Как построить график эмпирической функции распределения excel

2.1.2. Эмпирическая функция распределения

Это статистический аналог функции распределения из теорвера. Данная функция определяется, как отношение:
, где – количество вариант СТРОГО МЕНЬШИХ, чем ,
при этом «икс» «пробегает» все значения от «минус» до «плюс» бесконечности.

Построим эмпирическую функцию распределения для нашей задачи. Чтобы было нагляднее, отложу варианты и их количество на числовой оси:

На интервале – по той причине, что левее ЛЮБОЙ точки этого интервала вариант нет. Кроме того, функция равна нулю ещё и в точке . Почему? Потому, что значение определяет количество вариант (см. определение), которые СТРОГО меньше двух, а это количество равно нулю.

На промежутке – и опять обратите внимание, что значение не учитывает рабочих 3-го разряда, т.к. речь идёт о вариантах, которые СТРОГО меньше трёх (по определению).

На промежутке – и далее процесс продолжается по принципу накопления частот:
– если , то ;
– если , то ;
– и, наконец, если , то – и в самом деле, для ЛЮБОГО «икс» из интервала ВСЕ частоты расположены СТРОГО левее этого значения «икс» (см. чертёж выше).

Накопленные относительные частоты удобно заносить в отдельный столбец таблицы, при этом алгоритм вычислений очень прост: сначала сносим слева частоту (красная стрелка), и каждое следующее значение получаем как сумму предыдущего и относительной частоты из текущего левого столбца (зелёные обозначения):

Вот ещё, кстати, один довод за вертикальную ориентацию данных – справа по надобности можно приписывать дополнительные столбцы.

Построенную функцию принято записывать в кусочном виде:

а её график представляет собой ступенчатую фигуру:

Эмпирическая функция распределения не убывает и принимает значения лишь из промежутка , и если у вас вдруг получится что-то не так, то ищите ошибку.

Теперь смотрим видео, о том, как построить эту функцию в Экселе (Ютуб).

И, конечно, вспомним основной метод математической статистики. Эмпирическая функция распределения строится по выборке и приближает теоретическую функцию распределения . Легко догадаться, что последняя появляется в результате исследования всей генеральной совокупности, но если рабочих в цехе ещё пересчитать можно, то звёзды на небе – уже вряд ли. Вот поэтому и важнА функция эмпирическая, и ещё важнее, чтобы выборка была репрезентативна, дабы приближение было хорошим.

Миниатюрное задание для закрепления материала:

Пример 5

Дано статистическое распределение совокупности:

Составить эмпирическую функцию распределения, выполнить чертёж

Решаем самостоятельно – все числа уже в Экселе! Свериться с образцом можно в конце книги. По поводу красоты чертежа сильно не запаривайтесь, главное, чтобы было правильно – этого обычно достаточно для зачёта.

Из таблицы n=40, т.е.
n=4+10+6+8+7+5=40
Вычислим функцию распределения выборки

Эмпирическая функция распределения имеет вид

Построим график кусочно-постоянной эмпирической функции распределения

таким образом, по данным выборки можно приближенно построить функцию для неизвестной функции выборки.

2 комментария

У вас опечатка, где вы написали n=30, n=4+10+6+8+7+5=30 и F_30, так как n=40.

Построить эмпирическое распределение результатов тестирования в баллах для следующей выборки: 69, 85, 78, 85, 83, 81, 95, 88, 97, 92, 74, 83, 89, 77, 93.

В ячейку А1 введите слова Результаты, в диапазон А2:А16 – результаты тестирования.

Выберите ширину интервала 5 баллов. Тогда при крайних результатах 69 и 97 баллов, получится 7 интервалов. В ячейку С1 введите название интервалов Границы. В диапазон С2:С8 введите граничные значения интервалов: 70, 75, 80, 85, 90, 95, 100.

Введите заголовки создаваемой таблицы: в ячейку D1 – Абсолютные частоты, в ячейку Е1 – Относительные частоты, в F1 – Накопленные частоты.

Заполните столбец абсолютных частот. Для этого выделите для них блок ячеек D2:D8, вызовите Мастер функций, категория – Статистические, функция – Частота, в поле Массив данных введите диапазон данных тестирования А2:А16, в поле Массив интервалов введите диапазон интервалов С2:С8, нажмите комбинацию клавиш Ctrl+Shift+Enter. В столбце D2:D8 появится массив абсолютных частот.

В ячейке D9 найдите общее количество результатов тестирования, с помощью Автосумма.

Заполните столбец относительных частот. В ячейку Е2 введите формулу =$D2/$D$9 .

Протягиванием скопируйте полученное значение в диапазон Е3:Е8. Получим массив относительных частот.

Заполните столбец накопленных частот. В ячейку F2 скопируйте значение относительной частоты из ячейки Е2. В ячейку F3 введите формулу =F2+E3. Протягиванием скопируйте полученное значение в диапазон F4:F8. Получим массив накопленных частот.

В результате получим таблицу, представленную на рисунке 1.

Пусть Nх — число наблюдений, при которых значение при­знака Х меньше Х. При объеме выборки, равном П, относитель­ная частота события Х XK.

Сама же функция F*(X) служит для оценки теоретической функции распределения F(X) генеральной совокупности.

Пример 3. Построить эмпирическую функцию по заданному распределению выборки:

Решение. Находим объем выборки: П = 10 + 15 + 25 = 50. Наименьшая варианта равна 2, поэтому F*(X) = 0 при Х ≤ 2. Значение Х 6. Напишем формулу искомой эмпирической функции:

4. Рассмотрим любой из критериев оценки качеств педагога-профессионала, например, «успешное решение задач обучения и воспитания». Ответ на этот вопрос анкеты типа «да», «нет» достаточно груб. Чтобы уменьшить относительную ошибку такого измерения, необходимо увеличить число возможных ответов на конкретный критериальный вопрос. В табл. 1 представлены возможные варианты ответов.

Обозначим этот параметр через х. Тогда в процессе ответа на вопрос величина х примет дискретное значение х, принадлежащее определенному интервалу значений. Поставим в соответствие каждому из ответов определенное числовое значение параметра х (см. табл. 1).

На чтение 2 мин Просмотров 2.2к.

Эмпирической (опытной) функцией распределения или функцией распределения выборки называют такую функцию, которая определяет для каждого значения x частоту событий X

Дана таблица функции распределения выборки. Требуется построить эмпирическую функцию распределения

xi 1 2 3 4 5 6
ni 4 10 6 8 7 5

Из таблицы n=40, т.е.
n=4+10+6+8+7+5=40
Вычислим функцию распределения выборки

Эмпирическая функция распределения имеет вид

Построим график кусочно-постоянной эмпирической функции распределения

таким образом, по данным выборки можно приближенно построить функцию для неизвестной функции выборки.

2 комментария

У вас опечатка, где вы написали n=30, n=4+10+6+8+7+5=30 и F_30, так как n=40.

Построить эмпирическое распределение результатов тестирования в баллах для следующей выборки: 69, 85, 78, 85, 83, 81, 95, 88, 97, 92, 74, 83, 89, 77, 93.

В ячейку А1 введите слова Результаты, в диапазон А2:А16 – результаты тестирования.

Выберите ширину интервала 5 баллов. Тогда при крайних результатах 69 и 97 баллов, получится 7 интервалов. В ячейку С1 введите название интервалов Границы. В диапазон С2:С8 введите граничные значения интервалов: 70, 75, 80, 85, 90, 95, 100.

Введите заголовки создаваемой таблицы: в ячейку D1 – Абсолютные частоты, в ячейку Е1 – Относительные частоты, в F1 – Накопленные частоты.

Заполните столбец абсолютных частот. Для этого выделите для них блок ячеек D2:D8, вызовите Мастер функций, категория – Статистические, функция – Частота, в поле Массив данных введите диапазон данных тестирования А2:А16, в поле Массив интервалов введите диапазон интервалов С2:С8, нажмите комбинацию клавиш Ctrl+Shift+Enter. В столбце D2:D8 появится массив абсолютных частот.

В ячейке D9 найдите общее количество результатов тестирования, с помощью Автосумма.

Заполните столбец относительных частот. В ячейку Е2 введите формулу =$D2/$D$9 .

Протягиванием скопируйте полученное значение в диапазон Е3:Е8. Получим массив относительных частот.

Заполните столбец накопленных частот. В ячейку F2 скопируйте значение относительной частоты из ячейки Е2. В ячейку F3 введите формулу =F2+E3. Протягиванием скопируйте полученное значение в диапазон F4:F8. Получим массив накопленных частот.

В результате получим таблицу, представленную на рисунке 1.

Пусть Nх — число наблюдений, при которых значение при­знака Х меньше Х. При объеме выборки, равном П, относитель­ная частота события Х XK.

Сама же функция F*(X) служит для оценки теоретической функции распределения F(X) генеральной совокупности.

Пример 3. Построить эмпирическую функцию по заданному распределению выборки:

Решение. Находим объем выборки: П = 10 + 15 + 25 = 50. Наименьшая варианта равна 2, поэтому F*(X) = 0 при Х ≤ 2. Значение Х 6. Напишем формулу искомой эмпирической функции:

Рассмотренные в лабораторной работе 2 распределения вероятностей СВ
опираются на знание закона распределения СВ. Для практических задач такое
знание – редкость. Здесь закон распределения обычно неизвестен, или известен с
точностью до некоторых неиз­вестных параметров. В частности, невозможно
рассчитать точное значение соот­ветствующих вероятностей, так как нельзя
определить количество общих и благо­приятных исходов. Поэтому вводится статистическое
определение вероятности
. По этому определению вероятность равна отношению
числа испытаний, в ко­торых событие произошло, к общему числу произведенных
испытаний. Такая вероятность называется статистической частотой.

Связь
между эмпирической функцией распределения и функцией распределения
(теоретической функцией распределения) такая же, как связь между частотой со­бытия
и его вероятностью.

Для
построения выборочной функции распределения весь диапазон изменения случайной
величины
X (выборки)
разбивают на ряд интервалов (карманов) одинаковой ширины. Число интервалов
обычно выбирают не менее 3 и не более 15. Затем определяют число значений
случайной величины
X, попавших
в каждый интервал (абсолютная частота, частота интервалов). 

Частота интервалов – число, показывающее сколько раз значения,
относящиеся к каждому интервалу группировки, встречаются в выборке. Поделив эти
чис­ла на общее количество наблюдений (
n), находят относительную частоту (частость) попадания
случайной величины
X в заданные
интервалы.

По
найденным относительным час­тотам строят гистограммы выборочных функций
распределения. Гистограмма распределения частот – это графическое
представление выборки, где по оси абсцисс (ОХ) отложены величины интервалов, а
по оси ординат (ОУ) – величины частот, попадающих в данный классовый интервал.
При увеличении до бесконечности размера выборки выборочные функции
распределения превращаются в теоретические: гистограмма превращается в график
плотности распределения.

Накопленная частота интервалов – это число, полученное
последовательным суммированием частот в направлении от первого интервала к
последнему, до того  интервала
включительно, для которого определяется накопленная частота.

В Excel для построения выборочных функций распределения
используются спе­
циальная функция ЧАСТОТА
и процедура Гистограмма из пакета анализа.

Функция ЧАСТОТА (массив_данных,
двоичный_массив)
вычисляет частоты появления случайной величины в интер­
валах
значений и выводит их как массив цифр, где

     
массив_данных
это массив или ссылка на
множество данных, для которых
вычисляются частоты;

     
двоичный_массив
это массив интервалов, по
ко­
торым группируются значения выборки.

Процедура
Гистограмма из Пакета анализа
выводит
результаты выборочного распределения в виде таблицы и графика.
Параметры диалогового окна Гистограмма:

     
Входной диапазон — диапазон исследуемых данных
(выборка);

     
Интервал карманов — диа­пазон ячеек или набор граничных
значений, определяющих выбранные интервалы (карманы). Эти значения должны быть
введены в воз­растающем порядке.
Если
диапазон карманов не был введен, то набор интерва­
лов, равномерно распределенных между минимальным и
максимальным зна­
чениями данных, будет создан
автоматически.

     
выходной диапазон предназначен для ввода ссылки на левую верхнюю ячейку выходного диапазона.

     
переключатель
Интегральный процент позволяет установить режим включения в
гистограмму гра­
фика интегральных
процентов.

     
переключатель
Вывод графика позволяет установить режим автоматическо­
го создания встроенной диаграммы на листе, содержащем
выходной диапа­
зон.

Пример 1. Построить эмпирическое распределение веса
студентов в килограм­
мах для следующей
выборки: 64, 57, 63, 62, 58, 61, 63, 70, 60, 61, 65, 62, 62, 40, 64, 61,
59, 59, 63, 61.

Решение

1.  В ячейку А1 введите слово Наблюдения,
а в диапазон А2:А21 — значения веса
студентов (см. рис. 1).

2.        
В
ячейку В1 введите названия интервалов Вес, кг. В диапазон В2:В8 введите
граничные значения ин­
тервалов (40, 45,
50, 55, 60, 65, 70).

3.        
Введите
заголовки создаваемой таблицы: в ячейки С1 — Абсолютные час­
тоты, в ячейки D1 — Относительные
частоты,
в ячейки
E1 — Накоплен­ные частоты.(см. рис. 1).

4.        
С
помощью функции Частота заполните столбец абсолютных частот, для этого
выделите блок ячеек С2:С8.
С
па­
нели инструментов Стандартная
вызовите Мастер функций (кнопка
fx). В появив­шемся диалоговом окне
выберите категорию Статистические и
функцию
ЧАСТОТА, после чего нажмите кнопку ОК.
Указателем мыши в рабочее поле Массив_данных
введите диапазон данных наблюдений (А2:А8). В рабочее поле Двоич
ный_массив
мышью введите диапазон интервалов (В2:В8). Слева на клавиатуре последовательно
нажмите комбинацию клавиш Ctrl+Shift+Enter. В столбце C должен появиться мас­сив абсолютных частот (см. рис.1).

5.        
В
ячейке
C9 найдите общее количество
наблюдений. Активизируйте ячейку С9, н
а
панели инструментов Стандартная нажмите кнопку Ав­
тосумма.
Убедитесь, что диапазон суммирования указан правильно
и нажмите клавишу Enter.

6.        
Заполните столбец относительных частот. В ячейку введите формулу
для
вычисления относительной частоты: =C2/$C$9.
Нажмите клавишу Enter. Протягиванием (за правый
нижний угол при нажатой левой кнопке мыши) скопи
руйте введенную формулу в диапазон и получите массив относительных частот.

7.        
Заполните
столбец накопленных частот. В ячейку
D2 скопируйте значение от­носительной
частоты из ячейки
E2. В ячейку D3 введите формулу: =E2+D3. Нажмите клавишу Enter. Протягиванием (за правый нижний угол при нажатой левой кнопке мыши) скопируйте введенную формулу
в диапазон
D3:D8. Получим массив накопленных
частот.

                     Рис. 1. Результат вычислений из
примера 1

8.   
Постройте диаграмму относительных и накопленных частот. Щелчком ука­зателя
мыши по кнопке на панели инструментов вызовите Мастер диаграмм.
В появившемся диалоговом окне выберите закладку Нестандартные
и тип диаг­раммы График/гистограмма.
После 
редактирования диаграмма будет иметь такой вид, как на
рис. 2.

Рис. 2
Диаграмма относительных и накопленных частот из примера 1

Задания для самостоятельной работы

1. Для данных из примера 1 построить выборочные функции распределения, воспользовавшись процедурой Гистограмма из пакета Анализа.

2.  Построить выборочные функции распределения
(относительные и накоплен
ные частоты) для роста
в см. 20 студентов: 181, 169, 178, 178, 171, 179,
172, 181, 179, 168, 174, 167, 169, 171, 179, 181, 181,
183, 172, 176.

3. Найдите распределение по абсолютным частотам для
следующих результатов
тестирования в
баллах: 79, 85, 78, 85, 83, 81, 95, 88, 97, 85 (используйте границы
интервалов 70, 80, 90).

4. Рассмотрим любой из критериев оценки качеств педагога-профессионала,
например, «успешное решение задач обучения и воспитания». Ответ на этот вопрос
анкеты типа «да», «нет» достаточно груб. Чтобы уменьшить относительную ошибку
такого измерения, необходимо увеличить число возможных ответов на конкретный
критериальный вопрос. В табл. 1 представлены возможные варианты ответов.

Обозначим 
этот параметр через х. Тогда в процессе ответа на вопрос величина х
примет дискретное значение х, принадлежащее определенному интервалу значений.
Поставим в соответствие каждому из ответов определенное числовое значение
параметра х (см. табл. 1).

Табл. 1 Критериальный вопрос: успешное решение задач обучения и воспитания

№ п/п

Варианты ответов

Х

1

Абсолютно неуспешно

0,1

2

Неуспешно

0,2

3

Успешно в очень
малой степени

0,3

4

В определенной
степени успешно, но еще много недостатков

0,4

5

В среднем успешно,
но недостатки имеются

0,5

6

Успешно с
некоторыми оговорками

0,6

7

Успешно, но
хотелось бы улучшить результат

0,7

8

Достаточно успешно

0,8

9

Очень успешно

0,9

10

Абсолютно успешно

1

При проведении анкетирования в каждой отдельной
анкете параметр х принимает случайное значение, но только в пределах числового
интервала от 0,1 до 1.

Тогда в результате измерений мы получаем
неранжированный ряд случайных значений (см. табл. 2).

Таблица 2.
Результаты опроса ста учителей

Сгруппируйте полученную выборку, рассчитайте среднее
значение выборки, стандартное отклонение, абсолютную и относительную частоту
появления параметра, а также постройте график плотности вероятности f(x)=

где

W(x) – относительная частота наступления события;

          — стандартное
отклонение;

          =3,14.

Постройте график функции f(x) и сравните его с
нормальным распределением Гаусса.


Решение математических задач
средствами
Excel: Практикум/ В.Я. Гельман. – СПб.: Питер, 2003 — с. 168-172

 

Постановка
задачи.

Построить
график эмпирической функции распределения
с подогнанной ожидаемой функцией
распределения.

Теоретические
основы.

См.
стр. 31-32 пособия [4].

Вычисления.

Если
попытаться построить ЭФР средствами
Excel,
упорядочив сначала данные и сопоставив
затем каждому упорядоченному значению
x(k)
значение
,
то вместо горизонтальных получим
наклонные ступеньки. Чтобы избежать
этого недостатка, можно каждое значение
вариационного ряда повторить дважды,
при этом первому из этих значений
сопоставить ЭФР,
а второму
.

Вычисление нормальной функции
распределения описано ниже в главе
“Встроенные функции Excel”.
Здесь кратко только скажем, что для
этого можно использовать функцииНОРМРАСПиНОРМСТРАСПиз
категории “Статистические”.

Функция
распределения экспоненциального закона
вычисляется с помощью простой функции
EXP.

Кроме того,
предполагается, что уже вычислены
среднее значение и дисперсия выборки
(задание 1).

Пример.

Рис.
2

Порядок
вычислений.

  1. Скопировать
    исходные данные в буфер обмена;

  2. перейти
    на лист “ЭФР”
    и, установив курсор в ячейку A3,
    вставить данные из буфера обмена;

  3. повторить
    процесс восстановления данных, начиная
    с ячейки A104

  • установить
    курсор в ячейку A104;

  • вставить данные
    из буфера обмена

  1. – всего
    получится 202
    значения с 3-й
    по 204-ю
    ячейки;

  1. упорядочить
    значения в столбце A

  • кликнуть
    мышкой по кнопке
    ;

  1. ввести
    в ячейку B3
    формулу

  • =(СТРОКА(B3)-1)/202-1/101

  1. – функция
    «СТРОКА»
    возвращает номер строки указанного
    аргумента, то есть в данном случае в
    ячейке B3
    получится значение (3-1)/202-1/101
    = 0;

  1. ввести
    в ячейку B4
    формулу

  • =(СТРОКА(B3)-1)/202

  1. – получится
    значение (3-1)/202
    = 1/101;

  1. выделить
    обе ячейки B3
    и B4
    и скопировать их параллельно всем
    данным до ячейки B204

  1. – в
    последней ячейке должно получиться
    значение 1;

  1. добавить
    в ячейку A2
    значение, на единицу меньшее значения
    ячейки A3
    и сопоставить ему значение 0
    в ячейке B2;

  2. добавить
    в ячейку A205
    значение, на единицу большее значения
    ячейки A204
    и сопоставить ему значение 1
    в ячейке B205.

Ввести формулы
вычисления нормального распределения:

  1. в
    ячейки F4,
    F5
    (те, которые скрыты графиком) скопировать
    среднее и стандартное отклонение,
    соответственно

  • =МОМЕНТЫ!B4

  • =МОМЕНТЫ!B6

  1. в
    ячейку C2
    ввести формулу нормального распределения

  • =НОРМРАСП(A2;$F$4;$F$5;1)

  1. в
    ячейку D2
    ввести формулу вычисления расхождения
    между ЭФР и ожидаемой функцией
    распределения

  • =ABS(C2-B2)

  1. скопировать
    обе ячейки C2
    и D2
    вплоть до 205-й строки;

  2. вычислить
    максимальное расхождение, например, в
    ячейке F6

  • =МАКС(D2:D205)

Теперь уже можно
рисовать графики:

  1. выделить
    все значения в ячейках A2:C205;

  2. вызвать
    “Мастера
    Диаграмм”;

  3. выбрать
    «Точечную»
    диаграмму – без маркеров со сглаживающей
    линией (третья по порядку среди точечных
    диаграмм);

  4. при
    выборе представления диаграммы, после
    двух нажатий кнопки
    ,
    удалить “Легенду”
    и добавить “Заголовок
    по
    оси Х”:

  • МАКСИМАЛЬНОЕ
    РАСХОЖДЕНИЕ D=…

  1. (указав
    здесь полученное значение Δ из ячейки
    F6);

  1. ;

  2. установить
    параметры диаграммы, как в примере.

Замечание.
Если бы параметры нормальной модели
не оценивались по выборочным данным, а
были бы в точности равны этим оценкам,
то при полученном здесь расхождении
Δ=0,097 гипотезу нормальности следовало
бы принять с критическим уровнем
значимости > 0,20 (см. таблицу 6.2 сборника
таблиц [1]). Это надо воспринимать как
хороший знак и не более того. Если
неизвестные значения параметров
оцениваются по выборке, то критический
уровень значимости становится зависящим
от неизвестных параметров и трудно
ожидать, что даже в предположениях
гипотезы критерий будет иметь приемлемый
размер.

Контрольные
вопросы.

  1. Сформулируйте
    статистическую задачу.

  2. Что такое
    вариационный ряд?

    1. 31.

  3. Дайте определение
    эмпирической функции распределения?

    1. 31.

  4. Почему
    некоторые ступеньки ЭФР высокие, а
    некоторые низкие?

    1. 31.

  5. Почему одни
    ступеньки ЭФР длинные, а другие короткие?

    1. 31.

  6. Постройте
    ЭФР по следующим данным: 1; 2; 1; 3; 1; 5; 1; 3.

  7. Выпишите
    формулу для функции распределения
    нормального закона (равномерного,
    экспоненциального).

    1. 16-21.

  8. Можно
    ли утверждать, что ЭФР является
    состоятельной оценкой истинной функции
    распределения? Что сие означает?

    1. 31.

  9. Можно
    ли утверждать, что ЭФР является
    несмещенной оценкой истинной функции
    распределения? Что сие означает?

    1. 31.

  10. Докажите
    несмещенность ЭФР.

  11. Можно
    ли по значению максимального расхождения
    между ЭФР и ожидаемой функцией
    распределения принять или отвергнуть
    гипотезу о виде истинной функции
    распределения?

    1. 32.

Соседние файлы в папке Матстат

  • #
  • #


2.1.2. Эмпирическая функция распределения

Это статистический аналог функции

распределения из теорвера. Данная функция определяется, как отношение:
, где  – количество вариант СТРОГО МЕНЬШИХ, чем ,
при этом «икс» «пробегает» все значения от «минус» до «плюс» бесконечности.

Построим эмпирическую функцию распределения  для нашей задачи. Чтобы было нагляднее, отложу варианты  и их количество  на числовой оси:

На интервале  – по той причине, что

левее ЛЮБОЙ точки этого интервала вариант  нет. Кроме того, функция равна нулю ещё и в точке . Почему? Потому, что значение  определяет количество вариант (см. определение), которые

СТРОГО меньше двух, а это количество равно нулю.

На промежутке  – и опять обратите

внимание, что значение  не учитывает

рабочих 3-го разряда, т.к. речь идёт о вариантах, которые СТРОГО меньше трёх (по определению).

На промежутке  – и далее процесс

продолжается по принципу накопления частот:
– если , то ;
– если , то ;
– и, наконец, если , то  – и в самом деле, для ЛЮБОГО «икс» из интервала  ВСЕ частоты  расположены СТРОГО левее этого значения «икс» (см.

чертёж выше).

Накопленные относительные частоты  удобно заносить в отдельный столбец таблицы, при этом алгоритм вычислений очень

прост: сначала сносим слева частоту  (красная стрелка), и каждое следующее значение  получаем как сумму предыдущего и относительной

частоты из текущего левого столбца (зелёные обозначения):

Вот ещё, кстати, один довод за вертикальную ориентацию данных – справа по надобности можно приписывать дополнительные

столбцы.

Построенную функцию принято записывать в кусочном виде:

а её график представляет собой ступенчатую фигуру:

Эмпирическая функция распределения не убывает  и принимает значения лишь из промежутка , и если у вас вдруг получится что-то не так, то ищите ошибку.

Теперь смотрим видео, о том, как построить эту функцию в Экселе

(Ютуб).

И, конечно, вспомним основной метод математической статистики.

Эмпирическая функция распределения  строится по выборке и приближает теоретическую функцию распределения . Легко догадаться, что последняя появляется в

результате исследования всей генеральной совокупности, но если рабочих в цехе ещё пересчитать можно, то звёзды на

небе – уже вряд ли. Вот поэтому и важнА функция эмпирическая, и ещё важнее, чтобы выборка была

репрезентативна, дабы приближение было хорошим.

Миниатюрное задание для закрепления материала:

Пример 5

Дано статистическое распределение совокупности:

Составить эмпирическую функцию распределения, выполнить чертёж

Решаем самостоятельно – все числа уже в Экселе! Свериться с образцом можно в конце

книги. По поводу красоты чертежа сильно не запаривайтесь, главное, чтобы было правильно – этого обычно достаточно для

зачёта.

2.2. Интервальный вариационный ряд

2.1.1. Полигон распределения

| Оглавление |




Даны определения Функции распределения случайной величины и Плотности вероятности непрерывной случайной величины. Эти понятия активно используются в статьях о статистике сайта

www.excel2.ru

. Рассмотрены примеры вычисления Функции распределения и Плотности вероятности с помощью функций MS EXCEL

.

Введем базовые понятия статистики, без которых невозможно объяснить более сложные понятия.

Генеральная совокупность и случайная величина

Пусть у нас имеется

генеральная совокупность

(population) из N объектов, каждому из которых присуще определенное значение некоторой числовой характеристики Х.


Примером генеральной совокупности (ГС) может служить совокупность весов однотипных деталей, которые производятся станком.

Поскольку в математической статистике, любой вывод делается только на основании характеристики Х (абстрагируясь от самих объектов), то с этой точки зрения

генеральная совокупность

представляет собой N чисел, среди которых, в общем случае, могут быть и одинаковые.


В нашем примере, ГС — это просто числовой массив значений весов деталей. Х – вес одной из деталей.

Если из заданной ГС мы выбираем случайным образом один объект, имеющей характеристику Х, то величина Х является

случайной величиной

. По определению, любая

случайная величина

имеет

функцию распределения

, которая обычно обозначается F(x).

Функция распределения


Функцией распределения

вероятностей

случайной величины

Х называют функцию F(x), значение которой в точке х равно вероятности события X

F(x) = P(X


Поясним на примере нашего станка. Хотя предполагается, что наш станок производит только один тип деталей, но, очевидно, что вес изготовленных деталей будет слегка отличаться друг от друга. Это возможно из-за того, что при изготовлении мог быть использован разный материал, а условия обработки также могли слегка различаться и пр. Пусть самая тяжелая деталь, произведенная станком, весит 200 г, а самая легкая — 190 г. Вероятность того, что случайно выбранная деталь Х будет весить меньше 200 г равна 1. Вероятность того, что будет весить меньше 190 г равна 0. Промежуточные значения определяются формой Функции распределения. Например, если процесс настроен на изготовление деталей весом 195 г, то разумно предположить, что вероятность выбрать деталь легче 195 г равна 0,5.

Типичный график

Функции распределения

для непрерывной случайной величины приведен на картинке ниже (фиолетовая кривая, см.

файл примера

):

В справке MS EXCEL

Функцию распределения

называют

Интегральной

функцией распределения

(

Cumulative

Distribution

Function

,

CDF

).

Приведем некоторые свойства

Функции распределения:


  • Функция распределения

    F(x) изменяется в интервале [0;1], т.к. ее значения равны вероятностям соответствующих событий (по определению вероятность может быть в пределах от 0 до 1);

  • Функция распределения

    – неубывающая функция;
  • Вероятность того, что случайная величина приняла значение из некоторого диапазона [x1;x2): P(x

    1
    <=X
    2

    )=F(x

    2

    )-F(x

    1

    ).

Существует 2 типа распределений:

непрерывные распределения

и

дискретные распределения

.

Дискретные распределения

Если случайная величина может принимать только определенные значения и количество таких значений конечно, то соответствующее распределение называется

дискретным

. Например, при бросании монеты, имеется только 2 элементарных исхода, и, соответственно, случайная величина может принимать только 2 значения. Например, 0 (выпала решка) и 1 (не выпала решка) (см.

схему Бернулли

). Если монета симметричная, то вероятность каждого исхода равна 1/2. При бросании кубика случайная величина принимает значения от 1 до 6. Вероятность каждого исхода равна 1/6. Сумма вероятностей всех возможных значений случайной величины равна 1.


Примечание

: В MS EXCEL имеется несколько функций, позволяющих вычислить вероятности дискретных случайных величин. Перечень этих функций приведен в статье

Распределения случайной величины в MS EXCEL

.

Непрерывные распределения и плотность вероятности

В случае

непрерывного распределения

случайная величина может принимать любые значения из интервала, в котором она определена. Т.к. количество таких значений бесконечно велико, то мы не можем, как в случае дискретной величины, сопоставить каждому значению случайной величины ненулевую вероятность (т.е. вероятность попадания в любую точку (заданную до опыта) для

непрерывной случайной величины

равна нулю). Т.к. в противном случае сумма вероятностей всех возможных значений случайной величины будет равна бесконечности, а не 1. Выходом из этой ситуации является введение так называемой

функции плотности распределения p(x)

. Чтобы найти вероятность того, что непрерывная случайная величина Х примет значение, заключенное в интервале (а; b), необходимо найти приращение

функции распределения

на этом интервале:

Как видно из формулы выше

плотность распределения

р(х) представляет собой производную

функции распределения

F(x), т.е. р(х) = F’(x).

Типичный график

функции плотности распределения

для непрерывной случайно величины приведен на картинке ниже (зеленая кривая):


Примечание

: В MS EXCEL имеется несколько функций, позволяющих вычислить вероятности непрерывных случайных величин. Перечень этих функций приведен в статье

Распределения случайной величины в MS EXCEL

.

В литературе

Функция плотности распределения

непрерывной случайной величины может называться:

Плотность вероятности, Плотность распределения, англ. Probability Density Function (PDF)

.

Чтобы все усложнить, термин

Распределение

(в литературе на английском языке —

Probability

Distribution

Function

или просто

Distribution

)

в зависимости от контекста может относиться как

Интегральной

функции распределения,

так и кее

Плотности распределения.

Из определения

функции плотности распределения

следует, что p(х)>=0. Следовательно, плотность вероятности для непрерывной величины может быть, в отличие от

Функции распределения,

больше 1. Например, для

непрерывной равномерной величины

, распределенной на интервале [0; 0,5]

плотность вероятности

равна 1/(0,5-0)=2. А для

экспоненциального распределения

с параметром

лямбда

=5, значение

плотности вероятности

в точке х=0,05 равно 3,894. Но, при этом можно убедиться, что вероятность на любом интервале будет, как обычно, от 0 до 1.

Напомним, что

плотность распределения

является производной от

функции распределения

, т.е. «скоростью» ее изменения: p(x)=(F(x2)-F(x1))/Dx при Dx стремящемся к 0, где Dx=x2-x1. Т.е. тот факт, что

плотность распределения

>1 означает лишь, что функция распределения растет достаточно быстро (это очевидно на примере

экспоненциального распределения

).


Примечание

: Площадь, целиком заключенная под всей кривой, изображающей

плотность распределения

, равна 1.


Примечание

: Напомним, что функцию распределения F(x) называют в функциях MS EXCEL

интегральной функцией распределения

. Этот термин присутствует в параметрах функций, например в

НОРМ.РАСП

(x; среднее; стандартное_откл;

интегральная

). Если функция MS EXCEL должна вернуть

Функцию распределения,

то параметр

интегральная

, д.б. установлен ИСТИНА. Если требуется вычислить

плотность вероятности

, то параметр

интегральная

, д.б. ЛОЖЬ.


Примечание

: Для

дискретного распределения

вероятность случайной величине принять некое значение также часто называется плотностью вероятности (англ. probability mass function (pmf)). В справке MS EXCEL

плотность вероятности

может называть даже «функция вероятностной меры» (см. функцию

БИНОМ.РАСП()

).

Вычисление плотности вероятности с использованием функций MS EXCEL

Понятно, что чтобы вычислить

плотность вероятности

для определенного значения случайной величины, нужно знать ее распределение.

Найдем

плотность вероятности

для

стандартного нормального распределения

N(0;1) при x=2. Для этого необходимо записать формулу

=НОРМ.СТ.РАСП(2;ЛОЖЬ)

=0,054 или

=НОРМ.РАСП(2;0;1;ЛОЖЬ)

.

Напомним, что

вероятность

того, что

непрерывная случайная величина

примет конкретное значение x равна 0. Для

непрерывной случайной величины

Х можно вычислить только вероятность события, что Х примет значение, заключенное в интервале (а; b).

Вычисление вероятностей с использованием функций MS EXCEL

1) Найдем вероятность, что случайная величина, распределенная по

стандартному нормальному распределению

(см. картинку выше), приняла положительное значение. Согласно свойству

Функции распределения

вероятность равна F(+∞)-F(0)=1-0,5=0,5.

В MS EXCEL для нахождения этой вероятности используйте формулу

=НОРМ.СТ.РАСП(9,999E+307;ИСТИНА) -НОРМ.СТ.РАСП(0;ИСТИНА)

=1-0,5. Вместо +∞ в формулу введено значение 9,999E+307= 9,999*10^307, которое является максимальным числом, которое можно ввести в ячейку MS EXCEL (так сказать, наиболее близкое к +∞).

2) Найдем вероятность, что случайная величина, распределенная по

стандартному нормальному распределению

, приняла отрицательное значение. Согласно определения

Функции распределения,

вероятность равна F(0)=0,5.

В MS EXCEL для нахождения этой вероятности используйте формулу

=НОРМ.СТ.РАСП(0;ИСТИНА)

=0,5.

3) Найдем вероятность того, что случайная величина, распределенная по

стандартному нормальному распределению

, примет значение, заключенное в интервале (0; 1). Вероятность равна F(1)-F(0), т.е. из вероятности выбрать Х из интервала (-∞;1) нужно вычесть вероятность выбрать Х из интервала (-∞;0). В MS EXCEL используйте формулу

=НОРМ.СТ.РАСП(1;ИСТИНА) — НОРМ.СТ.РАСП(0;ИСТИНА)

.

Все расчеты, приведенные выше, относятся к случайной величине, распределенной по

стандартному нормальному закону

N(0;1). Понятно, что значения вероятностей зависят от конкретного распределения. В статье

Распределения случайной величины в MS EXCEL

приведены распределения, для которых в MS EXCEL имеются соответствующие функции, позволяющие вычислить вероятности.

Обратная функция распределения (Inverse Distribution Function)

Вспомним задачу из предыдущего раздела:

Найдем вероятность, что случайная величина, распределенная по стандартному нормальному распределению, приняла отрицательное значение.

Вероятность этого события равна 0,5.

Теперь решим обратную задачу: определим х, для которого вероятность, того что случайная величина Х примет значение
медиану

или 50-ю

процентиль

).

Для этого необходимо на графике

функции распределения

найти точку, для которой F(х)=0,5, а затем найти абсциссу этой точки. Абсцисса точки =0, т.е. вероятность, того что случайная величина Х примет значение <0, равна 0,5.

В MS EXCEL используйте формулу

=НОРМ.СТ.ОБР(0,5)

=0.

Однозначно вычислить значение

случайной величины

позволяет свойство монотонности

функции распределения.

Обратите внимание, что для вычисления обратной функции мы использовали именно

функцию распределения

, а не

плотность распределения

. Поэтому, в аргументах функции

НОРМ.СТ.ОБР()

отсутствует параметр

интегральная

, который подразумевается. Подробнее про функцию

НОРМ.СТ.ОБР()

см. статью про

нормальное распределение

.


Обратная функция распределения

вычисляет

квантили распределения

, которые используются, например, при

построении доверительных интервалов

. Т.е. в нашем случае число 0 является 0,5-квантилем

нормального распределения

. В

файле примера

можно вычислить и другой

квантиль

этого распределения. Например, 0,8-квантиль равен 0,84.

В англоязычной литературе

обратная функция распределения

часто называется как Percent Point Function (PPF).


Примечание

: При вычислении

квантилей

в MS EXCEL используются функции:

НОРМ.СТ.ОБР()

,

ЛОГНОРМ.ОБР()

,

ХИ2.ОБР(),

ГАММА.ОБР()

и т.д. Подробнее о распределениях, представленных в MS EXCEL, можно прочитать в статье

Распределения случайной величины в MS EXCEL

.

2 / 2 / 0

Регистрация: 05.10.2013

Сообщений: 91

1

Построить график эмпирической функции распределения

25.04.2015, 20:23. Показов 13036. Ответов 5


Студворк — интернет-сервис помощи студентам

Никак не могу построить график по вот этим данным:

0 x<=42
0,02 42<x<=48
0,035 48<x<=54
0,091 54<x<=60
0,178 60<x<=66
0,322 66<x<=72
0,445 72<x<=78
0,584 78<x<=84
0,702 84<x<=90
0,81 90<x<=96
0,887 96<x<=102
0,943 102<x<=108
0,979 108<x<=114
0,994 x>114

Помогите, пожалуйста.



0



2079 / 1232 / 464

Регистрация: 20.12.2014

Сообщений: 3,237

25.04.2015, 23:25

2

Лучший ответ Сообщение было отмечено Sting95 как решение

Решение

В столбец А вводите значения Х, в ячейку В1 пишете функцию ЕСЛИ:

Код

=ЕСЛИ(A1<=42;0;ЕСЛИ(A1<=48;0,02;ЕСЛИ(A1<=54;0,035;ЕСЛИ(A1<=60;0,091;ЕСЛИ(A1<=66;0,178;ЕСЛИ(A1<=72;0,322;ЕСЛИ(A1<=78;0,445;ЕСЛИ(A1<=84;0,584;ЕСЛИ(A1<=90;0,702;ЕСЛИ(A1<=96;0,81;ЕСЛИ(A1<=102;0,887;ЕСЛИ(A1<=108;0,943;ЕСЛИ(A1<=114;0,979;0,994)))))))))))))

Копируете ее маркером автозаполнения на весь диапазон значений и вставляете график. Меняете подписи данных и получаете:

Миниатюры

Построить график эмпирической функции распределения
 



2



866 / 510 / 162

Регистрация: 30.03.2013

Сообщений: 1,048

26.04.2015, 11:56

3

Мне кажется, что формулу с «если» в этом случае можно заменить.



0



2079 / 1232 / 464

Регистрация: 20.12.2014

Сообщений: 3,237

26.04.2015, 14:37

4

Цитата
Сообщение от Czeslav
Посмотреть сообщение

Мне кажется, что формулу с «если» в этом случае можно заменить

Czeslav, вполне нормальный вариант, только при построении графика нужно было, кроме других, брать значения х из границ диапазонов. А так, у вас на графике получились убывающие отрезки функции, а их не может быть по условию. Ну, и, всё-таки, в варианте с ЕСЛИ вводится гораздо меньше данных, чем у вас, поэтому не совсем понятно, зачем ее заменять



0



866 / 510 / 162

Регистрация: 30.03.2013

Сообщений: 1,048

26.04.2015, 15:01

5

Смотрите и сравнивайте.



0



2079 / 1232 / 464

Регистрация: 20.12.2014

Сообщений: 3,237

26.04.2015, 15:11

6

Цитата
Сообщение от Czeslav
Посмотреть сообщение

Смотрите и сравнивайте

Да, здесь нормально. В том вложении, почему-то, график выглядел по-другому. Но, зачем заменять ЕСЛИ и заполнять данными, дополнительно, 56 ячеек осталось непонятно



0



IT_Exp

Эксперт

87844 / 49110 / 22898

Регистрация: 17.06.2006

Сообщений: 92,604

26.04.2015, 15:11

Помогаю со студенческими работами здесь

Как построить график функции распределения?
Здравствуйте, скажите, пожалуйста, как построить график функции распределения для случайной…

График статистической функции распределения
Мне нужно построить в статистическую функцию распределения. Есть 100 значений(вариационный ряд),…

Построить график кусочной функции на участке x[a;b] с шагом 0,5 Никак не выходит построить функцию =(y={x^4, x<=pi;cos(x
y={x^4, x&lt;=pi;cos(x),pi&lt;x&lt;5; корень их x, x=&gt;5

Построить таблицу значений x и y, а потом построить график функции
нужно построить таблицу значений x и y а потом построить график функции…вот данные:
функция:…

Искать еще темы с ответами

Или воспользуйтесь поиском по форуму:

6

Теперь в каждой ячейке шаг за шагом прибавляем полученное значение ширины кармана: сначала к минимальному значению нашего массива (п. 3), затем в следующей ячейке ниже — к полученной сумме и т.д. Так постепенно доходим до максимального значения. Вот мы и построили интервалы карманов в виде столбца значений. Интервалом считается следующий диапазон : (i-1; i] или iСкачать бесплатно видеокурc по Excel

как сделать график распределения в excel

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Поделиться ссылкой:

Так как я часто имею дело с большим количеством данных, у меня время от времени возникает необходимость генерировать массивы значений для проверки моделей в Excel. К примеру, если я хочу увидеть распределение веса продукта с определенным стандартным отклонением, потребуются некоторые усилия, чтобы привести результат работы формулы СЛУЧМЕЖДУ() в нормальный вид. Дело в том, что формула СЛУЧМЕЖДУ() выдает числа с единым распределением, т.е. любое число с одинаковой долей вероятности может оказаться как у нижней, так и у верхней границы запрашиваемого диапазона. Такое положение дел не соответствует действительности, так как вероятность возникновения продукта уменьшается по мере отклонения от целевого значения. Т.е. если я произвожу продукт весом 100 грамм, вероятность, что я произведу 97-ми или 103-граммовый продукт меньше, чем 100 грамм. Вес большей части произведенной продукции будет сосредоточен рядом с целевым значением. Такое распределение называется нормальным. Если построить график, где по оси Y отложить вес продукта, а по оси X – количество произведенного продукта, график будет иметь колоколообразный вид, где наивысшая точка будет соответствовать целевому значению.

Таким образом, чтобы привести массив, выданный формулой СЛУЧМЕЖДУ(), в нормальный вид, мне приходилось ручками исправлять пограничные значения на близкие к целевым. Такое положение дел меня, естественно, не устраивало, поэтому, покопавшись в интернете, открыл интересный способ создания массива данных с нормальным распределением. В сегодняшней статье описан способ генерации массива и построения графика с нормальным распределением.

Характеристики нормального распределения

Непрерывная случайная переменная, которая подчиняется нормальному распределению вероятностей, обладает некоторыми особыми свойствами. Предположим, что вся производимая продукция подчиняется нормальному распределению со средним значением 100 грамм и стандартным отклонением 3 грамма. Распределение вероятностей для такой случайной переменной представлено на рисунке.

Из этого рисунка мы можем сделать следующие наблюдения относительно нормального распределения — оно имеет форму колокола и симметрично относительно среднего значения.

Стандартное отклонение имеет немаловажную роль в форме изгиба. Если посмотреть на предыдущий рисунок, то можно заметить, что практически все измерения веса продукта попадают в интервал от 95 до 105 граммов. Давайте рассмотрим следующий рисунок, на котором представлено нормальное распределение с той же средней – 100 грамм, но со стандартным отклонением всего 1,5 грамма

Здесь вы видите, что измерения значительно плотней прилегают к среднему значению. Почти все производимые продукты попадают в интервал от 97 до 102 грамм.

Небольшое значение стандартного отклонения выражается в более «тощей и высокой кривой, плотно прижимающейся к среднему значению. Чем больше стандартное, тем «толще», ниже и растянутее получается кривая.

Создание массива с нормальным распределением

Итак, чтобы сгенерировать массив данных с нормальным распределением, нам понадобится функция НОРМ.ОБР() – это обратная функция от НОРМ.РАСП(), которая возвращает нормально распределенную переменную для заданной вероятности для определенного среднего значения и стандартного отклонения. Синтаксис формулы выглядит следующим образом:

=НОРМ.ОБР(вероятность; среднее_значение; стандартное_отклонение)

Другими словами, я прошу Excel посчитать, какая переменная будет находится в вероятностном промежутке от 0 до 1. И так как вероятность возникновения продукта с весом в 100 грамм максимальная и будет уменьшаться по мере отдаления от этого значения, то формула будет выдавать значения близких к 100 чаще, чем остальных.

Давайте попробуем разобрать на примере. Выстроим график распределения вероятностей от 0 до 1 с шагом 0,01 для среднего значения равным 100 и стандартным отклонением 1,5.

Как видим из графика точки максимально сконцентрированы у переменной 100 и вероятности 0,5.

Этот фокус мы используем для генерирования случайного массива данных с нормальным распределением. Формула будет выглядеть следующим образом:

=НОРМ.ОБР(СЛЧИС(); среднее_значение; стандартное_отклонение)

Создадим массив данных для нашего примера со средним значением 100 грамм и стандартным отклонением 1,5 грамма и протянем нашу формулу вниз.

Теперь, когда массив данных готов, мы можем выстроить график с нормальным распределением.

Построение графика нормального распределения

Прежде всего необходимо разбить наш массив на периоды. Для этого определяем минимальное и максимальное значение, размер каждого периода или шаг, с которым будет увеличиваться период.

Далее строим таблицу с категориями. Нижняя граница (B11) равняется округленному вниз ближайшему кратному числу. Остальные категории увеличиваются на значение шага. Формула в ячейке B12 и последующих будет выглядеть:

=ЕСЛИ(A12;B11+$B$6; «»)

В столбце X будет производится подсчет количества переменных в заданном промежутке. Для этого воспользуемся формулой ЧАСТОТА(), которая имеет два аргумента: массив данных и массив интервалов. Выглядеть формула будет следующим образом =ЧАСТОТА(Data!A1:A175;B11:B20). Также стоит отметить, что в таком варианте данная функция будет работать как формула массива, поэтому по окончании ввода необходимо нажать сочетание клавиш Ctrl+Shift+Enter.

Таким образом у нас получилась таблица с данными, с помощью которой мы сможем построить диаграмму с нормальным распределением. Воспользуемся диаграммой вида Гистограмма с группировкой, где по оси значений будет отложено количество переменных в данном промежутке, а по оси категорий – периоды.

Осталось отформатировать диаграмму и наш график с нормальным распределением готов.

Итак, мы познакомились с вами с нормальным распределением, узнали, что Excel позволяет генерировать массив данных с помощью формулы НОРМ.ОБР() для определенного среднего значения и стандартного отклонения и научились приводить данный массив в графический вид.

Для лучшего понимания, вы можете скачать файл с примером построения нормального распределения.

Построим диаграмму распределения в Excel. А также рассмотрим подробнее функции круговых диаграмм, их создание.

График нормального распределения имеет форму колокола и симметричен относительно среднего значения. Получить такое графическое изображение можно только при огромном количестве измерений. В Excel для конечного числа измерений принято строить гистограмму.

Внешне столбчатая диаграмма похожа на график нормального распределения. Построим столбчатую диаграмму распределения осадков в Excel и рассмотрим 2 способа ее построения.

Имеются следующие данные о количестве выпавших осадков:

Первый способ. Открываем меню инструмента «Анализ данных» на вкладке «Данные» (если у Вас не подключен данный аналитический инструмент, тогда читайте как его подключить в настройках Excel):

Выбираем «Гистограмма»:

Задаем входной интервал (столбец с числовыми значениями). Поле «Интервалы карманов» оставляем пустым: Excel сгенерирует автоматически. Ставим птичку около записи «Вывод графика»:

После нажатия ОК получаем такой график с таблицей:

В интервалах не очень много значений, поэтому столбики гистограммы получились низкими.

Теперь необходимо сделать так, чтобы по вертикальной оси отображались относительные частоты.

Найдем сумму всех абсолютных частот (с помощью функции СУММ). Сделаем дополнительный столбец «Относительная частота». В первую ячейку введем формулу:

Способ второй. Вернемся к таблице с исходными данными. Вычислим интервалы карманов. Сначала найдем максимальное значение в диапазоне температур и минимальное.

Чтобы найти интервал карманов, нужно разность максимального и минимального значений массива разделить на количество интервалов. Получим «ширину кармана».

Представим интервалы карманов в виде столбца значений. Сначала ширину кармана прибавляем к минимальному значению массива данных. В следующей ячейке – к полученной сумме. И так далее, пока не дойдем до максимального значения.

Для определения частоты делаем столбец рядом с интервалами карманов. Вводим функцию массива:

Вычислим относительные частоты (как в предыдущем способе).

Построим столбчатую диаграмму распределения осадков в Excel с помощью стандартного инструмента «Диаграммы».

Частота распределения заданных значений:

Круговые диаграммы для иллюстрации распределения

С помощью круговой диаграммы можно иллюстрировать данные, которые находятся в одном столбце или одной строке. Сегмент круга – это доля каждого элемента массива в сумме всех элементов.

С помощью любой круговой диаграммы можно показать распределение в том случае, если

  • имеется только один ряд данных;
  • все значения положительные;
  • практически все значения выше нуля;
  • не более семи категорий;
  • каждая категория соответствует сегменту круга.

На основании имеющихся данных о количестве осадков построим круговую диаграмму.

Доля «каждого месяца» в общем количестве осадков за год:

Круговая диаграмма распределения осадков по сезонам года лучше смотрится, если данных меньше. Найдем среднее количество осадков в каждом сезоне, используя функцию СРЗНАЧ. На основании полученных данных построим диаграмму:

Получили количество выпавших осадков в процентном выражении по сезонам.

В двух словах: Добавляем полосу прокрутки к гистограмме или к графику распределения частот, чтобы сделать её динамической или интерактивной.

Уровень сложности: продвинутый.

На следующем рисунке показано, как выглядит готовая динамическая гистограмма:

Что такое гистограмма или график распределения частот?

Гистограмма распределения разбивает по группам значения из набора данных и показывает количество (частоту) чисел в каждой группе. Такую гистограмму также называют графиком распределения частот, поскольку она показывает, с какой частотой представлены значения.

В нашем примере мы делим людей, которые вызвались принять участие в мероприятии, по возрастным группам. Первым делом, создадим возрастные группы, далее подсчитаем, сколько людей попадает в каждую из групп, и затем покажем все это на гистограмме.

На какие вопросы отвечает гистограмма распределения?

Гистограмма – это один из моих самых любимых типов диаграмм, поскольку она дает огромное количество информации о данных.

В данном случае мы хотим знать, как много участников окажется в возрастных группах 20-ти, 30-ти, 40-ка лет и так далее. Гистограмма наглядно покажет это, поэтому определить закономерности и отклонения будет довольно легко.

«Неужели наше мероприятие не интересно гражданам в возрасте от 20 до 29 лет?»

Возможно, мы захотим немного изменить детализацию картины и разбить население на две возрастные группы. Это покажет нам, что в мероприятии примут участие большей частью молодые люди:

Динамическая гистограмма

После построения гистограммы распределения частот иногда возникает необходимость изменить размер групп, чтобы ответить на различные возникающие вопросы. В динамической гистограмме это возможно сделать благодаря полосе прокрутки (слайдеру) под диаграммой. Пользователь может увеличивать или уменьшать размер групп, нажимая стрелки на полосе прокрутки.

Такой подход делает гистограмму интерактивной и позволяет пользователю масштабировать ее, выбирая, сколько групп должно быть показано. Это отличное дополнение к любому дашборду!

Как это работает?

Краткий ответ: Формулы, динамические именованные диапазоны, элемент управления «Полоса прокрутки» в сочетании с гистограммой.

Формулы

Чтобы всё работало, первым делом нужно при помощи формул вычислить размер группы и количество элементов в каждой группе.

Чтобы вычислить размер группы, разделим общее количество (80-10) на количество групп. Количество групп устанавливается настройками полосы прокрутки. Чуть позже разъясним это подробнее.

Далее при помощи функции ЧАСТОТА (FREQUENCY) я рассчитываю количество элементов в каждой группе в заданном столбце. В данном случае мы возвращаем частоту из столбца Age таблицы с именем tblData.

=ЧАСТОТА(tblData;C13:C22)
=FREQUENCY(tblData,C13:C22)

Функция ЧАСТОТА (FREQUENCY) вводится, как формула массива, нажатием Ctrl+Shift+Enter.

Динамический именованный диапазон

В качестве источника данных для диаграммы используется именованный диапазон, чтобы извлекать данные только из выбранных в текущий момент групп.

Когда пользователь перемещает ползунок полосы прокрутки, число строк в динамическом диапазоне изменяется так, чтобы отобразить на графике только нужные данные. В нашем примере задано два динамических именованных диапазона: один для данных — rngGroups (столбец Frequency) и второй для подписей горизонтальной оси — rngCount (столбец Bin Name).

Элемент управления «Полоса прокрутки»

Элемент управления Полоса прокрутки (Scroll Bar) может быть вставлен с вкладки Разработчик (Developer).

На рисунке ниже видно, как я настроил параметры элемента управления и привязал его к ячейке C7. Так, изменяя состояние полосы прокрутки, пользователь управляет формулами.

Гистограмма

График – это самая простая часть задачи. Создаём простую гистограмму и в качестве источника данных устанавливаем динамические именованные диапазоны.

Есть вопросы?

Что ж, это был лишь краткий обзор того, как работает динамическая гистограмма.

Да, это не самая простая диаграмма, но, полагаю, пользователям понравится с ней работать. Определённо, такой интерактивной диаграммой можно украсить любой отчёт.

Более простой вариант гистограммы можно создать, используя сводные таблицы.

Пишите в комментариях любые вопросы и предложения. Спасибо!

Урок подготовлен для Вас командой сайта office-guru.ru
Источник: /> Перевел: Антон Андронов

Правила перепечаткиЕще больше уроков по Microsoft Excel

Оцените качество статьи. Нам важно ваше мнение:

Понравилась статья? Поделить с друзьями:
  • Как построить график чувствительности в excel
  • Как построить график числового ряда в excel
  • Как построить график численности населения в excel
  • Как построить график уравнения в excel квадратного уравнения
  • Как построить график тригонометрической функции в excel