблюдениями. Значением дециля будет сумма, состоящая из значения элемента, для которого накопленная частота равна целому значению номера дециля, и указанной части (нецелая часть номера дециля) разности между значением этого элемента и значением следующего элемента.

Например, если номер дециля равна 20,25, дециль попадает между 20-м и 21-м наблюдениями, и его значение будет равно значению 20-го наблюдения плюс 1/4 разности между значением 20-го и 21-го наблюдений.

Квантили специальных видов

Часто используются Квантили специальных видов:

  • процентили x p/100 , p=1, 2, 3, …, 99
  • квартили x p/4 , p=1, 2, 3
  • медиана x 1/2

В качестве примера вычислим медиану (0,5-квантиль) логнормального распределения LnN(0;1) (см. файл примера лист Медиана ).

Это можно сделать с помощью формулы =ЛОГНОРМ.ОБР(0,5; 0; 1)

Квантили стандартного нормального распределения

Необходимость в вычислении квантилей стандартного нормального распределения возникает при проверке статистических гипотез и при построении доверительных интервалов.

Примечание : Про проверку статистических гипотез см. статью Проверка статистических гипотез в MS EXCEL . Про построение доверительных интервалов см. статью Доверительные интервалы в MS EXCEL .

В данных задачах часто используется специальная терминология:

  • Нижний квантиль уровня альфа ( α percentage point)
  • Верхний квантиль уровня альфа (upper α percentage point)
  • Двусторонние квантили уровня альфа .

Нижний квантиль уровня альфа – это обычный α-квантиль. Чтобы пояснить название « нижний» квантиль , построим график плотности вероятности и функцию вероятности стандартного нормального распределения (см. файл примера лист Квантили ).

Выделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение меньше α-квантиля . Из определения квантиля эта вероятность равна α . Из графика функции распределения становится понятно, откуда происходит название ” нижний квантиль” – выделенная область расположена в нижней части графика.

Для α=0,05, нижний 0,05-квантиль стандартного нормального распределения равен -1,645. Вычисления в MS EXCEL можно сделать по формуле:

=НОРМ.СТ.ОБР(0,05)

Однако, при проверке гипотез и построении доверительных интервалов чаще используется “верхний” α-квантиль. Покажем почему.

Верхним α квантилем называют такое значение x α , для которого вероятность, того что случайная величина X примет значение больше или равное x α равна альфа: P(X>= x α )= α . Из определения понятно, что верхний альфа квантиль любого распределения равен нижнему (1- α) квантилю. А для распределений, у которых функция плотности распределения является четной функцией, верхний α квантиль равен нижнему α квантилю со знаком минус . Это следует из свойства четной функции f(-x)=f(x), в силу симметричности ее относительно оси ординат.

Действительно, для α=0,05, верхний 0,05-квантиль стандартного нормального распределения равен 1,645. Т.к. функция плотности вероятности стандартного нормального распределения является четной функцией, то вычисления в MS EXCEL верхнего квантиля можно сделать по двум формулам:

=НОРМ.СТ.ОБР(1-0,05)

=-НОРМ.СТ.ОБР(0,05)

Почему применяют понятие верхний α квантиль? Только из соображения удобства, т.к. он при α всегда положительный (в случае стандартного нормального распределения ). А при проверке гипотез α равно уровню значимости , который обычно берут равным 0,05, 0,1 или 0,01. В противном случае, в процедуре проверки гипотез пришлось бы записывать условие отклонения нулевой гипотезы μ>μ 0 как Z 0 >Z 1- α , подразумевая, что Z 1- α обычный квантиль порядка 1- α (или как Z 0 >-Z α ). C верхнем квантилем эта запись выглядит проще Z 0 >Z α .

Примечание : Z 0 – значение тестовой статистики , вычисленное на основе выборки . Подробнее см. статью Проверка статистических гипотез в MS EXCEL о равенстве среднего значения распределения (дисперсия известна) .

Чтобы пояснить название « верхний» квантиль , построим график плотности вероятности и функцию вероятности стандартного нормального распределения для α=0,05.

Выделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение больше верхнего 0,05-квантиля , т.е. больше значения 1,645. Эта вероятность равна 0,05.

На графике плотности вероятности площадь выделенной области равна 0,05 (5%) от общей площади под графиком (равна 1). Из графика функции распределения становится понятно, откуда происходит название “верхний” квантиль выделенная область расположена в верхней части графика. Если Z 0 больше верхнего квантиля , т.е. попадает в выделенную область, то нулевая гипотеза отклоняется.

Также при проверке двухсторонних гипотез и построении соответствующих доверительных интервалов иногда используется понятие “двусторонний” α-квантиль. В этом случае условие отклонения нулевой гипотезы звучит как |Z 0 |>Z α /2 , где Z α /2 верхний α/2-квантиль . Чтобы не писать верхний α/2-квантиль , для удобства используют “двусторонний” α-квантиль. Почему двусторонний? Как и в предыдущих случаях, построим график плотности вероятности стандартного нормального распределения и график функции распределения .

Невыделенная площадь на рисунке соответствует вероятности, что случайная величина примет значение между нижним квантилем уровня α /2 и верхним квантилем уровня α /2, т.е. будет между значениями -1,960 и 1,960 при α=0,05. Эта вероятность равна в нашем случае 1-(0,05/2+0,05/2)=0,95. Если Z 0 попадает в одну из выделенных областей, то нулевая гипотеза отклоняется.

Вычислить двусторонний 0,05 квантиль это можно с помощью формул MS EXCEL: =НОРМ.СТ.ОБР(1-0,05/2) или =-НОРМ.СТ.ОБР(0,05/2)

Другими словами, двусторонние α-квантили задают интервал, в который рассматриваемая случайная величина попадает с заданной вероятностью α.

Квантили распределения Стьюдента

Аналогичным образом квантили вычисляются и для распределения Стьюдента . Например, вычислять верхний α/2- квантиль распределения Стьюдента с n -1 степенью свободы требуется, если проводится проверка двухсторонней гипотезы о среднем значении распределения при неизвестной дисперсии ( см. эту статью ).

Для верхних квантилей распределения Стьюдента часто используется запись t α/2,n-1 . Если такая запись встретилась в статье про проверку гипотез или про построение доверительного интервала , то это именно верхний квантиль .

Примечание : Функция плотности вероятности распределения Стьюдента , как и стандартного нормального распределения , является четной функцией.

Чтобы вычислить в MS EXCEL верхний 0,05/2 квантиль для t-распределения с 10 степенями свободы (или тоже самое двусторонний 0,05-квантиль ), необходимо записать формулу =СТЬЮДЕНТ.ОБР.2Х(0,05; 10) или =СТЬЮДРАСПОБР(0,05; 10) или =СТЬЮДЕНТ.ОБР(1-0,05/2; 10) или =-СТЬЮДЕНТ.ОБР(0,05/2; 10)

.2X означает 2 хвоста, т.е. двусторонний квантиль .

Квантили распределения ХИ-квадрат

Вычислять квантили распределения ХИ-квадрат с n -1 степенью свободы требуется, если проводится проверка гипотезы о дисперсии нормального распределения (см. статью Проверка статистических гипотез в MS EXCEL о дисперсии нормального распределения ).

При проверке таких гипотез также используются верхние квантили. Например, при двухсторонней гипотезе требуется вычислить 2 верхних квантиля распределения ХИ 2 : χ 2 α/2,n-1 и χ 2 1- α/2,n-1 . Почему требуется вычислить два квантиля , не один, как при проверке гипотез о среднем , где используется стандартное нормальное распределение или t-распределение ?

Дело в том, что в отличие от стандартного нормального распределения и распределения Стьюдента , плотность распределения ХИ 2 не является четной (симметричной относительно оси х). У него все квантили больше 0, поэтому верхний альфа-квантиль не равен нижнему (1-альфа)-квантилю или по-другому: верхний альфа-квантиль не равен нижнему альфа-квантилю со знаком минус.

Чтобы вычислить верхний 0,05/2 квантиль для ХИ 2 -распределения с числом степеней свободы 10, т.е. χ 2 0,05/2,n-1 , необходимо в MS EXCEL записать формулу =ХИ2.ОБР.ПХ(0,05/2; 10) или =ХИ2.ОБР(1-0,05/2; 10)

Результат равен 20,48. .ПХ означает правый хвост распределения, т.е. тот который расположен вверху на графике функции распределения .

Чтобы вычислить верхний (1-0,05/2)- квантиль при том же числе степеней свободы , т.е. χ 2 1-0,05/2,n-1 и необходимо записать формулу =ХИ2.ОБР.ПХ(1-0,05/2; 10) или =ХИ2.ОБР(0,05/2; 10)

Результат равен 3,25.

Источники

  • https://dic.academic.ru/dic.nsf/ruwiki/291015
  • https://k-tree.ru/articles/statistika/analiz_dannyh/svoistva_raspredeleniia
  • https://univer-nn.ru/zadachi-po-statistike-primeri/kvartili-v-statistike/
  • https://excel2.ru/articles/kvartili-i-interkvartilnyy-interval-iqr-v-ms-excel
  • https://nuancesprog.ru/p/3307/
  • https://exceltable.com/funkcii-excel/primery-funkcii-kvartil
  • https://baguzin.ru/wp/kvartil-kakie-formuly-rascheta-ispol/
  • https://studfile.net/preview/5316597/page:4/
  • https://excel2.ru/articles/kvantili-raspredeleniy-ms-excel

Множественная регрессия в EXCEL

history 26 января 2019 г.
    Группы статей

  • Статистический анализ

Рассмотрим использование MS EXCEL для прогнозирования переменной Y на основании нескольких переменных Х, т.е. множественную регрессию.

Перед прочтением этой статьи рекомендуется освежить в памяти простую линейную регрессию – прогнозирование на основе значений только одного фактора.

Disclaimer : Данную статью не стоит рассматривать, как пересказ главы из учебника по статистике. Статья не обладает ни полнотой, ни строгостью изложения положений статистической науки. Эта статья – о применении MS EXCEL для целей Множественного регрессионного анализа. Теоретические отступления приведены лишь из соображения логики изложения. Использование данной статьи для изучения Регрессии – плохая идея.

Статья про Множественный регрессионный анализ получилась большая, поэтому ниже для удобства приведены ее разделы:

Прогнозирование единственной переменной Y на основании значений 2-х или более переменных Х называется множественной регрессией .

Множественная линейная регрессионная модель (Multiple Linear Regression Model) имеет вид Y=β 01 *X 12 *X 2 +…+β k *X k +ε. В этом случае переменная Y зависит от k поясняющих переменных Х, т.е. регрессоров . ε — случайная ошибка . Модель является линейной относительно неизвестных параметров β.

Оценка неизвестных параметров

В этой статье рассмотрим модель с 2-мя регрессорами. Сначала введем необходимые обозначения и понятия множественной регрессии.

Для описания зависимости Y от 2-х переменных линейная модель имеет вид:

Параметры этой модели β i нам неизвестны, но их можно оценить, используя случайную выборку (измеренные значения переменной Y от заданных Х). Оценки параметров модели (β 0 , β 1 , β 2 ) обычно вычисляются методом наименьших квадратов (МНК) , который минимизирует сумму квадратов ошибок прогнозирования (критерий минимизации в англоязычной литературе обозначают как SSE – Sum of Squared Errors).

Ошибка ε имеет случайную природу и имеет свою функцию распределения со средним значением =0 и дисперсией σ 2 .

Оценки b 1 и b 2 называются коэффициентами регрессии , они определяют влияние соответствующей переменной X, когда все остальные независимые переменные остаются неизменными .

Сдвиг (intercept) или постоянный член b 0 , определяет прогнозируемое значение Y, когда все поясняющие переменные Х равны 0 (часто сдвиг не имеет физического смысла в рамках модели и обусловлен лишь математическими вычислениями МНК ).

Вычислив оценки, полученные методом МНК, позволяют прогнозировать значения переменной Y:

Примечание : Для случая 2-х регрессоров, все спрогнозированные значения переменной Y будут лежать в плоскости (в плоскости регрессии ).

В качестве примера рассмотрим технологический процесс изготовления нити:

Инженер, на основе имеющегося опыта, предположил, что прочность нити Y зависит от концентрации исходного раствора1 ) и температуры реакции2 ), и соответствует модели линейной регрессии. Для нахождения комбинации переменных Х, при которых Y принимает максимальное значение, необходимо определить коэффициенты регрессии, сделав выборку.

В MS EXCEL коэффициенты множественной регрессии удобнее всего вычислить с помощью функции ЛИНЕЙН() . Это сделано в файле примера на листе Коэффициенты . Чтобы вычислить оценки:

  • выделите 3 ячейки в одной строке (т.к. мы рассматриваем случай 2-х регрессоров, то будут вычислены 2 коэффициента регрессии + величина сдвига = 3 значения, для вывода которых понадобится 3 ячейки). Пусть это будет диапазон С8:Е8 ;
  • в Строке формул введите = ЛИНЕЙН(D20:D50;B20:C50) . Предполагается, что в столбце В содержатся прогнозируемые значения Y (в нашей модели это Прочность нити), в столбцах С и D содержатся значения контролируемых параметров Х (Х1 – Концентрация в столбце С и Х2 – Температура в столбце D).
  • нажмите CTRL+SHIFT+ENTER (т.к. это формула массива ).

В левой ячейке будет рассчитано значение коэффициента регрессии b 2 для переменной Х2, в средней ячейке — значение коэффициента регрессии b 1 для переменной Х1, в правой – сдвиг . Обратите внимание, что порядок вывода коэффициентов регрессии обратный по отношению к расположению столбцов с данными соответствующих переменных Х (вычисленный коэффициент b 2 располагается левее по отношению к b 1 , тогда как значения переменной Х2 располагаются правее значений переменной Х1). Это может привести к путанице, поэтому лучше разместить коэффициенты над соответствующими столбцами с данными, как это сделано в строке 17 файла примера .

Примечание : В принципе без функции ЛИНЕЙН() можно обойтись, записав альтернативные формулы. Для этого в файле примера на листе Коэффициенты в столбцах I : K вычислены отклонения значений переменных Х 1i , Х 2i , Y i от их средних значений , т.е.:

Далее коэффициенты регрессии рассчитываются по следующим формулам (эти формулы справедливы только при прогнозировании по 2-м независимым переменным Х):

При прогнозировании по 3-м и более независимым переменным Х формулы для вычисления коэффициентов регрессии значительно усложняются, поэтому следует использовать матричный подход.

В файле примера на листе Матричная форма выполнены расчеты коэффициентов регрессии с помощью матричного подхода.

Расчет можно произвести как пошагово, так и одной формулой массива :

Коэффициенты регрессии (вектор b ) в этом случае вычисляются по формуле b =(X T X) -1 (X T Y) или в другом виде записи b =(X ’ X) -1 (X ’ Y)

Под Х подразумевается матрица, состоящая из столбцов значений переменной Х с дополнительным столбцом единиц, а под Y – вектор-столбец значений Y.

Диаграмма рассеяния

В случае простой линейной регрессии (один регрессор, т.е. одна переменная Х) для визуализации связи между прогнозируемым значением Y и переменной Х строят диаграмму рассеяния (двумерную).

В случае множественной линейной регрессии двумерную диаграмму рассеяния можно построить только для анализа влияния каждого отдельного регрессора на Y (при этом остальные Х не меняются), т.е. так называемую Матричную диаграмму рассеивания (См. файл примера лист Диагр расс (матричная) ).

К сожалению, такую диаграмму трудно интерпретировать.

Более того, матричная диаграмма может вводить в заблуждение (см. Introduction to linear regression analysis / D . C . Montgomery , E . A . Peck , G . G . Vining , раздел 3.2.5 ), демонстрируя наличие или отсутствие линейной взаимосвязи между отдельным регрессором X i и Y.

Для случая с 2-мя регрессорами можно предложить альтернативный вид матричной диаграммы рассеяния . В стандартной диаграмме рассеяния строятся проекции на координатные плоскости Х1;Х2, Y;X1 и Y;X2. Однако, если взглянуть на точки относительно плоскости регрессии , то картину, на мой взгляд, будет проще интерпретировать.

Сравним две матричные диаграммы рассеяния (см. файл примера на листе «Диагр расс (в плоск регрессии)» , построенные для одних и тех же наблюдений. Первая – стандартная,

вторая представляет собой вид сверху на плоскость регрессии и 2 вида вдоль плоскости.

На второй диаграмме становится очевидно, что разброс точек относительно плоскости регрессии совсем не большой и поэтому, скорее всего, построенная модель является полезной, а выбранные 2 переменные Х позволяют прогнозировать Y (конечно, для подтверждения этой гипотезы нужно провести процедуру F-теста ).

Несколько слов о построении альтернативной матричной диаграммы рассеяния:

  • Перед построением необходимо нормировать значения наблюдений (для каждой переменной вычесть среднее и разделить на стандартное отклонение ). В этом случае практически все точки на диаграммах будут находится в диапазоне +/-3 (по аналогии со стандартным нормальным распределением , 99% значений которого лежат в пределах +/-3 сигма). В этом случае, на диаграмме можно фиксировать мин/макс значений осей, чтобы EXCEL автоматически не модифицировал масштаб осей при изменении данных (это не всегда удобно);
  • Теперь координаты точек необходимо рассчитать в системе отсчета относительно плоскости регрессии (в которой плоскость Оху’ совпадает с плоскостью регрессии). Для этого необходимо найти матрицу вращения , например, через вращение приводящее к совмещению нормали к плоскости регрессии и вектора оси Z (0;0;1);
  • Новые координаты позволяют построить альтернативную матричную диаграмму. Кроме того, для удобства можно вращать систему координат вокруг новой оси Z, чтобы нагляднее представить себе распределение точек относительно плоскости регрессии (для этого использована Полоса прокрутки в ячейках Q31:S31 ).

Вычисление прогнозных значений Y (отдельное наблюдение и среднее значение) и построение доверительных интервалов

После того, как нами были найдены тем или иным способом коэффициенты регрессии можно приступать к вычислению прогнозных значений Y на основе заданных значений переменных Х.

Уравнение прогнозирования или уравнение регрессии в случае 2-х независимых переменных (регрессоров) записывается в виде:

Примечание: В MS EXCEL прогнозное значение Y для заданных Х 1 и Х 2 можно также предсказать с помощью функции ТЕНДЕНЦИЯ() . При этом 2-й аргумент будет ссылкой на столбцы, содержащие все значения переменных Х 1 и Х 2 , а 3-й аргумент функции должен быть ссылкой на диапазон ячеек, содержащий 2 значения Х (Х 1i и Х 2i ) для выбранного наблюдения i (см. файл примера, лист Коэффициенты, столбец G ). Функция ПРЕДСКАЗ() , использованная нами в простой регрессии, не работает в случае множественной регрессии .

Найдя прогнозное значение Y, мы, таким образом, вычислим его точечную оценку. Понятно, что фактическое значение Y, полученное при наблюдении, будет, скорее всего, отличаться от этой оценки. Чтобы ответить на вопрос о том, на сколько хорошо мы можем предсказывать новые значения Y, нам потребуется построить доверительный интервал этой оценки, т.е. диапазон в котором с определенной заданной вероятностью, скажем 95%, мы ожидаем новое значение Y.

Доверительные интервалы построим при фиксированном Х для:

  • нового наблюдения Y;
  • среднего значения Y (интервал будет уже, чем для отдельного нового наблюдения)

Как и в случае простой линейной регрессии , для построения доверительных интервалов нам потребуется сначала вычислить стандартную ошибку модели (standard error of the model) , которая приблизительно показывает насколько велика ошибка предсказания значений переменной Y на основании значений переменных Х.

Для вычисления стандартной ошибки оценивают дисперсию ошибки ε, т.е. сигма^2 (ее часто обозначают как MS Е либо MSres ) . Затем, вычислив из полученной оценки квадратный корень, получим Стандартную ошибку регрессии (часто обозначают как SEy или sey ).

где SSE – сумма квадратов значений ошибок модели ei=yi — ŷi ( Sum of Squared Errors ). MSE означает Mean Square of Errors (среднее квадратов ошибок, точнее остатков).

Величина n-p – это количество степеней свободы ( df degrees of freedom ), т.е. число параметров системы, которые могут изменяться независимо (вспомним, что у нас в этом примере есть n независимых наблюдений переменной Y, р – количество оцениваемых параметров модели). В случае простой множественной регрессии с 2-мя регрессорами число степеней свободы равно n-3, т.к. при построении плоскости регрессии было оценено 3 параметра модели b (т.е. на это было «потрачено» 3 степени свободы ).

В MS EXCEL стандартную ошибку SEy можно вычислить формулы (см. файл примера, лист Статистика ):

Стандартная ошибка нового наблюдения Y при заданных значениях Х (вектор Хi) вычисляется по формуле:

x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.

Соответствующий доверительный интервал вычисляется по формуле:

где α (альфа) – уровень значимости (обычно принимают равным 0,05=5%)

р – количество оцениваемых параметров модели (в нашем случае = 3)

n-p – число степеней свободы

– квантиль распределения Стьюдента (задает количество стандартных ошибок , в +/- диапазоне которых вероятность обнаружить новое наблюдение равно 1-альфа). Т.е. если квантиль равен 2, то диапазон шириной +/- 2 стандартных ошибок относительно прогнозного значения Y будет с вероятностью 95% содержать новое наблюдение Y (для каждого заданного Хi). В MS EXCEL вычисления квантиля производят по формуле = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) , подробнее см. в статье про распределение Стьюдента .

– прогнозное значение Yi вычисляемое по формуле Yi= b 0+ b 1* Х1i+ b 2* Х2i (точечная оценка).

Стандартная ошибка среднего значения Y при заданных значениях Х (вектор Хi) будет меньше, чем стандартная ошибка отдельного наблюдения. Вычисления производятся по формуле:

x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.

Соответствующий доверительный интервал вычисляется по формуле:

Прогнозное значение Yi (точечная оценка) используется тоже, что и для отдельного наблюдения.

Стандартные ошибки и доверительные интервалы для коэффициентов регрессии

В разделе Оценка неизвестных параметров мы получили точечные оценки коэффициентов регрессии . Так как эти оценки получены на основе случайных величин (значений переменных Х и Y), то эти оценки сами являются случайными величинами и соответственно имеют функцию распределения со средним значением и дисперсией . Но, чтобы перейти от точечных оценок к интервальным , необходимо вычислить соответствующие стандартные ошибки (т.е. стандартные отклонения ) коэффициентов регрессии .

Стандартная ошибка коэффициента регрессии b j (обозначается se ( b j ) ) вычисляется на основании стандартной ошибки по следующей формуле:

где C jj является диагональным элементом матрицы (X ’ X) -1 . Для коэффициента сдвига b 0 индекс j=1 (верхний левый элемент), для b 1 индекс j=2, b 2 индекс j=3 (нижний правый элемент).

SEy – стандартная ошибка регрессии (см. выше ).

В MS EXCEL стандартные ошибки коэффициентов регрессии можно вычислить с помощью функции ЛИНЕЙН() :

Примечание : Подробнее о функции ЛИНЕЙН() см. статью Функция MS EXCEL ЛИНЕЙН() .

Применяя матричный подход стандартные ошибки можно вычислить и через обычные формулы (точнее через формулу массива , см. файл примера лист Статистика ):

= КОРЕНЬ(СУММКВРАЗН(E13:E43;F13:F43) /(n-p)) *КОРЕНЬ (ИНДЕКС (МОБР (МУМНОЖ(ТРАНСП(B13:D43);(B13:D43)));j;j))

При построении двухстороннего доверительного интервала для коэффициента регрессии его границы определяются следующим образом:

где t – это t-значение , которое можно вычислить с помощью формулы = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) для уровня значимости 0,05.

В результате получим, что найденный доверительный интервал с вероятностью 95% (1-0,05) накроет истинное значение коэффициента регрессии b j . Здесь мы считаем, что коэффициент регрессии b j имеет распределение Стьюдента с n-p степенями свободы (n – количество наблюдений, т.е. пар Х и Y).

Проверка гипотез

Когда мы строим модель, мы предполагаем, что между Y и переменными X существует линейная взаимосвязь. Однако, как это иногда бывает в статистике, можно вычислять параметры связи даже тогда, когда в действительности она не существует, и обусловлена лишь случайностью.

Единственный вариант, когда Y не зависит X, возможен, когда все коэффициенты регрессии β равны 0.

Чтобы убедиться, что вычисленная нами оценка коэффициентов регрессии не обусловлена лишь случайностью (они не случайно отличны от 0), используют проверку гипотез . В качестве нулевой гипотезы Н 0 принимают, что линейной связи нет, т.е. ВСЕ β=0. В качестве альтернативной гипотезы Н 1 принимают, что ХОТЯ БЫ ОДИН коэффициент β <>0.

Процедура проверки значимости множественной регрессии, приведенная ниже, является обобщением дисперсионного анализа , использованного нами в случае простой линейной регрессии (F-тест) .

Если нулевая гипотеза справедлива, то тестовая F -статистика имеет F-распределение со степенями свободы k и n k -1 , т.е. F k, n-k-1 :

Проверку значимости регрессии можно также осуществить через вычисление p -значения . В этом случае вычисляют вероятность того, что случайная величина F примет значение F 0 (это и есть p-значение ), затем сравнивают p-значение с заданным уровнем значимости α (альфа) . Если p-значение больше уровня значимости , то нулевую гипотезу нет оснований отклонить, и регрессия незначима.

В MS EXCEL значение F 0 можно вычислить на основании значений выборки по вышеуказанной формуле или с помощью функции ЛИНЕЙН() :

В MS EXCEL для проверки гипотезы через p -значение используйте формулу =F.РАСП.ПХ(F 0 ;k;n-k-1) файл примера лист Статистика , где показано эквивалентность обоих подходов проверки значимости регрессии).

В MS EXCEL критическое значение для заданного уровня значимости F 1-альфа, k, n-k-1 можно вычислить по формуле = F.ОБР(1- альфа;k;n-k-1) или = F.ОБР.ПХ(альфа;k; n-k-1) . Другими словами требуется вычислить верхний альфа- квантиль F -распределения с соответствующими степенями свободы .

Таким образом, при значении статистики F 0 > F 1-альфа, k, n-k-1 мы имеем основание для отклонения нулевой гипотезы.

В программах статистики результаты процедуры F -теста выводят с помощью стандартной таблицы дисперсионного анализа . В файле примера такая таблица приведена на листе Надстройка , которая построена на основе результатов, возвращаемых инструментом Регрессия надстройки Пакета анализа MS EXCEL .

Генерация данных для множественной регрессии с помощью заданного тренда

Иногда, бывает удобно сгенерировать значения наблюдений, имея заданный тренд.

Для решения этой задачи нам потребуется:

  • задать значения регрессоров в нужном диапазоне (значения переменных Х);
  • задать коэффициенты регрессии ( b );
  • задать тренд (вычислить значения Y= b0 +b1 * Х 1 + b2 * Х 2 );
  • задать величину разброса Y вокруг тренда (варианты: случайный разброс в заданных границах или заданная фигура, например, круг)

Все вычисления выполнены в файле примера, лист Тренд для случая 2-х регрессоров. Там же построены диаграммы рассеяния .

Коэффициент детерминации

Коэффициент детерминации R 2 показывает насколько полезна построенная нами линейная регрессионная модель .

По определению коэффициент детерминации R 2 равен:

R 2 = Изменчивость объясненная моделью ( SSR ) / Общая изменчивость ( SST ).

Этот показатель можно вычислить с помощью функции ЛИНЕЙН() :

При добавлении в модель новой объясняющей переменной Х, коэффициент детерминации будет всегда расти. Поэтому, рост коэффициента детерминации не может служить основанием для вывода о том, что новая модель (с дополнительным регрессором) лучше прежней.

Более подходящей статистикой, которая лишена указанного недостатка, является нормированный коэффициент детерминации (Adjusted R-squared):

где p – число независимых регрессоров (вычисления см. файл примера лист Статистика ).

Пример решения эконометрической задачи в Excel

Ниже приведено условие задачи и текстовая часть решения. Закачка полного решения, файлы word+Excel в архиве rar, начнется автоматически через 10 секунд. Если закачка не началась, кликните по этой ссылке.

Видеоурок по решению этой задачи в Excel вы можете посмотреть здесь.

По предложенным вам экспериментальным данным, представляющим собою макроэкономические показатели или показатели финансовой (денежно-кредитной) системы некоторой страны, т.е. случайной выборке объема n – построить математическую модель зависимости случайной величины Y от случайных величин X1 и X2. Построение и оценку качества экономико-математической (эконометрической) модели вести в следующей последовательности:
•Построить корреляционную матрицу для случайных величин и оценить статистическую значимость корреляции между ними.
•Исходя из наличия между эндогенной переменной и экзогенными переменными, линейной зависимости, оценить параметры регрессионной модели по методу наименьших квадратов. Вычислите вектора регрессионных значений эндогенной переменной и случайных отклонений.
•Найдите средние квадратические ошибки коэффициентов регрессии. Используя критерий Стьюдента проверьте статистическую значимость параметров модели. Здесь и далее принять уровень значимости 0,05(т. е. надежность 95%).
•Вычислите эмпирический коэффициент детерминации и скорректированный коэффициент детерминации. Проверьте, используя критерий Фишера, адекватность линейной модели.
•Установите наличие (отсутствие) автокорреляции случайных отклонений модели. Используйте для этого метод графического анализа, статистику Дарбина-Уотсона и критерий Бреуша-Годфри.
•Установите наличие (отсутствие) гетероскедастичности случайных отклонений модели. Используйте для этого графический анализ, тест Вайта и тест Парка для вариантов с добавочным индексом А (графический метод, тест Глейзера и тест Бреуша-Пагана для вариантов с добавочным индексом В).
•Обобщите результаты оценивания параметров модели и результаты проверки модели на адекватность.

В таблице 1.1. приведены е же квартальные данные о валовом внутреннем продукте (млн. евро) ; экспорта товаров и услуг (млн. евро ) ; эффективный обменный курс евро к национальной волюте для Испании на период с 2000 по 2007 годы.

Еж еквартальные данные о валовом внутреннем продукте, экспорте товаров и услуг , эффективном обменном курсе евро к национальной валюте для И сландии на период с 2000 по 2007 годы

Задачи с решениями в Excel по эконометрике

В этом разделе вы найдете решенные задач по разным разделам эконометрики, выполненные с применением пакета электронных таблиц MS Excel. Большая часть работ снабжена подробным текстовым отчетом.

Если вам нужна помощь в выполнении контрольных работ по эконометрике в Excel, обращайтесь: эконометрика на заказ

Решение эконометрики в Экселе

Задача 1. Парная регрессия.
Для исходных данных, приведенных ниже, рассчитайте

  • коэффициенты линейного регрессионного уравнения
  • рассчитайте остаточную дисперсию
  • вычислите значения коэффициентов корреляции и детерминации
  • рассчитайте коэффициент эластичности
  • рассчитайте доверительные границы уравнения регрессии (по уровню 0,95, t=2,44)
  • в одной системе координат постройте: уравнение регрессии, экспериментальные точки, доверительные границы уравнения регрессии

Задача 2. Построить требуемое уравнение регрессии. Вычислить коэффициент детерминации, коэффициент эластичности, бета коэффициент и дать их смысловую нагрузку в терминах задачи. Проверить адекватность уравнения с помощью F теста. Найти дисперсии оценок и 95% доверительные интервалы для параметров регрессии. Данные взять из таблицы. Найти прогнозируемое значение объясняемой переменной для некоторого значения объясняющей переменной, не заданной в таблице.
Построить уравнение линейной регрессии объема валового выпуска (в млн. руб.) от стоимости основных производственных фондов (млн. руб.).

Задача 3. Множественная регрессия.
Построить требуемое уравнение регрессии. Вычислить коэффициент детерминации, частные коэффициенты эластичности, частные бета коэффициенты и дать их смысловую нагрузку в терминах задачи. Проверить адекватность уравнения с помощью F теста. Найти оценку матрицы ковариаций оценок параметров регрессии и 95% доверительные интервалы для параметров регрессии. Проверить наличие мультиколлинеарности в модели. Данные взять из таблицы.
Построить уравнение линейной регрессии себестоимости единицы товара (в сотнях руб.) от величины энерговооруженности (кВт) и производительности труда (тов/час).

Задача 4. Трендовые модели
Проверить ряд на наличие тренда. Сгладить ряд методом простой скользящей средней $(m = 3)$, экспоненциальным сглаживанием $(alpha = 0,3; alpha = 0,8)$. Построить исходный и сглаженные ряды. На основании построенных рядов определить вид трендовой модели. Построить трендовую модель.
Сделать прогноз изучаемого признака на два шага вперед.
87; 77; 75; 74; 69; 66; 62; 61; 59; 57; 57; 52; 50; 48; 46; 43; 43; 41; 38; 35

Задача 5. По заданным статистическим данным постройте линейную модель множественной регрессии и исследуйте её.

  • Постройте линейную модель множественной регрессии.
  • Запишите стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
  • Найдите коэффициенты парной, частной и множественной корреляции. Проанализируйте их.
  • Найдите скорректированный коэффициент множественной детерминации. Сравните его с нескорректированным (общим) коэффициентом детерминации.
  • С помощью F-критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации $R^2_$.
  • С помощью частных F-критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора $x_1$ после $x_2$ и фактора $x_2$ после $x_1$.
  • Составьте уравнение линейной парной регрессии, оставив лишь один значащий фактор.

Задача 6. По данным опроса 15 женщин, находящихся в роддоме, исследовать зависимость веса новорожденного (у) от среднего числа сигарет (х), выкуриваемых матерью в день, с учетом числа уже имеющихся у матери детей (z).

источники:

http://easyhelp.su/subjects/ekonometrika_reshenie_zadach/primer_resheniya_ekonometricheskoj_zadachi_v_excel/

http://www.matburo.ru/ex_ec.php?p1=ecexcel


В статье проведена оценка показателей надежности безотказной работы системы. На примере показан расчет основных показателей средствами Excel.



Ключевые слова:



безотказная работа, доверительный интервал, испытания, нормальный закон распределения, число отказов.

Определение показателей надёжности необходимо для формулирования требования по надежности к проектируемым устройствам или системам. Показатель надежности — это количественная характеристика одного или нескольких свойств, составляющих надежность объекта [1].

Поскольку отказы и сбои элементов являются случайными событиями, то теория вероятностей и математическая статистика являются основным аппаратом, используемым при исследовании надежности, а сами характеристики надежности должны выбираться из числа показателей, принятых в теории вероятностей [2, с.

13].

Количественные характеристики надежности при нормальном законе распределения отказов могут быть определены из следующих выражений:

(1)

P(t)=

(2)

λ(

)=

(3),

где

нормированная и центрированная функция Лапласа.

Произведем расчет параметров надежности испытаний, проведенных в течение 100 часов на 100 деталях, 34 из которых вышли из строя.

Для построения статистического ряда время испытаний разбивают на интервалы (разряды) и подсчитывают частоту, интенсивность и вероятность отказов, используя выражения (1), (2) и (3). Определяют доверительные интервалы математического ожидания и среднеквадратичного отклонения при нормальном законе распределения отказов и заданном коэффициенте доверия [3, с. 60].

Результаты вычислений представлены в таблице Excel (Таблица 1).

Таблица 1


Результаты расчета основных показателей испытаний


Параметр


Разряды


1


2


3


4


5


6


7


8


9


10


t

10

20

30

40

50

60

70

80

90

100


n*

5

3

5

2

2

3

3

3

5

3


Pн(t)

0,935

0,917

0,896

0,870

0,841

0,805

0,767

0,725

0,680

0,633


fн(t)

0,983

0,986

0,988

0,990

0,991

0,992

0,993

0,993

0,994

0,994



λн(t)

1,050

1,074

1,102

1,137

1,178

1,232

1,294

1,369

1,460

1,570


Qн(t)

0,064

0,082

0,103

0,129

0,158

0,194

0,232

0,274

0,319

0,366



0,014

0,002

0,026

0,020

0,011

0,005

0,002

0,014

0,009

0,026


λн

0,085065269

Листинг фрагмента программы расчета показателей при нормальном законе распределения:

‘Вычислим 43 строку таблицы(45)=============================Рн(t)

СтрокаТаблицы = 45

‘a=(t-Tср)/Сигма

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

a = Abs(Sheets(«ОсновнаяТаблица»). Cells(3, n).Value — Tcp) / Сигма

‘b=Фо

СтрокаТаблФункцЛапласа = 2

While Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 1).Value <> «»

СтрокаТаблФункцЛапласа = СтрокаТаблФункцЛапласа + 1

Wend

If a <= Sheets(«Таблица функции Лапласа»).Cells(2, 1).Value Then

ф0 = Sheets(«Таблица функции Лапласа»).Cells(2, 2).Value

GoTo далее

End If

If a >= Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 1).Value Then

ф0 = Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 2).Value

GoTo далее

End If

СтрокаТаблФункцЛапласа = 2

While Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 1).Value <> «»

If Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 1).Value = a Then

ф0 = Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 2).Value

GoTo далее3

End If

If a < Sheets(«Таблица функции Лапласа»). Cells(СтрокаТаблФункцЛапласа, 1).Value And a > Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 1).Value Then

If Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 1).Value — a < a — Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 1).Value Then

ф0 = Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа, 2).Value

Else

ф0 = Sheets(«Таблица функции Лапласа»).Cells(СтрокаТаблФункцЛапласа — 1, 2).Value

End If

GoTo далее3

End If

СтрокаТаблФункцЛапласа = СтрокаТаблФункцЛапласа + 1

Wend

далее3:

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, n).Value = 0.5 + ф0

Next

‘Вычислим 44 строку таблицы(46)=============================fн(t)

СтрокаТаблицы = 46

СтолбецТаблицы = 4

Pi = Application.WorksheetFunction.Pi

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Sheets(«ОсновнаяТаблица»). 2)))

Next

‘Заполним 45 строку таблицы(47)=============================Лямбда н(t)

СтрокаТаблицы = 47

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, n).Value = Sheets(«ОсновнаяТаблица»).Cells(46, n).Value / Sheets(«ОсновнаяТаблица»).Cells(45, n).Value

Next

Для определения доверительного интервала для математического ожидания по таблице квантилей распределения Стьюдента находят квантиль вероятности. Используя выражения (4) и (5) проводят расчеты

(4)

(5)

‘Заполним 30 строку таблицы(32)=============================Tср min

СтрокаТаблицы = 32

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Next

СтепеньСвободыПриНормРаспред = КоличествоСтолбцовТаблицы + 1 — 2

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, 4). Value = Tcp — Sheets(«ОсновнаяТаблица»).Cells(31, 4).Value * Сигма / Sqr(СтепеньСвободыПриНормРаспред)

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).HorizontalAlignment = xlCenter

‘Заполним 31 строку таблицы(33)=============================Tср max

СтрокаТаблицы = 33

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Next

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, 4).Value = Tcp + Sheets(«ОсновнаяТаблица»).Cells(31, 4).Value * Сигма / Sqr(СтепеньСвободыПриНормРаспред)

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).HorizontalAlignment = xlCenter

Тср, min =

79,29380755 ч.

Тср, max =

172,43129 ч.

Для определения доверительного интервала для среднеквадратичного отклонения по таблице квантилей χ

2

– квадрат распределения определяют квантили для заданных вероятностей

P


1

и

P


2

.

(0,05) =

3,32511

(0,95) =

16,919

‘Заполним 32 строку таблицы(34)=============================X1(0,05)

СтрокаОсновнойТаблицы = 34

СтрокаТаблКвантили = 4

ВходнаяСтрочнаяВеличина = СтепеньСвободыПриНормРаспред

While Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value <> «»

СтрокаТаблКвантили = СтрокаТаблКвантили + 1

Wend

If ВходнаяСтрочнаяВеличина <= Sheets(«Квантили распределения хи»). Cells(4, 1).Value Then

СтрокаТабл = 4

GoTo СледующийПоиск10

End If

If ВходнаяСтрочнаяВеличина >= Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили — 1, 1).Value Then

СтрокаТабл = СтрокаТаблКвантили — 1

GoTo СледующийПоиск10

End If

СтрокаТаблКвантили = 4

While Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value <> «»

If Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value = ВходнаяСтрочнаяВеличина Then

СтрокаТабл = СтрокаТаблКвантили

GoTo СледующийПоиск10

End If

If ВходнаяСтрочнаяВеличина < Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value And ВходнаяСтрочнаяВеличина > Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили — 1, 1).Value Then

If Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value — ВходнаяСтрочнаяВеличина < ВходнаяСтрочнаяВеличина — Sheets(«Квантили распределения хи»). Cells(СтрокаТаблКвантили — 1, 1).Value Then

СтрокаТабл = СтрокаТаблКвантили

Else

СтрокаТабл = СтрокаТаблКвантили — 1

End If

GoTo СледующийПоиск10

End If

СтрокаТаблКвантили = СтрокаТаблКвантили + 1

Wend

СледующийПоиск10:

СтолбецТаблКвантили = 2

ВходнаяВертикальнаяВеличина = 0.05

While Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value <> «»

СтолбецТаблКвантили = СтолбецТаблКвантили + 1

Wend

If ВходнаяВертикальнаяВеличина <= Sheets(«Квантили распределения хи»).Cells(3, 2).Value Then

СтолбецТабл = 2

GoTo СледующийПоиск11

End If

If ВходнаяВертикальнаяВеличина >= Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

СтолбецТабл = СтолбецТаблКвантили — 1

GoTo СледующийПоиск11

End If

СледующийПоиск11:

СтолбецТаблКвантили = 11

While Sheets(«Квантили распределения хи»). Cells(3, СтолбецТаблКвантили).Value <> «»

If Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value = ВходнаяВертикальнаяВеличина Then

СтолбецТабл = СтолбецТаблКвантили

GoTo СледующийПоиск12

End If

If ВходнаяСтрочнаяВеличина < Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value And ВходнаяВертикальнаяВеличина > Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

If Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value — ВходнаяВертикальнаяВеличина < ВходнаяВертикальнаяВеличина — Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

СтолбецТабл = СтолбецТаблКвантили

Else

СтолбецТабл = СтолбецТаблКвантили — 1

End If

GoTo СледующийПоиск12

End If

СтолбецТаблКвантили = СтолбецТаблКвантили + 1

Wend

СледующийПоиск12:

x1 = Sheets(«Квантили распределения хи»). Cells(СтрокаТабл, СтолбецТабл).Value

Sheets(«ОсновнаяТаблица»).Cells(СтрокаОсновнойТаблицы, 4).Value = x1

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаОсновнойТаблицы, 4), Cells(СтрокаОсновнойТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаОсновнойТаблицы, 4), Cells(СтрокаОсновнойТаблицы, n — 1)).HorizontalAlignment = xlCenter

‘Заполним 33 строку таблицы(35)=============================X2(0,95)

СтрокаОсновнойТаблицы = 35

СтрокаТаблКвантили = 4

ВходнаяСтрочнаяВеличина = СтепеньСвободыПриНормРаспред

While Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value <> «»

СтрокаТаблКвантили = СтрокаТаблКвантили + 1

Wend

If ВходнаяСтрочнаяВеличина <= Sheets(«Квантили распределения хи»).Cells(4, 1).Value Then

СтрокаТабл = 4

GoTo СледующийПоиск13

End If

If ВходнаяСтрочнаяВеличина >= Sheets(«Квантили распределения хи»). Cells(СтрокаТаблКвантили — 1, 1).Value Then

СтрокаТабл = СтрокаТаблКвантили — 1

GoTo СледующийПоиск13

End If

СтрокаТаблКвантили = 4

While Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value <> «»

If Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value = ВходнаяСтрочнаяВеличина Then

СтрокаТабл = СтрокаТаблКвантили

GoTo СледующийПоиск13

End If

If ВходнаяСтрочнаяВеличина < Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value And ВходнаяСтрочнаяВеличина > Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили — 1, 1).Value Then

If Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили, 1).Value — ВходнаяСтрочнаяВеличина < ВходнаяСтрочнаяВеличина — Sheets(«Квантили распределения хи»).Cells(СтрокаТаблКвантили — 1, 1).Value Then

СтрокаТабл = СтрокаТаблКвантили

Else

СтрокаТабл = СтрокаТаблКвантили — 1

End If

GoTo СледующийПоиск13

End If

СтрокаТаблКвантили = СтрокаТаблКвантили + 1

Wend

СледующийПоиск13:

СтолбецТаблКвантили = 2

ВходнаяВертикальнаяВеличина = 0. 95

While Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value <> «»

СтолбецТаблКвантили = СтолбецТаблКвантили + 1

Wend

If ВходнаяВертикальнаяВеличина <= Sheets(«Квантили распределения хи»).Cells(3, 2).Value Then

СтолбецТабл = 2

GoTo СледующийПоиск14

End If

If ВходнаяВертикальнаяВеличина >= Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

СтолбецТабл = СтолбецТаблКвантили — 1

GoTo СледующийПоиск14

End If

СледующийПоиск14:

СтолбецТаблКвантили = 2

While Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value <> «»

If Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value = ВходнаяВертикальнаяВеличина Then

СтолбецТабл = СтолбецТаблКвантили

GoTo СледующийПоиск15

End If

If ВходнаяСтрочнаяВеличина < Sheets(«Квантили распределения хи»). Cells(3, СтолбецТаблКвантили).Value And ВходнаяВертикальнаяВеличина > Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

If Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили).Value — ВходнаяВертикальнаяВеличина < ВходнаяВертикальнаяВеличина — Sheets(«Квантили распределения хи»).Cells(3, СтолбецТаблКвантили — 1).Value Then

СтолбецТабл = СтолбецТаблКвантили

Else

СтолбецТабл = СтолбецТаблКвантили — 1

End If

GoTo СледующийПоиск15

End If

СтолбецТаблКвантили = СтолбецТаблКвантили + 1

Wend

СледующийПоиск15:

x1 = Sheets(«Квантили распределения хи»).Cells(СтрокаТабл, СтолбецТабл).Value

Sheets(«ОсновнаяТаблица»).Cells(СтрокаОсновнойТаблицы, 4).Value = x1

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаОсновнойТаблицы, 4), Cells(СтрокаОсновнойТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаОсновнойТаблицы, 4), Cells(СтрокаОсновнойТаблицы, n — 1)). HorizontalAlignment = xlCenter

Получим минимальное σ

min

и максимальное σ

max

значения среднеквадратического отклонения:

(6)

(7)

‘Заполним 34 строку таблицы(36)=============================Сигма min

СтрокаТаблицы = 36

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Next

Sheets(«ОсновнаяТаблица»).Cells(СтрокаТаблицы, 4).Value = Сигма * Sqr((СтепеньСвободыПриНормРаспред — 1) / Sheets(«ОсновнаяТаблица»).Cells(35, 4).Value)

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).HorizontalAlignment = xlCenter

‘Заполним 35 строку таблицы(37)=============================Сигма max

СтрокаТаблицы = 37

СтолбецТаблицы = 4

For n = СтолбецТаблицы To (КоличествоСтолбцовТаблицы + СтолбецТаблицы — 1)

Next

СтепеньСвободыПриНормРаспред = КоличествоСтолбцовТаблицы + 1 — 2

Sheets(«ОсновнаяТаблица»). Cells(СтрокаТаблицы, 4).Value = Сигма * Sqr((СтепеньСвободыПриНормРаспред — 1) / Sheets(«ОсновнаяТаблица»).Cells(34, 4).Value)

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).MergeCells = True

Sheets(«ОсновнаяТаблица»).Range(Cells(СтрокаТаблицы, 4), Cells(СтрокаТаблицы, n — 1)).HorizontalAlignment = xlCenter

Число разрядов, на которые следует группировать статистический ряд, не должно быть слишком большим (тогда ряд распределения становится невыразительным, и часто в нем обнаруживают незакономерные колебания), с другой стороны, оно не должен быть слишком малым (свойства распределения при этом описываются статистическим рядом слишком грубо).

Литература:

  1. ГОСТ 27. 002-89 Надежность в технике (ССНТ). Основные понятия. Термины и определения.
  2. Федотов, А. В. Основы теории надежности и технической диагностики: конспект лекций / А. В. Федотов, Н. Г. Скабкин. – Омск : Изд-во ОмГТУ, 2010 – 64 с.
  3. Коваленко, В. Н. Надежность устройств железнодорожной автоматики, телемеханики : учеб. пособие / В. Н. Коваленко. – Екатеринбург : Изд-во УрГУПС, 2013. – 87 с.

Основные термины (генерируются автоматически): Таблица функции, строка таблицы, доверительный интервал, Сигма, математическое ожидание, распределение отказов, среднеквадратичное отклонение, статистический ряд, таблица, теория вероятностей.

КОРРЕЛЯЦИОННЫЙ И РЕГРЕССИОННЫЙ АНАЛИЗ В EXCEL

1. ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ПАРНОЙ
КОРРЕЛЯЦИИ В ПРОГРАММЕ
EXCEL

t-статистика=0,99*(КОРЕНЬ(20-2)/КОРЕНЬ(1-0,99*0,99))=29,7745296027549

Коэффициент корреляции=0,991477169252612

Распределение Стьюдента=2,10092204024104

Расчетное значение t-статистики больше квантиля распределения Стьюдента, следовательно величина коэффициента корреляции является значимой.

2. ПОСТРОЕНИЕ РЕГРЕССИОННОЙ МОДЕЛИ СВЯЗИ
МЕЖДУ ДВУМЯ ВЕЛИЧИНАМИ

1-ый способ

 a1= 0,5014 a0= 2,5326 
 Se1= 0,0155  Se0= 0,7075
 R2= 0,9830 Se= 0,5561 
 Se= 0,5561 n-k-1= 18 
 QR= 322,4250 Qe= 5,5670 

Для проверки адекватности
модели нашли квантиль распределения Фишера Ff. с помощью функции FРАСПОБР

FРАСПОБР=4,4139

Проверили адекватность
построенной модели, используя расчетный уровень значимости (P):

2,18499711496499E-17

2 –й способ


а=2,532579627

в=0,50139175

Для данного примера
уравнение модели имеет вид:Y=2,53+0,5X

Проверка адекватности модели выполняется по расчетному уровню значимости P,
указанному в столбце Значимость F. Если
расчетный уровень значимости меньше заданного уровня значимости α =0,05, то модель адекватна.

Проверка статистической значимости коэффициентов модели выполняется по расчетным
уровням значимости P, указанным в столбце P-значение. Если расчетный уровень значимости меньше заданного
уровня значимости α =0,05, то соответствующий
коэффициент модели статистически значим.

Множественный Rкоэффициент корреляции. Чем ближе его величина к 1, тем более
тесная связь между изучаемыми показателями. Для данного примера R= 0,99. Это позволяет сделать
вывод, что качество земли – один из основных факторов, от которого зависит
урожайность зерновых культур.

R-квадраткоэффициент
детерминации
. Он получается возведением в квадрат коэффициента корреляции –
R2=0,98. Он
показывает, что урожайность зерновых культур на 98% зависит от качества почвы,
а на долю других факторов приходится 0,02%.

3-ий способ (графический)


Расчет квантилей или процентилей в Excel

В этом руководстве показано, как вычислять квантили или процентили, связанные с доверительными интервалами, в Excel с помощью программного обеспечения XLSTAT.

Квантиль и процентили

XLSTAT имеет полный инструмент для вычисления квантилей или процентилей, их доверительного интервала и графического представления.

Квантили являются важными статистическими показателями, их легко понять. Квантиль 0,5 — это значение, при котором половина выборки находится ниже, а другая половина — выше. Его еще называют средним. Квантиль называется процентилем, если он основан на шкале от 0 до 100. 0,95-квантиль эквивалентен 95-процентилю и таков, что 95 % выборки ниже его значения, а 5 % выше.

Набор данных для создания квантиля

Набор данных был получен от [Lewis T. and Taylor L.R. (1967). Введение в экспериментальную экологию, Нью-Йорк: Academic Press, Inc. Это касается 237 детей, описанных по полу и росту в сантиметрах (1 см = 0,4 дюйма).

Настройка расчета определенного квантиля

После открытия XLSTAT выберите XLSTAT / Description / Quantiles , или нажмите на соответствующую кнопку панели инструментов «Описание» (см. ниже).

После нажатия кнопки появится диалоговое окно Quantile . Выберите данные на листе Excel.

В нашем случае; переменная — это «Высота». Данные должны быть количественными .

Поскольку для переменных был выбран заголовок столбца, необходимо активировать опцию Метки переменных .

Мы выбираем метод оценки по умолчанию ( средневзвешенное значение при x(Np) ) и оба типа доверительных интервалов с доверительной вероятностью 95 % .

Подробную информацию о статистических методах можно найти в справке XLSTAT.

Во вкладке диаграммы выбираем все диаграммы и нас интересует 67-процентиль (две трети детей меньше, а одна треть выше).

Вычисления начинаются после того, как вы нажмете на ОК . Затем будут отображены результаты.

Интерпретация результатов генерации квантилей

В первой таблице показаны некоторые описательные статистические данные о переменной высоты. Во второй таблице отображаются квантили и связанные с ними доверительные интервалы для различных часто используемых значений. Например, медиана 159,9 см. 95-процентиль показывает, что 95% детей меньше 174,98 см.

Затем отображается значение 67-процентиля. Две трети детей меньше 164,58 см.

Первый график (см. ниже) позволяет нам визуализировать эмпирическую кумулятивную функцию распределения со значением 67-го процентиля.

Вторая и третья диаграммы представляют собой коробчатую диаграмму и диаграмму рассеяния. 67-процентиль отображается синей линией.

Вы также можете использовать подвыборки, например пол можно использовать в качестве групповой переменной. Веса, связанные с наблюдениями, также могут быть включены.

Была ли эта статья полезной?

  • Да

Квантиль (квартиль, дециль и процентиль): расчет вручную + Microsoft

Квантиль — важная статистическая концепция, позволяющая разделить данные на равные группы. Они часто используются для выявления и анализа шаблонов данных и проведения значимых сравнений между различными наборами данных. В этом кратком руководстве мы рассмотрим основы квантилей и более подробно рассмотрим некоторые из наиболее распространенных типов: квартили, децили и процентили.

Квантиль

Квантиль — это мера, указывающая значение, ниже которого падает определенная доля наблюдений в группе наблюдений. Квантиль используется в статистике для разделения группы наблюдений на группы одинакового размера. Например, квантиль 0,25 — это значение, ниже которого падают 25% наблюдений; квантиль 0,50 — это значение, ниже которого падает 50%, и так далее. Другим родственным измерением является медиана, которая совпадает с квантилем 0,50, поскольку 50% данных находятся ниже медианы.

Какие общие квантили существуют?

Некоторые распространенные квантили включают:

1. Квартиль

Квартиль — это тип квантиля, который делит группу наблюдений на четыре группы одинакового размера. Например, в группе наблюдений первый квартиль (Q1) — это значение, ниже которого опускаются первые 25 % наблюдений, второй квартиль (Q2, также известный как медиана) — это значение, ниже которого средние 50 % наблюдений падают, а третий квартиль (Q3) — это значение, ниже которого падают последние 25% наблюдений.

2. Дециль

Дециль – это мера, которая делит группу наблюдений на десять групп одинакового размера. Например, в группе наблюдений первый дециль (D1) — это значение, ниже которого попадают первые 10% наблюдений, второй дециль (D2) — это значение, ниже которого попадают первые 20% наблюдений, и скоро. 9-й дециль (D9) — это значение, ниже которого опускаются последние 10% наблюдений.

3. Процентиль

Процентиль — это мера, указывающая значение, ниже которого находится определенный процент наблюдений в группе наблюдений. Например, в группе наблюдений 20-й процентиль (P20) — это значение, ниже которого опускаются первые 20% наблюдений, 50-й процентиль (P50) — это значение, ниже которого опускаются средние 50% наблюдений, и 95-й процентиль (P95) — это значение, ниже которого падают последние 95% наблюдений.

50-й процентиль также является медианой, вторым квартилем и 5-м децилем.

Процентиль: Расчет вручную / Microsoft Excel

Процентиль — это мера, используемая в статистике для указания значения, ниже которого находится определенный процент наблюдений в группе наблюдений.

Чтобы найти местоположение определенного процентиля, такие программы, как Minitab, Python, R и Excel, используют следующие шаги:

  1. Расположите наблюдения в порядке возрастания.
  2. Используйте формулу для определения положения процентиля, чтобы вычислить положение, в котором будет располагаться значение процентиля, используя желаемое значение процентиля и общее количество наблюдений в качестве входных данных. Существует два подхода: EXC (Exclusive) и INC (Inclusive). Процентное положение в подходе EXC определяется формулой (K(N+1)), а положение в подходе INC определяется формулой (K(N-1)+1).
  3. Если местоположение процентиля является целым числом, значение в этой позиции в упорядоченном списке наблюдений является значением процентиля.
  4. Если местоположение процентиля не является целым числом, значение процентиля рассчитывается путем вычисления значения на пропорциональной основе между этими двумя числами.

Чтобы найти 65-й процентиль в группе из 8 наблюдений, вы должны сначала расположить наблюдения в порядке возрастания: 8, 9, 12, 22, 23, 33, 55, 61.

Затем вы должны использовать формулу для местоположения процентиля, чтобы вычислить положение, в котором будет расположен 65-й процентиль:

Для ПРОЦЕНТИЛЬ.ИСКЛ рассчитанный ранг равен (K(N+1)).

Расположение в процентиле (с использованием эксклюзивного подхода) = (left(frac{65}{100}right)(8+1)) = 5,85

Поскольку положение в процентиле не является целым числом, 65-й процентиль будет между 5-м пунктом (номер 23) и 6-м пунктом (номер 33) на пропорциональной основе. Это будет (23+0,85(33-23) = 31,5).

Для PERCENTILE.INC (и PERCENTILE) рассчитанный ранг равен (K(N-1)+1).

Расположение в процентах (с использованием инклюзивного подхода) = ((65/100) (8-1)+1) = 5,55

Поскольку местоположение процентиля не является целым числом, 65-й процентиль будет почти посередине между 5-м элементом (число 23) и 6-м элементом (число 33). Пропорционально получится (23+0,55(33-23)) = 28,5.

Квартиль: пример расчета вручную

Квартиль — это статистическое значение, которое делит набор данных на четыре равные части или четверти. Первый квартиль, также известный как нижний квартиль или Q1, — это значение, которое отделяет самые низкие 25 % данных от остальных. Второй квартиль, также известный как медиана или Q2, представляет собой значение, которое отделяет самые низкие 50% данных от самых высоких 50% данных. Третий квартиль, также известный как верхний квартиль или Q3, — это значение, которое отделяет самые высокие 25% данных от остальных.

Например, если у нас есть следующие числа: 14, 9, 10, 11, 11 и 6, мы можем разделить данные на четыре равные группы, найдя первый, второй и третий квартили.

Чтобы найти квартили набора данных, нам сначала нужно расположить данные в порядке возрастания следующим образом: 6, 9, 10, 11, 11, 14.

Затем нам нужно найти медиану, или Q2, которая является средним значением в наборе данных. В этом случае в наборе данных шесть чисел, поэтому медиана — это среднее значение третьего и четвертого значений, равное 10,5.

Чтобы найти нижний квартиль или Q1, мы берем медиану значений ниже медианы. В данном случае это будет медиана 9. Чтобы найти верхнюю квартиль или Q3, мы берем медиану значений выше медианы. В данном случае это будет медиана 11, 11 и 14, что равно 11.

Таким образом, для этого набора данных квартили: эти числа расчета квартиля не совпадают с расчетом Excel?

Квартиль Использование Excel:

Для расчета квартилей такие программы, как Microsoft Excel и Minitab, используют метод процентилей, как объяснялось ранее. Q1 рассчитывается как 25-й процентиль, Q2 — как 50-й и Q3 — как 75-й процентиль. Это приводит к тому, что значение квартиля иногда отличается от значения, рассчитанного с использованием обычного ручного метода расчета.

Возьмем тот же пример, который мы использовали ранее в ручном расчете для расчета первого квартиля (Q1).

Чтобы найти квартили набора данных, нам сначала нужно расположить данные в порядке возрастания следующим образом: 6, 9, 10, 11, 11, 14.

Вы можете использовать функцию КВАРТИЛЬ.ИСКЛ или КВАРТИЛЬ.ВКЛ. найти квартили набора чисел в Excel.

Quartile.Exc

Для QUARTILE.EXC расчетный ранг равен K*(N+1). Чтобы рассчитать положение Q1 (или 25-го процентиля), подставим в эту формулу соответствующие значения.

Местоположение 1-го квартиля (с использованием эксклюзивного подхода) = (25/100) * (6+1) = 1,75

Поскольку положение процентиля не является целым числом, 1-й квартиль будет между 1-м элементом (номер 6) и 2-м элементом (номер 9) на пропорциональной основе. Получится (6 + (9-6)*0,75) = 8,25.

Использование Minitab: Если вы используете Minitab для расчета Q1, это значение (8,25), которое вы получите в описательной статистике. Minitab использует метод EXC для расчета процентилей и квартилей.

Квартиль.Вкл

Для КВАРТИЛЬ.

Все, рассмотренные в этом разделе инструменты вычисляют значения квантилей как значения функций, обратных соответствующим функциям распределения. Все эти функции – библиотечные функции Excel из группы функций «Статистические»,.

Функция вычисления критических точек распределения Лапласа

Функция возвращает (вычисляет) значения квантили уровня, равного значению, введенному в поле «Вероятность» (понятно, что это число из промежутка (0б 1)) стандартного нормального распределения.

Функция вычисления критических точек распределения Стьюдента

Функция возвращает (вычисляет) значения квантили уровня, равного значению, введенному в поле «Вероятность» (понятно, что это число из промежутка (0б 1)) распределения Стьюдента с числом степеней свободы, равным значению, введенному в поле «Степени свободы» (понятно, что это натуральное число).

Важно знать, что функция Excel СТЬЮДРАСПОБР( p , k ) возвращает значение t , при котором P (| x | > t ) = p , x значение случайной величины, имеющей распределение Стьюдента с k степенями свободы.

Поэтому решение уравнения в Excel возвращает функция СТЬЮДРАСПОБР( a , n – 1).

Функция вычисления критических точек распределения

Функция возвращает (вычисляет) значения квантили уровня, равного значению, введенному в поле «Вероятность» (понятно, что это число из промежутка (0б 1)) распределения с числом степеней свободы, равным значению, введенному в поле «Степени свободы» (понятно, что это натуральное число).

В Excel функция распределения случайной величины определена нестандартно: F x ( x ) = P ( x > x ). Поэтому для вычисления квантиля вводим в качестве аргумента функции ХИ2ОБР значение вероятности, равное , а для вычисления – .

Функция КВАРТИЛЬ

Возвращает квартиль множества данных. Квартиль часто используются при анализе продаж для разбиения генеральной совокупности на группы. Например, можно воспользоваться функцией КВАРТИЛЬ, чтобы найти среди всех предприятий 25 процентов наиболее доходных.

Важно: Эта функция была заменена одной или несколькими новыми функциями, которые обеспечивают более высокую точность и имеют имена, лучше отражающие их назначение. Хотя эта функция все еще используется для обеспечения обратной совместимости, она может стать недоступной в последующих версиях Excel, поэтому мы рекомендуем использовать новые функции.

Дополнительные сведения о новых функциях см. в разделах Функция КВАРТИЛЬ.ИСКЛ и Функция КВАРТИЛЬ.ВКЛ.

Синтаксис

Аргументы функции КВАРТИЛЬ описаны ниже.

Массив Обязательный. Массив или диапазон ячеек с числовыми значениями, для которых определяется значение квартиля.

Часть Обязательный. Значение, которое требуется вернуть.

Содержание

  • Определение термина
  • Расчет показателя в Excel
    • Способ 1: Мастер функций
    • Способ 2: работа со вкладкой «Формулы»
    • Способ 3: ручной ввод
  • Вопросы и ответы

Критерий Стьюдента в Microsoft Excel

Одним из наиболее известных статистических инструментов является критерий Стьюдента. Он используется для измерения статистической значимости различных парных величин. Microsoft Excel обладает специальной функцией для расчета данного показателя. Давайте узнаем, как рассчитать критерий Стьюдента в Экселе.

Определение термина

Но, для начала давайте все-таки выясним, что представляет собой критерий Стьюдента в общем. Данный показатель применяется для проверки равенства средних значений двух выборок. То есть, он определяет достоверность различий между двумя группами данных. При этом, для определения этого критерия используется целый набор методов. Показатель можно рассчитывать с учетом одностороннего или двухстороннего распределения.

Теперь перейдем непосредственно к вопросу, как рассчитать данный показатель в Экселе. Его можно произвести через функцию СТЬЮДЕНТ.ТЕСТ. В версиях Excel 2007 года и ранее она называлась ТТЕСТ. Впрочем, она была оставлена и в позднейших версиях в целях совместимости, но в них все-таки рекомендуется использовать более современную — СТЬЮДЕНТ.ТЕСТ. Данную функцию можно использовать тремя способами, о которых подробно пойдет речь ниже.

Способ 1: Мастер функций

Проще всего производить вычисления данного показателя через Мастер функций.

  1. Строим таблицу с двумя рядами переменных.
  2. Два ряда аргументов в Microsoft Excel

  3. Кликаем по любой пустой ячейке. Жмем на кнопку «Вставить функцию» для вызова Мастера функций.
  4. Переход в мастер функций в Microsoft Excel

  5. После того, как Мастер функций открылся. Ищем в списке значение ТТЕСТ или СТЬЮДЕНТ.ТЕСТ. Выделяем его и жмем на кнопку «OK».
  6. Функция СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

  7. Открывается окно аргументов. В полях «Массив1» и «Массив2» вводим координаты соответствующих двух рядов переменных. Это можно сделать, просто выделив курсором нужные ячейки.

    В поле «Хвосты» вписываем значение «1», если будет производиться расчет методом одностороннего распределения, и «2» в случае двухстороннего распределения.

    В поле «Тип» вводятся следующие значения:

    • 1 – выборка состоит из зависимых величин;
    • 2 – выборка состоит из независимых величин;
    • 3 – выборка состоит из независимых величин с неравным отклонением.

    Когда все данные заполнены, жмем на кнопку «OK».

Аргументы функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

Выполняется расчет, а результат выводится на экран в заранее выделенную ячейку.

Результат функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

Способ 2: работа со вкладкой «Формулы»

Функцию СТЬЮДЕНТ.ТЕСТ можно вызвать также путем перехода во вкладку «Формулы» с помощью специальной кнопки на ленте.

  1. Выделяем ячейку для вывода результата на лист. Выполняем переход во вкладку «Формулы».
  2. Переход во вкладку фоормулы в Microsoft Excel

    Lumpics.ru

  3. Делаем клик по кнопке «Другие функции», расположенной на ленте в блоке инструментов «Библиотека функций». В раскрывшемся списке переходим в раздел «Статистические». Из представленных вариантов выбираем «СТЬЮДЕНТ.ТЕСТ».
  4. Переход к функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

  5. Открывается окно аргументов, которые мы подробно изучили при описании предыдущего способа. Все дальнейшие действия точно такие же, как и в нём.

Форма аргументов функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

Способ 3: ручной ввод

Формулу СТЬЮДЕНТ.ТЕСТ также можно ввести вручную в любую ячейку на листе или в строку функций. Её синтаксический вид выглядит следующим образом:

= СТЬЮДЕНТ.ТЕСТ(Массив1;Массив2;Хвосты;Тип)

Что означает каждый из аргументов, было рассмотрено при разборе первого способа. Эти значения и следует подставлять в данную функцию.

Ручной ввод функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

После того, как данные введены, жмем кнопку Enter для вывода результата на экран.

Результат ручного ввода функции СТЬЮДЕНТ.ТЕСТ в Microsoft Excel

Как видим, вычисляется критерий Стьюдента в Excel очень просто и быстро. Главное, пользователь, который проводит вычисления, должен понимать, что он собой представляет и какие вводимые данные за что отвечают. Непосредственный расчет программа выполняет сама.

Еще статьи по данной теме:

Помогла ли Вам статья?

Здесь
мы опишем возможности Excel
при вычислении статистических функций
и дадим пояснения к способу их вызова.

  • Нормальное
    распределение.

См. стр.
16-17 пособия [4].

Практически любой справочник по
математической статистике содержит
таблицы функции

и её квантилей. Так как стандартное
нормальное распределение симметрично,
то эти таблицы составляют для значений

и

.
Приведем фрагмент таблицы из сборника
[1].

Таблица 1.1. Функция
нормального распределения
Ф(x)

x

0

1

2

3

4

8

9

2,05

0,97

9818

9867

9915

9964

0012

0205

0253

06

0,98

0301

0349

0396

0444

0491

0680

0727

07

0774

0821

0867

0914

0960

1145

1191

Слева
в таблице представлено входное значение

с точностью до второго знака после
запятой. Третий знак указан в самой
верхней строке таблицы. С целью
представления на одном листе по
возможности большей информации, таблица
разбита на блоки (выделенные чертой), в
которых числа имеют несколько одинаковых
первых цифр. Эти совпадающие части
приведены только для одного значения
(в столбце под верхней первой ячейкой
с цифрой 0). Так, например,

Ф(2,052)
= 0,97 9915, Ф(2,058)
= 0,98 0205, Ф(2,074)
= 0,98 0960.

Для нахождения квантилей можно
использовать таблицу исходной функции
распределения, отыскивая значение
вероятности внутри таблицы и находя
соответствующее входное значение.
Например, при

верхняя p-квантиль
(то есть решение уравнения

)
будет находиться где-то между 2,053 и
2,054, так как

.
Простая линейная аппроксимация дает

.

В этом же сборнике [1] имеется таблица
значений обратной функции нормального
распределения, иными словами – таблица
p-квантилей (не верхних).

Таблица 1.3.
Функция, обратная функции нормального
распределения

p

0

1

2

3

4

8

9

977

1,9
9539

9723

9908

0093

0279

1030

1219

978

2,0

1409

1600

1792

1984

2177

2957

3154

979

3352

3551

3750

3950

4151

4964

5169

0,980

5375

5582

5790

6000

6208

7056

7270

Таким образом,

,
что весьма близко к полученному выше
приближенному значению.

Пакет Excel
располагает четырьмя функциями,
связанными с нормальным распределением.
Для вызова этих функций необходимо

  1. вызвать
    «Мастера Функций»

    • нажать
      кнопку

      панели инструментов или

      1. перейти
        в подраздел “Функция”
        раздела “Вставка”
        главного меню Excel;

  2. в
    категории “Статистические”
    найти соответствующую функцию;

  3. заполнить таблицу
    аргументов функции.

Альтернативный
способ вызова состоит в непосредственном
обращении к соответствующей функции
из ячейки листа Excel.
Общий вид такого обращения можно
представить следующим образом:

=ИМЯФУНКЦИИ(аргумент1;аргумент2;
…)

Аргументами функции могут быть либо
числа, либо ссылки на ячейки, их хранящие.

Рассмотрим каждую из этих функций по
отдельности.

              1. НОРМСТРАСП
                – функция стандартного нормального
                распределения

                .
                Аргумент – значение

                (любое число).

              2. НОРМСТОБР
                – обратная функция стандартного
                нормального распределения

                .
                Аргумент –

                (число от 0 до 1).

              3. НОРМРАСП –
                функция распределения

                или функция плотности

                нормального

                закона. Имеет 4 аргумента:

x

не
требует пояснений

Среднее

среднее
значение

Стандартное_откл

корень
из дисперсии

Интегральная

0
(или FALSE)
– вычисляется плотность,

1
(или TRUE)
– функция распределения

              1. НОРМОБР –
                функция, обратная функции нормального
                распределения

                .
                Имеет 3 аргумента, аналогичные первым
                трем аргументам предыдущей функции.

Приведем несколько примеров применения
этих функций.

Функция
Excel

Значение

в
ячейке

Характеристика

распределения

=НОРМСТРАСП(2,058)

0,98020500

Ф(2,058)

функция распределения

=НОРМСТОБР(0,05)

-1,64485348

t0,95

5%-квантиль

=НОРМРАСП(-1;
0; 1; 1)

0,15865526

Ф((2,058-0)/1)

функция распределения

=НОРМРАСП(-1;
0; 1; 0)

0,24197073

φ((2,058-0)/1)

функция плотности

=НОРМОБР(0,95;
0;
1)

1,64485348

0+1*
t
0,05


верхняя
5%-квантиль

Задание.
Объясните совпадение значений (с
точностью до знака) во второй и пятой
строках этой таблицы.

  • Хи-квадрат
    распределение.

См. стр.
18-19 пособия [4].

Сборник таблиц [1] содержит значения так
называемого интеграла
вероятностей хи-квадрат

– в нашей терминологии это просто
функция надежности

.
Таблица имеет два входа – по числу
степеней свободы (верхняя строка) и по
аргументу функции (левый столбец).

Таблица 2.1а.
Интеграл вероятностей

x

m=16

m=20

P

P

15,0

0,52464

3627

0,77641

2929

5

48837

3541

74712

3050

Здесь,
кроме значения функции распределения
(столбец P),
приведены также первые разности этой
функции (столбец -Δ),
точнее, только 5 значащих цифр после
запятой без первых нулей. Таким образом,

(после запятой поставлен один ноль,
чтобы получилось пять цифр). Если

и

– два рядом стоящие значения аргумента,
то для нахождения значения функции в
промежуточной точке

можно применить аппроксимацию

.
В приведенном нами фрагменте

.
Поэтому

.

Значения верхних p-квантилей

распределения хи-ква­д­рат содержатся
в следующей таблице на стр.166 сборника
[1].

Таблица 2.2а.
Процентные точки распределения

Q

m

97,5%

95%

5%

2,5%

19

8,907

10,117

30,144

32,852

20

9,591

10,851

31,410

34,170

Вход в
таблицу осуществляется по числу степеней
свободы (m в левом
столбце) и по вероятности, выраженной
в процентах (Q в верхней
строке). Таким образом,

.

Пакет Excel предоставляет
возможность вычисления как значений
функции надежности

,
так и значений p-квантилей
хи-квадрат распределения. Эти функции
называются ХИ2РАСП
и ХИ2ОБР. Рассмотрим
несколько примеров применения этих
функций.

Функция
Excel

Значение в
ячейке

Характеристика
распределения

=ХИ2РАСП(15,2;
16)

0,510041


­–
­функция надежности

=ХИ2РАСП(15;
20)

0,776408



­функция
надежности

=ХИ2ОБР(0,05;
19)

30,14351



верхняя
5%-квантиль

=ХИ2ОБР(0,025;
20)

34,16958



верхняя
2,5%-квантиль

  • Распределение
    Стьюдента.

См. стр.
19-20 пособия [4].

Таблицы распределения Стьюдента также
имеются в любом справочнике по
математической статистике. Приведем
здесь фрагмент со­от­ве­т­ст­ву­ющей
таблицы из сборника [1].

Таблица 3.1а.
Ф
ункция распределения Стьюдента

k

t

11

12

19

20

2,0

0,9646

0,9657

0,9700

0,9704

1

9702

9712

9753

9757

Эта
таблица имеет два входа – число степеней
свободы

(верхняя строка) и аргумент функции

(левый столбец). Из этой таблицы находим,
что

.
При степенях свободы больше 20 можно
воспользоваться нормальным приближением:

.

Следующая таблица указанного сборника
[1] содержит значения верхних

-квантилей


.
Эта таблица также имеет два входа –
число степеней свободы (левый столбец)
и вероятность в процентах

(верхняя строка). Для наглядности целые
части вместе с запятой приведены только
для верхних чисел в блоке из пяти чисел.

Таблица 3.2.
Процентные точки
распределения
Стьюдента

Q

k

10%

5%

2,5%

0,05%

19

1,3277

1,7291

2,0930

3,8834

20

3253

7247

0860

8495

Таким
образом,

.

В пакете Excel
имеются встроенные функции

СТЬЮДРАСП,
вычисляющая функцию надежности, и

СТЬЮДРАСПОБР, вычисляющая
верхние квантили.

Функция
СТЬЮДРАСП имеет
три аргумента. Кроме двух естественных
(аргумента

и числа степеней свободы

),
при обращении к этой функции требуется
указать количество хвостов распределения,
которые нужно учитывать (1 или 2). Под
“хвостом” распределения понимается
любой интервал с одним конечным и одним
бесконечным концом. Например, при
вычислении функции надежности ищется
вероятность попадания в область

.
Поэтому

— это функция СТЬЮДРАСП
с одним “хвостом”. Очень часто в
статистической практике требуется
найти вероятность попадания в область

при

,
то есть в область с двумя “хвостами”.
Легко видеть, что функция, вычисляющая
вероятности таких симметричных
интервалов, представляет собой не что
иное, как функцию надежности распределения
модуля

.

Обращение к функции СТЬЮДРАСПОБР
вполне тривиально и полностью аналогично
обращению к функции ХИ2ОБР
(см. выше).

  • Показательное
    (экспоненциальное) распределение.

См. стр.
21 пособия [4].

Как функция плотности, так и функция
распределения показательного закона
могут быть вычислены посредством
калькулятора. В Excel
обе эти функции можно вычислить,
воспользовавшись функцией EXP(…).

  • Биномиальное
    распределение.

См. стр.
22 пособия [4].

В пакете Excel
имеется возможность вычисления функции


,

которая
при

есть не что иное, как функция распределения

(обратите внимание на различие в первом
аргументе этих функций). Четвертый
параметр функции БИНОМРАСП,
если он не равен нулю, указывает на
необходимость вычисления именно функции
распределения, то есть суммы всех
биномиальных вероятностей до

включительно (в отличие от функции

,
которая вычисляет вероятности до

).
При

функция БИНОМРАСП
вычисляет индивидуальную вероятность

.
Приведем несколько примеров.

Функция Excel

n

p

Вероятность

Результат

БИНОМРАСП(3;10;0,5;1)

10

0,5

0,171865

БИНОМРАСП(3;10;0,5;0)

10

0,5

0,117188

1-БИНОМРАСП(29;100;0,5;1)

100

0,5

0,999984

1-БИНОМРАСП(30;100;0,5;0)

100

0,5

0,999977

80

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    10.02.20152.79 Mб19k_5New.pdf

Excel для Microsoft 365 Excel для Microsoft 365 для Mac Excel для Интернета Excel 2021 Excel 2021 для Mac Excel 2019 Excel 2019 для Mac Excel 2016 Excel 2016 для Mac Excel 2013 Excel 2010 Excel 2007 Excel для Mac 2011 Excel Starter 2010 Еще…Меньше

В этой статье описаны синтаксис формулы и использование функции СТЬЮДРАСП в Microsoft Excel.

Описание

Возвращает процентные точки (вероятность) для t-распределения Стьюдента, где числовое значение (x) — вычисляемое значение t, для которого должны быть вычислены вероятности. T-распределение используется для проверки гипотез при малом объеме выборки. Данную функцию можно использовать вместо таблицы критических значений t-распределения.

Важно: Эта функция была заменена одной или несколькими новыми функциями, которые обеспечивают более высокую точность и имеют имена, лучше отражающие их назначение. Хотя эта функция все еще используется для обеспечения обратной совместимости, она может стать недоступной в последующих версиях Excel, поэтому мы рекомендуем использовать новые функции.

Дополнительные сведения о новых функциях см. в разделах Функция СТЬЮДЕНТ.РАСП.2Х и Функция СТЬЮДЕНТ.РАСП.ПХ.

Синтаксис

СТЬЮДРАСП(x;степени_свободы;хвосты)

Аргументы функции СТЬЮДРАСП описаны ниже.

  • X     Обязательный. Числовое значение, для которого требуется вычислить распределение.

  • Степени_свободы     Обязательный. Целое, указывающее число степеней свободы.

  • Хвосты     Обязательный. Определяет количество возвращаемых хвостов распределения. Если значение «хвосты» = 1, функция СТЬЮДРАСП возвращает одностороннее распределение. Если значение «хвосты» = 2, функция СТЬЮДРАСП возвращает двустороннее распределение.

Замечания

  • Если какой-либо из аргументов не является числом, то ДДИСТ возвращает #VALUE! значение ошибки #ЗНАЧ!.

  • Если Deg_freedom < 1, то ДДИСТ возвращает #NUM! значение ошибки #ЗНАЧ!.

  • Аргументы «степени_свободы» и «хвосты» усекаются до целых значений.

  • Если значение «хвосты» является любым значением, кроме 1 или 2, возвращается значение #NUM! значение ошибки #ЗНАЧ!.

  • Если x < 0, то ДДИСТ возвращает #NUM! значение ошибки #ЗНАЧ!.

  • Если значение аргумента «хвосты» = 1, функция СТЬЮДРАСП вычисляется как СТЬЮДРАСП = P(X > x), где X — случайная переменная, соответствующая t-распределению. Если значение аргумента «хвосты» = 2, функция СТЬЮДРАСП вычисляется как СТЬЮДРАСП = P(|X| > x) = P(X > x или X < -x).

  • Поскольку значения x < 0 не поддерживаются, то, используя функцию СТЬЮДРАСП при x < 0, следует помнить, что СТЬЮДРАСП(-x,df,1) = 1 – СТЬЮДРАСП(x,df,1) = P(X > -x), а СТЬЮДРАСП(-x,df,2) = СТЬЮДРАСП(x df,2) = P(|X| > x).

Пример

Скопируйте образец данных из следующей таблицы и вставьте их в ячейку A1 нового листа Excel. Чтобы отобразить результаты формул, выделите их и нажмите клавишу F2, а затем — клавишу ВВОД. При необходимости измените ширину столбцов, чтобы видеть все данные.

Данные

Описание

1,959999998

Значение, для которого вычисляется распределение

60

Степени свободы

Формула

Описание (результат)

Результат

=СТЬЮДРАСП(A2;A3;2)

Двустороннее распределение (0,054644930 или 5,46 процента)

5,46%

=СТЬЮДРАСП(A2;A3;1)

Одностороннее распределение (0,027322465 или 2,73 процента)

2,73%

К началу страницы

Нужна дополнительная помощь?

Like this post? Please share to your friends:
  • Квантили стандартного нормального распределения excel
  • Квантили распределения стьюдента excel
  • Квалифицированная электронная подпись word
  • Квалификационная работа по word
  • Квадраты вместо цифр word