Как сохранить excel файл в python

Узнайте, как читать и импортировать файлы Excel в Python, как записывать данные в эти таблицы и какие библиотеки лучше всего подходят для этого.

Известный вам инструмент для организации, анализа и хранения ваших данных в таблицах — Excel — применяется и в data science. В какой-то момент вам придется иметь дело с этими таблицами, но работать именно с ними вы будете не всегда. Вот почему разработчики Python реализовали способы чтения, записи и управления не только этими файлами, но и многими другими типами файлов.

Из этого учебника узнаете, как можете работать с Excel и Python. Внутри найдете обзор библиотек, которые вы можете использовать для загрузки и записи этих таблиц в файлы с помощью Python. Вы узнаете, как работать с такими библиотеками, как pandas, openpyxl, xlrd, xlutils и pyexcel.

Данные как ваша отправная точка

Когда вы начинаете проект по data science, вам придется работать с данными, которые вы собрали по всему интернету, и с наборами данных, которые вы загрузили из других мест — Kaggle, Quandl и тд

Но чаще всего вы также найдете данные в Google или в репозиториях, которые используются другими пользователями. Эти данные могут быть в файле Excel или сохранены в файл с расширением .csv … Возможности могут иногда казаться бесконечными, но когда у вас есть данные, в первую очередь вы должны убедиться, что они качественные.

В случае с электронной таблицей вы можете не только проверить, могут ли эти данные ответить на вопрос исследования, который вы имеете в виду, но также и можете ли вы доверять данным, которые хранятся в электронной таблице.

Проверяем качество таблицы

  • Представляет ли электронная таблица статические данные?
  • Смешивает ли она данные, расчеты и отчетность?
  • Являются ли данные в вашей электронной таблице полными и последовательными?
  • Имеет ли ваша таблица систематизированную структуру рабочего листа?
  • Проверяли ли вы действительные формулы в электронной таблице?

Этот список вопросов поможет убедиться, что ваша таблица не грешит против лучших практик, принятых в отрасли. Конечно, этот список не исчерпывающий, но позволит провести базовую проверку таблицы.

Лучшие практики для данных электронных таблиц

Прежде чем приступить к чтению вашей электронной таблицы на Python, вы также должны подумать о том, чтобы настроить свой файл в соответствии с некоторыми основными принципами, такими как:

  • Первая строка таблицы обычно зарезервирована для заголовка, а первый столбец используется для идентификации единицы выборки;
  • Избегайте имен, значений или полей с пробелами. В противном случае каждое слово будет интерпретироваться как отдельная переменная, что приведет к ошибкам, связанным с количеством элементов на строку в вашем наборе данных. По возможности, используйте:
  • подчеркивания,
  • тире,
  • горбатый регистр, где первая буква каждого слова пишется с большой буквы
  • объединяющие слова
  • Короткие имена предпочтительнее длинных имен;
  • старайтесь не использовать имена, которые содержат символы ?, $,%, ^, &, *, (,), -, #,? ,,, <,>, /, |, , [,], {, и };
  • Удалите все комментарии, которые вы сделали в вашем файле, чтобы избежать добавления в ваш файл лишних столбцов или NA;
  • Убедитесь, что все пропущенные значения в вашем наборе данных обозначены как NA.

Затем, после того, как вы внесли необходимые изменения или тщательно изучили свои данные, убедитесь, что вы сохранили внесенные изменения. Сделав это, вы можете вернуться к данным позже, чтобы отредактировать их, добавить дополнительные данные или изменить их, сохранив формулы, которые вы, возможно, использовали для расчета данных и т.д.

Если вы работаете с Microsoft Excel, вы можете сохранить файл в разных форматах: помимо расширения по умолчанию .xls или .xlsx, вы можете перейти на вкладку «Файл», нажать «Сохранить как» и выбрать одно из расширений, которые указаны в качестве параметров «Сохранить как тип». Наиболее часто используемые расширения для сохранения наборов данных в data science — это .csv и .txt (в виде текстового файла с разделителями табуляции). В зависимости от выбранного варианта сохранения поля вашего набора данных разделяются вкладками или запятыми, которые образуют символы-разделители полей вашего набора данных.

Теперь, когда вы проверили и сохранили ваши данные, вы можете начать с подготовки вашего рабочего окружения.

Готовим рабочее окружение

Как убедиться, что вы все делаете хорошо? Проверить рабочее окружение!

Когда вы работаете в терминале, вы можете сначала перейти в каталог, в котором находится ваш файл, а затем запустить Python. Убедитесь, что файл лежит именно в том каталоге, к которому вы обратились.

Возможно, вы уже начали сеанс Python и у вас нет подсказок о каталоге, в котором вы работаете. Тогда можно выполнить следующие команды:

# Import `os` 
import os

# Retrieve current working directory (`cwd`)
cwd = os.getcwd()
cwd

# Change directory 
os.chdir("/path/to/your/folder")

# List all files and directories in current directory
os.listdir('.')

Круто, да?

Вы увидите, что эти команды очень важны не только для загрузки ваших данных, но и для дальнейшего анализа. А пока давайте продолжим: вы прошли все проверки, вы сохранили свои данные и подготовили рабочее окружение.

Можете ли вы начать с чтения данных в Python?

Установите библиотеки для чтения и записи файлов Excel

Даже если вы еще не знаете, какие библиотеки вам понадобятся для импорта ваших данных, вы должны убедиться, что у вас есть все, что нужно для установки этих библиотек, когда придет время.

Подготовка к дополнительной рабочей области: pip

Вот почему вам нужно установить pip и setuptools. Если у вас установлен Python2 ⩾ 2.7.9 или Python3  ⩾ 3.4, то можно не беспокоиться — просто убедитесь, что вы обновились до последней версии.

Для этого выполните следующую команду в своем терминале:

# Для Linux/OS X
pip install -U pip setuptools

# Для Windows
python -m pip install -U pip setuptools

Если вы еще не установили pip, запустите скрипт python get-pip.py, который вы можете найти здесь. Следуйте инструкциям по установке.

Установка Anaconda

Другой вариант для работы в data science — установить дистрибутив Anaconda Python. Сделав это, вы получите простой и быстрый способ начать заниматься data science, потому что вам не нужно беспокоиться об установке отдельных библиотек, необходимых для работы.

Это особенно удобно, если вы новичок, но даже для более опытных разработчиков это способ быстро протестировать некоторые вещи без необходимости устанавливать каждую библиотеку отдельно.

Anaconda включает в себя 100 самых популярных библиотек Python, R и Scala для науки о данных и несколько сред разработки с открытым исходным кодом, таких как Jupyter и Spyder.

Установить Anaconda можно здесь. Следуйте инструкциям по установке, и вы готовы начать!

Загрузить файлы Excel в виде фреймов Pandas

Все, среда настроена, вы готовы начать импорт ваших файлов.

Один из способов, который вы часто используете для импорта ваших файлов для обработки данных, — с помощью библиотеки Pandas. Она основана на NumPy и предоставляет простые в использовании структуры данных и инструменты анализа данных Python.

Эта мощная и гибкая библиотека очень часто используется дата-инженерами для передачи своих данных в структуры данных, очень выразительных для их анализа.

Если у вас уже есть Pandas, доступные через Anaconda, вы можете просто загрузить свои файлы в Pandas DataFrames с помощью pd.Excelfile():

# импорт библиотеки pandas
import pandas as pd

# Загружаем ваш файл в переменную `file` / вместо 'example' укажите название свого файла из текущей директории
file = 'example.xlsx'

# Загружаем spreadsheet в объект pandas
xl = pd.ExcelFile(file)

# Печатаем название листов в данном файле
print(xl.sheet_names)

# Загрузить лист в DataFrame по его имени: df1
df1 = xl.parse('Sheet1')

Если вы не установили Anaconda, просто выполните pip install pandas, чтобы установить библиотеку Pandas в вашей среде, а затем выполните команды, которые включены в фрагмент кода выше.

Проще простого, да?

Для чтения в файлах .csv у вас есть аналогичная функция для загрузки данных в DataFrame: read_csv(). Вот пример того, как вы можете использовать эту функцию:

# Импорт библиотеки pandas
import pandas as pd

# Загрузить csv файл
df = pd.read_csv("example.csv") 

Разделитель, который будет учитывать эта функция, по умолчанию является запятой, но вы можете указать альтернативный разделитель, если хотите. Перейдите к документации, чтобы узнать, какие другие аргументы вы можете указать для успешного импорта!

Обратите внимание, что есть также функции read_table() и read_fwf() для чтения файлов и таблиц с фиксированной шириной в формате DataFrames с общим разделителем. Для первой функции разделителем по умолчанию является вкладка, но вы можете снова переопределить это, а также указать альтернативный символ-разделитель. Более того, есть и другие функции, которые вы можете использовать для получения данных в DataFrames: вы можете найти их здесь.

Как записать Pandas DataFrames в файлы Excel

Допустим, что после анализа данных вы хотите записать данные обратно в новый файл. Есть также способ записать ваши Pandas DataFrames обратно в файлы с помощью функции to_excel().

Но, прежде чем использовать эту функцию, убедитесь, что у вас установлен XlsxWriter, если вы хотите записать свои данные в несколько листов в файле .xlsx:

# Установим `XlsxWriter` 
pip install XlsxWriter

# Указать writer библиотеки
writer = pd.ExcelWriter('example.xlsx', engine='xlsxwriter')

# Записать ваш DataFrame в файл     
yourData.to_excel(writer, 'Sheet1')

# Сохраним результат 
writer.save()

Обратите внимание, что в приведенном выше фрагменте кода вы используете объект ExcelWriter для вывода DataFrame.

Иными словами, вы передаете переменную Writer в функцию to_excel() и также указываете имя листа. Таким образом, вы добавляете лист с данными в существующую рабочую книгу: вы можете использовать ExcelWriter для сохранения нескольких (немного) разных DataFrames в одной рабочей книге.

Все это означает, что если вы просто хотите сохранить один DataFrame в файл, вы также можете обойтись без установки пакета XlsxWriter. Затем вы просто не указываете аргумент движка, который вы передаете в функцию pd.ExcelWriter(). Остальные шаги остаются прежними.

Аналогично функциям, которые вы использовали для чтения в файлах .csv, у вас также есть функция to_csv() для записи результатов обратно в файл, разделенный запятыми. Он снова работает так же, как когда вы использовали его для чтения в файле:

# Запишите DataFrame в csv
df.to_csv("example.csv")

Если вы хотите иметь файл, разделенный табуляцией, вы также можете передать t аргументу sep. Обратите внимание, что есть другие функции, которые вы можете использовать для вывода ваших файлов. Вы можете найти их все здесь.

Пакеты для разбора файлов Excel и обратной записи с помощью Python

Помимо библиотеки Pandas, который вы будете использовать очень часто для загрузки своих данных, вы также можете использовать другие библиотеки для получения ваших данных в Python. Наш обзор основан на этой странице со списком доступных библиотек, которые вы можете использовать для работы с файлами Excel в Python.

Далее вы увидите, как использовать эти библиотеки с помощью некоторых реальных, но упрощенных примеров.

Использование виртуальных сред

Общий совет для установки — делать это в Python virtualenv без системных пакетов. Вы можете использовать virtualenv для создания изолированных сред Python: он создает папку, содержащую все необходимые исполняемые файлы для использования пакетов, которые потребуются проекту Python.

Чтобы начать работать с virtualenv, вам сначала нужно установить его. Затем перейдите в каталог, в который вы хотите поместить свой проект. Создайте virtualenv в этой папке и загрузите в определенную версию Python, если вам это нужно. Затем вы активируете виртуальную среду. После этого вы можете начать загрузку в другие библиотеки, начать работать с ними и т. д.

Совет: не забудьте деактивировать среду, когда закончите!

# Install virtualenv
$ pip install virtualenv

# Go to the folder of your project
$ cd my_folder

# Create a virtual environment `venv`
$ virtualenv venv

# Indicate the Python interpreter to use for `venv`
$ virtualenv -p /usr/bin/python2.7 venv

# Activate `venv`
$ source venv/bin/activate

# Deactivate `venv`
$ deactivate

Обратите внимание, что виртуальная среда может показаться немного проблемной на первый взгляд, когда вы только начинаете работать с данными с Python. И, особенно если у вас есть только один проект, вы можете не понять, зачем вам вообще нужна виртуальная среда.

С ней будет гораздо легче, когда у вас одновременно запущено несколько проектов, и вы не хотите, чтобы они использовали одну и ту же установку Python. Или когда ваши проекты имеют противоречащие друг другу требования, виртуальная среда пригодится!

Теперь вы можете, наконец, начать установку и импорт библиотек, о которых вы читали, и загрузить их в таблицу.

Как читать и записывать файлы Excel с openpyxl

Этот пакет обычно рекомендуется, если вы хотите читать и записывать файлы .xlsx, xlsm, xltx и xltm.

Установите openpyxl с помощью pip: вы видели, как это сделать в предыдущем разделе.

Общий совет для установки этой библиотеки — делать это в виртуальной среде Python без системных библиотек. Вы можете использовать виртуальную среду для создания изолированных сред Python: она создает папку, которая содержит все необходимые исполняемые файлы для использования библиотек, которые потребуются проекту Python.

Перейдите в каталог, в котором находится ваш проект, и повторно активируйте виртуальную среду venv. Затем продолжите установку openpyxl с pip, чтобы убедиться, что вы можете читать и записывать файлы с ним:

# Активируйте virtualenv
$ source activate venv

# Установим `openpyxl` в `venv`
$ pip install openpyxl

Теперь, когда вы установили openpyxl, вы можете загружать данные. Но что это за данные?

Доспутим Excel с данными, которые вы пытаетесь загрузить в Python, содержит следующие листы:

Функция load_workbook() принимает имя файла в качестве аргумента и возвращает объект рабочей книги, который представляет файл. Вы можете проверить это, запустив type (wb). Убедитесь, что вы находитесь в том каталоге, где находится ваша таблица, иначе вы получите error при импорте.

# Import `load_workbook` module from `openpyxl`
from openpyxl import load_workbook

# Load in the workbook
wb = load_workbook('./test.xlsx')

# Get sheet names
print(wb.get_sheet_names())

Помните, что вы можете изменить рабочий каталог с помощью os.chdir().

Вы видите, что фрагмент кода выше возвращает имена листов книги, загруженной в Python.Можете использовать эту информацию, чтобы также получить отдельные листы рабочей книги.

Вы также можете проверить, какой лист в настоящее время активен с wb.active. Как видно из кода ниже, вы можете использовать его для загрузки другого листа из вашей книги:

# Get a sheet by name 
sheet = wb.get_sheet_by_name('Sheet3')

# Print the sheet title 
sheet.title

# Get currently active sheet
anotherSheet = wb.active

# Check `anotherSheet` 
anotherSheet

На первый взгляд, с этими объектами рабочего листа вы не сможете многое сделать.. Однако вы можете извлечь значения из определенных ячеек на листе вашей книги, используя квадратные скобки [], в которые вы передаете точную ячейку, из которой вы хотите получить значение.

Обратите внимание, что это похоже на выбор, получение и индексирование массивов NumPy и Pandas DataFrames, но это не все, что вам нужно сделать, чтобы получить значение. Вам нужно добавить атрибут value:

# Retrieve the value of a certain cell
sheet['A1'].value

# Select element 'B2' of your sheet 
c = sheet['B2']

# Retrieve the row number of your element
c.row

# Retrieve the column letter of your element
c.column

# Retrieve the coordinates of the cell 
c.coordinate

Как вы можете видеть, помимо значения, есть и другие атрибуты, которые вы можете использовать для проверки вашей ячейки, а именно: row, column и coordinate.

Атрибут row вернет 2;

Добавление атрибута column к c даст вам ‘B’

coordinate вернет ‘B2’.

Вы также можете получить значения ячеек с помощью функции cell(). Передайте row и column, добавьте к этим аргументам значения, соответствующие значениям ячейки, которую вы хотите получить, и, конечно же, не забудьте добавить атрибут value:

# Retrieve cell value 
sheet.cell(row=1, column=2).value

# Print out values in column 2 
for i in range(1, 4):
     print(i, sheet.cell(row=i, column=2).value)

Обратите внимание, что если вы не укажете атрибут value, вы получите <Cell Sheet3.B1>, который ничего не говорит о значении, которое содержится в этой конкретной ячейке.

Вы видите, что вы используете цикл for с помощью функции range(), чтобы помочь вам распечатать значения строк, имеющих значения в столбце 2. Если эти конкретные ячейки пусты, вы просто вернете None. Если вы хотите узнать больше о циклах for, пройдите наш курс Intermediate Python для Data Science.

Есть специальные функции, которые вы можете вызывать для получения некоторых других значений, например, get_column_letter() и column_index_from_string.

Две функции указывают примерно то, что вы можете получить, используя их, но лучше сделать их четче: хотя вы можете извлечь букву столбца с предшествующего, вы можете сделать обратное или получить адрес столбца, когда вы задаёте букву последнему. Вы можете увидеть, как это работает ниже:

# Импорт необходимых модулей из  `openpyxl.utils`
from openpyxl.utils import get_column_letter, column_index_from_string

# Вывод 'A'
get_column_letter(1)

# Return '1'
column_index_from_string('A')

Вы уже получили значения для строк, которые имеют значения в определенном столбце, но что вам нужно сделать, если вы хотите распечатать строки вашего файла, не сосредотачиваясь только на одном столбце? Использовать другой цикл, конечно!

Например, вы говорите, что хотите сфокусироваться на области между «А1» и «С3», где первая указывает на левый верхний угол, а вторая — на правый нижний угол области, на которой вы хотите сфокусироваться. ,

Эта область будет так называемым cellObj, который вы видите в первой строке кода ниже. Затем вы говорите, что для каждой ячейки, которая находится в этой области, вы печатаете координату и значение, которое содержится в этой ячейке. После конца каждой строки вы печатаете сообщение, которое указывает, что строка этой области cellObj напечатана.

# Напечатать строчку за строчкой
for cellObj in sheet['A1':'C3']:
      for cell in cellObj:
              print(cells.coordinate, cells.value)
      print('--- END ---')

Еще раз обратите внимание, что выбор области очень похож на выбор, получение и индексирование списка и элементов массива NumPy, где вы также используете [] и : для указания области, значения которой вы хотите получить. Кроме того, вышеприведенный цикл также хорошо использует атрибуты ячейки!

Чтобы сделать вышеприведенное объяснение и код наглядным, вы можете проверить результат, который вы получите после завершения цикла:

('A1', u'M')
('B1', u'N')
('C1', u'O')
--- END ---
('A2', 10L)
('B2', 11L)
('C2', 12L)
--- END ---
('A3', 14L)
('B3', 15L)
('C3', 16L)
--- END ---

Наконец, есть некоторые атрибуты, которые вы можете использовать для проверки результата вашего импорта, а именно max_row и max_column. Эти атрибуты, конечно, и так  — общие способы проверки правильности загрузки данных, но они все равно полезны.

# Вывести максимальное количество строк 
sheet.max_row

# Вывести максимальное количество колонок 
sheet.max_column

Наверное, вы думаете, что такой способ работы с этими файлами сложноват, особенно если вы еще хотите манипулировать данными.

Должно быть что-то попроще, верно? Так и есть!

openpyxl поддерживает Pandas DataFrames! Вы можете использовать функцию DataFrame() из библиотеки Pandas, чтобы поместить значения листа в DataFrame:

# Import `pandas` 
import pandas as pd

# конвертировать Лист в DataFrame
df = pd.DataFrame(sheet.values)

Если вы хотите указать заголовки и индексы, вам нужно добавить немного больше кода:

# Put the sheet values in `data`
data = sheet.values

# Indicate the columns in the sheet values
cols = next(data)[1:]

# Convert your data to a list
data = list(data)

# Read in the data at index 0 for the indices
idx = [r[0] for r in data]

# Slice the data at index 1 
data = (islice(r, 1, None) for r in data)

# Make your DataFrame
df = pd.DataFrame(data, index=idx, columns=cols)

Затем вы можете начать манипулировать данными со всеми функциями, которые предлагает библиотека Pandas. Но помните, что вы находитесь в виртуальной среде, поэтому, если библиотека еще не представлена, вам нужно будет установить ее снова через pip.

Чтобы записать ваши Pandas DataFrames обратно в файл Excel, вы можете легко использовать функцию dataframe_to_rows() из модуля utils:

# Import `dataframe_to_rows`
from openpyxl.utils.dataframe import dataframe_to_rows

# Initialize a workbook 
wb = Workbook()

# Get the worksheet in the active workbook
ws = wb.active

# Append the rows of the DataFrame to your worksheet
for r in dataframe_to_rows(df, index=True, header=True):
    ws.append(r)

Но это точно не все! Библиотека openpyxl предлагает вам высокую гибкость при записи ваших данных обратно в файлы Excel, изменении стилей ячеек или использовании режима write-only. Эту библиотеку обязательно нужно знать, когда вы часто работаете с электронными таблицами ,

Совет: читайте больше о том, как вы можете изменить стили ячеек, перейти в режим write-only или как библиотека работает с NumPy здесь.

Теперь давайте также рассмотрим некоторые другие библиотеки, которые вы можете использовать для получения данных вашей электронной таблицы в Python.

Прежде чем закрыть этот раздел, не забудьте отключить виртуальную среду, когда закончите!

Чтение и форматирование Excel-файлов: xlrd

Эта библиотека идеально подходит для чтения и форматирования данных из Excel с расширением xls или xlsx.

# Import `xlrd`
import xlrd

# Open a workbook 
workbook = xlrd.open_workbook('example.xls')

# Loads only current sheets to memory
workbook = xlrd.open_workbook('example.xls', on_demand = True)

Когда вам не нужны данные из всей Excel-книги, вы можете использовать функции sheet_by_name() или sheet_by_index() для получения листов, которые вы хотите получить в своём анализе

# Load a specific sheet by name
worksheet = workbook.sheet_by_name('Sheet1')

# Load a specific sheet by index 
worksheet = workbook.sheet_by_index(0)

# Retrieve the value from cell at indices (0,0) 
sheet.cell(0, 0).value

Также можно получить значение в определённых ячейках с вашего листа.

Перейдите к xlwt и xlutils, чтобы узнать больше о том, как они относятся к библиотеке xlrd.

Запись данных в Excel-файлы с xlwt

Если вы хотите создать таблицу со своими данными, вы можете использовать не только библиотеку XlsWriter, но и xlwt. xlwt идеально подходит для записи данных и форматирования информации в файлах с расширением .xls

Когда вы вручную создаёте файл:

# Import `xlwt` 
import xlwt

# Initialize a workbook 
book = xlwt.Workbook(encoding="utf-8")

# Add a sheet to the workbook 
sheet1 = book.add_sheet("Python Sheet 1") 

# Write to the sheet of the workbook 
sheet1.write(0, 0, "This is the First Cell of the First Sheet") 

# Save the workbook 
book.save("spreadsheet.xls")

Если вы хотите записать данные в файл, но не хотите делать все самостоятельно, вы всегда можете прибегнуть к циклу for, чтобы автоматизировать весь процесс. Составьте сценарий, в котором вы создаёте книгу и в которую добавляете лист. Укажите список со столбцами и один со значениями, которые будут заполнены на листе.

Далее у вас есть цикл for, который гарантирует, что все значения попадают в файл: вы говорите, что для каждого элемента в диапазоне от 0 до 4 (5 не включительно) вы собираетесь что-то делать. Вы будете заполнять значения построчно. Для этого вы указываете элемент строки, который появляется в каждом цикле. Далее у вас есть еще один цикл for, который будет проходить по столбцам вашего листа. Вы говорите, что для каждой строки на листе, вы будете смотреть на столбцы, которые идут с ним, и вы будете заполнять значение для каждого столбца в строке. Заполнив все столбцы строки значениями, вы перейдете к следующей строке, пока не останется строк.

# Initialize a workbook
book = xlwt.Workbook()

# Add a sheet to the workbook
sheet1 = book.add_sheet("Sheet1")

# The data
cols = ["A", "B", "C", "D", "E"]
txt = [0,1,2,3,4]

# Loop over the rows and columns and fill in the values
for num in range(5):
      row = sheet1.row(num)
      for index, col in enumerate(cols):
          value = txt[index] + num
          row.write(index, value)

# Save the result
book.save("test.xls")

На скриншоте ниже представлен результат выполнения этого кода:

Теперь, когда вы увидели, как xlrd и xlwt работают друг с другом, пришло время взглянуть на библиотеку, которая тесно связана с этими двумя: xlutils.

Сборник утилит: xlutils

Эта библиотека — сборник утилит, для которого требуются и xlrd и xlwt, и которая может копировать, изменять и фильтровать существующие данные. О том, как пользоваться этими командами рассказано в разделе по openpyxl.

Вернитесь в раздел openpyxl, чтобы получить больше информации о том, как использовать этот пакет для получения данных в Python.

Использование pyexcel для чтения .xls или .xlsx файлов

Еще одна библиотека, которую можно использовать для чтения данных электронных таблиц в Python — это pyexcel; Python Wrapper, который предоставляет один API для чтения, записи и работы с данными в файлах .csv, .ods, .xls, .xlsx и .xlsm. Конечно, для этого урока вы просто сосредоточитесь на файлах .xls и .xls.

Чтобы получить ваши данные в массиве, вы можете использовать функцию get_array(), которая содержится в пакете pyexcel:

# Import `pyexcel`
import pyexcel

# Get an array from the data
my_array = pyexcel.get_array(file_name="test.xls")

Вы также можете получить свои данные в упорядоченном словаре списков. Вы можете использовать функцию get_dict():

# Import `OrderedDict` module 
from pyexcel._compact import OrderedDict

# Get your data in an ordered dictionary of lists
my_dict = pyexcel.get_dict(file_name="test.xls", name_columns_by_row=0)

# Get your data in a dictionary of 2D arrays
book_dict = pyexcel.get_book_dict(file_name="test.xls")

Здесь видно, что если вы хотите получить словарь двумерных массивов или получить все листы рабочей книги в одном словаре, вы можете прибегнуть к get_book_dict().

Помните, что эти две структуры данных, которые были упомянуты выше, массивы и словари вашей таблицы, позволяют вам создавать DataFrames ваших данных с помощью pd.DataFrame(). Это облегчит обработку данных.

Кроме того, вы можете просто получить записи из таблицы с помощью pyexcel благодаря функции get_records(). Просто передайте аргумент file_name в функцию, и вы получите список словарей:

# Retrieve the records of the file
records = pyexcel.get_records(file_name="test.xls")

Чтобы узнать, как управлять списками Python, ознакомьтесь с примерами из документации о списках Python.

Запись в файл с pyexcel

С помощью этой библиотеки можно не только загружать данные в массивы, вы также можете экспортировать свои массивы обратно в таблицу. Используйте функцию save_as() и передайте массив и имя файла назначения в аргумент dest_file_name:

# Get the data
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

# Save the array to a file
pyexcel.save_as(array=data, dest_file_name="array_data.xls")

Обратите внимание, что если вы хотите указать разделитель, вы можете добавить аргумент dest_delimiter и передать символ, который вы хотите использовать в качестве разделителя между «».

Однако если у вас есть словарь, вам нужно использовать функцию save_book_as(). Передайте двумерный словарь в bookdict и укажите имя файла:

# The data
2d_array_dictionary = {'Sheet 1': [
                                   ['ID', 'AGE', 'SCORE']
                                   [1, 22, 5],
                                   [2, 15, 6],
                                   [3, 28, 9]
                                  ],
                       'Sheet 2': [
                                    ['X', 'Y', 'Z'],
                                    [1, 2, 3],
                                    [4, 5, 6]
                                    [7, 8, 9]
                                  ],
                       'Sheet 3': [
                                    ['M', 'N', 'O', 'P'],
                                    [10, 11, 12, 13],
                                    [14, 15, 16, 17]
                                    [18, 19, 20, 21]
                                   ]}

# Save the data to a file                        
pyexcel.save_book_as(bookdict=2d_array_dictionary, dest_file_name="2d_array_data.xls")

При использовании кода, напечатанного в приведенном выше примере, важно помнить, что порядок ваших данных в словаре не будет сохранен. Если вы не хотите этого, вам нужно сделать небольшой обход. Вы можете прочитать все об этом здесь.

Чтение и запись .csv файлов

Если вы все еще ищете библиотеки, которые позволяют загружать и записывать данные в файлы .csv, кроме Pandas, лучше всего использовать пакет csv:

# import `csv`
import csv

# Read in csv file 
for row in csv.reader(open('data.csv'), delimiter=','):
      print(row)
      
# Write csv file
data = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
outfile = open('data.csv', 'w')
writer = csv.writer(outfile, delimiter=';', quotechar='"')
writer.writerows(data)
outfile.close()

Обратите внимание, что в пакете NumPy есть функция genfromtxt(), которая позволяет загружать данные, содержащиеся в файлах .csv, в массивы, которые затем можно поместить в DataFrames.

Финальная проверка данных

Когда у вас есть данные, не забудьте последний шаг: проверить, правильно ли загружены данные. Если вы поместили свои данные в DataFrame, вы можете легко и быстро проверить, был ли импорт успешным, выполнив следующие команды:

# Check the first entries of the DataFrame
df1.head()

# Check the last entries of the DataFrame
df1.tail()

Если у вас есть данные в массиве, вы можете проверить их, используя следующие атрибуты массива: shape, ndim, dtype и т.д .:

# Inspect the shape 
data.shape

# Inspect the number of dimensions
data.ndim

# Inspect the data type
data.dtype

Что дальше?

Поздравляем! Вы успешно прошли наш урок и научились читать файлы Excel на Python.

Если вы хотите продолжить работу над этой темой, попробуйте воспользоваться PyXll, который позволяет писать функции в Python и вызывать их в Excel.

Pandas можно использовать для чтения и записи файлов Excel с помощью Python. Это работает по аналогии с другими форматами. В этом материале рассмотрим, как это делается с помощью DataFrame.

Помимо чтения и записи рассмотрим, как записывать несколько DataFrame в Excel-файл, как считывать определенные строки и колонки из таблицы и как задавать имена для одной или нескольких таблиц в файле.

Установка Pandas

Для начала Pandas нужно установить. Проще всего это сделать с помощью pip.

Если у вас Windows, Linux или macOS:

pip install pandas # или pip3

В процессе можно столкнуться с ошибками ModuleNotFoundError или ImportError при попытке запустить этот код. Например:

ModuleNotFoundError: No module named 'openpyxl'

В таком случае нужно установить недостающие модули:

pip install openpyxl xlsxwriter xlrd  # или pip3

Будем хранить информацию, которую нужно записать в файл Excel, в DataFrame. А с помощью встроенной функции to_excel() ее можно будет записать в Excel.

Сначала импортируем модуль pandas. Потом используем словарь для заполнения DataFrame:


import pandas as pd

df = pd.DataFrame({'Name': ['Manchester City', 'Real Madrid', 'Liverpool',
'FC Bayern München', 'FC Barcelona', 'Juventus'],
'League': ['English Premier League (1)', 'Spain Primera Division (1)',
'English Premier League (1)', 'German 1. Bundesliga (1)',
'Spain Primera Division (1)', 'Italian Serie A (1)'],
'TransferBudget': [176000000, 188500000, 90000000,
100000000, 180500000, 105000000]})

Ключи в словаре — это названия колонок. А значения станут строками с информацией.

Теперь можно использовать функцию to_excel() для записи содержимого в файл. Единственный аргумент — это путь к файлу:


df.to_excel('./teams.xlsx')

А вот и созданный файл Excel:

файл Excel в python

Стоит обратить внимание на то, что в этом примере не использовались параметры. Таким образом название листа в файле останется по умолчанию — «Sheet1». В файле может быть и дополнительная колонка с числами. Эти числа представляют собой индексы, которые взяты напрямую из DataFrame.

Поменять название листа можно, добавив параметр sheet_name в вызов to_excel():


df.to_excel('./teams.xlsx', sheet_name='Budgets', index=False)

Также можно добавили параметр index со значением False, чтобы избавиться от колонки с индексами. Теперь файл Excel будет выглядеть следующим образом:

Чтение и запись файлов Excel (XLSX) в Python

Запись нескольких DataFrame в файл Excel

Также есть возможность записать несколько DataFrame в файл Excel. Для этого можно указать отдельный лист для каждого объекта:


salaries1 = pd.DataFrame({'Name': ['L. Messi', 'Cristiano Ronaldo', 'J. Oblak'],
'Salary': [560000, 220000, 125000]})

salaries2 = pd.DataFrame({'Name': ['K. De Bruyne', 'Neymar Jr', 'R. Lewandowski'],
'Salary': [370000, 270000, 240000]})

salaries3 = pd.DataFrame({'Name': ['Alisson', 'M. ter Stegen', 'M. Salah'],
'Salary': [160000, 260000, 250000]})

salary_sheets = {'Group1': salaries1, 'Group2': salaries2, 'Group3': salaries3}
writer = pd.ExcelWriter('./salaries.xlsx', engine='xlsxwriter')

for sheet_name in salary_sheets.keys():
salary_sheets[sheet_name].to_excel(writer, sheet_name=sheet_name, index=False)

writer.save()

Здесь создаются 3 разных DataFrame с разными названиями, которые включают имена сотрудников, а также размер их зарплаты. Каждый объект заполняется соответствующим словарем.

Объединим все три в переменной salary_sheets, где каждый ключ будет названием листа, а значение — объектом DataFrame.

Дальше используем движок xlsxwriter для создания объекта writer. Он и передается функции to_excel().

Перед записью пройдемся по ключам salary_sheets и для каждого ключа запишем содержимое в лист с соответствующим именем. Вот сгенерированный файл:

Чтение и запись файлов Excel (XLSX) в Python

Можно увидеть, что в этом файле Excel есть три листа: Group1, Group2 и Group3. Каждый из этих листов содержит имена сотрудников и их зарплаты в соответствии с данными в трех DataFrame из кода.

Параметр движка в функции to_excel() используется для определения модуля, который задействуется библиотекой Pandas для создания файла Excel. В этом случае использовался xslswriter, который нужен для работы с классом ExcelWriter. Разные движка можно определять в соответствии с их функциями.

В зависимости от установленных в системе модулей Python другими параметрами для движка могут быть openpyxl (для xlsx или xlsm) и xlwt (для xls). Подробности о модуле xlswriter можно найти в официальной документации.

Наконец, в коде была строка writer.save(), которая нужна для сохранения файла на диске.

Чтение файлов Excel с python

По аналогии с записью объектов DataFrame в файл Excel, эти файлы можно и читать, сохраняя данные в объект DataFrame. Для этого достаточно воспользоваться функцией read_excel():


top_players = pd.read_excel('./top_players.xlsx')
top_players.head()

Содержимое финального объекта можно посмотреть с помощью функции head().

Примечание:

Этот способ самый простой, но он и способен прочесть лишь содержимое первого листа.

Посмотрим на вывод функции head():

Name Age Overall Potential Positions Club
0 L. Messi 33 93 93 RW,ST,CF FC Barcelona
1 Cristiano Ronaldo 35 92 92 ST,LW Juventus
2 J. Oblak 27 91 93 GK Atlético Madrid
3 K. De Bruyne 29 91 91 CAM,CM Manchester City
4 Neymar Jr 28 91 91 LW,CAM Paris Saint-Germain

Pandas присваивает метку строки или числовой индекс объекту DataFrame по умолчанию при использовании функции read_excel().

Это поведение можно переписать, передав одну из колонок из файла в качестве параметра index_col:


top_players = pd.read_excel('./top_players.xlsx', index_col='Name')
top_players.head()

Результат будет следующим:

Name Age Overall Potential Positions Club
L. Messi 33 93 93 RW,ST,CF FC Barcelona
Cristiano Ronaldo 35 92 92 ST,LW Juventus
J. Oblak 27 91 93 GK Atlético Madrid
K. De Bruyne 29 91 91 CAM,CM Manchester City
Neymar Jr 28 91 91 LW,CAM Paris Saint-Germain

В этом примере индекс по умолчанию был заменен на колонку «Name» из файла. Однако этот способ стоит использовать только при наличии колонки со значениями, которые могут стать заменой для индексов.

Чтение определенных колонок из файла Excel

Иногда удобно прочитать содержимое файла целиком, но бывают случаи, когда требуется получить доступ к определенному элементу. Например, нужно считать значение элемента и присвоить его полю объекта.

Это делается с помощью функции read_excel() и параметра usecols. Например, можно ограничить функцию, чтобы она читала только определенные колонки. Добавим параметр, чтобы он читал колонки, которые соответствуют значениям «Name», «Overall» и «Potential».

Для этого укажем числовой индекс каждой колонки:


cols = [0, 2, 3]

top_players = pd.read_excel('./top_players.xlsx', usecols=cols)
top_players.head()

Вот что выдаст этот код:

Name Overall Potential
0 L. Messi 93 93
1 Cristiano Ronaldo 92 92
2 J. Oblak 91 93
3 K. De Bruyne 91 91
4 Neymar Jr 91 91

Таким образом возвращаются лишь колонки из списка cols.

В DataFrame много встроенных возможностей. Легко изменять, добавлять и агрегировать данные. Даже можно строить сводные таблицы. И все это сохраняется в Excel одной строкой кода.

Рекомендую изучить DataFrame в моих уроках по Pandas.

Выводы

В этом материале были рассмотрены функции read_excel() и to_excel() из библиотеки Pandas. С их помощью можно считывать данные из файлов Excel и выполнять запись в них. С помощью различных параметров есть возможность менять поведение функций, создавая нужные файлы, не просто копируя содержимое из объекта DataFrame.

Время на прочтение
6 мин

Количество просмотров 349K

Добрый день, уважаемые читатели.

В сегодняшней статье я хотел бы, как можно подробнее, рассмотреть интеграцию приложений Python и MS Excel. Данные вопрос может возникнуть, например, при создании какой-либо системы онлайн отчетности, которая должна выгружать результаты в общепринятый формат ну или какие-либо другие задачи. Также в статье я покажу и обратную интеграцию, т.е. как использовать функцию написанную на python в Excel, что также может быть полезно для автоматизации отчетов.

Работаем с файлами MS Excel на Python

Для работы с Excel файлами из Python мне известны 2 варианта:

  1. Использование библиотек, таких как xlrd, xlwt, xlutils или openpyxl
  2. Работа с com-объектом

Рассмотрим работу с этими способами подробнее. В качестве примера будем использовать готовый файл excel из которого мы сначала считаем данные из первой ячейки, а затем запишем их во вторую. Таких простых примеров будет достаточно для первого ознакомления.

Использование библиотек

Итак, первый метод довольно простой и хорошо описан. Например, есть отличная статья для описания работы c xlrd, xlwt, xlutils. Поэтому в данном материале я приведу небольшой кусок кода с их использованием.

Для начала загрузим нужные библиотеки и откроем файл xls на чтение и выберем
нужный лист с данными:

import xlrd, xlwt
#открываем файл
rb = xlrd.open_workbook('../ArticleScripts/ExcelPython/xl.xls',formatting_info=True)

#выбираем активный лист
sheet = rb.sheet_by_index(0)

Теперь давайте посмотрим, как считать значения из нужных ячеек:

#получаем значение первой ячейки A1
val = sheet.row_values(0)[0]

#получаем список значений из всех записей
vals = [sheet.row_values(rownum) for rownum in range(sheet.nrows)]

Как видно чтение данных не составляет труда. Теперь запишем их в другой файл. Для этого создам новый excel файл с новой рабочей книгой:

wb = xlwt.Workbook()
ws = wb.add_sheet('Test')

Запишем в новый файл полученные ранее данные и сохраним изменения:

#в A1 записываем значение из ячейки A1 прошлого файла
ws.write(0, 0, val[0])

#в столбец B запишем нашу последовательность из столбца A исходного файла
i = 0
for rec in vals:
    ws.write(i,1,rec[0])
    i =+ i

#сохраняем рабочую книгу
wb.save('../ArticleScripts/ExcelPython/xl_rec.xls')

Из примера выше видно, что библиотека xlrd отвечает за чтение данных, а xlwt — за запись, поэтому нет возможности внести изменения в уже созданную книгу без ее копирования в новую. Кроме этого указанные библиотеки работают только с файлами формата xls (Excel 2003) и у них нет поддержки нового формата xlsx (Excel 2007 и выше).

Чтобы успешно работать с форматом xlsx, понадобится библиотека openpyxl. Для демонстрации ее работы проделаем действия, которые были показаны для предыдущих библиотек.

Для начала загрузим библиотеку и выберем нужную книгу и рабочий лист:

import openpyxl
wb = openpyxl.load_workbook(filename = '../ArticleScripts/ExcelPython/openpyxl.xlsx')
sheet = wb['test']

Как видно из вышеприведенного листинга сделать это не сложно. Теперь посмотрим как можно считать данные:

#считываем значение определенной ячейки
val = sheet['A1'].value

#считываем заданный диапазон
vals = [v[0].value for v in sheet.range('A1:A2')]

Отличие от прошлых библиотек в том, что openpyxl дает возможность отображаться к ячейкам и последовательностям через их имена, что довольно удобно и понятно при чтении программы.

Теперь посмотрим как нам произвести запись и сохранить данные:

#записываем значение в определенную ячейку
sheet['B1'] = val

#записываем последовательность
i = 0
for rec in vals:
    sheet.cell(row=i, column=2).value = rec
    i =+ 1

# сохраняем данные
wb.save('../ArticleScripts/ExcelPython/openpyxl.xlsx')

Из примера видно, что запись, тоже производится довольно легко. Кроме того, в коде выше, можно заметить, что openpyxl кроме имен ячеек может работать и с их индексами.

К недостаткам данной библиотеки можно отнести, то что, как и в предыдущем примере, нет возможности сохранить изменения без создания новой книги.

Как было показано выше, для более менее полноценной работы с excel файлами, в данном случае, нужно 4 библиотеки, и это не всегда удобно. Кроме этого, возможно нужен будет доступ к VBA (допустим для какой-либо последующей обработки) и с помощью этих библиотек его не получить.

Однако, работа с этими библиотеками достаточно проста и удобна для быстрого создания Excel файлов их форматирования, но если Вам надо больше возможностей, то следующий подпункт для Вас.

Работа с com-объектом

В своих отчетах я предпочитаю использовать второй способ, а именно использование файла Excel через com-объект с использованием библиотеки win32com. Его преимуществом, является то, что вы можете выполнять с файлом все операции, которые позволяет делать обычный Excel с использованием VBA.

Проиллюстрируем это на той же задаче, что и предыдущие примеры.

Для начала загрузим нужную библиотеку и создадим COM объект.

import win32com.client
Excel = win32com.client.Dispatch("Excel.Application")

Теперь мы можем работать с помощью объекта Excel мы можем получить доступ ко всем возможностям VBA. Давайте, для начала, откроем любую книгу и выберем активный лист. Это можно сделать так:

wb = Excel.Workbooks.Open(u'D:\Scripts\DataScience\ArticleScripts\ExcelPython\xl.xls')
sheet = wb.ActiveSheet

Давайте получим значение первой ячейки и последовательности:

#получаем значение первой ячейки
val = sheet.Cells(1,1).value

#получаем значения цепочки A1:A2
vals = [r[0].value for r in sheet.Range("A1:A2")]

Как можно заметить, мы оперируем здесь функциями чистого VBA. Это очень удобно если у вас есть написанные макросы и вы хотите использовать их при работе с Python при минимальных затратах на переделку кода.

Посмотрим, как можно произвести запись полученных значений:

#записываем значение в определенную ячейку
sheet.Cells(1,2).value = val

#записываем последовательность
i = 1
for rec in vals:
    sheet.Cells(i,3).value = rec
    i = i + 1

#сохраняем рабочую книгу
wb.Save()

#закрываем ее
wb.Close()

#закрываем COM объект
Excel.Quit()

Из примера видно, что данные операции тоже довольно просто реализовываются. Кроме этого, можно заметить, что изменения мы сохранили в той же книге, которую открыли для чтения, что достаточно удобно.

Однако, внимательный читатель, обратит внимание на переменную i, которая инициализируется не 0, как принято python, а 1. Это связано с тем, что мы работаем с индексами ячеек как из VBA, а там нумерация начинается не с 0, а с 1.

На этом закончим разбор способов работы с excel файлами в python и перейдем к обратной задаче.

Вызываем функции Python из MS Excel

Может возникнуть такая ситуация, что у вас уже есть какой-либо функция, которая обрабатывает данные на python, и нужно перенести ее функциональность в Excel. Конечно же можно переписать ее на VBA, но зачем?

Для использования функций python в Excel есть прекрасная надстройка ExcelPython. С ее помощью вы сможете вызывать функции написанные на python прямо из Excel, правда придется еще написать небольшую обертку на VBA, и все это будет показано ниже.

Итак, предположим у нас есть функция, написанная на python, которой мы хотим воспользоваться:

def get_unique(lists):
    sm = 0
    for i in lists:
        sm = sm + int(i.pop()) 
    return sm

На вход ей подается список, состоящий из списков, это одно из условий, которое должно выполняться для работы данной функции в Excel.

Сохраним функцию в файле plugin.py и положим его в ту же директорию, где будет лежать наш excel файл, с которым мы будем работать.

Теперь установим ExcelPython. Установка происходит через запуск exe-файла и не вызывает затруднений.

Когда все приготовления выполнены, открываем тестовый файл excel и вызовем редактор VBA (Alt+F11). Для работы с вышеуказанной надстройкой необходимо ее подключить, через Tools->References, как показано на рисунке:

Ну что же, теперь можно приступить к написанию функции-обертки для нашего Python-модуля plugin.py. Выглядеть она будет следующим образом:

Function sr(lists As Range)
    On Error GoTo do_error
        Set plugin = PyModule("plugin", AddPath:=ThisWorkbook.Path)
        Set result = PyCall(plugin, "get_unique", PyTuple(lists.Value2))
        sr = WorksheetFunction.Transpose(PyVar(result))
        Exit Function
do_error:
        sr = Err.Description
End Function

Итак, что же происходит в данной функции?

Для начала, с помощью PyModule, мы подключаем нужный модуль. Для этого в качестве параметров ей передается имя модуля без расширения, и путь до папки в которой он находится. На выходе работы PyModule мы получаем объект для работы с модулем.

Затем, с помощью PyCall, вызываем нужную нам функцию из указанного модуля. В качестве параметров PyCall получает следующее:

  1. Объект модуля, полученный на предыдущем шаге
  2. Имя вызываемой функции
  3. Параметры, передаваемые функции (передаются в виде списка)

Функция PyTuple, получает на вход какие-либо значения и преобразует их в объект tuple языка Python.
Ну и, соответственно, PyVar выполняет операцию преобразования результата функции python, к типу понятному Excel.

Теперь, чтобы убедиться в работоспособности нашей связки, вызовем нашу свежеиспеченую функцию на листе в Excel:

Как видно из рисунка все отработало правильно.

Надо отметить, что в данном материале используется старая версия ExcelPython, и на GitHub’e автора доступна новая версия.

Заключение

В качестве заключения, надо отметить, примеры в данной статье самые простые и для более глубоко изучения данных методов, я рекомендую обратиться к
документации по нужным пакетам.

Также хочу заметить, что указанные пакеты не являются единственными и в статье опущено рассмотрение, таких пакетов как xlsxwriter для генерации excel файлов или xlwings, который может работать с Excel файлами «на лету», а также же PyXLL, который выполняет аналогичные функции ExcelPython.

Кроме этого в статье я попытался несколько обобщить разборасанный по сети материал, т.к. такие вопросы часто фигурируют на форумах и думаю некоторым будет полезно иметь, такую «шпаргалку» под рукой.

В этом уроке я расскажу, как создать файл excel в Python с помощью библиотеки openpyxl.

Многие приложения, работающие с данными, нуждаются в экспорте этих данных в различные форматы. Очень распространенным и широко используемым форматом являются электронные таблицы.

В Python существуют различные библиотеки для создания файлов excel, одной из самых популярных является openpyxl благодаря простоте использования и тому, что она позволяет как читать, так и записывать электронные таблицы.

Содержание

  • 1 Установка openpyxl
  • 2 Создание файла excel в python
  • 3 Создание листа
  • 4 Доступ к листу
  • 5 Доступ к ячейке
  • 6 Запись значений в ячейку
  • 7 Сохранение списка значений
  • 8 Сохранение книги excel в Python
    • 8.1 Похожие записи

Поскольку это внешняя библиотека, первое, что вы должны сделать для использования openpyxl, это установить ее.

Создайте новый каталог для вашего проекта, получите к нему доступ и запустите виртуальную среду.

После активации виртуальной среды выполните следующую команду из терминала для установки openpyxl:

$> pip install openpyxl

Создание файла excel в python

Как вы, возможно, знаете электронные таблицы группируются в книги. Книга – это родительская сущность электронной таблицы (обычно соответствующая файлу excel). В свою очередь, она состоит из одного или нескольких листов.

Книга Excel состоит как минимум из одного листа. Лист, с которым вы работаете, называется активным листом.

Для начала работы с openpyxl вам не нужно сохранять какой-либо файл в файловой системе. Вы просто создаете книгу.

В приведенном ниже коде вы узнаете, как создать книгу в openpyxl:

import openpyxl wb = openpyxl.Workbook()

Code language: JavaScript (javascript)

Переменная wb является экземпляром пустой книги. Вновь созданная книга содержит один лист, который является активным. Доступ к нему можно получить через активный атрибут.

Одним из основных свойств листа является его имя, поскольку, как мы увидим в следующем разделе, это позволяет нам обращаться к нему непосредственно через его имя.

В следующем примере показано, как получить доступ к имени активного листа и как его изменить:

>>> import openpyxl >>> wb = openpyxl.Workbook() >>> hoja = wb.active >>> print(f'Active list: {list.title}') Active list: Sheet >>> list.title = "Values" >>> print(f'Active list: {wb.active.title}') Active list: Values

Code language: PHP (php)

Создание листа

Помимо листа по умолчанию, с помощью openpyxl можно создать несколько листов в книге, используя метод create_sheet() у workbook как показано ниже (продолжение предыдущего примера):

# Добавление листа 'Sheet' в конец (по умолчанию). >>> list1 = wb.create_sheet("List") # Добавим лист 'Sheet' в первую позицию. # Если "List" существует, добавим цифру 1 в конец имени >>> list2 = wb.create_sheet("List", 0) # Добавим лист "Another list" на позицию 1 >>> wb.create_sheet(index=1, title="Another list") # Вывод на экран названий листов >>> print(wb.sheetnames) ['List1', 'Another list', 'Values', 'List']

Code language: PHP (php)

Также можно создать копию листа с помощью метода copy_worksheet():

>>> sourse = wb.active >>> new = wb.copy_worksheet(sourse)

Code language: JavaScript (javascript)

Доступ к листу

Как я уже говорил в предыдущем разделе, имена листов являются очень важным свойством, поскольку они позволяют нам обращаться к ним напрямую, рассматривая workbook как словарь. Продолжаем пример:

>>> list = wb.active # Это лист, который находится в индексе 0 >>> print(f'Active list: {list.title}') Active list: list1 >>> list = wb['Another list'] >>> wb.active = list >>> print(f'Active list: {wb.active.title}') Active list: Another list

Code language: PHP (php)

С другой стороны, как мы видели в предыдущем разделе, можно получить список с именами всех листов, обратившись к свойству sheetnames у workbook. Также можно перебирать все листы:

>>> print(wb.sheetnames) ['List1', 'Another list', 'Values', 'List'] >>> for list in wb: ... print(list.title) List1 Another list Values List

Code language: PHP (php)

Доступ к ячейке

До сих пор мы видели, как создать книгу, листы и как получить к ним доступ. Теперь перейдем к самому главному – как получить доступ к значению ячейки и как сохранить данные.

Можно получить доступ к ячейке, рассматривая лист как словарь, где имя ячейки используется в качестве ключа. Это происходит в результате комбинации имени столбца и номера строки.

Вот как получить доступ к ячейке в столбце A и строке 1:

>>> wb = openpyxl.Workbook() >>> hoja = wb.active >>> a1 = list["A1"] >>> print(a1.value) None

Code language: PHP (php)

Также можно получить доступ к ячейке, используя обозначения строк и столбцов, с помощью метода cell() следующим образом:

>>> b2 = list.cell(row=2, column=2) >>> print(b2.value)

Code language: PHP (php)

ВАЖНО: Когда создается книга, она не содержит ячеек. Ячейки создаются в памяти по мере обращения к ним, даже если они не содержат никакого значения.

Запись значений в ячейку

В предыдущем разделе вы могли заметить, что при выводе содержимого ячейки (print(a1.value)) всегда возвращалось None. Это происходит потому, что ячейка не содержит никакого значения.

Чтобы присвоить значение определенной ячейке, вы можете сделать это тремя различными способами:

# 1.- Присвоение значения непосредственно ячейке >>> list["A1"] = 10 >>> a1 = list["A1"] >>> print(a1.value) 10 # 2.- Использование обозначения строки, столбца со значением аргумента >>> b1 = list.cell(row=1, column=2, value=20) >>> print(b1.value) 20 # 3.- Обновление свойства значения ячейки >>> c1 = list.cell(row=1, column=3) >>> c1.value = 30 >>> print(c1.value) 30

Code language: PHP (php)

Сохранение списка значений

Присвоение значения ячейке может быть использовано в отдельных ситуациях. Однако в Python часто бывает так, что данные хранятся в списках или кортежах. Для таких случаев, когда вам нужно экспортировать такие данные, я покажу вам более оптимальный способ создания excel-файла с помощью openpyxl.

Представьте, что у вас есть список товаров с названием, артикулом, количеством и ценой, как показано ниже:

products = [ ('product_1', 'a859', 1500, 9.95), ('product_2', 'b125', 600, 4.95), ('product_3', 'c764', 200, 19.95), ('product_4', 'd399', 2000, 49.95) ]

Code language: JavaScript (javascript)

Как мы можем экспортировать эти данные в excel с помощью openpyxl? Самый простой способ – использовать метод append() объекта листа.

Вот как это можно сделать:

products = [ ('product_1', 'a859', 1500, 9.95), ('product_2', 'b125', 600, 4.95), ('product_3', 'c764', 200, 19.95), ('product_4', 'd399', 2000, 49.95) ] wb = openpyxl.Workbook() list = wb.active # Создание строки с заголовками list.append(('Название', 'Артикул', 'Количество', 'Цена')) for product in products: # продукт - кортеж со значениями продукта list.append(product)

Code language: PHP (php)

Сохранение книги excel в Python

В завершение этогй статьи я покажу вам, как сохранить файл excel в Python с помощью openpyxl.

Чтобы сохранить файл excel с помощью openpyxl, достаточно вызвать метод save() у workbook с именем файла. Это позволит сохранить рабочую книгу со всеми листами и данными в каждом из них.

Если мы сделаем это на предыдущем примере , то получим следующий результат:

wb.save('products.xlsx')

Code language: JavaScript (javascript)

Installation¶

Install openpyxl using pip. It is advisable to do this in a Python virtualenv
without system packages:

Note

There is support for the popular lxml library which will be used if it
is installed. This is particular useful when creating large files.

Warning

To be able to include images (jpeg, png, bmp,…) into an openpyxl file,
you will also need the “pillow” library that can be installed with:

or browse https://pypi.python.org/pypi/Pillow/, pick the latest version
and head to the bottom of the page for Windows binaries.

Working with a checkout¶

Sometimes you might want to work with the checkout of a particular version.
This may be the case if bugs have been fixed but a release has not yet been
made.

$ pip install -e hg+https://foss.heptapod.net/openpyxl/openpyxl/@3.1#egg=openpyxl

Create a workbook¶

There is no need to create a file on the filesystem to get started with openpyxl.
Just import the Workbook class and start work:

>>> from openpyxl import Workbook
>>> wb = Workbook()

A workbook is always created with at least one worksheet. You can get it by
using the Workbook.active property:

Note

This is set to 0 by default. Unless you modify its value, you will always
get the first worksheet by using this method.

You can create new worksheets using the Workbook.create_sheet() method:

>>> ws1 = wb.create_sheet("Mysheet") # insert at the end (default)
# or
>>> ws2 = wb.create_sheet("Mysheet", 0) # insert at first position
# or
>>> ws3 = wb.create_sheet("Mysheet", -1) # insert at the penultimate position

Sheets are given a name automatically when they are created.
They are numbered in sequence (Sheet, Sheet1, Sheet2, …).
You can change this name at any time with the Worksheet.title property:

Once you gave a worksheet a name, you can get it as a key of the workbook:

>>> ws3 = wb["New Title"]

You can review the names of all worksheets of the workbook with the
Workbook.sheetname attribute

>>> print(wb.sheetnames)
['Sheet2', 'New Title', 'Sheet1']

You can loop through worksheets

>>> for sheet in wb:
...     print(sheet.title)

You can create copies of worksheets within a single workbook:

Workbook.copy_worksheet() method:

>>> source = wb.active
>>> target = wb.copy_worksheet(source)

Note

Only cells (including values, styles, hyperlinks and comments) and
certain worksheet attributes (including dimensions, format and
properties) are copied. All other workbook / worksheet attributes
are not copied — e.g. Images, Charts.

You also cannot copy worksheets between workbooks. You cannot copy
a worksheet if the workbook is open in read-only or write-only
mode.

Playing with data¶

Accessing one cell¶

Now we know how to get a worksheet, we can start modifying cells content.
Cells can be accessed directly as keys of the worksheet:

This will return the cell at A4, or create one if it does not exist yet.
Values can be directly assigned:

There is also the Worksheet.cell() method.

This provides access to cells using row and column notation:

>>> d = ws.cell(row=4, column=2, value=10)

Note

When a worksheet is created in memory, it contains no cells. They are
created when first accessed.

Warning

Because of this feature, scrolling through cells instead of accessing them
directly will create them all in memory, even if you don’t assign them a value.

Something like

>>> for x in range(1,101):
...        for y in range(1,101):
...            ws.cell(row=x, column=y)

will create 100×100 cells in memory, for nothing.

Accessing many cells¶

Ranges of cells can be accessed using slicing:

>>> cell_range = ws['A1':'C2']

Ranges of rows or columns can be obtained similarly:

>>> colC = ws['C']
>>> col_range = ws['C:D']
>>> row10 = ws[10]
>>> row_range = ws[5:10]

You can also use the Worksheet.iter_rows() method:

>>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2):
...    for cell in row:
...        print(cell)
<Cell Sheet1.A1>
<Cell Sheet1.B1>
<Cell Sheet1.C1>
<Cell Sheet1.A2>
<Cell Sheet1.B2>
<Cell Sheet1.C2>

Likewise the Worksheet.iter_cols() method will return columns:

>>> for col in ws.iter_cols(min_row=1, max_col=3, max_row=2):
...     for cell in col:
...         print(cell)
<Cell Sheet1.A1>
<Cell Sheet1.A2>
<Cell Sheet1.B1>
<Cell Sheet1.B2>
<Cell Sheet1.C1>
<Cell Sheet1.C2>

Note

For performance reasons the Worksheet.iter_cols() method is not available in read-only mode.

If you need to iterate through all the rows or columns of a file, you can instead use the
Worksheet.rows property:

>>> ws = wb.active
>>> ws['C9'] = 'hello world'
>>> tuple(ws.rows)
((<Cell Sheet.A1>, <Cell Sheet.B1>, <Cell Sheet.C1>),
(<Cell Sheet.A2>, <Cell Sheet.B2>, <Cell Sheet.C2>),
(<Cell Sheet.A3>, <Cell Sheet.B3>, <Cell Sheet.C3>),
(<Cell Sheet.A4>, <Cell Sheet.B4>, <Cell Sheet.C4>),
(<Cell Sheet.A5>, <Cell Sheet.B5>, <Cell Sheet.C5>),
(<Cell Sheet.A6>, <Cell Sheet.B6>, <Cell Sheet.C6>),
(<Cell Sheet.A7>, <Cell Sheet.B7>, <Cell Sheet.C7>),
(<Cell Sheet.A8>, <Cell Sheet.B8>, <Cell Sheet.C8>),
(<Cell Sheet.A9>, <Cell Sheet.B9>, <Cell Sheet.C9>))

or the Worksheet.columns property:

>>> tuple(ws.columns)
((<Cell Sheet.A1>,
<Cell Sheet.A2>,
<Cell Sheet.A3>,
<Cell Sheet.A4>,
<Cell Sheet.A5>,
<Cell Sheet.A6>,
...
<Cell Sheet.B7>,
<Cell Sheet.B8>,
<Cell Sheet.B9>),
(<Cell Sheet.C1>,
<Cell Sheet.C2>,
<Cell Sheet.C3>,
<Cell Sheet.C4>,
<Cell Sheet.C5>,
<Cell Sheet.C6>,
<Cell Sheet.C7>,
<Cell Sheet.C8>,
<Cell Sheet.C9>))

Note

For performance reasons the Worksheet.columns property is not available in read-only mode.

Values only¶

If you just want the values from a worksheet you can use the Worksheet.values property.
This iterates over all the rows in a worksheet but returns just the cell values:

for row in ws.values:
   for value in row:
     print(value)

Both Worksheet.iter_rows() and Worksheet.iter_cols() can
take the values_only parameter to return just the cell’s value:

>>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2, values_only=True):
...   print(row)

(None, None, None)
(None, None, None)

Data storage¶

Once we have a Cell, we can assign it a value:

>>> c.value = 'hello, world'
>>> print(c.value)
'hello, world'

>>> d.value = 3.14
>>> print(d.value)
3.14

Saving to a file¶

The simplest and safest way to save a workbook is by using the
Workbook.save() method of the Workbook object:

>>> wb = Workbook()
>>> wb.save('balances.xlsx')

Warning

This operation will overwrite existing files without warning.

Note

The filename extension is not forced to be xlsx or xlsm, although you might have
some trouble opening it directly with another application if you don’t
use an official extension.

As OOXML files are basically ZIP files, you can also open it with your
favourite ZIP archive manager.

If required, you can specify the attribute wb.template=True, to save a workbook
as a template:

>>> wb = load_workbook('document.xlsx')
>>> wb.template = True
>>> wb.save('document_template.xltx')

Saving as a stream¶

If you want to save the file to a stream, e.g. when using a web application
such as Pyramid, Flask or Django then you can simply provide a
NamedTemporaryFile():

>>> from tempfile import NamedTemporaryFile
>>> from openpyxl import Workbook
>>> wb = Workbook()
>>> with NamedTemporaryFile() as tmp:
        wb.save(tmp.name)
        tmp.seek(0)
        stream = tmp.read()

Warning

You should monitor the data attributes and document extensions
for saving documents in the document templates and vice versa,
otherwise the result table engine can not open the document.

Note

The following will fail:

>>> wb = load_workbook('document.xlsx')
>>> # Need to save with the extension *.xlsx
>>> wb.save('new_document.xlsm')
>>> # MS Excel can't open the document
>>>
>>> # or
>>>
>>> # Need specify attribute keep_vba=True
>>> wb = load_workbook('document.xlsm')
>>> wb.save('new_document.xlsm')
>>> # MS Excel will not open the document
>>>
>>> # or
>>>
>>> wb = load_workbook('document.xltm', keep_vba=True)
>>> # If we need a template document, then we must specify extension as *.xltm.
>>> wb.save('new_document.xlsm')
>>> # MS Excel will not open the document

Loading from a file¶

You can use the openpyxl.load_workbook() to open an existing workbook:

>>> from openpyxl import load_workbook
>>> wb = load_workbook(filename = 'empty_book.xlsx')
>>> sheet_ranges = wb['range names']
>>> print(sheet_ranges['D18'].value)
3

Note

There are several flags that can be used in load_workbook.

  • data_only controls whether cells with formulae have either the

formula (default) or the value stored the last time Excel read the sheet.

  • keep_vba controls whether any Visual Basic elements are preserved or

not (default). If they are preserved they are still not editable.

  • read-only opens workbooks in a read-only mode. This uses much less

memory and is faster but not all features are available (charts, images,
etc.)

  • rich_text controls whether any rich-text formatting in cells is

preserved. The default is False.

  • keep_links controls whether data cached from external workbooks is

preserved.

Warning

openpyxl does currently not read all possible items in an Excel file so
shapes will be lost from existing files if they are opened and saved with
the same name.

Errors loading workbooks¶

Sometimes openpyxl will fail to open a workbook. This is usually because there is something wrong with the file.
If this is the case then openpyxl will try and provide some more information. Openpyxl follows the OOXML specification closely and will reject files that do not because they are invalid. When this happens you can use the exception from openpyxl to inform the developers of whichever application or library produced the file. As the OOXML specification is publicly available it is important that developers follow it.

You can find the spec by searching for ECMA-376, most of the implementation specifics are in Part 4.

This ends the tutorial for now, you can proceed to the Simple usage section

Improve Article

Save Article

Like Article

  • Read
  • Discuss
  • Improve Article

    Save Article

    Like Article

    Prerequisite : Reading an excel file using openpyxl

    Openpyxl is a Python library for reading and writing Excel (with extension xlsx/xlsm/xltx/xltm) files. The openpyxl module allows Python program to read and modify Excel files.

    For example, user might have to go through thousands of rows and pick out few handful information to make small changes based on some criteria. Using Openpyxl module, these tasks can be done very efficiently and easily.

    Let’s see how to create and write to an excel-sheet using Python.

    Code #1 : Program to print a active sheet title name

    import openpyxl

    wb = openpyxl.Workbook()

    sheet = wb.active

    sheet_title = sheet.title

    print("active sheet title: " + sheet_title)

    Output :

    active sheet title: Sheet

     
    Code #2 : Program to change the Title name

    import openpyxl

    wb = openpyxl.Workbook()

    sheet = wb.active

    sheet.title = "sheet1"

    print("sheet name is renamed as: " + sheet.title)

    Output :

    sheet name is renamed as: sheet1

     
    Code #3 :Program to write to an Excel sheet

    import openpyxl

    wb = openpyxl.Workbook()

    sheet = wb.active

    c1 = sheet.cell(row = 1, column = 1)

    c1.value = "ANKIT"

    c2 = sheet.cell(row= 1 , column = 2)

    c2.value = "RAI"

    c3 = sheet['A2']

    c3.value = "RAHUL"

    c4 = sheet['B2']

    c4.value = "RAI"

    wb.save("C:\Users\user\Desktop\demo.xlsx")

    Output :
    Output
     

    code #4 :Program to add Sheets in the Workbook

    import openpyxl

    wb = openpyxl.Workbook()

    sheet = wb.active

    wb.create_sheet(index = 1 , title = "demo sheet2")

    wb.save("C:\Users\user\Desktop\demo.xlsx")

    Output :
    output

    Like Article

    Save Article

    Электронные таблицы Excel — это интуитивно понятный и удобный способ манипулирования большими наборами данных без какой-либо предварительной технической подготовки. По этому, это один из форматов, с которым, в какой-то момент времени, вам придется иметь дело. Часто будут стоять задачи по извлечению каких-то данных из базы данных или файла логов в электронную таблицу Excel, или наоборот, преобразовывать электронную таблицу Excel в какую-либо более удобную программную форму, примеров этому масса.

    Модуль openpyxl — это библиотека Python для чтения/записи форматов Office Open XML (файлов Excel 2010) с расширениями xlsx/xlsm/xltx/xltm.

    Установка модуля openpyxl в виртуальное окружение.

    Модуль openpyxl размещен на PyPI, поэтому установка относительно проста.

    # создаем виртуальное окружение, если нет
    $ python3 -m venv .venv --prompt VirtualEnv
    # активируем виртуальное окружение 
    $ source .venv/bin/activate
    # ставим модуль openpyxl
    (VirtualEnv):~$ python3 -m pip install -U openpyxl
    

    Основы работы с файлами Microsoft Excel на Python.

    • Создание книги Excel.
      • Новый рабочий лист книги Excel.
      • Копирование рабочего листа книги Excel.
      • Удаление рабочего листа книги Excel.
    • Доступ к ячейке электронной таблицы и ее значению.
    • Доступ к диапазону ячеек листа электронной таблицы.
    • Получение только значений ячеек листа.
    • Добавление данных в ячейки списком.
    • Сохранение созданной книги в файл Excel.
      • Сохранение данных книги в виде потока.
    • Загрузка документа XLSX из файла.

    Создание книги Excel.

    Чтобы начать работу с модулем openpyxl, нет необходимости создавать файл электронной таблицы в файловой системе. Нужно просто импортировать класс Workbook и создать его экземпляр. Рабочая книга всегда создается как минимум с одним рабочим листом, его можно получить, используя свойство Workbook.active:

    >>> from openpyxl import Workbook
    # создаем книгу 
    >>> wb = Workbook()
    # делаем единственный лист активным 
    >>> ws = wb.active
    

    Новый рабочий лист книги Excel.

    Новые рабочие листы можно создавать, используя метод Workbook.create_sheet():

    # вставить рабочий лист в конец (по умолчанию)
    >>> ws1 = wb.create_sheet("Mysheet")
    # вставить рабочий лист в первую позицию
    >>> ws2 = wb.create_sheet("Mysheet", 0)
    # вставить рабочий лист в предпоследнюю позицию
    >>> ws3 = wb.create_sheet("Mysheet", -1)
    

    Листам автоматически присваивается имя при создании. Они нумеруются последовательно (Sheet, Sheet1, Sheet2, …). Эти имена можно изменить в любое время с помощью свойства Worksheet.title:

    Цвет фона вкладки с этим заголовком по умолчанию белый. Можно изменить этот цвет, указав цветовой код RRGGBB для атрибута листа Worksheet.sheet_properties.tabColor:

    >>> ws.sheet_properties.tabColor = "1072BA"
    

    Рабочий лист можно получить, используя его имя в качестве ключа экземпляра созданной книги Excel:

    Что бы просмотреть имена всех рабочих листов книги, необходимо использовать атрибут Workbook.sheetname. Также можно итерироваться по рабочим листам книги Excel.

    >>> wb.sheetnames
    # ['Mysheet1', 'NewPage', 'Mysheet2', 'Mysheet']
    
    >>> for sheet in wb:
    ...     print(sheet.title)
    # Mysheet1
    # NewPage
    # Mysheet2
    # Mysheet
    

    Копирование рабочего листа книги Excel.

    Для создания копии рабочих листов в одной книге, необходимо воспользоваться методом Workbook.copy_worksheet():

    >>> source_page = wb.active
    >>> target_page = wb.copy_worksheet(source_page)
    

    Примечание. Копируются только ячейки (значения, стили, гиперссылки и комментарии) и определенные атрибуты рабочего листа (размеры, формат и свойства). Все остальные атрибуты книги/листа не копируются, например, изображения или диаграммы.

    Поддерживается возможность копирования рабочих листов между книгами. Нельзя скопировать рабочий лист, если рабочая книга открыта в режиме только для чтения или только для записи.

    Удаление рабочего листа книги Excel.

    Очевидно, что встает необходимость удалить лист электронной таблицы, который уже существует. Модуль openpyxl дает возможность удалить лист по его имени. Следовательно, сначала необходимо выяснить, какие листы присутствуют в книге, а потом удалить ненужный. За удаление листов книги отвечает метод Workbook.remove().

    Смотрим пример:

    # выясним, названия листов присутствуют в книге
    >>> name_list = wb.sheetnames
    >>> name_list
    # ['Mysheet1', 'NewPage', 'Mysheet2', 'Mysheet', 'Mysheet1 Copy']
    
    # допустим, что нам не нужны первый и последний
    # удаляем первый лист по его имени с проверкой 
    # существования такого имени в книге
    >>> if 'Mysheet1' in wb.sheetnames:
            # Если лист с именем `Mysheet1` присутствует
            # в списке листов экземпляра книги, то удаляем
    ...     wb.remove(wb['Mysheet1'])
    ...
    >>> wb.sheetnames
    # ['NewPage', 'Mysheet2', 'Mysheet', 'Mysheet1 Copy']
    
    # удаляем последний лист через оператор
    #  `del`, имя листа извлечем по индексу 
    # полученного списка `name_list`
    >>> del wb[name_list[-1]]
    >>> wb.sheetnames
    # ['NewPage', 'Mysheet2', 'Mysheet']
    

    Доступ к ячейке и ее значению.

    После того как выбран рабочий лист, можно начинать изменять содержимое ячеек. К ячейкам можно обращаться непосредственно как к ключам рабочего листа, например ws['A4']. Это вернет ячейку на A4 или создаст ее, если она еще не существует. Значения могут быть присвоены напрямую:

    >>> ws['A4'] = 5
    >>> ws['A4']
    # <Cell 'NewPage'.A4>
    >>> ws['A4'].value
    # 5
    >>> ws['A4'].column
    # 1
    >>> ws['A4'].row
    # 4
    

    Если объект ячейки присвоить переменной, то этой переменной, также можно присваивать значение:

    >>> c = ws['A4']
    >>> c.value = c.value * 2
    >>> c.value
    # 10
    

    Существует также метод Worksheet.cell(). Он обеспечивает доступ к ячейкам с непосредственным указанием значений строк и столбцов:

    >>> d = ws.cell(row=4, column=2, value=10)
    >>> d
    # <Cell 'NewPage'.B4>
    >>> d.value = 3.14
    >>> print(d.value)
    # 3.14
    

    Примечание. При создании рабочего листа в памяти, он не содержит ячеек. Ячейки создаются при первом доступе к ним.

    Важно! Из-за такого поведения, простой перебор ячеек в цикле, создаст объекты этих ячеек в памяти, даже если не присваивать им значения.

    Не запускайте этот пример, поверьте на слово:

    # создаст в памяти 100x100=10000 пустых объектов  
    # ячеек, просто так израсходовав оперативную память.
    >>> for x in range(1,101):
    ...        for y in range(1,101):
    ...            ws.cell(row=x, column=y)
    

    Доступ к диапазону ячеек листа электронной таблицы.

    Диапазон с ячейками активного листа электронной таблицы можно получить с помощью простых срезов. Эти срезы будут возвращать итераторы объектов ячеек.

    >>> cell_range = ws['A1':'C2']
    >>> cell_range
    # ((<Cell 'NewPage'.A1>, <Cell 'NewPage'.B1>, <Cell 'NewPage'.C1>), 
    # (<Cell 'NewPage'.A2>, <Cell 'NewPage'.B2>, <Cell 'NewPage'.C2>))
    

    Аналогично можно получить диапазоны имеющихся строк или столбцов на листе:

    # Все доступные ячейки в колонке `C`
    >>> colC = ws['C']
    # Все доступные ячейки в диапазоне колонок `C:D`
    >>> col_range = ws['C:D']
    # Все доступные ячейки в строке 10
    >>> row10 = ws[10]
    # Все доступные ячейки в диапазоне строк `5:10`
    >>> row_range = ws[5:10]
    

    Можно также использовать метод Worksheet.iter_rows():

    >>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2):
    ...    for cell in row:
    ...        print(cell)
    # <Cell Sheet1.A1>
    # <Cell Sheet1.B1>
    # <Cell Sheet1.C1>
    # <Cell Sheet1.A2>
    # <Cell Sheet1.B2>
    # <Cell Sheet1.C2>
    

    Точно так же метод Worksheet.iter_cols() будет возвращать столбцы:

    >>> for col in ws.iter_cols(min_row=1, max_col=3, max_row=2):
    ...     for cell in col:
    ...         print(cell)
    # <Cell Sheet1.A1>
    # <Cell Sheet1.A2>
    # <Cell Sheet1.B1>
    # <Cell Sheet1.B2>
    # <Cell Sheet1.C1>
    # <Cell Sheet1.C2>
    

    Примечание. Из соображений производительности метод Worksheet.iter_cols() недоступен в режиме только для чтения.

    Если необходимо перебрать все строки или столбцы файла, то можно использовать свойство Worksheet.rows:

    >>> ws = wb.active
    >>> ws['C9'] = 'hello world'
    >>> tuple(ws.rows)
    # ((<Cell Sheet.A1>, <Cell Sheet.B1>, <Cell Sheet.C1>),
    # (<Cell Sheet.A2>, <Cell Sheet.B2>, <Cell Sheet.C2>),
    # (<Cell Sheet.A3>, <Cell Sheet.B3>, <Cell Sheet.C3>),
    # ...
    # (<Cell Sheet.A7>, <Cell Sheet.B7>, <Cell Sheet.C7>),
    # (<Cell Sheet.A8>, <Cell Sheet.B8>, <Cell Sheet.C8>),
    # (<Cell Sheet.A9>, <Cell Sheet.B9>, <Cell Sheet.C9>))
    

    или свойство Worksheet.columns:

    >>> tuple(ws.columns)
    # ((<Cell Sheet.A1>,
    # <Cell Sheet.A2>,
    # ...
    # <Cell Sheet.B8>,
    # <Cell Sheet.B9>),
    # (<Cell Sheet.C1>,
    # <Cell Sheet.C2>,
    # ...
    # <Cell Sheet.C8>,
    # <Cell Sheet.C9>))
    

    Примечание. Из соображений производительности свойство Worksheet.columns недоступно в режиме только для чтения.

    Получение только значений ячеек активного листа.

    Если просто нужны значения из рабочего листа, то можно использовать свойство активного листа Worksheet.values. Это свойство перебирает все строки на листе, но возвращает только значения ячеек:

    for row in ws.values:
       for value in row:
         print(value)
    

    Для возврата только значения ячейки, методы Worksheet.iter_rows() и Worksheet.iter_cols(), представленные выше, могут принимать аргумент values_only:

    >>> for row in ws.iter_rows(min_row=1, max_col=3, max_row=2, values_only=True):
    ...   print(row)
    # (None, None, None)
    # (None, None, None)
    

    Добавление данных в ячейки листа списком.

    Модуль openpyxl дает возможность супер просто и удобно добавлять данные в конец листа электронной таблицы. Такое удобство обеспечивается методом объекта листа Worksheet.append(iterable), где аргумент iterable — это любой итерируемый объект (список, кортеж и т.д.). Такое поведение позволяет, без костылей, переносить в электронную таблицу данные из других источников, например CSV файлы, таблицы баз данных, дата-фреймы из Pandas и т.д.

    Метод Worksheet.append() добавляет группу значений в последнюю строку, которая не содержит данных.

    • Если это список: все значения добавляются по порядку, начиная с первого столбца.
    • Если это словарь: значения присваиваются столбцам, обозначенным ключами (цифрами или буквами).

    Варианты использования:

    • добавление списка: .append([‘ячейка A1’, ‘ячейка B1’, ‘ячейка C1’])
    • добавление словаря:
      • вариант 1: .append({‘A’ : ‘ячейка A1’, ‘C’ : ‘ячейка C1’}), в качестве ключей используются буквы столбцов.
      • вариант 2: .append({1 : ‘ячейка A1’, 3 : ‘ячейка C1’}), в качестве ключей используются цифры столбцов.

    Пример добавление данных из списка:

    # существующие листы рабочей книги
    >>> wb.sheetnames
    # ['NewPage', 'Mysheet2', 'Mysheet']
    
    # добавим данные в лист с именем `Mysheet2`
    >>> ws = wb["Mysheet2"]
    # создадим произвольные данные, используя
    # вложенный генератор списков
    >>> data = [[row*col for col in range(1, 10)] for row in range(1, 31)]
    >>> data
    # [
    #     [1, 2, 3, 4, 5, 6, 7, 8, 9], 
    #     [2, 4, 6, 8, 10, 12, 14, 16, 18], 
    # ...
    # ...
    #     [30, 60, 90, 120, 150, 180, 210, 240, 270]
    # ]
    
    # добавляем данные в выбранный лист
    >>> for row in data:
    ...     ws.append(row)
    ...
    

    Вот и все, данные добавлены… Просто? Не просто, а супер просто!

    Сохранение созданной книги в файл Excel.

    Самый простой и безопасный способ сохранить книгу, это использовать метод Workbook.save() объекта Workbook:

    >>> wb = Workbook()
    >>> wb.save('test.xlsx')
    

    Внимание. Эта операция перезапишет существующий файл без предупреждения!!!

    После сохранения, можно открыть полученный файл в Excel и посмотреть данные, выбрав лист с именем NewPage.

    Примечание. Расширение имени файла не обязательно должно быть xlsx или xlsm, хотя могут возникнуть проблемы с его открытием непосредственно в другом приложении. Поскольку файлы OOXML в основном представляют собой ZIP-файлы, их также можете открыть с помощью своего любимого менеджера ZIP-архивов.

    Сохранение данных книги в виде потока.

    Если необходимо сохранить файл в поток, например, при использовании веб-приложения, такого как Flask или Django, то можно просто предоставить tempfile.NamedTemporaryFile():

    from tempfile import NamedTemporaryFile
    from openpyxl import Workbook
    
    wb = Workbook()
    
    with NamedTemporaryFile() as tmp:
        wb.save(tmp.name)
        tmp.seek(0)
        stream = tmp.read()
    

    Можно указать атрибут template=True, чтобы сохранить книгу как шаблон:

    >>> from openpyxl import load_workbook
    >>> wb = load_workbook('test.xlsx')
    >>> wb.template = True
    >>> wb.save('test_template.xltx')
    

    Примечание. Атрибут wb.template по умолчанию имеет значение False, это означает — сохранить как документ.

    Внимание. Следующее не удастся:

    >>> from openpyxl import load_workbook
    >>> wb = load_workbook('test.xlsx')
    # Необходимо сохранить с расширением *.xlsx
    >>> wb.save('new_test.xlsm') # MS Excel не может открыть документ
    
    # Нужно указать атрибут `keep_vba=True`
    >>> wb = load_workbook('test.xlsm')
    >>> wb.save('new_test.xlsm')
    
    >>> wb = load_workbook('test.xltm', keep_vba=True)
    # Если нужен шаблон документа, то необходимо указать расширение *.xltm.
    >>> wb.save('new_test.xlsm') # MS Excel не может открыть документ
    

    Загрузка документа XLSX из файла.

    Чтобы открыть существующую книгу Excel необходимо использовать функцию openpyxl.load_workbook():

    >>> from openpyxl import load_workbook
    >>> wb2 = load_workbook('test.xlsx')
    >>> print(wb2.sheetnames)
    # ['Mysheet1', 'NewPage', 'Mysheet2', 'Mysheet']
    

    Есть несколько флагов, которые можно использовать в функции openpyxl.load_workbook().

    • data_only: определяет, будут ли содержать ячейки с формулами — формулу (по умолчанию) или только значение, сохраненное/посчитанное при последнем чтении листа Excel.
    • keep_vba определяет, сохраняются ли какие-либо элементы Visual Basic (по умолчанию). Если они сохранены, то они не могут изменяться/редактироваться.
    1. Export Data to Excel With the DataFrame.to_excel() Function in Python
    2. Export Data to Excel With the xlwt Library in Python
    3. Export Data to Excel With the openpyxl Library in Python
    4. Export Data to Excel With the XlsWriter Library in Python

    Python Export to Excel

    This tutorial will demonstrate different methods to write tabular data to an excel file in Python.

    Export Data to Excel With the DataFrame.to_excel() Function in Python

    If we want to write tabular data to an Excel sheet in Python, we can use the to_excel() function in Pandas DataFrame.

    A pandas DataFrame is a data structure that stores tabular data. The to_excel() function takes two input parameters: the file’s name and the sheet’s name. We must store our data inside a pandas DataFrame and then call the to_excel() function to export that data into an Excel file.

    We need to have the pandas library already installed on our system for this method to work. The command to install the pandas library is given below.

    A working demonstration of this approach is given below.

    import pandas as pd
    list1 = [10,20,30,40]
    list2 = [40,30,20,10]
    col1 = "X"
    col2 = "Y"
    data = pd.DataFrame({col1:list1,col2:list2})
    data.to_excel('sample_data.xlsx', sheet_name='sheet1', index=False)
    

    sample_data.xlsx file:

    sample data

    In the above code, we exported the data inside list1 and list2 as columns into the sample_data.xlsx Excel file with Python’s to_excel() function.

    We first stored the data inside both lists into a pandas DataFrame. After that, we called the to_excel() function and passed the names of our output file and the sheet.

    Keep in mind that this method will only work as long as the length of both lists is equal. If the lengths aren’t equal, we can compensate for the missing values by filling the shorter list with the None value.

    This is the easiest method to write data to an Excel-compatible file in Python.

    Export Data to Excel With the xlwt Library in Python

    The xlwt library is used to write data into old spreadsheets compatible with Excel versions from 95 to 2003 in Python. It is the standard way for writing data to Excel files in Python.

    It is also fairly simple and gives us more control over the Excel file than the previous method. We can create an object of the xlwt.Workbook class and call the .add_sheet() function to create a new sheet in our workbook.

    We can then use the write() method to write our data. This write() function takes the row index (starting from 0), the column index (also starting from 0), and the data to be written as input parameters.

    We need to install the xlwt library on our machine for this method to work. The command to install the library is given below.

    A brief working example of this method is given below.

    import xlwt
    from xlwt import Workbook
    
    wb = Workbook()
    
    sheet1 = wb.add_sheet('Sheet 1')
    #sheet1.write(row,col, data, style)
    sheet1.write(1, 0, '1st Data')
    sheet1.write(2, 0, '2nd Data')
    sheet1.write(3, 0, '3rd Data')
    sheet1.write(4, 0, '4th Data')
    
    wb.save('sample_data2.xls')
    

    sample_data2.xls file:

    sample data2

    In Python, we wrote data to the sample_data2.xls file with the xlwt library.

    We first created an object of the Workbook class. Using this object, we created a sheet with the add_sheet() method of the Workbook class.

    We then wrote our data into the newly created sheet with the write() function. Lastly, when all the data has been properly written to its specified index, we saved the workbook into an Excel file with the save() function of the Workbook class.

    This is a pretty straightforward approach, but the only drawback is that we have to remember the row and column index for each cell in our file. We can’t just use A1 and A2 indices. Another disadvantage of this approach is that we can only write files with the .xls extension.

    Export Data to Excel With the openpyxl Library in Python

    Another method that can be used to write data to an Excel-compatible file is the openpyxl library in Python.

    This approach addresses all the drawbacks of the previous methods. We don’t need to remember the exact row and column indices for each data point. Simply specify our cells like A1 or A2 in the write() function.

    Another cool advantage of this approach is that it can be used to write files with the new .xlsx file extensions, which wasn’t the case in the previous approach. This method works just like the previous one.

    The only difference here is that we have to initialize each cell in addition to a sheet with the cell(row,col) method in the openpyxl library.

    The openpyxl is also an external library. We need to install this library for this method to work properly. The command to install the openpyxl library on our machine is below.

    A simple working demonstration of this approach is given below.

    import openpyxl
    my_wb = openpyxl.Workbook()
    my_sheet = my_wb.active
    c1 = my_sheet.cell(row = 1, column = 1)
    c1.value = "Maisam"
    c2 = my_sheet.cell(row= 1 , column = 2)
    c2.value = "Abbas"
    c3 = my_sheet['A2']
    c3.value = "Excel"
    # for B2: column = 2 & row = 2.
    c4 = my_sheet['B2']
    c4.value = "file"
    my_wb.save("sample_data3.xlsx")
    

    sample_data3.xlsx file:

    sample data3

    In the above code, we wrote data to the sample_data3.xlsx Excel file with the openpyxl library in Python.

    We first created an object of the Workbook class. We created a sheet with the Workbook.active using this object. We also created a cell object with my_sheet.cell(row = 1, column = 1).

    Instead of writing the exact row and column number, we can also specify the cell name like A1. We can then assign our newly created cell value with c1.value = "Maisam".

    Lastly, when all the data has been properly written to its specified index, we saved the workbook into an Excel file with the save() function of the Workbook class.

    Export Data to Excel With the XlsWriter Library in Python

    Another great and simple way to write data to an Excel-compatible file is the XlsWriter library in Python.

    This library gives us much more control over our output file than any previous methods mentioned above. This library also supports the latest Excel compatible file extensions like xlsx.

    To write data to an Excel file, we first have to create an object of the Workbook class by providing the constructor’s file name as an input parameter. We then have to create a sheet with the add_worksheet() function in the Workbook class.

    After adding a sheet, we can write data with the sheet.write(cell, data) function. This sheet.write() function takes two parameters: the cell’s name and the data to be written.

    After writing all the data to the sheet, we need to close our workbook with the close() method inside the Workbook class.

    The XlsWriter is an external library and does not come pre-installed with Python. We first have to install the XlsWriter library on our machine for this method to work. The command to install the XlsWriter library is given below.

    A working demonstration of this approach is shown below.

    import xlsxwriter
    
    workbook = xlsxwriter.Workbook('sample_data4.xlsx')
    sheet = workbook.add_worksheet()
    
    sheet.write('A1', 'Maisam')
    sheet.write('A2', 'Abbas')
    
    workbook.close()
    

    sample_data4.xlsx file:

    sample data4

    We wrote data to the sample_data4.xlsx Excel file with Python’s xlswriter library in the above code.

    Понравилась статья? Поделить с друзьями:
  • Как сохранить excel на клавиатуре
  • Как сохранить word в doc или
  • Как сохранить excel который завис
  • Как сохранить word без сохранений
  • Как сохранить excel как фото