Здравствуйте на этой странице я собрала теорию и практику с примерами решения задач по предмету эконометрика в программе Microsoft Excel с решением по каждой теме, чтобы вы смогли освежить знания!
Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!
Эконометрика
Становление эконометрики как научной дисциплины представляет значительный интерес с точки зрения как определения объектов исследования, так и формирования набора методов. Сам термин «эконометрика» сформировался из двух частей: «эконо-» – от «экономика» и «-метрика» – от «измерение». Поэтому статистический анализ экономических данных называется эконометрикой, что буквально означает «наука об экономических измерениях».
Эконометрика – это наука, связанная с эмпирическим выводом экономических законов.
Статистические ряды данных
Методы систематизации, обработки и использования статистических данных, выявление закономерностей являются основой эконометрических исследований. Пусть требуется исследовать какой-нибудь признак, свойственный большой группе однородных объектов. Напомним основные понятия и характеристики статистических данных.
Возможно эта страница вам будет полезна:
Генеральной совокупностью (генеральной выборкой) называется совокупность значений признака всех объектов данного типа, а их число объемом совокупности. При этом предполагается, что число большое, такое, что исследование физически невозможно. Тогда из всей совокупности выбирают ограниченное число объектов и подвергают их изучению.
Выборочной совокупностью (выборкой) называется совокупность случайно отобранных объектов, а её объем обозначается .
Статистические исследования позволяют распространить выводы, сделанные на основе случайной выборки, на всю генеральную совокупность исследуемых случайных величин. Это является основой выборочного метода.
Графическое представление статистических данных
Пусть из генеральной совокупности извлекается выборка объема , причем значение признака наблюдается раз, где сумма равна объему выборки .
Статистическим распределением выборки называется перечень наблюдаемых значений и соответствующих им частот или относительных частот (частостей)
Упорядоченный в порядке возрастания или убывания ряд значений признака с соответствующими ему частотами называют вариационным рядом.
В целях наглядности строятся различные графики статистического распределения.
Полигоном частот (относительных частот) называется ломаная линия, которая соединяет точки с координатами или .
Для построения гистограммы частот (относительных частот) необходимо найти границы интервалов признаков. Если данные наблюдений представляют в виде рядов с равными интервалами, то их величина находится по формуле Стэрд-жесса:
где — объем выборки;
— наибольшее и наименьшее значения вариантов выборки. Гистограмма представляет собой столбчатую диаграмму.
По оси абсцисс откладываются границы интервалов так, чтобы они покрыли все значения вариационного ряда, а по оси ординат откладываются абсолютная плотность распределения или относительную плотность .
Аналогом функции распределения для вариационного ряда является функция накопленных частот, её обозначают а график строят по следующему правилу:
по оси абсцисс откладывают значения признака, а по оси ординат — накопленные частоты или частости. Такую кривую иногда называют кумулятой: по данным интервального ряда на оси абсцисс откладывают точки, являющиеся верхними границами интервалов, а на оси ординат накопленные частоты (частости) соответствующих интервалов. Часто добавляют ещё одну точку, абсцисса которой соответствует левой границе первого интервала, а ордината равна нулю.
Числовые характеристики статистических распределений
Для описания статистических распределений обычно используют три вида характеристик:
- средние, или характеристики центральной тенденции;
- характеристики изменения вариант (рассеяния);
- характеристики, отражающие дополнительные особенности распределений, в частности их форму.
Все эти характеристики вычисляются по результатам наблюдений и построенных вариационных рядов.
Основным видом средних характеристик является средняя арифметическая (среднее выборочное значение), определяемая по формуле:
где — значение признака в вариационном ряде (дискретном или интервальном); — соответствующая ему частота;
Довольно часто в статистическом анализе применяют структурные или порядковые средние:
1) медиана — значение признака, разделяющее вариационный ряд на две численно равные группы, такие, что элементы первой группы строго меньше медианы, второй строго больше её значения. Можно определить графически с помощью кумуляты, так как ;
2) мода — значение признака, которому соответствует большая частота.
Величины моды и медианы определяются по интерполяционным формулам, непосредственно из их определения, которые можно найти в дополнительной литературе.
Средние характеристики должны быть дополнены изменением вариации признака (рассеянием). Для этого рассчитываются квадраты отклонений вариант от среднего арифметического значения. Средний квадрат отклонений по данной выборке называется дисперсией и вычисляется по формуле:
На базе дисперсии вводятся две характеристики:
1) среднее квадратическое отклонение ;
2) коэффициент вариации, равный процентному отношению среднего квадратического отклонения к значению средней арифметической исследуемой случайной величины, помогает решить вопрос об однородности выборки:
Величина о является чаще всего применяемой характеристикой рассеяния. Для характеристики формы распределения вводятся моменты к-того порядка, впервые предложенные Чебышсвым П. Л.:
которые называются центральными моментами к-того порядка. Чем больше моментов для данного признака вычислено, тем точнее можно описать свойства распределения. Однако с ростом К растет влияние случайных погрешностей, поэтому на практике используются моменты до четвертого порядка.
Центральный момент третьего порядка называется асимметрией распределения, а четвертого — эксцесс .
Инструмент анализа описательная статистика и гистограмма в Excel
Наиболее полный анализ статистических данных позволяет выполнить пакет Анализ данных из меню Сервис. Если команда Анализ данных отсутствует в меню Сервис, выберите Надстройки и в появившемся списке отметьте Analysis ToolPak (Пакет анализа). В случае отсутствия этого пункта в Надстройках, вам придется установить его вручную с помощью Microsoft Excel Setup (меню Сервис > Надстройки > подключите Пакет Анализа).
При выполнении этой лабораторной работы будут использоваться инструменты Описательная статистика и Гистограмма из Анализа данных. Надо сказать, что в Excel есть набор встроенных статистических функций, которыми можно пользоваться, если нет необходимости во всех характеристиках исследуемых данных. Для вызова нужной функции необходимо выполнить действия: из меню Вставка и выбрать команду Функция и перейти к категории Статистические.
Возможно эта страница вам будет полезна:
Пример с решением №1.1.
При обследовании 50 семей получены данные о количестве детей, которые имеют БИНОМРАСЩ) с числом испытаний равным 10 и вероятностью успеха 0,3 (сгенерировать с помощью пакета Анализа данных). Определите средний размер семьи. Охарактеризуйте колеблемость размера семьи с помощью показателя вариации. Постройте гистограмму и функцию распределения.
Данные для решения примера задают изначально в виде таблиц и их надо поместить на лист Excel; или можно воспользоваться инструментом Анализа данных Генерация случайных чисел.
Генерация случайных чисел позволяет быстро получить нужное количество значений одной или нескольких вариант, имеющих одно из распределений: Равномерное, Нормальное, Бернулли, Биномиальное, Пуассона и другие. Надо помнить, что каждое распределение имеет свои параметры, которые задаются пользователем. Достоверность полученных выводов в этом случае мала.
- В меню Сервис выберите Анализ данных, а затем выделите инструмент анализа Генерация случайных чисел (найти его можно с помощью линейки прокрутки). Выделите в диалоговом окне нужный инструмент и нажмите ОК (рис. 1.1).
- Заполните поля диалогового окна так же как на рис. 1.2 и нажмите ОК. Результатом является набор из пятидесяти чисел, которые располагаются в столбце В рис 1.3.
- Примените инструмент Описательная статистика для поиска числовых характеристик выборочных данных, расположенных в диапазоне В2:В51. Для этого выберите инструмент анализа Описательная статистика в диалоговом окне Анализ данных рис. 1.1. В одноименном диалоговом окне надо указать: входной интервал (В2:В51), ячейку левого верхнего угла для вывода итогов D1, обязательно включите опцию Итоговая Статистика. Результат применения инструмента Описательная статистика показан на рис. 1.3. в диапазоне D1:Е18.
Значения в диапазоне Е2: Е18 не обновляются в случае изменения исходных данных В2:В51.
В столбце рис. 1.3. приводятся встроенные функции Excel, которые позволяют получить те же результаты, что и при использовании инструмента Описательная статистика. Функции листа следует использовать, если необходим автоматический перерасчет значений числовых характеристик выборки или нет необходимости во всех значениях Описательной статистики.
Построение гистограммы и функции распределения можно выполнить, выбрав инструмент, Гистограмма (рис. 1.1). Перед использованием этого инструмента надо решить вопрос об интервале разбиения ( — Excel называет это значение карманом, а список всех границ интервалов — интервал карманов). Вы можете найти его сами по формуле Стэрджесса или разрешить Excel разбить на равные интервалы (тогда заполнять поле Интервал карманов не надо). Включите опцию вывод графика.
Описание результатов.
Описательная статистика содержит три результата средней характеристики исследования числа детей в пятидесяти семьях: Среднее (3,34), Моду (3) и Медиану (3). Найдем значение коэффициента вариации по формуле (1.4):
Так как 43% > 35%, можно сделать вывод, что изучаемая совокупность семей является неоднородной, чем и объясняется высокая колеблемость количества детей в семьях. В виду неоднородности семей, попавших в выборку, можно в качестве среднего использовать моду или медиану
Стандартное отклонение (1,44) — наиболее широко используемая характеристика изменения данных — измеряется в тех же единицах, что и исходные данные.
Стандартная ошибка является характеристикой достоверности среднего выборочного значения и используется в статистических исследованиях (0,20).
Эксцесс и Асснметрнн позволяют сделать вывод о незначительных отклонениях гистограммы частостей от нормально распределенной случайной величины, характеризующей количество детей в семьях с средним равным 3,34 и средним квад-ратическим отклонением 1,44.
Напомним, что эталоном этих величин являются нормальное распределение (рис. 1.5), для которого Ассиметрия равна нулю, а центральный момент четвертого порядка (1.5) равен трем.
Ассиметрия имеет отрицательное значение. Это означает, что гистограмма не симметрична по отношению к среднему значению выборки и имеет скос вправо, то есть количество семей имеющих менее трех детей больше, чем семей количество детей в которых больше трех.
Эксцесс тоже имеет отрицательное значение. То есть значение гистограммы в точке ниже аналогичного нормального распределения.
Математическая статистика статистические оценки
Имеется случайная величина , закон распределения которой известен и зависит от параметров . Требуется на основании наблюдаемых данных оценить значения этих параметров.
Числовые характеристики генеральной совокупности, как правило, неизвестны. Их называют параметрами генеральной совокупности (среднее, дисперсия, среднее квадратическое отклонение, доля признака генеральной совокупности объема ).
Из генеральной совокупности извлекается выборка объёма . По данным выборки рассчитывают числовые характеристики, которые называют статистиками (выборочное среднее, выборочная дисперсия и выборочное среднее квадратическое отклонение). Статистики, полученные по различным выборкам, могут отличаться друг от друга, поэтому они являются только оценками неизвестных параметров генеральной совокупности и обозначают .
Обозначим через выбранные значения наблюдаемой случайной величины (СВ) . Пусть на основе данных выборки получена статистика , которая является оценкой параметра . Наблюдаемые значения случайные величины, каждая из которых распределена по тому же закону, что и случайная величина . Поэтому тоже является величиной случайной, закон распределения которой зависит от распределения СВ и объема выборки . Для того, чтобы имела практическую ценность, она должна обладать свойствами несмещенности, состоятельности и эффективности.
Несмещенной называют оценку, для которой выполняется условие:
Состоятельной называется оценка, удовлетворяющая условию:
Для выполнения условия 2.2 достаточно, чтобы:
Эффективной считается оценка, которая при заданном объеме выборки имеет наименьшую возможную дисперсию.
Выборочная средняя является несмещенной и состоятельной оценкой генеральной средней и вычисляется по формуле (1.1).
Выборочная дисперсия найденная по формуле (1.2) является смещенной оценкой для дисперсии генеральной совокупности.
Вводится понятие исправленной выборочной дисперсии, которая является несмещенной оценкой генеральной дисперсии и вычисляется по формуле:
Исправленное выборочное средне квадратическое отклонение будет равно:
Теоретическое обоснование использования этих выборочных оценок для определения характеристик генеральной совокупности дают закон больших чисел и предельные теоремы.
Основные виды распределения и функции excel, позволяющие проводить статистическое оценивание
Чтобы построить модели статистических закономерностей возникает необходимость использовать известные виды распределения. Каждое распределение характеризует некоторую случайную величину — результат определенного вида испытаний. С функциями, задающими эти распределения, а также их параметрами можно познакомиться в любом учебнике по теории вероятностей. Выбранное распределение может рассматриваться только как теоретическое (генеральное), а результат опыта — как статистическое (выборочное) распределение. Последнее, в силу ограниченности числа наблюдений, будет лишь приближенно характеризовать теоретическое распределение.
По виду гистограммы и полученным числовым характеристикам выборки делается предположение о теоретическом виде распределения исследуемого признака. Если это удается, то можно найти оценки числовых характеристик и сделать выводы о параметрах генеральной совокупности. Если закон распределения не возможно установить, то подбирается кривая, наилучшим образом сглаживающая данные статистического ряда. Распределения делятся на дискретные и непрерывные.
Дискретные распределения описываются конечные набором чисел и соответствующими им частотами. Например, оценки, которые может получить студент на экзамене, описываются множеством (2, 3, 4, 5). Поэтому случайная величина -получить определенную оценку на экзамене будет иметь дискретное распределение
Непрерывные распределения описывают случайные величины с непрерывной областью значений. Для непрерывных распределений вероятность сопоставляется не с отдельным значением, а интервалом чисел. Непрерывные распределения в теории вероятностей задаются функцией плотности распределения , которую называют плотность вероятности или функцией распределения .
Площадь фигуры, ограниченной и прямыми , осью определяет вероятность попадания случайной величины в интервал , которую обозначим . Так как вероятность в точке для непрерывного распределения равна нулю, то имеет место равенство:
Нормальное распределение
Чаще других в статистических исследованиях применяется нормальное распределение. Теоретическим основанием к его применению служит центральная предельная теорема Ляпунова. Оно имеет два параметра: среднее (а) и стандартное отклонение . В дальнейшем будем использовать сокращенную запись для обозначения этого распределения .
Синтаксис функции:
Значение функции распределения случайной величины , распределенной по нормальному закону распределения, получится, если аргумент интегральная равен ИСТИНА (1). Если аргумент интегральная имеет значение ЛОЖЬ (0), то получите значение плотности вероятности нормального распределения .
Графики плотности распределения и функции распределения случайной величины построенные в Excel изображены на рис. 2.1.
Вероятность попадания случайной величины в интервал (с, d) определяется по формуле:
Если случайная величина нормально распределена и имеет среднее арифметическое равное нулю и среднее квадратическое отклонение равное единицы, то её называют стандартизованной а для вычисления вероятности попадания в интервал таких случайных величин в Excel существует функция:
которая возвращает интегральное стандартное распределение.
называют интегральной функцией Лапласа. Для ее вычисления созданы специальные таблицы.
При статистических исследованиях оценок довольно часто приходится решать обратную задачу: находить значение варианты по заданной вероятности. Для этого в Excel имеются обратные функции, позволяющие её решить: НОРМОБР (вероятность;) и НОРМСТОБР (вероятность).
Распределения, связанные с нормальным распределением
Несмотря на широкое распространение нормального распределения, в некоторых случаях при построении статистических моделей возникает необходимость в использовании других распределений. Приведем примеры некоторых функций в Excel.
Логнормальное распределение
Свидетельством близости распределения к логнормальному является значительная ассиметрия, обусловленная ограничением . Например, может использоваться для описания распределения доходов банковских вкладов, месячной заработной платы, посевных площадей и т.д.
Функция ЛОГНОРМРАСП(; среднее; стандартное откл) используется для анализа данных, которые были логарифмически преобразованы. Возвращает интегральное логарифмическое нормальное распределение для , где является нормально распределенным с параметрами среднее и стандартное откл.
Хи-квадрат распределение
Чаще всего это распределение используется для определения критического значения статистики с заданным уровнем значимости , для которого выполняется равенство
— значение, для которого требуется вычислить распределение, степени свободы — число слагаемых минус число линейных связей между элементами совокупности.
Если задано значение вероятности, то функция ХИ20БР позволяет найти значение , для которого справедливо равенство
В функции ХИ20БР для поиска применяется метод итераций. Если поиск не закончится после 100 итераций, функция возвращает сообщение об ошибке #Н/Д.
Распределение стьюдента t
Это распределение имеет важное значение для статистических выводов. Функция СТЬЮДРАСП возвращает вероятностную меру «хвостов» распределения. Её синтаксис:
— численное значение, для которого требуется вычислить распределение; степени свободы — целое, указывающее число степеней свободы; хвосты — число возвращаемых хвостов распределения.
Если «хвосты» = 1, то функция СТЬЮДРАСП возвращает одностороннее распределение (вероятность правого хвоста).
Если «хвосты» = 2, то функция СТЬЮДРАСП возвращает двухстороннее распределение.
При этом значение не должно быть отрицательным.
Так как функция симметричная относительно нуля, то справедливо следующие равенства:
Функция СТЬЮДРАСПОБР(вероятность; степени свободы) является обратной для распределения Стьюдента и соответствует положительному значению для которого задана вероятность суммы двух «хвостов».
РАСПРЕДЕЛЕНИЕ ФИШЕРА Эту функцию можно использовать, чтобы определить, имеют ли два множества данных различные степени разброса результатов. Например, можно проанализировать результаты тестирования старшеклассников и определить, различается ли разброс результатов для мальчиков и девочек.
— значение, для которого вычисляется функция; степени свободы1— число степеней свободы числителя; степенисвободы2—число степеней свободы знаменателя.
Обратное значение для -распределения вероятностей возвращает функция
Распределения дискретной случайной величины в excel биномиальное распределение
Распределение используется для моделирования случайной величины с конечным числом испытанной. В каждом испытании случайная величина может принимать только два значения: успех или неуспех (0 или 1). Вероятность успеха постоянна и не зависит от результатов других испытаний. Биномиальное распределение описывает общее число успехов при указанном числе испытаний. Данное распределение требует указать два параметра: число испытаний и вероятность успеха .
Пример с решением №2.1.
Группа из 20 студентов сдает экзамен. Вероятность сдать экзамен по данным прошлых лет равна 0,3. Отобрано 5 человек составьте закон распределения случайной величины — числа студентов, сдавших экзамен.
В ячейку В7 помещена функция БИНОМРАСЩА7; SBS1; $В$2; 0) (рис 2.3.). Скопируйте формулу для остальных ячеек столбца В, как показано на рис. 2.2. Чтобы получить данные столбца С надо в качестве аргумента интегральная поставить единицу.
С помощью функции БИНОМРАСП можно получить только вероятности равные числу успеха к (интегральная равна нулю) или не большие к (интегральная равна единицы). Для вычисления других вероятностей надо воспользуйтесь значениями столбцов и . Значения в столбцах находятся по формулам:
Для построение диаграммы биномиального распределения выделите ячейки В7:В12 и нажмите кнопку мастер диаграмм на стандартной панели инструментов. Отформатируйте её как показано на рис. 2.2.
В качестве обратной функции к БИНОМРАСП в Exccl рассматривается функция КРИТБИНОМ. Её синтаксис:
Гипергеометрическое распределение
Распределение возвращает вероятность заданного количества успехов в выборке, если заданы: размер выборки , количество успехов в генеральной совокупности и размер генеральной совокупности . Функция ГИПЕРГЕОМЕТ используется для задач с конечным числом элементов генеральной совокупностью, где каждое наблюдение — это успех или неудача, а каждое подмножество заданного размера () выбирается с вероятностью равной
Синтаксис:
ГИПЕРГЕОМЕТ (числоуспеховввыборке; размер выборки; числоуспеховвсовокупности; размерсовокумности)
Распределение Пуассона
Обычное применение распределения Пуассона состоит в предсказании количества событий, происходящих за определенное время, например: количество машин, появляющихся за 1 минуту на станции техобслуживания.
Синтаксис: ПУАССОН(; среднее; интегральная)
— количество событий.
среднее — ожидаемое численное значение.
интегральная — логическое значение, определяющее форму возвращаемого распределения вероятностей.
Если аргумент «интегральная» имеет значение ИСТИНА, то функция ПУАССОН возвращает интегральное распределение Пуассона, то есть вероятность того, что число случайных событий будет от 0 до включительно.
Если этот аргумент имеет значение ЛОЖЬ, то вычисляется значение функции плотности распределения Пуассона, то есть вероятность того, что событий появится равно раз.
Интервальные оценки
Величина оценки , найденная по выборке, является лишь приближенным значением неизвестного параметра . Вопрос о точности оценки в математической статистике устанавливается с помощью соотношения:
где — доверительная вероятность или надежность интервальной оценки (принимает значения 90%, 91%,…99%, 99,9%);
— предельная ошибка (точность) оценки. Для случайной величины, имеющей нормальное распределенние
Значение вычисляется с помощью функции Лапласа, если задано в условии по формуле .
Если стандартное отклонение находится по выборке, то рассматривают два случая:
1) используется функция Стьюдента:
2) используется функция Лапласа
Если раскрыть модуль в уравнении (2.7), то получим неравенство:
Числа называют доверительными границами, а интервал — доверительным интервалом или интервальной оценкой параметра .
Границы доверительного интервала симметричны относительно точечной оценки . Поэтому точность оценки . иногда называют половиной длины доверительного интервала.
Так как величина случайная, то границы доверительного интервала могут меняться, кроме того, они будут меняться с изменением доверительной вероятности, поэтому соотношение (2.7) следует читать так: «со статистической надежностью -100% доверительный интервал содержит параметр генеральной совокупности ».
Рассмотрим на примерах, как строятся доверительные интервалы для математического ожидания, дисперсии и среднего квадратического отклонения нормально распределенного количественного признака .
Доверительный интервал для математического ожидания с известной дисперсией
При построении доверительного интервала используется функция НОРМОБР для . Границы доверительного интервала можно определить из уравнений:
где называют уровнем значимости.
Пример с решением №2.2.
Спонсоры телевизионных программ хотят знать, сколько времени дети проводят за экраном телевизора. После опроса 100 человек оказалось, что среднее число часов в неделю соответствует 27,5 часов, а средне квадратическое отклонение равно 8,0 часов. Найдите 95% доверительный интервал для оценки среднего количества часов в неделю, которое дети проводят за просмотром телепередач
На основании исследований с 95% вероятностью можно утверждать, что за просмотром телевизора дети проводят от 25,93 до 28,65 часов. Формулы для вычисления приведены на рис 2.4.
Доверительный интервал для математического ожидания с неизвестной дисперсией
Как правило, дисперсия оцениваемого параметра является величиной неизвестной. Тогда находят исправленную выборочную дисперсию, а доверительный интервал строится с помощью -распределения (Стьюдента).
Функция СТЬЮДРАСПОБРО возвращает значение , для которого:
где — это случайная величина, соответствующая распределению Стьюдента и
Пример с решением №2.3.
Владелец таксопарка хочет спрогнозировать свои расходы на следующий год. Основной статьей расходов является покупка топлива. Так как бензин стоит дорого, владелец стал использовать газ. Были выбраны восемь такси, и оказалось, что число миль на галлон соответственно равно 28,1, 33,6, 41,1, 37,5, 27,6,36,8, 39,0 и 29,4. Оцените с доверительной вероятностью 95% средний пробег на один галлон газа для всех такси в парке, предполагая, что он распределен нормально.
После исследования оказалось, что средний пробег на один галлон для всех такси в парке находится между 29,71 и 38,81 миль на галлон. Формулы для вычисления приведены на рис.2.5.
Доверительный интервал для дисперсии и среднего квадратического отклонения
Рассмотрим нормально распределенную случайную величину, дисперсия которой неизвестна. По результатам наблюдений: можно определить среднее значение (1.1) и исправленную выборочную дисперсию (2.4).
Теперь с доверительной вероятностью определим половину длины доверительного интервала для которого выполняется условие:
Доверительный интервал для дисперсии запишется в виде неравенства:
Выборочня исправленная дисперсия несмещенная оценка генеральной дисперсии равна:
Так как — результаты независимых наблюдений нормально распределенной СВ, значит сумма квадратов
имеет распределение с степенью свободы. Выразив через и , получим:
Тогда уравнение 2.9 примет вид:
из которого доверительный интервал для :
С помощью функции ХИ20БР можно найти верхнюю и нижнюю границы и для :
Подставив найденные значения в уравнения:
получим верхнюю и нижнюю границы доверительного интервала для дисперсии:
Доверительный интервал для среднего выборочного значения а получится, если извлечь корень из каждой части предыдущего неравенства.
Доверительный интервал для доли признака генеральной совокупности
Проводится серия из испытаний, в каждом из которых наблюдается событие (событие может произойти или нет). Пусть событие произошло раз, тогда называют частотой появления события или выборочной долей признака.
Если вероятность с которой событие может произойти (называют генеральной долей распределения количественного признака) в каждом из испытаний, то частота является точечной несмещенной оценкой вероятности .
Зададим доверительную вероятность и найдем такие числа и для которых выполняется соотношение
Интервал является доверительным интервалом для , отвечающий надежности .
При большом числе испытаний Бернулли выборочная доля является нормально распределенной случайной величиной
где является дисперсией выборочной доли признака,
a её математическим ожиданием.
Тогда доверительный интервал генеральной доли признака можно найти, используя функцию Лапласа:
Откуда
Рассматривают два случая: большое количество проведенных испытаний и малое. В случае малого объема выборки найти и можно с помощью специальных таблиц распределения Бернулли.
Проверка статистических гипотез о числовых значениях параметров нормального распределения
Данные выборочных обследований часто являются основой для принятия одного из нескольких решений. При этом любое суждение о генеральной совокупности будет сопровождаться случайной погрешностью и поэтому может рассматриваться лишь как предположительное.
Под статистической гипотезой понимается всякое высказывание о виде неизвестного распределения, или параметрах генеральной совокупности известных распределений, или о равенстве параметров двух распределений, или о независимости выборок, которое можно проверить статистически, то есть опираясь на результаты случайных наблюдений.
Наиболее часто формулируются и проверяются гипотезы о числовых значениях параметров генеральной совокупности, подчиняющихся одному из известных законов распределения: нормальному, Стьюдента, Фишера и др.
Основные понятия статистической гипотезы
Подлежащая проверке гипотеза называется основной (нулевой) обозначают её . Содержание гипотезы записывается после двоеточия
Каждой основной гипотезе противопоставляется альтернативная (конкурирующая) гипотеза . Как правило, основной гипотезе можно противопоставить несколько альтернативных гипотез. Если выборочные данные противоречат гипотезе , то гипотеза отклоняется, в противном случае принимается.
Статистическая проверка гипотез, основанная на результатах выборки, связана с риском, принять ложное решение. Если по выборочным данным основная гипотеза отвергнута, в то время как для генеральной совокупности она справедлива, то говорят об ошибке первого рода. Вероятность допустить такую ошибку принято называть уровнем значимости и обозначать а (10%, 9%,… 1%).
Рассматривается и ошибка второго рода, когда основная гипотеза принимается, в действительности же верной оказывается альтернативная гипотеза. В таком случае говорят об ошибке второго рода, а вероятность допустить эту ошибку обозначают , величину 1- называют мощностью критерия.
Поскольку ошибки первого и второго рода исключить невозможно, то в каждом конкретном случае пытаются минимизировать потери от этих ошибок. Увеличение объема выборки является одним из таких путей.
Критерии проверки. Критическая область
Вывод о соответствии выборочных данных с проверяемой гипотезой делается на основе некоторого критерия. Критерий проверки гипотезы реализуют с помощью некоторой статистики (статистической характеристики определяемой по выборочным данным). Эту величину принято обозначать: — если она нормально распределена с , — если она нормально распределена с , — если она распределена по закону Стьюдента, — если она распределена по закону , — если она имеет распределение Фишера.
После выбора критерия множество всех его возможных значений разбивают на два непересекающихся подмножества. Одно содержит значения критерия, при которых нулевая гипотеза отклоняется, это множество значений называют критической областью. Другое, называют областью принятия гипотезы — содержит совокупность значений, при которых нулевая гипотеза принимается.
Вычисленное по выборке значение критерия () может принадлежать одному из этих множеств и в зависимости от этого нулевая гипотеза принимается, если принадлежит области принятия гипотезы и отвергается в противном случае. Точки, разделяющие эти две области, называют критическими и обозначают . Различают три вида критических областей: левосторонняя правосторонняя и двухсторонняя
Если попадает в критическую область, то надо говорят, что основная гипотеза отвергается в пользу альтернативной при заданном уровне значимости.
Общая схема проверки гипотезы
Проверка гипотезы с помощью уровня значимости.
- Формулируется нулевая гипотеза и альтернативная ей.
- Выбирается уровень значимости.
- Определяется критическая область и область принятия гипотезы.
- Выбирают критерий, и находят его расчетное значение по выборочным данным.
- Вычисляют критические точки.
- Принимается решение.
Другим способом проверки гипотезы является вывод р-значения (значения вероятности). В этом случае не указывается уровень значимости и не принимается решения об отбрасывании нулевой гипотезы. Вместо этого проверяем насколько правдоподобно, что полученная оценка соответствует значению генеральной совокупности. При левостороннем или правостороннем критерии рассчитываются вероятности попадания статистики 0 в критическую область. Если применяется двухсторонний критерий, то оценивается разность между выборочным средним и предполагаемым средним совокупности по модулю. Если р-значснис мало, то выборочное среднее значительно отличается от среднего совокупности.
Проверка гипотезы о математическом ожидании нормально распределенной (m0) случайной величины при известной дисперсии
Пусть генеральная совокупность имеет нормальное распределение, причем её математическое ожидание равно , а дисперсия равна . По выборочным данным найдено . Есть основания утверждать, что ?
На рис. 2.6. приведены возможные варианты проверки нулевой гипотезы. Результаты проверки включают в себя решение о принятии нулевой или альтернативной гипотез, основанные на уровне значимости альфа и р-значении.
Пример с решением №2.4.
Клиенты банка в среднем снимают со своего счета 100$ при среднем квадратическом отклонении = 50$. Если выплаты отдельным клиентам независимы, то, сколько денег должно быть зарезервировано в банке на выплаты клиентам, чтобы их хватило на 100 человек с вероятностью 0,95? Каков при этом будет остаток денег, гарантированный с той же надежностью, если для выплат зарезервировано 16000$?
На каждого клиента банк резервирует сумму в 160$. По выборочным данным эта сумма составляет 100$.
Проверим гипотезу, может ли банк снизить свои резервы, то есть основная гипотеза может быть записана
В качестве альтернативной гипотезы рассмотрим ситуацию: «банк сможет обеспечить клиентов, если расчетная сумма выплат для каждого клиента будет снижена до 100$», тогда
Принимается гипотеза (рис2.7)., что означает: банк может снизить сумму резервов до 10000$. Используя р-значения можно сделать вывод, если альтернативная гипотеза верна (в среднем клиент берет 100S и меньше), то с вероятностью 100%, случайная величина ( 100$, 50$).
С надежностью 95% можно гарантировать, что у банка имеется остаток более 6000$.
Проверка гипотезы о математическом ожидании при неизвестной дисперсии
Пусть генеральная совокупность имеет нормальное распределение, причем её дисперсия неизвестна. Данная ситуация более реалистична, чем предыдущая. Пусть есть основания утверждать, что .
По результатам выборки найдем и .Сформулируем основную гипотезу:
где — нормативное значение. Введем статистику:
которая имеет распределение Стьюдента с степенью свободы. Зададим уровень значимости альфа и найдем критическую область. На рис. 2.8 приведены формулы левостороннего, правостороннего или двухстороннего критериев проверки среднего выборки с использованием распределения Стьюдента.
Пример с решением №2.5.
Производитель выпускает стальные стержни. Для улучшения качества планируется внедрить новую технологию, которая получить стержни по средней прочности лучшие на излом. Текущий стандарт прочности на излом составлял 500 фунтов.
Характеристики прочности стержней, произведенных по новой технологии, представлены в D3:D14 рис. 2.9. сформулируем гипотезу об увеличении прочности стержней.
Если
Возьмем выборочное среднее и проверим правосторонний критерий. Результаты приведены на рис. 2.9.
Новая технология позволит улучшить среднюю прочность стержней. Так как , то можно с уверенностью сказать, что новая технология дает статистически существенные изменения показателя прочности на излом.
Построим сравнительные графики новой технологии и стандарта (рис2.10).
Большинство наблюдений превышает стандартную прочность излома стержней. Такая ситуация практически невозможна, если случайная величина имеет нормальное распределение со средним значением 500 фунтов следовательно по данным выборки можно предположить, что новая технология дает увеличение прочности.
Проверка гипотезы относительно доли признака
Рассматривается два основных типа задач:
1) сравнение выборочной доли признака с генеральной долей
Для проверки этой гипотезы используют статистику :
которая имеет нормальное распределение .
Критическое значение этой статистики можно найти по заданному уровню значимости с помощью функции НОРМСТОБР см. рис.2.6.
2) для сравнения долей признака двух выборок и выдвигается гипотеза: что две выборки из одной совокупности с долей признака , а полученное расхождение есть результат случайностей, сопровождаемых отбором.
Для больших выборок вводится статистика имеющая
Используют функцию НОРМРАСПОБР для поиска критического значения по уровню значимости альфа, и сравнивают с расчетным значением
Малые выборки ( — малые числа) не могут быть исследованы с помощью нормального распределения.
Оценка среднего по двум выборкам
При анализе экономических показателей довольно часто приходится сравнивать две генеральные совокупности. Например, можно сравнить два варианта инвестирования по размерам средних дивидендов, качество знаний студентов двух университетов — по среднему баллу на комплексном тестовом экзамене. Если дисперсии известны, то можно использовать Двухвыборочный z-тест для средних. Кроме этого существуют три варианта Двухвыборочный t-тестов. Эти три средства допускают следующие условия: равные дисперсии генерального распределения, дисперсии выборок не равны, а также представление двух выборок до и после наблюдения по одному и тому же субъекту.
Для запуска этих инструментов анализа данных надо выполнить действия меню Сервис/Анализ данных выберите из списка нужный вам пункт.
Для выполнения таких проверок инструментами анализа Excel требуется наличие двух выборок, оценка полагаемой разницы между средними значениями выборок и альфа — уровень значимости. Все перечисленные критерии предполагают, что рассматриваемые совокупности нормально распределены, и выборки получены случайно.
Случай равных дисперсий
Рассмотрим данный критерий на примере.
Пример с решением №4.1.
На заводе проводится эксперимент по оценке новой технологии сборки устройств. Рабочие делятся на две группы; одна обучается новой технологии, другая — стандартной. В конце обучения измеряется время (в минутах), необходимое рабочему для сборки устройства. Результаты приведены в диапазоне A L:В10 рис 4.1. Можно ли сделать вывод, исходя из данных выборок, что время сборки по новой технологии меньше, чем по стандартной.
На листе Exccl постройте графики для выборок Стандартная и Новая. Разброс (дисперсии равны) данных практически одинаковый, этот вывод можно сделать, изучив амплитуды колебания графиков (рис. 4.1). Маркеры графика Новая расположены ниже, поэтому можно предположить, что среднее время сбора устройств по новой технологии меньше.
Выдвигаем гипотезу: «Среднее время сборки по новой технологии не изменилось», . эту гипотезу можно записать в виде:
альтернативная гипотеза, утверждающая «Новая технология сокращает время сборки». Необходимо проверить левосторонний критерий для основной гипотезы.
В диалоговом окне Анализ данных и выберите Двухвыборочный t-тест с одинаковыми дисперсиями. Заполните поля, как показано на рис.3.2. и нажмите кнопку ОК. результат появится на листе Excel в диапазоне D4: F16, как на рис 3.3.
Описание полученных результатов сравнения средних двух выборок (рис.3.3).
Объединенная дисперсия — это взвешенное среднее выборочных дисперсий, со степенями свободы каждой дисперсии в качестве весов (8). Она является оценкой общей дисперсии двух выборок и используется для определения стандартной ошибки разности средних.
— число степеней свободы критерия (18-2).
-статистика вычисляется как отношение разности средних к стандартной ошибке.
одностороннее является односторонним -значением, если если то . Двухстороннее -значение равно удвоенному одностороннему -значению.
Найденное расчетное значение -статистика= 1,649 и -критическое равное 1,746 сравниваем с учетом, что рассматривалась правосторонняя критическая область, делаем вывод: « принимается». С 5% уровнем значимости мы не можем отвергнуть предположение о равенстве средних значений выборки.
Если бы рассматривалась левосторонняя гипотеза, то:
Можно построить доверительный интервал для разности средних значений выборок (результат в диапазоне Н3:18 рис. 3.4).
Среднее разности находится как разность ЕЗ — F3,
— статистика для разности равна критическому двухстороннему (Е14), стандартная ошибка найдена делением (13 -Е8)/ ЕЮ.
Половина длины равна произведению на стандартную ошибку.
Доверительный интервал для разности средних значений равен (-1,046; 8,379) с вероятностью 95%.
Случай разных дисперсий
В данном случае не предполагается равенство дисперсий выборок, но сохраняется требование их нормальности и независимости.
Для принятия решения в таких случаях надо использовать Двухвыборочный t-тест с различными дисперсиями.
Пример с решением №3.2.
Для производства нового продукта предлагается две схемы размещения рабочих. Шесть случайно отобранных рабочих собирают изделие по схеме А, а другие восемь — по схеме В. Время сборки записывается соответственно в столбец А и В рис 3.5. Можно ли сделать вывод с 5% уровнем значимости, что время сборки различаются в схемах, при условии, что они нормальные.
Построим диаграммы данных выборок и сравним среднее время сборки и разброс.
Сравнивая графики для схем и можно сделать вывод, что разброс данных в схеме больше, однако среднее время сборки меньше.
Выдвинем гипотезу: «Размещение рабочих не влияет на время сборки изделий:
В качестве альтернативной гипотезы выдвинем предположение: «время сборки изделий по схеме и не равны».
Для проверки этой гипотезы следует применить двухсторонний критерий. Инструкции по использованию -теста те же, что и в примере 4.1. Результаты применения критерия приведены на рис.3.6.
Сравнивая расчетное значение -статистики и -критическое двухстороннее можно сделать вывод, что принимается гипотеза , то есть размещение рабочих не влияет на время сборки изделий.
Используя -значение 0,180 (18%) можно сделать вывод, что с вероятностью 18% можно получить выборку со средним отличающимся на 1,6 мин в любом направлении. Доверительный интервал для разности средних составил (-4,138; 0,938).
Парный выборочный критерий
Критерий используется в случае, когда одна и та же группа наблюдается дважды. Обычно это происходит при измерении характеристик до и после эксперимента. Например, студенты могут тестироваться дважды до и после курса по некоторой дисциплине. Можно использовать критерий и для других естественных пар наблюдений.
Пример с решением №3.3.
Исследователь хочет определить, имеется ли разница в успешности автомобильных сделок при их проведении продавцами женского и мужского пола. Для этого были выбраны восемь продавщиц и определена комиссия, заработанная каждой в прошедшем году. Так как опытность влияет на размер комиссии, то исследователь записала и стаж работы для каждой из восьми женщин. Данные приведены в столбцах и рис. 3.7. Для проверки предположения были взяты продавцы с тем же стажем работы, что и женщины; значения комиссий мужчин приведены в столбце С рис.4.7. Можем ли мы с уровнем значимости 5% утверждать, что женщины имеют существенно другие показатели, по сравнению с продавцами мужчинами?
Нулевая гипотеза состоит в том, что разность средних совокупностей равна нулю. Однако по результатам выборок получено среднее значение разности и она равна 2,25 тыс. рублей. Тогда в качестве альтернативной гипотезы рассмотрим утверждение, что продавцы различных полов имеют различные показатели. Для проверки гипотез применим Двухвыборочных парный t-тест для средних. После его запуска в диапазоне F1 :Н 14 будут помещены результаты применения этого критерия. Они практически ничем не отличаются от предыдущих результатов (пример 4.1, пример 4.2), только в ячейке G7 содержится коэффициент корреляции.
Принимая решение, для данного теста мы вынуждены принять гипотезу о равенстве средних значений комиссии у продавцов мужчин и женщин. Об этом говорят значения и : -2,365<1,895<2,365.
В случае проверки с гипотезы с помощью -значения (=14%) можно с вероятностью 14% получить выборку с разностью меньшей чем -2,25 тыс. рублей или большей, чем 2,25 тыс. рублей.
В диапазоне J1:K7 представлены вычисления 95% доверительного интервала для разности средних выборок.
Анализ дисперсий
-распределение может быть использовано для проверки нулевой гипотезы о равенстве дисперсий двух выборок. Критерий предполагает, что выборки из генеральной совокупности независимы и нормально распределены.
Двухсторонний критерий применяется в случае, если альтернативная гипотеза состоит в том, что дисперсии выборок различны. Для этого составляется отношение дисперсий, которое сравнивается с единицей.
Если альтернативная гипотеза проверяет утверждение о том, что дисперсия одной выборки строго больше дисперсии другой выборки, применяется односторонний критерий.
Напомним, что заданный уровень значимости альфа для двухстороннего критерия делится пополам.
В примере 3.2. проверялась гипотеза о равенстве средних значений выборок, представляющих две схемы размещения рабочих мест. При этом предполагалось, что дисперсии этих выборок не равны. Воспользуемся данными этого примера и проверим гипотезу о равенстве дисперсий. Применим двухсторонний тест для 10% уровня значимости (5% на каждый хвост распределения) для проверки нулевой гипотезы о равенстве дисперсий. В качестве альтернативной гипотезы рассматривается утверждение, что дисперсии не равны. На рис. 4.1. приведены данные -теста. Значение -статистики записано в ячейке Е8 и равно 3,060. в ячейке Е9 приведены данные р-значения, которое является правосторонней вероятностью получить значение большее или равное -статистики. Критическое значение для правосторонней области находится в ячейке ЕЮ и равно 3,972. такое же значение будет иметь правая граница двухсторонней области с уровнем значимости 10%. На рис. 4.1. в столбце I найдено критическое значение для левой границы. Так как =3,060 меньше =3,972, мы не можем отвергнуть нулевую гипотезу равенства дисперсий.
Можно не использовать двухвыборочный -тест для проверки гипотезы о равенстве дисперсий, а воспользоваться функцией FPACTIOBP, которая имеет синтаксис РРАСПОБР(всроятность;степенисвоб1; степенисвоб2), т.е.
Значение статистики тоже легко находится с использованием встроенных функций Excel.
Критерий хи-квадрат (критерий согласия)
Этот критерий используют для проверки гипотезы о виде распределения выборки. Её проверка состоит в том, чтобы на основе сравнения фактических и теоретических частот сделать вывод о соответствии фактического распределения аредполагаемому. В критерии используется статистика:
где — число групп, на которое разбито распределение;
— теоретическая частота, рассчитанная по предполагаемому распределению;
— наблюдаемая (фактическая) частота признака в -той группе.
Статистика 6.1 подчиняется ХИ-квадрат распределению с степенями свободы, где — число параметров генерального распределения, вычисляемых по выборочным данным. В таблице 6.1. указывается значение для основных видов распределения.
В некоторых случаях сравнение может проводиться с заранее данным распределением, или с распределением у которого часть параметров указана (а не рассчитывается по выборочным данным). В этом случае число к (параметров генерального распределения) уменьшается.
Для применения критерия ХИ-квадрат требуется выполнение условий:
- экспериментальные данные должны быть независимыми;
- объем выборки должен быть достаточно большим (не менее 50);
- частота в каждой группе должна быть не менее 5. Если это условие не выполняется, то проводят объединение малочисленных интервалов, при этом частоты объединенных интервалов суммируются.
При полном совпадении теоретического и фактического распределений , в противном случае . Проверка гипотезы о равенстве распределений осуществляется с помощью
которое находится по заданному уровню значимости. Гипотеза принимается, если , в противном случае отвергается
Основанием для выдвижения гипотезы о виде распределения генеральной совокупности могут служить:
- формальные свойства числовых характеристик выборочных данных:
a. равенство нулю ассиметрии и эксцесса является признаком нормального распределения;
b. дисперсия и среднее значение выборки равны является признаком распределения Пуассона и т.д;
- графический анализ выборочных данных: полигон, гистограмма, функция накопленных частот их сравнение с теоретическими функциями известных распределений.
Если статистический ряд не является интервальным, то его данные подвергаются группировке и представляются в виде q интервалов равной длины. Далее находят количество вариант, попавших в каждый частичный интервал. Если значения статистического ряда являются равноотстоящими вариантами с заданными частотами, то данные можно и не группировать.
Проверка гипотезы о нормальном распределении генеральной совокупности
В предыдущих примерах мы пользовались тем, что значения выборки распределены по нормальному закону распределения. Рассмотрим применение критерия согласия, проверяющего справедливость гипотезы о наличии нормального распределения в совокупности на примере.
Пример с решением №5.1.
Чтобы установить гарантийный срок на товар, производитель хочет проверить является ли срок службы выпускаемого товара нормально распределенным. Случайным образом отобранные 200 единиц товара при проверке распределились следующим образом по количеству отработанных часов:
Запишем нулевую и альтернативную гипотезы:
: Совокупность сроков службы нормально распределена.
: Совокупность сроков службы имеет другое распределение.
Проверку будем проводить с помощью встроенных функций Excel. Для этого внесем данные, как показано на рис. 5.1 в ячейки А7:В11.
ШАГ 1. Найдите среднее значение и дисперсию интервального ряда по формулам 1.1 и 1.2. Для этого в ячейки D15:D19 занесите середины интервалов. Середина первого интервала определяется по формуле:
где пять половина длины следующего интервала. Аналогично вычисляется середина последнего интервала, только учитывается половина длины предшествующего интервала. В диапазон Е15:Е19 скопируйте фактические частоты. В ячейку Е20 запишите формулу: =СУММ(Е15:Е19).
В ячейку F15 поместите произведениех^ =D15*E15 и скопируйте в остальные ячейки диапазона F15:F 19. Теперь можете воспользоваться формулой 1.1 для определения среднего, значение которого поместите в ячейку В4.
Дисперсию найдите самостоятельно, для этого лучше воспользоваться формулой:
Сначала выполните следующие действия в ячейках G 15:G19 найдите , а в Н15:Н 19 — . Результаты оформите как показано в таблице 6.2: В ячейке С4 (рис.6.1) находится среднее квадратическое отклонение, которое определяется по формуле 1.3
ШАГ 2. В столбце «Вероятность» (рис.5.1) находится вероятность попадания случайной величины в соответствующий интервал. Для вычисления этих значений использовалась функция НОРМРАСП. Для первого интервала левым концом является минус бесконечность, поэтому в ячейку С8 запишите формулу:
Для последнего интервала находим
поэтому вычисление проводится по формуле:
Для вычисления вероятности попадания в интервал воспользуйтесь формулой 2.6:
ШАГ 3. Диапазон «Ожидаемая частота» вычисляется как произведение соответствующих значений столбца «Вероятность» на объем выборки (200). ШАГ 4. Столбец представляет собой слагаемые формулы 6.1, вычисляемые по формуле:
В примере рассматривается пять интервалов, а количество параметров предполагаемого распределения два (среднее и стандартное отклонение) рассчитывается по выборке, поэтому число степеней свободы (СС) равно двум (5-2-1=2). В ячейки А14:В19 введите формулы согласно рис. 5.2.
В ячейке В19 делается вывод, что распределение часов работы, выпускаемого товара нормальное, это же подтверждает и р-значение.
Проверка гипотезы о распределении генеральной совокупности но закону Пуассона
Параметром этого распределения является -среднее значение. Поэтому по выборочным данным надо найти и взять его в качестве оценки параметра . Напомним, что дискретная случайная величина, имеющая распределение Пуассона, может принимать неотрицательные целые значения. Рассмотрим использование критерия Хи-квадрат для проверки гипотезы о распределении случайной величины по закону Пуассона на примере.
Пример с решением №5.2.
Проведено наблюдение за числом вызовов такси в праздничные дни. Для этого анализировалось 100 случайно выбранных одно минутных интервалов времени. Число вызовов такси в минуту распределилось следующим образом:
Проверить, используя критерий Хи-квадрат, гипотезу о том, что число вызовов согласуется с законом Пуассона с уровнем значимости .
ШАГ 1. Внесите данные на лист Excel и найдите теоретические частоты (диапазон D2:D7), как показано на рис 5.3.
ШАГ2. Найдите слагаемые формулы 5.1. Для этого скопируйте значения фактических и теоретических частот, как показано на рис. 5.4, в ячейку С12 запишите формулу:
Можно сделать вывод о том, что число вызовов такси в праздничные дни имеет распределение Пуассона.
Проверка гипотезы о распределении генеральной совокупности но равномерному закону
Пусть случайная величина распределена равномерно на отрезке выборочные данные сгруппируйте по частичным интервалам одинаковой длины и найдите соответствующие частоты. Для каждого интервала вычислите вероятность попадания , а затем теоретические частоты по формуле пр,.
Пример с решением №6.3.
На рис.6.5 приведена частота появление на остановке автобусов определенного маршрута, имеющих интервал движения, пять минут . Проверьте гипотезу о равномерном законе распределения.
При проверке гипотезы, так же как и в случае нормального распределения найдено критическое значение (рис. 5.2) и р-значение, которое характеризует вероятность выполнения гипотезы : можно утверждать, что она выполняется для 90% выборочных данных. В ячейке В15 сделан вывод о том, что гипотеза о равномерном распределении движения автобусов принимается.
Проверка гипотезы о распределении генеральной совокупности но показательному закону
Как и в предыдущих проверках, выборочные данные сгруппируйте и запишите в виде последовательности частичных интервалов и соответствующих им частот. Найдите выборочное среднее значение . Параметр показательного распределения (таблица 6.1) замените оценкой:
Вероятности попадания случайной величины в интервалы определите с помощью функции ЭКСПРАСП.
Выполните расчеты как показано на рис. 5.6. Столбцы Е, F заполните как в примере 5.1. В столбце вероятность:
В ячейку D4 запишите =ЭКСПРАСП(В4;$Р$19;1);
В ячейку D5 поместите =ЭКСПРАСП(В5;$Р$ 19; 1 )-ЭКСГ1РАСП(A5;$F$ 19; 1), скопируйте её в остальные ячейки столбца D.
Сравнивая критическое и расчетное значение статистики ХИ-квадрат при 5% уровне значимости, можно сделать вывод, что нет оснований отвергать гипотезу можно считать данные выборки (рис 5.6) распределены по показательному (экспоненциальному) закону распределения.
Проверка гипотезы о распределении генеральной совокупности но биномиальному закону распределения
Пример с решением №5.4.
В библиотеке отобрано 200 партий по пять книг для обучения студентов в семестре. Каждому студенту было предложено заполнить опросный лист числа повреждений в книге. В итоге был получен вариационный ряд:
При уровне значимости 5% проверьте гипотезу о биномиальном распределении числа повреждений в книгах.
Биномиальное распределение имеет один неизвестный параметр — , который надо оценить по выборочным данным. Проведем все расчеты в Excel (рис. 5.7).
Выделенные ячейки следует объединить в одну группу, тогда количество рассматриваемых интервалов равно четырем.
Относительная частота находится по формуле
Прежде чем перейти к столбцу вероятность найдите оценку параметра , используя формулы рис. 5.8.
Столбец вероятность заполните с помощью формул :
Остальные ячейки заполняем, копируя полученную формулу.
Вывод: можно считать число повреждений в книге подчиняется биномиальному закону распределения.
Использование статистики ХИ-квадрат для изучения зависимостей двух переменных
Одним из приложений критерия является его использование при анализе таблиц сопряженности двух переменных для установления факта наличия и уровня значимости их взаимосвязи. Для этого выдвигается нулевая гипотеза: связи между рассматриваемыми переменными нет, в противном случае связь между переменными существует с уровнем значимости альфа.
Пример с решением №5.5.
Компания продает четыре сорта колы в Москве. Чтобы определить, будет ли успешным тот же способ распространения в Ростове и Краснодаре, фирма анализирует связь между предпочтениями и городом потребителя. Аналитик распределяет покупателей на четыре класса по предпочтениям сортов колы: обычная, без кофеина и сахара, только без кофеина, только без сахара. Опрашивают 250 случайно выбранных потребителей колы из трех городов и записывают их предпочтения. В результате получается таблица частот.
Так как аналитик определяет связь между городом и предпочтением определенного вида колы, то нулевая и альтернативная гипотезы следующие: : Классификации статистически независимы.
Классификации зависимы.
На лист Excel поместим данные о распространении сортов кофе в диапазон В5:Е7 (рис 6.8). Расчет ожидаемых частот проводится в предположении, что нулевая гипотеза выполняется, то есть переменные независимые, а значит вероятность их произведения равна произведению вероятностей каждой их них. Поэтому таблица ожидаемых частот строится по формуле:
Ожидаемые частоты поместите в диапазон В12:Е 14. Для их вычисления, воспользуйтесь смешанной и абсолютной ссылками на ячейки сумма по строке, сумма по столбцу, общая сумма. Результаты вычисления приведены на рис. 6.9.
Для сравнения ожидаемых и фактических частот воспользуемся ХИ2ТЕСТОМ (рис. 5.8). В ячейку В17 внесите формулу:
Получите р-значение равное 0,00000013, которое определяет вероятность выполнения нулевой гипотезы. Можно сделать вывод, что нулевая гипотеза отвергается, то есть люди из разных городов предпочитают различные сорта колы.
Проверим эту же гипотезу с помощью статистики ХИ-квадрат. Слагаемые формулы 6.1 найдем с помощью Фактических и Ожидаемых частот. Для этого в ячейку В21 введите формулу:
и скопируйте её для всего диапазона B21:F23 (рис.5.9).
- Сумму слагаемых ХИ-квадрат поместите в ячейку В25 (рис.5.9).
- В ячейке В27 задайте уровень значимости (альфа равно 0,01).
- Число степеней свободы (СС) найдите по формуле:
- Критическое значение (В29) найдем с помощью
- В ячейку ВЗО помести функцию:
Так как ХИ-квадрат больше критического значения, то принимается гипотеза .
Критерии Колмогорова-Смирнова
Этот критерий является альтернативой критерию ХИ-квадрат. Его применение не требует вычисления ожидаемых частот и может использоваться для малых выборок. Данные должны представлять случайную выборку и обязательно должна быть сформулирована гипотеза о распределении генеральной совокупности. Нулевая гипотеза утверждает, что генеральная совокупность имеет выбранное распределение с определенным уровнем значимости.
Применение критерия Колмогорова-Смирнова основано на оценке разности функции накопленных частот и функции распределения , найденной в предположении, что нулевая гипотеза верна. Статистика критерия вычисляется по формуле:
где — функция накопленных частот для -того значения или интервала; — функция распределения в точке .
Если D больше критического значения, взятого из таблицы соответствующего критерия для объема выборки п и уровня значимости , то нулевая гипотеза отклоняется. В противном случае нулевая гипотеза принимается. Для большого объема выборки используется предельное распределение критерия.
Если необходимо проверить нулевую гипотезу о принадлежности двух выборок (объема и ) одной и той же генеральной совокупности, то строится статистика:
где — функции накопленных частот, построенные по первой и второй выборкам соответственно;
Статистика сравнивается с критическим значением значения которой находятся по таблице критических точек распределения Колмогорова:
Пример с решением №6.1.
Получена случайная выборка о среднем дневном заработке, руб/день, для пяти работников: 288, 231, 249, 146, 291. можно ли считать на 10% уровне значимости, что выборка проведена из нормально распределенной генеральной совокупности со средним значением
: выборка взята из нормально распределенной генеральной совокупности с
нет оснований утверждать, что выборка взята из нормально распределенной генеральной совокупности с . Вычисления проведем в Excel, как показано на рис.6.1.
ШАГ 1. Заполните диапазон А5:А9 выборочными данными и отсортируйте их по возрастанию.
ШАГ 2. Найдите относительные частоты для перечисленных вариант и поместите их в столбец В.
ШАГ 3. Для определения значений функции накопленных частот в ячейку С5 внесите формулу: = В5, в ячейку С6 запишите: =С5+В6 и скопируйте её для ячеек диапазона С7:С9.
ШАГ 3. Для заполнения столбца D, внесите в ячейку D5 формулу:
и скопируйте её на остальные ячейки диапазона D6: D9.
ШАГ 4. В ячейку Е5 внесите формулу: =ABS(C5-D5) и скопируйте для остальных ячеек диапазона Е5:Е9
ШАГ 5. Найдите максимальное значение статистики D и сравните с критическим, взятым из таблицы при уровне значимости 10% и числе степеней свободы равном пяти. Сравнивая эти можно сделать вывод, что выборка взята из нормально распределенной генеральной совокупности с
Линейная регрессия и корреляция
Регрессия и корреляция широко используется при анализе связей между явлениями. Прежде всего, в экономике — исследование зависимости объемов производства от целого ряда факторов: размера основных фондов, обеспеченности предприятия квалифицированным персоналом и других; зависимости спроса или потребления населения от уровня дохода, цен на товары и т.д. Экономические показатели являются многомерными случайными величинами.
В большинстве случаев между переменными, характеризующими экономические величины, существуют зависимости, отличающиеся от функциональных. Она возникает, когда один из факторов зависит не только от другого, но и от ряда случайных условий, оказывающих влияние на один или оба фактора. В этом случае ее называют стохастической (корреляционной) и говорят, что переменные коррелируют. Виды стохастических связей между факторами могут быть линейными и нелинейными, положительными или отрицательными. Возможна такая ситуация, когда между факторами невозможно установить какую-либо зависимость.
Однако при изучении влияния одного явления на другое удобно работать именно с функциями, связывающими эти явления. Задачи построения функциональной зависимости между факторами, анализа полученных результатов и прогнозирования решаются с помощью регрессионного анализа.
В пособии приводятся решения задач содержащих небольшое количество данных, для того чтобы пользователь мог быстро ввести значения в таблицу Excel. Каждое решение содержит подробную инструкцию. Сначала рассмотрите пример и проверьте результаты. Затем примените пошаговые инструкции к собственному множеству данных.
Корреляционная зависимость
Для изучения зависимости между двумя числовыми переменными ( и ) сначала строят графики рассеяния. В Excel данный вид графиков называется точечной диаграммой. Используя графическое представление, можно сделать вывод о корреляционной зависимости или независимости рассматриваемых данных. Если в массиве данных присутствуют «выбросы», то их следует исключить из рассмотрения, если это возможно сделать, или усреднить, используя соседние элементы.
Теперь можно выдвинуть предположение о существовании линейной или нелинейной зависимости между переменными. Для этого найдите коэффициент корреляции и проверьте его значимость.
Тесноту линейной зависимости изучаемых явлений оценивает линейный коэффициент парной корреляции :
где обозначают смешенный момент второго порядка (1.5), который называется ковариацией.
Ковариация является мерой взаимосвязи случайных величин и может служить для определения направления их изменения:
если , то случайные величины изменяются в одном направлении;
если , то случайные величины изменяются в разных направлениях.
Очевидными свойствами ковариации являются:
Коэффициент корреляции (1.1) является величиной безразмерной. Случайные величины и называют некоррелированными, если (отсутствует линейная зависимость между и ), в противном случаем можно говорить о линейной зависимости между величинами и , а величины называю коррелированными. Свойства коэффициента корреляции:
В пакете Анализ данных есть инструменты Ковариации и Корреляция, позволяющие сделать вывод о линейной зависимости случайных величин.
Пример с решением №7.1.
Для анализа зависимости объема потребления (у.е.) хозяйств от располагаемого ежемесячного дохода (у.е.) отобрана выборка , представленная таблицей.
Постройте график рассеяния и сделайте вывод о виде функциональной зависимости между объемом потребления и ежемесячным доходом в семье.
Инструкции по выполнению задания
- Расположите данные в столбцах таблицы так, чтобы значения х были слева, а у справа (рис. 1.1).
- Выделите диапазон ячеек.
- Щелкните мышью по кнопке Мастер диаграмм и выберите тип Точечная. Для форматирования диаграммы удобно использовать контекстное меню, которое вызывается щелчком правой кнопки мыши на форматируемом объекте.
- Дайте название диаграмме Корреляционное поле.
- Расположите диаграмму на листе, содержащем данные, как показано на рис.
Применим встроенную функцию КОРРЕЛ(диапазон ; диапазон) для установления линейной зависимости между переменными (рис. 1.1). Найденный коэффициент корреляции 0,99 свидетельствует о сильной линейной зависимости между объёмом потребления и уровнем доходов в семье.
Проверим значимость коэффициента корреляции. Для этого сформулируем основную и альтернативную гипотезы:
: , коэффициент незначимый;
, коэффициент значимый.
Для проверки гипотезы воспользуемся -критерием и уровнем значимости 5%,
Сравнивая эти значения, сделаем вывод о том, что основная гипотеза отклоняется в пользу альтернативной, т.е. коэффициент корреляции значим. По расположению точек на рис. 1.1 можно предположить, что между и существует линейная зависимость:
Корреляционный анализ данных
При выполнении многомерного анализа данных изучают корреляцию между каждой парой переменных. Эти результаты представляют в виде корреляционной матрицы. Инструмент анализа Корреляция позволяет определить парные корреляции для многих переменных. После его запуска получится нижняя треугольная часть матрицы, на диагонали которой будут стоять единицы . Верхняя часть матрицы является зеркальным отражением нижней ее части, поскольку .
Если надо изучить зависимость между переменными при условии управления одной или несколькими переменными, то находят коэффициенты частной корреляции. Частные коэффициенты корреляции могут оказаться полезными при определении ложных связей.
Например, изучается зависимость . Коэффициенты парной корреляции между и высокие, однако зависимость будет считаться ложной, если линейно зависит от . Если исключить влияние переменной , то корреляционная зависимость между и может исчезнуть,
Надо найти частные коэффициенты корреляции, т.е. элиминировать один из факторов (устранить его влияние). В случае трех факторов корреляцию между и при элиминированном факторе можно найти по формуле:
Подобным образом находят и остальные коэффициенты частной корреляции.
Пример с решением №7.2.
Формируется три портфеля из десяти акций. Первый состоит из 10 акций вида , второй содержит по 5 акций и ; а третий включает 5 акций вида , 3 вида и 2 вида . Данные о прибыли по каждому виду акций за десять месяцев представлены на рис 1.3.
Имеется ли зависимость между акциями , и ? Отличаются ли данные портфели по доходности и риску?
Инструкции по выполнению задания
- Введите данные в ячейки A1: C11, как показано на рис. 1.2.
- В меню сервис выберите Анализ данных / инструмент Корреляция. Заполните поля диалогового окна, как показано на рис. 1.3. и нажмите ОК.
- Аналогично найдите матрицу парных ковариаций.
Описание результатов
Коэффициенты корреляции не очень высокие:
Акции плохо коррелируют между собой, то есть между дивидендами по акциям существует слабая линейная зависимость.
Так как коэффициент ковариации для дивидендов по акциям и отрицательный, то прибыль по ним будет изменяться в разных направлениях (при увеличении дивидендов по акциям дивиденды по акциям будут уменьшаться). Правда, эти изменения не очень велики, около 10%.
Если рынок ценных бумаг устойчивый, то желательно исключить акции вида из портфеля, так как наибольшая, а значит риск в их вложение высокий.
Акции и коррелируют слабо , поэтому есть основания считать, что вложение капитала в равных долях в эти акции будет наименее рискованным. Для более правильного вывода надо вычислить дисперсии для каждого портфеля и сравнить их.
Дисперсии для первого портфеля :
Для второго:
Третий портфель имеет дисперсию:
Вывод: наименьший риск получается при покупке акций и в равных долях.
Чтобы принять окончательное решение надо построить множество Парето, характеризующее зависимость доходности портфеля от его риска, т.е. математического ожидания и дисперсии:
Построение тренда для двух рядов данных
Задача построения функциональной зависимости может быть выполнена с помощью команды Добавить линию тренда. В этом случае необходимо визуально исследовать зависимость между х и у и выбрать график элементарной функции, который даст лучшее приближение к экспериментальным данным. Форматирование графиков выполняется с помощью меню Диаграмма. Напомним, что форматируемый объект должен быть выделен.
Существуют и другие способы форматирования: контекстное меню — вызывается для объекта с помощью правой клавиши мыши.
Прежде всего, надо исследовать корреляционное поле и сделать вывод о характере зависимости между переменными. Затем выполните действия (тренд построен для данных примера 1.1):
- На диаграмме (рис. 1.1) выделите маркеры, щелкнув по любой из точек данных.
- В меню диаграмма выберите Добавить линию тренда (можно воспользоваться контекстным меню).
- Перейдите на вкладку Тип диалогового окна Линия тренда, как показано на рис. 1.5 и выделите пиктограмму Линейный.
- Откройте вкладку Параметры (рис. 1.6) включите опции Показывать уравнение на диаграмме и Поместить на диаграмму величину достоверности аппроксимации .
На вкладке параметры имеются и другие типы функциональных зависимостей. Предлагается самостоятельно построить остальные виды тренда и записать их уравнения. Не забывайте включать опции из пункт 4, приведенной выше инструкции.
Инструмент анализа регрессия
Дает возможность провести более полный анализ, полученного уравнения линейного тренда с использованием методов математической статистики.
Коэффициенты уравнения линейной регрессии находятся по выборочным данным и являются величинами случайными, поэтому надо провести анализ их значимости (значимости). Надо определить значимость всего уравнения регрессии и самое главное построить прогноз по построенному уравнению, а затем провести его оценку значимости.
При построении линейного тренда предполагается, что линейная модель наилучшим образом характеризует зависимость между и :
где и параметры модели; — случайная величина (возмущение), характеризующая влияние неучтенных факторов.
Уравнение прямой (1.2), коэффициенты которого находят по выборочным данным, называют уравнением регрессии и обозначают :
Коэффициенты регрессии и находят по методу наименьших квадратов. Они являются только оценками параметров модели (соответственно и ). Для получения наилучших оценок необходимо, чтобы выполнялся ряд предпосылок относительно случайного отклонения
индекс означает значение факторов в одноименном испытании. Это условия Гаусса-Маркова (Приложение 1), а так же предположения:
• случайные отклонения имеют нормальный закон распределения;
• отсутствуют ошибки спецификации;
• число наблюдений достаточно большое: как минимум в шесть раз превышает число объясняющих факторов и другие.
Оценку называют коэффициентом регрессии. Ее значение показывает среднее изменение результата у с изменением фактора х на одну единицу.
Можно установить зависимость между коэффициентом регрессии и коэффициентом корреляции:
В качестве меры рассеивания фактического значения у относительно теоретического значения (находится по уравнению регрессии) используется стандартная ошибка уравнения регрессии, которая определяется по формуле:
Оценка качества полученного уравнения регрессии содержит следующие пункты:
- Оценка значимости коэффициентов регрессии;
- Построение доверительных интервалов для каждого коэффициента;
- Оценка значимости всего уравнения регрессии;
- Построение прогнозного значения и доверительного интервала к ним. Для определения статистической значимости коэффициентов регрессии и корреляции необходимо рассчитать -статистики Стьюдента лучше всего это сделать с помощью встроенной функции СТЬДРАСПОБР [1].
Оценка значимости коэффициентов регрессии и корреляции
Устанавливает надежность полученных результатов. Случайные ошибки коэффициента корреляции и оценок параметров линейной модели вычисляются по формулам:
стандартное отклонение коэффициента .
стандартное отклонение коэффициента .
стандартное отклонение коэффициента корреляции.
Любое стандартное отклонение иногда называют стандартной ошибкой соответствующего коэффициента.
Рассматривается основная гипотеза о равенстве параметров регрессии нулю.
— коэффициент незначим; — коэффициент значимый По выборке находят-статистики :
Критическое значение для -статистик находят с помощью распределения Стьюдента. Для этого надо знать объем выборки и задать уровень значимости . Например, для
Выдвинутая гипотеза:
Часто при проверке качества коэффициентов используют «грубое правило»:
• если то коэффициент статистически незначим;
• если , то коэффициент относительно слабо значим, рекомендуется воспользоваться таблицей критических точек распределения Стьюдента;
• если , то коэффициент значим (это утверждение считается гарантированным при );
• если , то коэффициент считается сильно значимым (вероятность ошибки при достаточном числе наблюдений не превосходит 0,001).
Каждая оценка дополняется доверительным интервалом. Для этого определяют предельную ошибку [1] для каждого коэффициента:
откуда границы доверительных интервалов находятся по формуле:
Коэффициент детерминации для парной регрессии совпадает с квадратом коэффициента корреляции и характеризует долю дисперсии результативного признака , объясняемую регрессией в общей дисперсии результативного при-знака. Соответственно величина характеризует долю дисперсии у, вызванную влиянием неучтенных факторов в общей дисперсии признака .
Разделив обе части уравнения на общую сумму квадратов отклонений, получим:
Таким образом, коэффициент детерминации является мерой, позволяющей определить, в какой степени найденная прямая регрессии дает лучший результат для объяснения поведения зависимой переменной , чем горизонтальная прямая . Очевидно, что . Откуда следует, что чем ближе он к единице, тем больше уравнение регрессии объясняет поведение фактических значений . Поэтому хотелось бы стремятся построить регрессию с наибольшим значением .
Корень квадратный из коэффициента детерминации называется индексом корреляции и обозначают .
Для проверки общего качества уравнения регрессии выдвигается предположение, что коэффициенты и одновременно равны нулю, тогда уравнение считают незначимым, в противном случае значимым. Данная гипотеза проверяется на основе дисперсионного анализа, при этом сравниваются объясненная и остаточная дисперсии:
— уравнение незначимо,
— уравнение значимо. Строится -статистика:
При выполнении условий МНК статистика имеет распределение Фишера с числом степеней свободы . При уровне значимости находят критичекую точку с помощью функции FHOBP и сравнивают его с наблюдаемым значением . Так как рассматриваемая гипотеза правосторонняя [1], то:
■ если то гипотеза отклоняется в пользу что означает объясненная дисперсия существенно больше остаточной, следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной от объясняющей.
■ если , то гипотеза принимается, т.е. объясненная дисперсия соизмерима с остаточной дисперсией, вызванной случайными факторами. Это позволяет считать влияние объясняющих переменных модели несущественным, а следовательно, общее качество уравнения регрессии невысоким.
В случае линейной регрессии проверка нулевой гипотезы для -статистики равносильна проверке нулевой гипотезы для -статистики для коэффициента корреляции:
Можно доказать равенство:
Самостоятельную значимость коэффициент приобретает в случае множественной регрессии.
Поиск прогнозного значения и его оценка
Прогнозное значение определяется, если в уравнение регрессии подставить значение :
Границы доверительного интервала для параметра будут равны:
Чтобы найти стандартную ошибку прогнозного значения можно использовать два подхода: либо рассматривать параметр как отдельное значение переменной ; или разброс найти как условное среднее значение при известном значении .
Доверительный интервал для отдельного значения учитывает источники рассеяния: для коэффициентов регрессии (1.5, 1.6) и всего уравнения регрессии (1.4). В этом случае стандартная ошибка прогноза вычисляется по формуле:
Доверительный интервал для условного среднего не учитывает дисперсию для всего уравнения регрессии (1.4), поэтому формула для вычисления ошибки прогноза имеет вид:
Пример с решением №7.3.
Воспользуемся данными примера 1.1 для выполнения следующих заданий:
- по данным выборок постройте линейную модель ;
a. оценить параметры уравнения регрессии ;
b. оценить статистическую значимость коэффициентов регрессии;
c. оценить силу линейной зависимости между и ;
d. спрогнозируйте потребление при доходе .
- постройте модель, не содержащую свободный член .
a. найдите коэффициент регрессии ,
b. оценить статистическую значимость коэффициента ;
c. оценить силу общее качество уравнения регрессии;
- значимо или нет различаются коэффициенты на?
- какую модель вы выбираете?
Инструкции для выполнения примера с помощью инструмента Регрессия пакета анализ.
Для задания 1.
- Наберите исходные данные на лист Excel, как и раньше по столбцам (рис 1.1).
- Найдите инструмент Регрессия в пакете Анализ данных и нажмите ОК. появится диалоговое окно (рис. 1.8)
- Входной интервал : введите ссылки на значения переменной , включая метки диапазона.
- Входной интервал : введите ссылки на значения переменной , включая метки диапазона.
- Включите опцию Метки.
- Включите опцию Уровень надежности и введите в поле значение 98.
- Установите параметр вывода результатов, имя ячейки.
- Включите опцию вывод остатков для получения теоретических значений .
- Нажмите ОК.
- Появятся итоговые результаты (рис 1.9).
- Выделите диапазон Вывод остатков и перенесите его, как показано на рис. 1.9.
Все оценки по умолчанию проводятся в excel с уровнем значимости
Описание результатов поданным примера 1.1
Рисунок 1.9. состоит из четырех блоков: Регрессионная статистика, Дисперсионный анализ, данных для коэффициентов регрессии и их оценок, вывод остатков. Опишем более подробно полученные результаты.
Регрессионная статистика содержит строки, характеризующие построенное уравнение регрессии:
Для парной регрессии Множественный равен коэффициенту корреляции . По его значению 0,9952 можно сказать, что между и существует сильная линейная зависимость.
Строка -квадрат равна коэффициенту корреляции в квадрате. Нормированный -квадрат рассчитывается с учетом степеней свободы числителя и знаменателя по формуле 1.11. Более подробно свойства этого коэффициента будут рассмотрены в разделе множественная линейная регрессия. Стандартная ошибка регрессии вычисляется по формуле 1.4. Последняя строка содержит количество выборочных данных .
Дисперсионный анализ
Он позволяет исследовать общую дисперсию у (строка ИТОГО), дисперсию для теоретических данных (строка Регрессия) и остаточную дисперсию (строка Остаток).
Второй столбец содержит число степеней свободы для каждой из сумм формулы 1.11*.
В третьем столбе находятся суммы квадратов (1.11*).
Четвертый столбец содержит средние значения для регрессии и остатков.
В пятом столбце вычисляется по выборочным данным значение статистика (1.12). Последний столбец, содержит -значение равное
с уровнем значимости 0,05. С его помощью можно оценить значимость всего уравнения регрессии. Это значение можно считать вероятностью выполнения гипотезы . В нашем случае она практически равна нулю, следовательно, построенное уравнение дает хорошее приближение к исходным данным.
Построение уравнения регрессии и оценка значимости ее коэффициентов
Этот блок состоит из трех строк:
названия столбцов — первая строка
— пересечение — содержит все характеристики для коэффициента ; третья строка содержит все характеристики для коэффициента . В столбце коэффициенты находятся их значения
используя их можно записать уравнение линейной регрессии:
Столбец Стандартная ошибка содержит значения
В столбце -статистики находятся значения, вычисленные по выборочным данным:
По «грубому правилу» можно сделать вывод, что сильно значимый коэффициент, а незначим.
Подтвердить эти выводы можно с помощью данных столбца -значение. В этом столбе вычисляются вероятности
которое можно считать вероятностью выполнения гипотезы . Эта вероятность для равна нулю, что подтверждает вывод, сделанный по грубому правилу. Для коэффициента с надежностью 43% случаев можно говорить о его незначимости.
Доверительные интервалы строятся для коэффициентов по умолчанию с доверительной вероятностью 95%. Границы интервалов находятся в столбцах Нижнее 95%, Верхнее 95%:
Так как нами была включена опция уровень надежности 98%, то получены доверительные интервалы и для этого значения :
Описания, приведенные выше, практически позволили ответить на все вопросы задания 1, кроме построения прогнозного значения и доверительного интервала для него. Выполнить это задание можно с помощью блока вывод остатков и функции ТЕНДЕЦИЯ() или непосредственно по формулам (1.14-1.18).
Прогнозируемое потребление при доходе составит для данной модели:
Границы доверительного интервала условного среднего значения (1.17):
Таким образом, среднее потребление при доходе 160 у.е. с надежностью 95% будет находиться в интервале (152,8993; 15464624).
Для определения границ интервала, в котором сосредоточено не менее 95% возможных объемов потребления при неограниченно большом числе наблюдений и уровне дохода =160, воспользуемся формулой (1.16):
Получим границы интервала для прогнозного значения (151,4791; 155,61409). Нетрудно заметить, что он включает в себя интервал для среднего потребления.
Коэффициент может трактоваться как предельная склонность к потреблению. Фактически он показывает, на какую величину изменится объем потребления, если предполагаемый доход возрастет на единицу.
Свободный член уравнения регрессии определяет прогнозируемое значение при величине располагаемого дохода , равной нулю (т.е. автономное потребление). В нашем примере =2,9992 говорит о том, что при нулевом располагаемом доходе расходы на потребление составят 2,99992 у.е. Это можно объяснить для отдельных хозяйств (каждое может тратить накопленные или одолженные деньги), но для совокупности хозяйств коэффициент теряет смысл.
Следует помнить, что полученное уравнение регрессии отражает лишь общую тенденцию в поведении рассматриваемых переменных. Индивидуальные значения могут отклоняться от модельных.
Задание2.
Рассмотрим модельное уравнение, не содержащее свободного члена:
тогда соответствующее ему уравнение регрессии:
Проведем исследование этого уравнения, так же как и в задании 1. Запустим инструмент Регрессия. Для заполнения полей диалогового окна (рис. 1.8) повторите действия 3 — 6 из задания 1; обязательно включите опцию Константа ноль и измените параметры выходного интервала так, чтобы вывод итогов задания 1 и задания 2 не пересекались.
Вывод итогов в этом случае представлен на рис 1.12. Строка, соответствующая свободному члену уравнения, содержит запись #Н/Д, так как он отсутствует в уравнении.
Проведите описание результатов самостоятельно для полученного уравнения регрессии также как в задании 1.
Обратите внимание, что столбцы Верхнее 95% и Нижнее 95% повторяются, так как опция уровень надежности отключена.
Задание 3.
Проверим значимо или нет, различаются коэффициенты и . Для этого сформулируем гипотезу о равенстве математических ожиданий:
— коэффициенты совпадают, значимого различия нет; — коэффициенты различаются значимо.
Для проверки гипотезы построим статистику
Сравним наблюдаемое значение с критическим при уровне значимости и числом степеней свободы .
Найдем критическое значение с помощью встроенной функции Стьюдента . Поскольку , то нет оснований для отклонения нулевой гипотезы. Это дает основания утверждать, что различия в коэффициентах незначимо.
Задание 4.
Необходимо сравнить коэффициенты детерминации двух уравнений, значения которых возьмите из отчетов Вывод Итогов (рис. 1.9, рис. 1.10):
для первого уравнения
для второго уравнения
Так как для первого уравнения это значение больше, чем для второго, то можно предположить, что первое уравнение
описывает поведение зависимой переменной лучше, чем второе
так как её коэффициент детерминации больше. Сравнение двух уравнений регрессии с помощью -статистики будет рассмотрено в разделе множественная линейная регрессия.
Множественная линейная регрессия
Как правило, на изучаемый фактор оказывает влияние не один, а несколько факторов . Например, спрос зависит не только от цены товара, но и от доходов потребителей, а также от цены на замещающие его товары и других факторов.
Пусть зависимая переменная в наблюдениях определяется m объясняющими факторами , а функциональная зависимость между ними имеет вид линейной модели:
или для индивидуальных наблюдений ,где
Уравнение регрессии для индивидуальных наблюдений:
— вектор неизвестных параметров,
— вектор оценочных параметров,
вектор значений зависимой переменной,
— матрица значений независимых переменных, где — значение переменной
в -том наблюдении, — случайные возмущения,
случайный вектор отклонений теоретических значений от фактических .
Тогда уравнение (1.18) можно записать в матричном виде:
а так же уравнение (1.20):
Чтобы найти коэффициенты линейной регрессии (1.20), надо решить уравнение (1.22) относительно матрицы В. Для этого умножают обе части матричного уравнения (1.22) на транспонированную матрицу и из полученного уравнения:
Полученное решение справедливо для уравнений регрессии с произвольным количеством объясняющих факторов , где обратная матрица к матрице .
Решение (1.23) уравнения регрессии (1.22) можно найти:
- с использованием методов матричной алгебры;
- с помощью встроенных функций Excel для работы с массивами: МОБР(), ТРАНСП(), МУМНОЖ();
- применить инструмент анализа Регрессия.
Первый способ изучается в курсе Математика и для его реализации необходимо записать все матрицы, характеризующие уравнение 1.23.
Для реализации второго способа коэффициенты этих матриц надо занести на лист Excel, а затем применить правила работы с массивами данных. Необходимо помнить, что матрицы для этих методов имеют вид:
Матрица в первом столбце содержит единицы, которые являются коэффициентом при неизвестном линейной регрессии 1.20.
Наиболее простым является последний способ поиска коэффициентов регрессии 1.20. Рассмотрим его применение на примере.
Пример с решением №7.4.
Анализируется объем сбережений населения за 10 лет. Предполагается, что его размер в текущем году зависит от величины располагаемого дохода в предыдущем году и от величины реальной процентной ставки в рассматриваемом году. Статистические данные приведены в таблице:
Задание:
1) найдите коэффициенты линейной регрессии
2) оцените статистическую значимость найденных коэффициентов регрессии
3) оцените силу влияния факторов на объем сбережений населения;
4) постройте 95% -е доверительные интервалы для найденных коэффициентов;
5) вычислите коэффициент детерминации и оценить его статистическую значимость при ;
6) рассчитайте коэффициенты частной корреляции;
7) определите, какой процент разброса зависимой переменной объясняется данной регрессией;
найдите скорректированным коэффициент детерминации и сравните его с коэффициент детерминации .
9) оцените предельную склонность граждан к сбережению. Существенно ли отличается она от 0,5?
10) определите, увеличивается или уменьшается объем сбережений с ростом процентной ставки; будет ли ответ статистически обоснованным;
11) спрогнозируйте средний объем сбережений в 2011 году, если предполагаемый доход составит 270 тыс. руб., а процентная ставка будет равна 5,5%.
12) выводы по качеству построенной модели;
Все расчеты выполним с помощью ППП Excel.
Инструкции для выполнения
- Наберите исходные данные на лист Excel, как и раньше по столбцам (рис 1.13).
- Найдите инструмент Регрессия в пакете Анализ данных и нажмите , появится диалоговое окно (рис. 1.8)
- Входной интервал : введите ссылки на значения переменной в столбце , включая метки диапазона.
- Входной интервал : введите ссылки на значения переменной в столбцах и , включая метки диапазона.
- Включите опцию Метки.
- Включите опцию Уровень надежности и введите в поле значение 99.
- Установите параметр вывода результатов, имя ячейки.
- Включите опцию вывод остатков для получения теоретических значений .
- Нажмите .
- Появятся итоговые результаты (рис 1.14).
Описание результатов уравнение линейной регрессии
Используя столбец Коэффициенты, запишем уравнение регрессии:
При изменении доходов в предшествующем году на одну тысячу рублей сбережения увеличатся на 120 рублей, если экономическая ситуация будет стабильной. При увеличении процентной ставки на 1% сбережения могут увеличиться на 350 рублей.
Значимость коэффициентов регрессии
Значение — статистик находятся в столбце с одноименным названием:
Используя «грубое правило», можно сделать вывод, что коэффициенты значимы, так как они превышают значение три. Коэффициент относительно слабо значим. Убедится в этих выводах можно используя СТЬЮДРАСПОБР(), с помощью которой найдите критические точки и постройте двухстороннюю критическую область. Для различных уровней значимости:
Этот же вывод получите, если исследуете показания столбца -значение. Коэффициент существенного влияния на переменную не оказывает, т.е. может быть исключен из модели. Однако, учитывая, что в экономике, свободный член отражает экзогенную среду, лучше его оставить в уравнении регрессии, так как наличие свободного члена в линейном уравнении может только уточнить вид зависимости.
Значение -статистики для коэффициента -пересечение обычно не используется.
Сравнение коэффициентов регрессии
Простое сопоставление коэффициентов регрессии по модулю не может оценить силу влияния факторов на признак у: такое сопоставление лишено смысла. Однако их можно нормировать (стандартизировать), используя формулу:
где — коэффициент регрессии после нормирования, — стандартная ошибка переменной ; — стандартная ошибка переменной .
Нормированные коэффициенты можно сравнивать и делать вывод о влиянии факторов на переменную . Факторы с наименьшим по модулю значением оказывают на наименьшее влияние.
Уравнение регрессии в стандартизованном масштабе имеет вид:
это означает, что влияние процентной ставки на объем вкладов меньше, чем влияние уровня доходов за предшествующий период .
Доверительные интервалы для коэффициентов
Находятся в столбцах нижнее/верхнее 95%:
Можно построить доверительные интервалы с уровнем надежности 97% (Рис. 1.14).
Коэффициент детерминации
Коэффициент детерминации находится по формуле (1.11):
Он характеризует долю разброса значений зависимой переменной , объясненной уравнением регрессии. В нашем примере, 98% разброса переменной объясняется построенным уравнением регрессии.
Скорректированный коэффициент детерминации
В случае множественной регрессии коэффициент детерминации является неубывающей функцией числа объясняющих переменных, т.е. добавление новой переменной увеличивает значение . Поэтому при расчете коэффициента детерминации для получения несмещенных оценок в числителе и знаменателе формулы 1.11 делается поправка на число степеней свободы. Найденное значение называется скорректированным коэффициентом детерминации:
■ — является несмещенной оценкой остаточной дисперсии, т.е. дисперсией случайных отклонений точек наблюдений от линии регрессии. Ее число степеней свободы равно , где степень свободы связана с необходимостью решения системы линейного уравнения;
■ — является несмещенной оценкой общей дисперсии, т.е. дисперсией отклонения от , где одна степень теряется при вычислении .
Заметим, что несмещенная оценка объясненной дисперсии , т.е. дисперсии отклонения точек от , имеет степеней свободы.
Все суммы можно найти в столбце дисперсионного анализа, их средние значения в столбце , а число степеней свободы в столбце этого же блока.
Для нашего примера находится в блоке регрессионная статистика в строке нормированный.
Можно получить формулу, устанавливающую связь между скорректированным коэффициентом детерминации и коэффициентом детерминации:
Очевидно, что:
для , только при .
может принимать отрицательные значения (например, если )
Коэффициент корректируется с ростом числа объясняющих переменных. Доказано, что скорректированный коэффициент корреляции увеличивается при добавлении новой переменной тогда и только тогда, когда — статистика этой переменной по модулю больше единицы. Поэтому добавление в модель новых переменных осуществляется до тех пор, пока он растет.
В пакете Анализ данных приводятся значения и . Значимость коэффициента детерминации и скорректированного коэффициента при исследовании уравнения регрессии большая, однако, не абсолютная. При неправильной спецификации модели можно получить очень высокие значения этих коэффициентов, поэтому и рассматриваются как один из ряда показателей, которые нужно проанализировать, чтобы уточнить строящуюся модель.
Индекс множественной корреляции
Теснота линейной взаимосвязи в линейной регрессии выполняется с помощью индекса корреляции:
Если — неслучайная величина, то характеризует качество подбора уравнения регрессии. Если же — случайная переменная, то индекс корреляции является мерой тесноты линейной взаимосвязи между и набором факторов .
Для нашего примера находим в строке Множественный рис 1.18.
Коэффициенты частной корреляции
Используются для выделения определяющего фактора и второстепенных. Необходимо определить частные зависимости между и , при условии, что воздействие остальных факторов исключено (элиминировано). В случае трех переменных можно получить коэффициенты парной корреляции по формулам:
Воспользуйтесь инструкциями примера 1.2. и найдите коэффициенты парной корреляции для вычисления коэффициентов частной корреляции.
Анализируя, полученные данные можно сказать, что факторы и дублируют друг друга . Сравнивая их влияние на фактор можно сделать вывод об исключении переменной из уравнения регрессии, так как . Постройте уравнение регрессии, не содержащее фактор . Сравните коэффициенты детерминации двух уравнений и сделайте вывод: следует исключать фактор или оставить его при построении уравнения регрессии.
Доверительный интервал прогноза
Если уравнение регрессии имеет вид:
то прогнозное значение вычисляется так же как в случае парной регрессии. Необходимо подставить заданные значения прогноза
в уравнение регрессии.
Найдем средний объем сбережений в 2011 году, если предполагаемый доход в 2010 году составит 270 тыс. рублей, а процентная ставка вырастет до 5,5%. Подставив эти значения в уравнение регрессии, получим средний объем сбережений в 2011 году:
Точечная оценка объема сбережений в 2011 году может быть дополнена интервальной оценкой, полученной по формуле 1.15:
где
Используя встроенные функции Excel, найдем матричное произведение:
Подставив все значения в 1.28, найдем интервальные оценки среднего сбережения населения в 2011 году:
Склонность населения к сбережению в данной модели отражается через коэффициент , определяющий на какую величину вырастет объем сбережений при росте располагаемого дохода на одну единицу.
Для анализа, существенно или нет коэффициент отличается от 0,5, проверим гипотезу:
Построим статистику, которая имеет распределение Стьюдента. Зададим уровень значимости , число степеней свободы тогда:
Так как
то должна быть отклонена. Действительно 50% склонность населения к сбережениям явно завышена по сравнению с модельным значением в 12,4%.
Рост процентной ставки увеличивает объем сбережений
Эта зависимость характеризуется коэффициентом . Так как коэффициент статистически значим, то ответ будет статистически обоснованным.
Анализ качества уравнения регрессии
Первое построенное по выборке уравнение редко является удовлетворительным по тем или иным характеристикам. Поэтому следующей задачей эконометрического анализа является проверка качества уравнения регрессии. Эта проверка проводится по следующим этапам:
■ проверка статистической значимости коэффициентов регрессии;
■ проверка общего качества уравнения регрессии;
■ проверка свойств данных: проверка выполнимости МНК.
По всем показателям нашего примера 1.3 модель может быть признана удовлетворительной:
■ высокие -статистики;
■ коэффициент детерминации близок к единице;
Это означает, что модель может быть использована для целей анализа и прогнозирования. Мы не проверили выполнимость МНК и значимость коэффициента детерминации.
Анализ значимости
Проверяется гипотеза об одновременном равенстве нулю всех объясняющих переменных — уравнение считается незначимым:
Если данная гипотеза не отклоняется, то делается вывод, что совокупное влияние всех m объясняющих переменных на зависимую переменную можно считать статистически незначимым, а общее качество уравнения регрессии невысоким.
Проверка данной гипотезы проводится на основе дисперсионного анализа, при этом сравниваются объясненная и остаточная дисперсии.
Для проверки гипотезы строится -статистика:
которая при выполнении МНК имеет распределение Фишера с числом степеней свободы
Критическое значение находится с помощью:
при уровне значимости .
■ Если то гипотеза отклоняется в пользу что означает объясненная дисперсия существенно больше остаточной, следовательно, уравнение регрессии достаточно качественно отражает динамику изменения зависимой переменной от объясняющей.
■ Если , то гипотеза принимается, т.е. объясненная дисперсия соизмерима с остаточной дисперсией, вызванной случайными факторами. Это позволяет считать влияние объясняющих переменных модели несущественным, а следовательно, общее качество уравнения регрессии невысоким.
На практике вместо указанной гипотезы проверяется, связанная с ней гипотеза о статистической значимости коэффициента детерминации .
Очевидно, что если , а линия регрессии является наилучшей по МНК, т.е. величина линейно не зависит от . Анализ статистики позволяет сделать вывод о том, что для принятия гипотезы об одновременном равенстве нулю всех коэффициентов линейной регрессии коэффициент детерминации не должен существенно отличаться от нуля. Его критическое значение уменьшается при росте числа наблюдений и может стать сколь угодно малым.
Для проверки этой гипотезы числитель и знаменатель формулы 1.29 поделим на общую сумму квадратов отклонений и получим:
Вернемся к результатам нашего примера 1.3. (рис. 1.14).Найдем по таблице распределения Фишера критическую точку для уровня значимости . Сравнивая критическое и наблюдаемое значения , можно сделать вывод, что коэффициент детерминации статистически значим. Это означает, что совокупное влияние переменных и на переменную существенно. Этот же вывод можно сделать по столбцу значимость , который характеризует вероятность выполнения гипотезы .
Проверка качества двух коэффициентов детерминации
Статистику можно использовать и для обоснования случая исключения или добавления в уравнение регрессии объясняющих переменных. Добавлять (исключать) переменные надо по одному.
Использовать лучше так как всегда растет при добавлении новой объясняющей переменной. Зависимая переменная должна быть представлена в том же виде, что и уже существующие в исследуемом уравнении регрессии. Число наблюдений для обеих моделей должно быть одинаковым.
Пусть первоначально построенное по п наблюдениям уравнение регрессии имело вид:
и скорректированный коэффициент детерминации равен .
Исключим из уравнения переменных, оказывающих наименьшее влияние на По наблюдениям построим новое уравнение регрессии:
скорректированный коэффициент детерминации, для которого равен .
Необходимо определить существенно ли ухудшилось качество описания зависимой переменной . Для этого выдвинем гипотезы:
— ничего не изменилось
— уравнение ухудшилось, если разность больше нуля. По выборочным данным найдите статистику:
которая имеет распределения Фишера с числом степеней свободы
где
— потеря качества уравнения в результате того, что переменных было отброшено. В результате появляется дополнительных степеней свободы; — остаточная дисперсия первоначального уравнения.
Сравним критическое значение и с наблюдаемым при уровне значимости :
■ Если , то гипотеза отклоняется в пользу , что означает, одновременное исключение объясняющих переменных существенно повлияет на качество первоначального уравнения.
■ Если , то гипотеза принимается, т.е. разность ; незначительная. Это позволяет считать, что исключение объясняющих переменных модели допустимым, так как общее качество уравнения регрессии изменится несущественно.
Аналогично проверяется гипотеза о добавлении к объясняющих переменных в уравнение регрессии. В этом случае составляется статистика:
Исключим фактор из уравнения регрессии примера 1.3. построим зависимость между и . с помощью инструмента Регрессия получим уравнение:
Коэффициенты и все остальные характеристики для этого уравнения регрессии можно посмотреть на рис 1.16. Сравним новое уравнений с уравнением полученным ранее.
В ячейке N18 находится значение -статистики вычисленное по формуле 1.31. Критическое значение (ячейка N19) находится с помощью встроенной функции Excel при уровне значимости 0,05:
Сравнивая эти два значения делаем вывод, что гипотеза отклоняется в пользу гипотезы то есть новое уравнение ухудшило качество приближения к выборочным данным.
Проверка качества двух коэффициентов детерминации
Необходимо сравнить два уравнения регрессии для отдельных групп наблюдений, т.е. будет одним и тем же уравнение регрессии для этих выборок. Для проверки этой гипотезы используется тест Чоу.
Пусть имеются две выборки объемом и . Для каждой из этих выборок получено уравнение регрессии:
Суммы квадратов отклонений от линий регрессии обозначим для первого и для второго уравнения регрессии.
Выдвинем гипотезу о равенстве соответствующих коэффициентов регрессии
Объединим обе выборки в одну. Для выборки объема найдем еще одно уравнение регрессии, сумму квадратов отклонений которой обозначим . Тогда для проверки гипотезы строится статистика:
которая имеет распределение Фишера с числом степеней свободы
Если , то значение -статистики приближается к нулю, а это значит, что уравнения регрессии обеих выборок практически одинаковые. А дальше сравним наблюдаемое и критическое значения и делаете вывод принимается или отклоняется гипотеза .
Данные исследования отвечают на вопрос, можно ли за рассматриваемый период времени построить единое уравнение регрессии или же нужно разбить его на части и для каждого временного интервала построить свое уравнение регрессии.
Проверка выполнимости мнк. Автокорреляция остатков. Статистика дарбина-уотсона
Все предыдущие рассуждения основаны на том, что выполняются предпосылки МНК: мы предполагали, что случайные отклонения являются независимыми случайными величинами со средней, равной нулю. При работе с фактическими данными, такое допущение не всегда выполняется. Например, если вид функции выбран неудачно, то отклонения от регрессии вряд ли будут независимыми. В этом случае замечается концентрация положительных или отрицательных отклонений от регрессии и можно сомневаться в их случайном характере.
Если последовательные значения коррелируют (зависят) между собой, то говорят, что имеет место автокорреляция остатков.
МНК в случае автокорреляции дает несмещенные и состоятельные оценки, однако полученные в этом случае доверительные интервалы имеют мало смысла в силу своей ненадежности. Значительная автокорреляция говорит о том, что спецификация модели неправильная. Проверка остатков на автокорреляцию должна выполняться обязательно. Наиболее простым приемом обнаружения автокорреляции является метод Дарбина-Уотсона (). Идея, которого состоит в том, что проверяются на коррелированность не любые, а только соседние величины . Соседними обычно считаются соседние по возрастанию объясняющей переменной ( в случае перекрестной выборки) или по времени (в случае временных рядов) значения .
Статистика рассчитывается по формуле:
При условии что и большое число можно предположить
тогда после преобразования получим:
Очевидно, что так как коэффициент корреляции
■ , если — автокорреляция отсутствует;
■ -полная положительная автокорреляция;
■ -полная отрицательная автокорреляция.
Возникает вопрос, какие значения можно считать близкими к 2? Для обнаружения границ наблюдений статистики существуют специальные таблицы. Для заданных — уровня значимости; — числа наблюдений и -числа объясняющих переменных указывается два числа: — нижняя граница и — верхняя граница. Не обращаясь к таблице критических точек DW можно воспользоваться правилом, если l,5<<2,5, автокорреляция отсутствует. Изобразим на рисунке числовой отрезок , используемый для проверки гипотезы об отсутствии автокорреляции.
Статистику для примера 1.3 находим по формуле (1.35):
Для вычисления этой статистики запустите инструмент Регрессия, включив опции Остатки и График остатков, как показано на рис. 1.18. В результате получите значение случайных отклонений е, и их графики, которые Excel строит для каждой независимой переменной, как показано на рис. 1.20 и 1.21. Чтобы найти , можно использовать функции СУММКВРАЗН и СУММКВ.
Если зависимость между и линейная, то график остатков должен иметь случайный вид. На рис. 1.21 видим систематический рисунок, поэтому скорее всего между и существует нелинейная зависимость, а значит надо изменить модель, включая в нее нелинейную зависимость.
Для проверки статистической значимости надо воспользоваться таблицей критических точек Дарбина-Уотсона, например, при уровне значимости и числе наблюдений
Можно считать, что автокорреляция отсутствует, так как найденная статистика попадает в критический интервал: 1,604<<2,396, что является подтверждением высокого качества модели.
Мультиколлинеарность
Увеличение числа переменных в уравнении множественной регрессии повышает точность описания взаимосвязи, однако при этом должно выполняться условие, что — объясняющие переменные, линейно независимые величины.
Под мулыиколлинеарностью понимают взаимосвязь объясняющих переменных регрессии. Если между переменными и существует функциональная зависимость , то говорят о строгой мультиколлинеарности. Чаще всего между переменными существует довольно сильная корреляционная зависимость — в этом случае мультиколлинеарность называют нестрогой.
При строгой мультиколлинеарности решение матричного уравнения 1.22 становится невозможным, так как матрица вырожденная — её определитель равен нулю.
Если же мультиколлинеарность нестрогая, то решение матричного уравнения формально можно найти, однако все оценки мало надежны.
Чтобы обнаружить мультиколлинеарность надо найти определитель матрицы . Вместо этого проверяется определитель матрицы межфакторной корреляции, которую получают с помощью инструмента КОРРЕЛ.
Устранение мультиколлинеарности заключается в исключении одной из двух, находящихся во взаимосвязи переменных, либо путем пересмотра структуры уравнения регрессии. Для оценки влияния факторов на результирующий фактор в случае используются показатели частной корреляции (1.26). Если число переменных больше трех, то для их определения удобно пользоваться формулой:
где коэффициенты матрицы обратной к матрице парных коэффициентов корреляции.
Гомоскедастичность (постоянство дисперсии случайных отклонений)
Для применения МНК требуется, чтобы дисперсия остатков была величиной постоянной. Невыполнимость этого условия называется гетероскедастичностью и влечёт смещенность дисперсий оценок, так как стандартная ошибка регрессии (1.4) становится смещенной.
Обнаружение гетероскедастичности является сложной задачей потому что необходимо знать распределение , соответствующее выбранному значению переменной . В тесте Голфелда-Квандта предполагается, что стандартное отклонение пропорционально значению переменной и нормально распределены, автокорреляция остатков отсутствует. Проверка на гомоскедастичность по этому тесту содержит следующие шаги:
- Все наблюдений упорядочивают по величине.
- Упорядоченная выборка разбивается на три подвыборки размерностью , и соответственно.
- Центральные наблюдения исключаются из дальнейшего рассмотрения.
- Строят регрессии для первой и последней групп и находят остаточные суммы квадратов и соответственно. Если условие гомоскедастичности выполняется, то , в противном случае .
- Построенная -статистика, имеет распределение Фишера с степенями свободы, где число объясняющих переменных в уравнении регрессии.
- Чем больше превышает значение , тем более нарушена предпосылка о равенстве остаточных дисперсий.
- НЕЛИНЕЙНАЯ РЕГРЕССИЯ
Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих функций:
a) квадратичная функция (полином любой степени);
b) равносторонняя гипербола;
c) степенная;
d) показательная и др.
Кроме указанных функций для описания связи двух переменных можно использовать и другие типы кривых:
Различают два класса нелинейных уравнений:
1) регрессии, нелинейные относительно включенных объясняющих переменных,
но линейные по оцениваемым параметрам;
2) регрессии, нелинейные по оцениваемым параметрам.
К первому классу — нелинейные по переменным — относятся кривые а и b (рис 2.1). Нелинейными по параметрам (второй класс) являются зависимости c и d на рис. 2.1.
Линейные по параметру
Такие модели легко приводятся к линейному виду — линеаризуются. Для линейных но параметру моделей вводят новую переменную (таблица 2.1) и переходят к построению линейной регрессии по преобразованным данным. Применяя инструмент Регрессия, к преобразованным данным можно найти все оценки параметров преобразованных моделей и оценить их качество.
Качество исходной модели можно оценить, используя индекс корреляции (1.26). Оценка статистической значимости индекса корреляции проводится с помощью — статистики, так же как и коэффициента детерминации (1.29). Довольно часто в экономических исследованиях для оценки качества построенного уравнения используют среднюю ошибку аппроксимации, которая вычисляется по формуле:
и оценивает по модулю величину отклонений расчетных значений от фактических. Допустимый предел значений средней ошибки аппроксимации не более 8-10%.
Приведем примеры использования нелинейных моделей, перечисленных в таблице 2.1.
Полиномиальная модель (1) может отражать зависимость между объемом выпуска и издержками производства ; или расходами на рекламу и прибылью и т.д. В экономике наиболее часто используют многочлен второй степени реже третьей степени. Ограничения в применении многочленов более высоких степеней связано с требованием однородности исследуемой совокупности: чем выше степень многочлена, тем больше изгибов имеет кривая и соответственно меньше однородность по результативному признаку. Надо помнить, что графики многочленов имеют промежутки монотонности и точки экстремумов, поэтому параметры применения этих моделей не всегда могут быть логически истолкованы. Поэтому, если такая зависимость четко не определена графически (параболическая), то её лучше заменить другой нелинейной функцией.
Гиперболическая модель (2) — классическим примером этой модели является кривая Филлипса , характеризующая соотношение между уровнем безработицы и процентом прироста заработной платы . При кривая характеризуется нижней асимптотой . Соответственно можно определить уровень безработицы, при котором заработная плата стабильна и темп её прироста равен нулю. При гиперболическая функция будет медленно расти для и имеет горизонтальную асимптоту . Такие кривые называют кривыми Энгеля, который сформулировал закономерность: с ростом доходов доля доходов, расходуемых на продовольствие уменьшается.
Полулогарифмические модели (3) используются, когда необходимо определить темп роста или прироста экономических показателей. Например, при анализе банковского вклада по процентной ставке, при исследовании зависимости прироста объема выпуска продукции от процентного увеличения затрат на расходы, бюджетного дефицита от темпа роста ВВП, темп роста инфляции от объема денежной массы и т.д.
Нелинейные по параметру
Уравнения нелинейные по параметру можно разделить на:
- внутренне линейные — можно привести к линейному виду путем преобразований;
- внутренне нелинейные, которые не могут быть сведены к линейной модели.
Степенная модель:
Если прологарифмировать обе части уравнения 2.2, получится модель, легко приводящаяся к линейному виду:
Надо сделать замену:
получим линейную модель (1.1).
Коэффициент модели определяет эластичность переменной по переменной , то есть процентное изменение при изменении на 1%. Степенная модель имеет постоянную эластичность, это легко увидеть, если продифференцировать обе части уравнения (2.3):
Так как константа, то модель 2.3 называют моделью постоянной эластичности.
В случае парной регрессии использование обоснование использования степенной модели достаточно просто. Надо построить корреляционное поле для точек , если их расположение соответствует прямой линии, то произведенная замена хорошая и можно использовать степенную модель.
Данная модель легко обобщается на большее число переменных. Наиболее известная — производственная функция Кобба-Дугласа: , где — объем выпуска; — затраты капитала; — затраты труда.
Лог-линейные модели широко используются в банковском и финансовом анализе:
где — первоначальный банковский вклад, — процентная ставка, — размер вклада на момент .
Прологарифмируем обе части этой модели
Введя замену
получим полулогарифмическую модель:
Коэффициент в уравнении 2.6 имеет смысл темпа прироста переменной по переменной , то есть характеризует относительное изменение к абсолютному изменению . Продифференцируем 2.6 по , получим:
Умножив на 100%, получим темп прироста . Надо сказать, что коэффициент
определяет мгновенный темп прироста, а
характеризует темп прироста сложного процента.
Показательные модели используются, когда анализируется изменение переменной с постоянным темпом прироста во времени :
Если провести логарифмирование, то получится уравнение аналогичное 2.5 В общем виде показательная модель имеет вид:
но в силу равенства
сводится к уравнению 2.8.
Коэффициент эластичности
Рассматривая степенную модель, мы ввели понятие эластичности функции: предел отношения относительных приращений независимой переменной и зависимой называется эластичностью функции
показывает на сколько процентов изменится в среднем результат, если фактор х изменится на 1%.
Для других форм связи Э зависит от значения фактора и не является величиной постоянной, поэтому рассчитывается средний коэффициент эластичности, который показывает, на сколько процентов в среднем по совокупности изменится результат от своей средней величины, если фактор изменится на 1% от своего среднего значения. Формула для расчета:
Несмотря на широкое использование в экономике коэффициентов эластичности, возможны случаи, когда они не имеют экономического смысла. Составьте таблицу коэффициентов эластичности для всех рассмотренных нелинейных моделей самостоятельно.
2.4. ПОСТРОЕНИЕ НЕЛИНЕЙНЫХ РЕГРЕССИЙ
Можно воспользоваться командой Добавить линию тренда, так же как в случае линейного тренда (раздел 1.3): необходимо построить корреляционное поле и выбрать одну из зависимостей на вкладке параметры: полиномиальный, логарифмический, показательный и экспоненциальный. Такой способ удобен для случая двух переменных.
Использовать инструмент Регрессия можно только для преобразованных данных. Этот способ дает много не нужной информации.
Пример 3.1. По семи территориям Южного федерального округа за 2001 год известны значения двух признаков:
Задание
- Постройте уравнения регрессии для модели:
a) линейной;
b) степенной;
c) экспоненциальной;
d) логарифмической; гиперболы.
- Оцените каждую модель через среднюю ошибку аппроксимации и -критерий Фишера.
Проще всего построить поле корреляции, а затем добавить линии тренда (см. параграф 1.З.). Для полученных уравнений надо найти коэффициент аппроксимации и проверить -критерий.
1а. Уравнение линейной регрессии:
Вариация результата на 12% объясняется вариацией фактора — статистику найдем по формуле 1.13
Так как
то параметры линейного уравнения и показатель тесноты связи между и статистически незначимы и гипотеза о линейности уравнения регрессии отклоняется. Самостоятельно вычислите величину средней ошибки аппроксимации:
l.b. Степенная модель
Подставляя в уравнение регрессии фактические значения , получим . По этим значениям, используя формулу для индекса корреляции (1.26), получим
и среднюю ошибку аппроксимации:
Характеристики степенной модели указывают, что она не намного лучше линейной функции описывает связь между и .
1с. Аналогично l.b. для показательной модели
сначала нужно выполнить линеаризацию
и после замены переменных
рассмотрим линейное уравнение:
Используя столбцы для и из предыдущей таблицы, получим коэффициенты:
и уравнение
После потенциирования запишем уравнение в обычной форме:
Все эти расчеты можно не делать, если воспользоваться для вычисления параметров и модели встроенной статистической функцией ЛГРФПРИБЛ. Выполните самостоятельно и сравните результаты. Убедитесь, что значения вычисленные по формулам и полученные с помощью функции ЛГРФПРИБЛ() совпадают (рис.2.4)
Тесноту связи оценим с помощью индекса корреляции
который вычисляется по формуле (1.26). Связь между и небольшая. Коэффициент аппроксимации, вычисленный по формуле (3.3) =8% говорит о повышенной ошибке приближения, но в допустимых пределах. Сравнивая, показатели степенной и показательной функций можно сделать вывод, что степенная функция чуть лучше описывает связь между и чем показательная.
l.d. Аналогичные расчеты надо провести и для равносторонней гиперболы , которая линеаризуется заменой .
Для этого уравнения в таблицу исходных значений надо добавить столбец , а все остальные вычисления проведите, используя один из описанных выше способов:
Получена наибольшая оценка тесноты связи по сравнению с линейной, степенной и показательной регрессиями, а остается в пределах допустимого значения, это означает, что для описания зависимости расходов на покупку продовольственных товаров в общих расходах ( в %) от среднедневной заработной платы одного работающего ( в руб.) необходимо из предложенных моделей выбрать гиперболическую.
- Введем гипотезу : уравнение регрессии статистически незначимо и рассмотрим статистику (1.30):
при уровне значимости смотри в пункте l.a.
Гипотеза о статистической незначимости параметров уравнения принимается. Результат можно объяснить небольшим числом наблюдений и сравнительно невысокой теснотой гиперболической зависимости между и .
Возможно эти страницы вам будут полезны:
- Курсовая работа по эконометрике
- Заказать работу по эконометрике
- Лабораторная работа по эконометрике
- Помощь по эконометрике
- Системы эконометрических уравнений
Множественная регрессия в EXCEL
history 26 января 2019 г.
-
Группы статей
- Статистический анализ
Рассмотрим использование MS EXCEL для прогнозирования переменной Y на основании нескольких переменных Х, т.е. множественную регрессию.
Перед прочтением этой статьи рекомендуется освежить в памяти простую линейную регрессию – прогнозирование на основе значений только одного фактора.
Disclaimer : Данную статью не стоит рассматривать, как пересказ главы из учебника по статистике. Статья не обладает ни полнотой, ни строгостью изложения положений статистической науки. Эта статья – о применении MS EXCEL для целей Множественного регрессионного анализа. Теоретические отступления приведены лишь из соображения логики изложения. Использование данной статьи для изучения Регрессии – плохая идея.
Статья про Множественный регрессионный анализ получилась большая, поэтому ниже для удобства приведены ее разделы:
Прогнозирование единственной переменной Y на основании значений 2-х или более переменных Х называется множественной регрессией .
Множественная линейная регрессионная модель (Multiple Linear Regression Model) имеет вид Y=β 0 +β 1 *X 1 +β 2 *X 2 +…+β k *X k +ε. В этом случае переменная Y зависит от k поясняющих переменных Х, т.е. регрессоров . ε — случайная ошибка . Модель является линейной относительно неизвестных параметров β.
Оценка неизвестных параметров
В этой статье рассмотрим модель с 2-мя регрессорами. Сначала введем необходимые обозначения и понятия множественной регрессии.
Для описания зависимости Y от 2-х переменных линейная модель имеет вид:
Параметры этой модели β i нам неизвестны, но их можно оценить, используя случайную выборку (измеренные значения переменной Y от заданных Х). Оценки параметров модели (β 0 , β 1 , β 2 ) обычно вычисляются методом наименьших квадратов (МНК) , который минимизирует сумму квадратов ошибок прогнозирования (критерий минимизации в англоязычной литературе обозначают как SSE – Sum of Squared Errors).
Ошибка ε имеет случайную природу и имеет свою функцию распределения со средним значением =0 и дисперсией σ 2 .
Оценки b 1 и b 2 называются коэффициентами регрессии , они определяют влияние соответствующей переменной X, когда все остальные независимые переменные остаются неизменными .
Сдвиг (intercept) или постоянный член b 0 , определяет прогнозируемое значение Y, когда все поясняющие переменные Х равны 0 (часто сдвиг не имеет физического смысла в рамках модели и обусловлен лишь математическими вычислениями МНК ).
Вычислив оценки, полученные методом МНК, позволяют прогнозировать значения переменной Y:
Примечание : Для случая 2-х регрессоров, все спрогнозированные значения переменной Y будут лежать в плоскости (в плоскости регрессии ).
В качестве примера рассмотрим технологический процесс изготовления нити:
Инженер, на основе имеющегося опыта, предположил, что прочность нити Y зависит от концентрации исходного раствора (Х 1 ) и температуры реакции (Х 2 ), и соответствует модели линейной регрессии. Для нахождения комбинации переменных Х, при которых Y принимает максимальное значение, необходимо определить коэффициенты регрессии, сделав выборку.
В MS EXCEL коэффициенты множественной регрессии удобнее всего вычислить с помощью функции ЛИНЕЙН() . Это сделано в файле примера на листе Коэффициенты . Чтобы вычислить оценки:
- выделите 3 ячейки в одной строке (т.к. мы рассматриваем случай 2-х регрессоров, то будут вычислены 2 коэффициента регрессии + величина сдвига = 3 значения, для вывода которых понадобится 3 ячейки). Пусть это будет диапазон С8:Е8 ;
- в Строке формул введите = ЛИНЕЙН(D20:D50;B20:C50) . Предполагается, что в столбце В содержатся прогнозируемые значения Y (в нашей модели это Прочность нити), в столбцах С и D содержатся значения контролируемых параметров Х (Х1 – Концентрация в столбце С и Х2 – Температура в столбце D).
- нажмите CTRL+SHIFT+ENTER (т.к. это формула массива ).
В левой ячейке будет рассчитано значение коэффициента регрессии b 2 для переменной Х2, в средней ячейке — значение коэффициента регрессии b 1 для переменной Х1, в правой – сдвиг . Обратите внимание, что порядок вывода коэффициентов регрессии обратный по отношению к расположению столбцов с данными соответствующих переменных Х (вычисленный коэффициент b 2 располагается левее по отношению к b 1 , тогда как значения переменной Х2 располагаются правее значений переменной Х1). Это может привести к путанице, поэтому лучше разместить коэффициенты над соответствующими столбцами с данными, как это сделано в строке 17 файла примера .
Примечание : В принципе без функции ЛИНЕЙН() можно обойтись, записав альтернативные формулы. Для этого в файле примера на листе Коэффициенты в столбцах I : K вычислены отклонения значений переменных Х 1i , Х 2i , Y i от их средних значений , т.е.:
Далее коэффициенты регрессии рассчитываются по следующим формулам (эти формулы справедливы только при прогнозировании по 2-м независимым переменным Х):
При прогнозировании по 3-м и более независимым переменным Х формулы для вычисления коэффициентов регрессии значительно усложняются, поэтому следует использовать матричный подход.
В файле примера на листе Матричная форма выполнены расчеты коэффициентов регрессии с помощью матричного подхода.
Расчет можно произвести как пошагово, так и одной формулой массива :
Коэффициенты регрессии (вектор b ) в этом случае вычисляются по формуле b =(X T X) -1 (X T Y) или в другом виде записи b =(X ’ X) -1 (X ’ Y)
Под Х подразумевается матрица, состоящая из столбцов значений переменной Х с дополнительным столбцом единиц, а под Y – вектор-столбец значений Y.
Диаграмма рассеяния
В случае простой линейной регрессии (один регрессор, т.е. одна переменная Х) для визуализации связи между прогнозируемым значением Y и переменной Х строят диаграмму рассеяния (двумерную).
В случае множественной линейной регрессии двумерную диаграмму рассеяния можно построить только для анализа влияния каждого отдельного регрессора на Y (при этом остальные Х не меняются), т.е. так называемую Матричную диаграмму рассеивания (См. файл примера лист Диагр расс (матричная) ).
К сожалению, такую диаграмму трудно интерпретировать.
Более того, матричная диаграмма может вводить в заблуждение (см. Introduction to linear regression analysis / D . C . Montgomery , E . A . Peck , G . G . Vining , раздел 3.2.5 ), демонстрируя наличие или отсутствие линейной взаимосвязи между отдельным регрессором X i и Y.
Для случая с 2-мя регрессорами можно предложить альтернативный вид матричной диаграммы рассеяния . В стандартной диаграмме рассеяния строятся проекции на координатные плоскости Х1;Х2, Y;X1 и Y;X2. Однако, если взглянуть на точки относительно плоскости регрессии , то картину, на мой взгляд, будет проще интерпретировать.
Сравним две матричные диаграммы рассеяния (см. файл примера на листе «Диагр расс (в плоск регрессии)» , построенные для одних и тех же наблюдений. Первая – стандартная,
вторая представляет собой вид сверху на плоскость регрессии и 2 вида вдоль плоскости.
На второй диаграмме становится очевидно, что разброс точек относительно плоскости регрессии совсем не большой и поэтому, скорее всего, построенная модель является полезной, а выбранные 2 переменные Х позволяют прогнозировать Y (конечно, для подтверждения этой гипотезы нужно провести процедуру F-теста ).
Несколько слов о построении альтернативной матричной диаграммы рассеяния:
- Перед построением необходимо нормировать значения наблюдений (для каждой переменной вычесть среднее и разделить на стандартное отклонение ). В этом случае практически все точки на диаграммах будут находится в диапазоне +/-3 (по аналогии со стандартным нормальным распределением , 99% значений которого лежат в пределах +/-3 сигма). В этом случае, на диаграмме можно фиксировать мин/макс значений осей, чтобы EXCEL автоматически не модифицировал масштаб осей при изменении данных (это не всегда удобно);
- Теперь координаты точек необходимо рассчитать в системе отсчета относительно плоскости регрессии (в которой плоскость Оху’ совпадает с плоскостью регрессии). Для этого необходимо найти матрицу вращения , например, через вращение приводящее к совмещению нормали к плоскости регрессии и вектора оси Z (0;0;1);
- Новые координаты позволяют построить альтернативную матричную диаграмму. Кроме того, для удобства можно вращать систему координат вокруг новой оси Z, чтобы нагляднее представить себе распределение точек относительно плоскости регрессии (для этого использована Полоса прокрутки в ячейках Q31:S31 ).
Вычисление прогнозных значений Y (отдельное наблюдение и среднее значение) и построение доверительных интервалов
После того, как нами были найдены тем или иным способом коэффициенты регрессии можно приступать к вычислению прогнозных значений Y на основе заданных значений переменных Х.
Уравнение прогнозирования или уравнение регрессии в случае 2-х независимых переменных (регрессоров) записывается в виде:
Примечание: В MS EXCEL прогнозное значение Y для заданных Х 1 и Х 2 можно также предсказать с помощью функции ТЕНДЕНЦИЯ() . При этом 2-й аргумент будет ссылкой на столбцы, содержащие все значения переменных Х 1 и Х 2 , а 3-й аргумент функции должен быть ссылкой на диапазон ячеек, содержащий 2 значения Х (Х 1i и Х 2i ) для выбранного наблюдения i (см. файл примера, лист Коэффициенты, столбец G ). Функция ПРЕДСКАЗ() , использованная нами в простой регрессии, не работает в случае множественной регрессии .
Найдя прогнозное значение Y, мы, таким образом, вычислим его точечную оценку. Понятно, что фактическое значение Y, полученное при наблюдении, будет, скорее всего, отличаться от этой оценки. Чтобы ответить на вопрос о том, на сколько хорошо мы можем предсказывать новые значения Y, нам потребуется построить доверительный интервал этой оценки, т.е. диапазон в котором с определенной заданной вероятностью, скажем 95%, мы ожидаем новое значение Y.
Доверительные интервалы построим при фиксированном Х для:
- нового наблюдения Y;
- среднего значения Y (интервал будет уже, чем для отдельного нового наблюдения)
Как и в случае простой линейной регрессии , для построения доверительных интервалов нам потребуется сначала вычислить стандартную ошибку модели (standard error of the model) , которая приблизительно показывает насколько велика ошибка предсказания значений переменной Y на основании значений переменных Х.
Для вычисления стандартной ошибки оценивают дисперсию ошибки ε, т.е. сигма^2 (ее часто обозначают как MS Е либо MSres ) . Затем, вычислив из полученной оценки квадратный корень, получим Стандартную ошибку регрессии (часто обозначают как SEy или sey ).
где SSE – сумма квадратов значений ошибок модели ei=yi — ŷi ( Sum of Squared Errors ). MSE означает Mean Square of Errors (среднее квадратов ошибок, точнее остатков).
Величина n-p – это количество степеней свободы ( df – degrees of freedom ), т.е. число параметров системы, которые могут изменяться независимо (вспомним, что у нас в этом примере есть n независимых наблюдений переменной Y, р – количество оцениваемых параметров модели). В случае простой множественной регрессии с 2-мя регрессорами число степеней свободы равно n-3, т.к. при построении плоскости регрессии было оценено 3 параметра модели b (т.е. на это было «потрачено» 3 степени свободы ).
В MS EXCEL стандартную ошибку SEy можно вычислить формулы (см. файл примера, лист Статистика ):
Стандартная ошибка нового наблюдения Y при заданных значениях Х (вектор Хi) вычисляется по формуле:
x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.
Соответствующий доверительный интервал вычисляется по формуле:
где α (альфа) – уровень значимости (обычно принимают равным 0,05=5%)
р – количество оцениваемых параметров модели (в нашем случае = 3)
n-p – число степеней свободы
– квантиль распределения Стьюдента (задает количество стандартных ошибок , в +/- диапазоне которых вероятность обнаружить новое наблюдение равно 1-альфа). Т.е. если квантиль равен 2, то диапазон шириной +/- 2 стандартных ошибок относительно прогнозного значения Y будет с вероятностью 95% содержать новое наблюдение Y (для каждого заданного Хi). В MS EXCEL вычисления квантиля производят по формуле = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) , подробнее см. в статье про распределение Стьюдента .
– прогнозное значение Yi вычисляемое по формуле Yi= b 0+ b 1* Х1i+ b 2* Х2i (точечная оценка).
Стандартная ошибка среднего значения Y при заданных значениях Х (вектор Хi) будет меньше, чем стандартная ошибка отдельного наблюдения. Вычисления производятся по формуле:
x i — вектор-столбец со значениями переменных Х (с дополнительной 1) для заданного наблюдения i.
Соответствующий доверительный интервал вычисляется по формуле:
Прогнозное значение Yi (точечная оценка) используется тоже, что и для отдельного наблюдения.
Стандартные ошибки и доверительные интервалы для коэффициентов регрессии
В разделе Оценка неизвестных параметров мы получили точечные оценки коэффициентов регрессии . Так как эти оценки получены на основе случайных величин (значений переменных Х и Y), то эти оценки сами являются случайными величинами и соответственно имеют функцию распределения со средним значением и дисперсией . Но, чтобы перейти от точечных оценок к интервальным , необходимо вычислить соответствующие стандартные ошибки (т.е. стандартные отклонения ) коэффициентов регрессии .
Стандартная ошибка коэффициента регрессии b j (обозначается se ( b j ) ) вычисляется на основании стандартной ошибки по следующей формуле:
где C jj является диагональным элементом матрицы (X ’ X) -1 . Для коэффициента сдвига b 0 индекс j=1 (верхний левый элемент), для b 1 индекс j=2, b 2 индекс j=3 (нижний правый элемент).
SEy – стандартная ошибка регрессии (см. выше ).
В MS EXCEL стандартные ошибки коэффициентов регрессии можно вычислить с помощью функции ЛИНЕЙН() :
Примечание : Подробнее о функции ЛИНЕЙН() см. статью Функция MS EXCEL ЛИНЕЙН() .
Применяя матричный подход стандартные ошибки можно вычислить и через обычные формулы (точнее через формулу массива , см. файл примера лист Статистика ):
= КОРЕНЬ(СУММКВРАЗН(E13:E43;F13:F43) /(n-p)) *КОРЕНЬ (ИНДЕКС (МОБР (МУМНОЖ(ТРАНСП(B13:D43);(B13:D43)));j;j))
При построении двухстороннего доверительного интервала для коэффициента регрессии его границы определяются следующим образом:
где t – это t-значение , которое можно вычислить с помощью формулы = СТЬЮДЕНТ.ОБР.2Х(0,05;n-p) для уровня значимости 0,05.
В результате получим, что найденный доверительный интервал с вероятностью 95% (1-0,05) накроет истинное значение коэффициента регрессии b j . Здесь мы считаем, что коэффициент регрессии b j имеет распределение Стьюдента с n-p степенями свободы (n – количество наблюдений, т.е. пар Х и Y).
Проверка гипотез
Когда мы строим модель, мы предполагаем, что между Y и переменными X существует линейная взаимосвязь. Однако, как это иногда бывает в статистике, можно вычислять параметры связи даже тогда, когда в действительности она не существует, и обусловлена лишь случайностью.
Единственный вариант, когда Y не зависит X, возможен, когда все коэффициенты регрессии β равны 0.
Чтобы убедиться, что вычисленная нами оценка коэффициентов регрессии не обусловлена лишь случайностью (они не случайно отличны от 0), используют проверку гипотез . В качестве нулевой гипотезы Н 0 принимают, что линейной связи нет, т.е. ВСЕ β=0. В качестве альтернативной гипотезы Н 1 принимают, что ХОТЯ БЫ ОДИН коэффициент β <>0.
Процедура проверки значимости множественной регрессии, приведенная ниже, является обобщением дисперсионного анализа , использованного нами в случае простой линейной регрессии (F-тест) .
Если нулевая гипотеза справедлива, то тестовая F -статистика имеет F-распределение со степенями свободы k и n — k -1 , т.е. F k, n-k-1 :
Проверку значимости регрессии можно также осуществить через вычисление p -значения . В этом случае вычисляют вероятность того, что случайная величина F примет значение F 0 (это и есть p-значение ), затем сравнивают p-значение с заданным уровнем значимости α (альфа) . Если p-значение больше уровня значимости , то нулевую гипотезу нет оснований отклонить, и регрессия незначима.
В MS EXCEL значение F 0 можно вычислить на основании значений выборки по вышеуказанной формуле или с помощью функции ЛИНЕЙН() :
В MS EXCEL для проверки гипотезы через p -значение используйте формулу =F.РАСП.ПХ(F 0 ;k;n-k-1) файл примера лист Статистика , где показано эквивалентность обоих подходов проверки значимости регрессии).
В MS EXCEL критическое значение для заданного уровня значимости F 1-альфа, k, n-k-1 можно вычислить по формуле = F.ОБР(1- альфа;k;n-k-1) или = F.ОБР.ПХ(альфа;k; n-k-1) . Другими словами требуется вычислить верхний альфа- квантиль F -распределения с соответствующими степенями свободы .
Таким образом, при значении статистики F 0 > F 1-альфа, k, n-k-1 мы имеем основание для отклонения нулевой гипотезы.
В программах статистики результаты процедуры F -теста выводят с помощью стандартной таблицы дисперсионного анализа . В файле примера такая таблица приведена на листе Надстройка , которая построена на основе результатов, возвращаемых инструментом Регрессия надстройки Пакета анализа MS EXCEL .
Генерация данных для множественной регрессии с помощью заданного тренда
Иногда, бывает удобно сгенерировать значения наблюдений, имея заданный тренд.
Для решения этой задачи нам потребуется:
- задать значения регрессоров в нужном диапазоне (значения переменных Х);
- задать коэффициенты регрессии ( b );
- задать тренд (вычислить значения Y= b0 +b1 * Х 1 + b2 * Х 2 );
- задать величину разброса Y вокруг тренда (варианты: случайный разброс в заданных границах или заданная фигура, например, круг)
Все вычисления выполнены в файле примера, лист Тренд для случая 2-х регрессоров. Там же построены диаграммы рассеяния .
Коэффициент детерминации
Коэффициент детерминации R 2 показывает насколько полезна построенная нами линейная регрессионная модель .
По определению коэффициент детерминации R 2 равен:
R 2 = Изменчивость объясненная моделью ( SSR ) / Общая изменчивость ( SST ).
Этот показатель можно вычислить с помощью функции ЛИНЕЙН() :
При добавлении в модель новой объясняющей переменной Х, коэффициент детерминации будет всегда расти. Поэтому, рост коэффициента детерминации не может служить основанием для вывода о том, что новая модель (с дополнительным регрессором) лучше прежней.
Более подходящей статистикой, которая лишена указанного недостатка, является нормированный коэффициент детерминации (Adjusted R-squared):
где p – число независимых регрессоров (вычисления см. файл примера лист Статистика ).
Пример решения эконометрической задачи в Excel
Ниже приведено условие задачи и текстовая часть решения. Закачка полного решения, файлы word+Excel в архиве rar, начнется автоматически через 10 секунд. Если закачка не началась, кликните по этой ссылке.
Видеоурок по решению этой задачи в Excel вы можете посмотреть здесь.
По предложенным вам экспериментальным данным, представляющим собою макроэкономические показатели или показатели финансовой (денежно-кредитной) системы некоторой страны, т.е. случайной выборке объема n – построить математическую модель зависимости случайной величины Y от случайных величин X1 и X2. Построение и оценку качества экономико-математической (эконометрической) модели вести в следующей последовательности:
•Построить корреляционную матрицу для случайных величин и оценить статистическую значимость корреляции между ними.
•Исходя из наличия между эндогенной переменной и экзогенными переменными, линейной зависимости, оценить параметры регрессионной модели по методу наименьших квадратов. Вычислите вектора регрессионных значений эндогенной переменной и случайных отклонений.
•Найдите средние квадратические ошибки коэффициентов регрессии. Используя критерий Стьюдента проверьте статистическую значимость параметров модели. Здесь и далее принять уровень значимости 0,05(т. е. надежность 95%).
•Вычислите эмпирический коэффициент детерминации и скорректированный коэффициент детерминации. Проверьте, используя критерий Фишера, адекватность линейной модели.
•Установите наличие (отсутствие) автокорреляции случайных отклонений модели. Используйте для этого метод графического анализа, статистику Дарбина-Уотсона и критерий Бреуша-Годфри.
•Установите наличие (отсутствие) гетероскедастичности случайных отклонений модели. Используйте для этого графический анализ, тест Вайта и тест Парка для вариантов с добавочным индексом А (графический метод, тест Глейзера и тест Бреуша-Пагана для вариантов с добавочным индексом В).
•Обобщите результаты оценивания параметров модели и результаты проверки модели на адекватность.
В таблице 1.1. приведены е же квартальные данные о валовом внутреннем продукте (млн. евро) ; экспорта товаров и услуг (млн. евро ) ; эффективный обменный курс евро к национальной волюте для Испании на период с 2000 по 2007 годы.
Еж еквартальные данные о валовом внутреннем продукте, экспорте товаров и услуг , эффективном обменном курсе евро к национальной валюте для И сландии на период с 2000 по 2007 годы
Задачи с решениями в Excel по эконометрике
В этом разделе вы найдете решенные задач по разным разделам эконометрики, выполненные с применением пакета электронных таблиц MS Excel. Большая часть работ снабжена подробным текстовым отчетом.
Если вам нужна помощь в выполнении контрольных работ по эконометрике в Excel, обращайтесь: эконометрика на заказ
Решение эконометрики в Экселе
Задача 1. Парная регрессия.
Для исходных данных, приведенных ниже, рассчитайте
- коэффициенты линейного регрессионного уравнения
- рассчитайте остаточную дисперсию
- вычислите значения коэффициентов корреляции и детерминации
- рассчитайте коэффициент эластичности
- рассчитайте доверительные границы уравнения регрессии (по уровню 0,95, t=2,44)
- в одной системе координат постройте: уравнение регрессии, экспериментальные точки, доверительные границы уравнения регрессии
Задача 2. Построить требуемое уравнение регрессии. Вычислить коэффициент детерминации, коэффициент эластичности, бета коэффициент и дать их смысловую нагрузку в терминах задачи. Проверить адекватность уравнения с помощью F теста. Найти дисперсии оценок и 95% доверительные интервалы для параметров регрессии. Данные взять из таблицы. Найти прогнозируемое значение объясняемой переменной для некоторого значения объясняющей переменной, не заданной в таблице.
Построить уравнение линейной регрессии объема валового выпуска (в млн. руб.) от стоимости основных производственных фондов (млн. руб.).
Задача 3. Множественная регрессия.
Построить требуемое уравнение регрессии. Вычислить коэффициент детерминации, частные коэффициенты эластичности, частные бета коэффициенты и дать их смысловую нагрузку в терминах задачи. Проверить адекватность уравнения с помощью F теста. Найти оценку матрицы ковариаций оценок параметров регрессии и 95% доверительные интервалы для параметров регрессии. Проверить наличие мультиколлинеарности в модели. Данные взять из таблицы.
Построить уравнение линейной регрессии себестоимости единицы товара (в сотнях руб.) от величины энерговооруженности (кВт) и производительности труда (тов/час).
Задача 4. Трендовые модели
Проверить ряд на наличие тренда. Сгладить ряд методом простой скользящей средней $(m = 3)$, экспоненциальным сглаживанием $(alpha = 0,3; alpha = 0,8)$. Построить исходный и сглаженные ряды. На основании построенных рядов определить вид трендовой модели. Построить трендовую модель.
Сделать прогноз изучаемого признака на два шага вперед.
87; 77; 75; 74; 69; 66; 62; 61; 59; 57; 57; 52; 50; 48; 46; 43; 43; 41; 38; 35
Задача 5. По заданным статистическим данным постройте линейную модель множественной регрессии и исследуйте её.
- Постройте линейную модель множественной регрессии.
- Запишите стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжировать факторы по степени их влияния на результат.
- Найдите коэффициенты парной, частной и множественной корреляции. Проанализируйте их.
- Найдите скорректированный коэффициент множественной детерминации. Сравните его с нескорректированным (общим) коэффициентом детерминации.
- С помощью F-критерия Фишера оценить статистическую надежность уравнения регрессии и коэффициента детерминации $R^2_$.
- С помощью частных F-критериев Фишера оценить целесообразность включения в уравнение множественной регрессии фактора $x_1$ после $x_2$ и фактора $x_2$ после $x_1$.
- Составьте уравнение линейной парной регрессии, оставив лишь один значащий фактор.
Задача 6. По данным опроса 15 женщин, находящихся в роддоме, исследовать зависимость веса новорожденного (у) от среднего числа сигарет (х), выкуриваемых матерью в день, с учетом числа уже имеющихся у матери детей (z).
источники:
http://easyhelp.su/subjects/ekonometrika_reshenie_zadach/primer_resheniya_ekonometricheskoj_zadachi_v_excel/
http://www.matburo.ru/ex_ec.php?p1=ecexcel
Рассмотрим пример, представленный в п.6.2: построить линейную модель зависимости приращения прибыли (Y) в зависимости от инвестиционных вложений в оборотные средства(X1) и основной капитал ( X 2 ). Имеются
статистические данные по 7 предприятиям отрасли
Y |
50 |
120 |
290 |
190 |
200 |
300 |
320 |
X1 |
30 |
66 |
78 |
110 |
130 |
190 |
250 |
X2 |
6 |
10 |
20 |
15 |
16 |
18 |
20 |
Выбираем линейную модель Y a0 a1X1 a2 X 2 . Найдем ее параметры
иоценим качество с использованием средств ППП «EXCEL»
1.Запишем исходные данные в таблицу EXCEL, как это сделано на рис.7.
Рис. 7.Ввод данных на листе 1 таблицы EXCEL.
2. В меню Сервис выбираем строку Анализ данных. На экране появится окно, в котором выбираем пункт Регрессия. Появляется следующее диалоговое окно (рис.8)
Рис.8. Диалоговое окно функции «Регрессия» Пакета анализа
2.Диалоговое окно заполняется следующим образом:
Входной интервал Y – диапазон (столбец), содержащий данные со
65
значениями объясняемой переменной, в нашем примере: ($A$1:$A$8)
Входной интервал X – диапазон (столбцы), содержащий данные со значениями объясняющих переменных: $B$1:$C$8.
Метки – флажок, который указывает, содержат ли первые элементы отмеченных диапазонов названия переменных (столбцов) или нет
Константа-ноль — флажок, указывающий на наличие или отсутствие свободного члена в уравнении модели;
Уровень надежности 1 95% (выбирается однозначно)
Выходной интервал – достаточно указать левую верхнюю ячейку будущего диапазона, в котором будет сохранен отчет по построению модели ($A$11). Можно также вывести отчет на новый рабочий лист или новую книгу,
для чего вводится флажок в соответствующее окно |
ˆ |
|
ˆ |
||
Для получения расчетных значений Y , |
остатков e Y Y |
или |
графиков следует установить соответствующие флажки в диалоговом окне. После заполнения диалогового окна нажмите на кнопку Ok.
4. Дадим расшифровку результатам моделирования. Вид отчета о результатах регрессионного анализа представлен на рис. 9.
Рис. 9. Отчет о результатах регрессионного анализа
66
Рассмотрим регрессионную статистику.
Множественный R – это R2 , где R2 – R-квадрат (коэффициент детерминации).
R2 0,969 |
свидетельствует |
о том, что изменения зависимой |
|||||||||||||||||||||||
переменной Y на 96,9% можно объяснить изменениями включенных в модель |
|||||||||||||||||||||||||
объясняющих переменных. |
|||||||||||||||||||||||||
Нормированный |
R-квадрат |
– |
скорректированный коэффициент |
||||||||||||||||||||||
детерминации R |
2 |
=1 1 R2 |
n 1 |
, |
|||||||||||||||||||||
kor |
n k 1 |
||||||||||||||||||||||||
где |
n – число наблюдений, k – число объясняющих переменных. |
||||||||||||||||||||||||
n |
ei2 |
||||||||||||||||||||||||
Стандартная ошибка регрессии |
S |
S 2 , где |
S 2 |
– |
|||||||||||||||||||||
n k 1 |
|||||||||||||||||||||||||
i 1 |
|||||||||||||||||||||||||
необъясненная дисперсия |
|||||||||||||||||||||||||
Наблюдения – число наблюдений n . |
Таблица 11. |
||||||||||||||||||||||||
Коэффици- |
Стандарт |
t-статис- |
P- |
Нижние |
Верхние |
||||||||||||||||||||
енты |
ошибка |
тика. |
Значение |
95% |
95% |
||||||||||||||||||||
Y-перес.. |
a |
0 |
-61,36 |
Sa |
27,25 |
ta -2,25 |
0,09 |
-137,01 |
14,29 |
||||||||||||||||
0 |
0 |
||||||||||||||||||||||||
X1 |
a |
0,25 |
Sa |
0,17 |
ta |
1,47 |
0,22 |
-0,22 |
0,72 |
||||||||||||||||
1 |
1 |
1 |
|||||||||||||||||||||||
X2 |
a |
2 |
16,07 |
Sa |
2,45 |
ta |
6,57 |
0,00 |
9,28 |
22,86 |
|||||||||||||||
2 |
2 |
Втаблице 11 представлены параметры модели (столбец «коэффициенты)
ирезультаты их проверки на статистическую значимость. Следовательно,
уравнение модели: Y 61,36 0,25 X1 16,07 X 2
t –статистика получена делением коэффициентов на стандартные ошибки. Как нам уже известно, если расчетное значение t статистики превосходит критическое, полученное из таблиц теоретического распределения Стьюдента с параметрами ( , n k 1) , то они статистически значимы.
Можно найти критические значения по таблицам t –распределения и провести сравнение (для данного примера t (0.05, 4)=2,77). В Пакете анализа предусмотрен другой инструмент оценки t –статистики: p-значение.
p-значение-величина, применяемая при статистической проверке гипотез с использованием компьютерных программ статистического анализа данных.. Представляет собой вероятность того, что критическое значение статистики используемого критерия (в данном случае t-статистики Стьюдента) превысит значение, вычисленное по выборке. Решение о принятии или отклонении нулевой гипотезы принимается в результате сравнения p-значения
с выбранным уровнем значимости . Если p, то нулевая гипотеза
отклоняется и принимается альтернативная о статистической значимости рассматриваемого параметра.
67
В данном примере параметр a1 статистически незначим так как
p 0,215 0,05; |
параметр |
a2 |
статистически |
значим |
( p 0,003 0,05). |
Нижние 95% — Верхние 95% — доверительные интервалы для параметров модели. Вообще, доверительные интервалы строятся только для статистически
значимых величин. В данном случае для параметра a2 :
9,278 M (a2 ) 2 22,859 , т.е. с надежностью 95% истинное
значение параметра лежит в указанном интервале.
Рассмотрим таблицу дисперсионного анализа.
Дисперсионный анализ |
|||||
df |
SS |
MS |
F |
Значим. F |
|
Регрессия |
2,000 |
58912,518 |
29456,259 |
62,424 |
0,001 |
Остаток |
4,000 |
1887,482 |
471,870 |
||
Итого |
6,000 |
60800,000 |
df – degrees of freedom – число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант k 1 .
SS- обозначение полных сумм квадратов. В этом столбце в строке
n
«Регрессия» стоит факторная сумма отклонений ESS .= (Yˆi Y )2 : в строке
i 1
n
«Остаток» – остаточная сумма отклонений RSS = (Yi Yˆi )2 , а в строке
i 1
«Итого» –общая сумма отклонений TSS = n (Yi Y )2 .
i 1
F и Значимость F позволяют проверить значимость уравнения регрессии, По эмпирическому значению статистики F проверяется гипотеза равенства нулю одновременно всех коэффициентов модели. Уравнение регрессии значимо на уровне , если F Fкр, где Fкр — табличное значение F—
критерия Фишера с параметрами ,k,n k 1 .Если значимость F 0.05, то уравнение регрессии статистически значимо с вероятностью 95%
68
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
27.03.20151.93 Mб16English_for_IT.pdf
- #
- #
ЗАДАНИЕ 11
Эконометрические модели в Пакете анализа EXCEL:
Эконометрическая модель, учитывая корреляционные связи, позволяет
путем подбора аналитической зависимости построить модель на базисном
периоде и при достаточной адекватности модели использовать ее для
краткосрочного прогноза.
а) загрузить надстройку пакет анализа EXCEL, зайти в ПАРАМЕТРЫ
Excel, выбрать НАДСТРОЙКИ, щелкнуть снизу окна кнопку ПЕРЕЙТИ к
надстройкам, пометить Пакет анализа, Ок: б) исходные данные для анализа могут быть получены в результате ряда
опытов или из сравнения подобных объектов, количество опытов должно быть
как минимум на один больше количества факторов Х объекта или процесса;
в) заполнить ячейки EXCEL исходными данными;
B
A
№пп
1
2
3
4
5
6
7
8
9
10
11
12
13
14
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
C
х1
43
70
32
66
94
77
88
54
54
44
56
45
80
30
D
х2
3,93
1,06
5,81
4,19
4,86
3,62
3,64
1,99
4,5
2,18
1,77
3,27
3,24
0,63
E
х3
19852
27809
20246
11504
13997
13489
17153
15815
21829
12508
16851
18640
31103
18650
F
х4
13
16
24
18
12
17
24
15
25
14
24
13
31
15
G
х5
3320
1041
5060
4195
4489
3349
3046
1650
3528
2018
1776
2837
2850
1430
I
H
х6
241
179
226
126
201
249
159
187
125
310
210
117
197
123
J
Y
10
15
20
40
12
24
14
26
22
34
35
16
18
13
г) найти среднее значение всех факторов Х, позволяющее в дальнейшем
использовать исследование в соответствии с понятием коэффициент
эластичности (меню ГЛАВНАЯ, подменю Редактирование, в списке Другие
функции найти функцию =СРЗНАЧ() и указать аргументом диапазон колонки
чисел, затем скопировать функцию на все колонки):
59,5
3,2
18531,9
18,6
2899,2
189,3
21,4
д) зайти в пункт меню ДАННЫЕ, выбрать Анализ данных в подменю
Анализ, выбрать РЕГРЕССИЯ, подтвердить Ок;
Анализ данным
Инструменты анализа
Гистограмма Скользящее
среднее Генерация
случайных чисел Ранг и
персентиль
Регрессия
1
ОК
Отмена
Справка
П6Т Выборка
Парный двухвыборочный tтест для средних Двухвыборочный tтест с одинаковыми дисперсиями
Двухвыборочный tтест с различными дисперсиями Двухвыборочный zтест для средних е) настроить параметры окна регрессии: входной интервал Y указать
выделением мышью диапазон Y, входной интервал Х указать выделением
мышью все числовые значения Х, Параметры вывода можно оставить Новый
рабочий лист или щелкнуть на свободное место текущего листа, Ок:
ж) получить коэффициенты уравнения регрессии и коэффициент
корреляции.
Регрессионная
статистика
Множеств. R
R-квадрат
Y-пересечение
Переменная X 1
Переменная X 2
Переменная X 3
Переменная X 4
Переменная X 5
Переменная X 6
0,74
0,55
Коэфф. Ст. ошибка
34,21992
18,15065
0,121476
-0,06031
7,520502
-1,77084
-0,00143
0,000561
0,509319
1,089928
0,009388
-0,00035
0,018546
0,044022
tстатистика PЗначение
0,101369
0,634741
0,820585
0,038495
0,069637
0,971421
0,68618
1,885327457
-0,496514896
-0,235468864
-2,543007893
2,139973612
-0,037125732
0,42128646
Уравнение регрессии при этом выглядит следующим образом: Y=34,2199
0,0603×11,77084×20,00143×3+1,089928×40,00035×5+0,01854×6 з) подставляя в полученное уравнение числовые значения факторов
можно предсказать дальнейшее изменение определяемого параметра Y.
и) используя, выведенные уравнения регрессии, получить значения
выходного параметра для всех опытов;
выбрать ячейку К2 и занести формулу: =34,220,06*C2
■
1,77*D20,00143*E2+1,09*F20,00035*G2+0,01854*H2
■
■
скопировать формулу на все опыты по столбцу;
J2:K15 и построить график;
выделить диапазон
Регрессия
45 ——————————
“ К
л
5 ——————————————————————————————
0 ——————————————————————————
10 11
7
3
5
6
9
1
2
3
4
12 13 14
—♦—Данные У —■— У от 6 факторов
Некоторые факторы демонстрируют плохую корреляцию с
определяемым параметром, поэтому по таблице Стьюдента с вычисленным
уровнем значимости и известным количеством опытов можно найти
критическое значение параметра tстатистика и исключить некоторые из
факторов. Проверка значимости модели регрессии также может быть
проведена с использованием Fкритерия Фишера. Значимость факторов может
также продемонстрировать коэффициент эластичности.
к) вычислить коэффициенты эластичности каждого из факторов.
Коэффициент эластичности показывает, на сколько процентов в среднем
изменяется результативный признак У, при изменении факторного признака Х
на 1%. Коэффициент эластичности находится по формуле:
Е = Кх* XCp/YCp
где Кх коэффициент уравнения регрессии при факторе, Хср и Уср
средние значения фактора и параметра. В результате получены
коэффициенты:
0,26455
0,167157
Оказалось, что лишь изменение факторов Х3 и Х4 может
влиять на результирующий показатель.
1,240829
0,047512
0,951472
0,168395
л) исключить из ряда факторов те, у которых малая по абсолютному
значения величина параметра tстатистика, это переменные Х1, Х2, Х5, 36
Х6, и, снова получить коэффициенты уравнения регрессии и коэффициент
корреляции;
_________Некоторые результаты:________________________________________
Регрессионная
статистика
Множеств. R
R-квадрат
Y-пересечение
Переменная X 3
Переменная X 4
0,649957
0,422444
Коэфф
28,89433
-0,00124
0,83244
Ст. ошибка tстатистика PЗначение
0,005224
8,322675091
0,000449341
0,018266
0,077633
0,427750113
3,471759755
-2,76881489
1,946089208
Коэффициент корреляции при этом уменьшился, но все факторы имеют
высокий уровень значимости. Уравнение регрессии при этом выглядит
следующим образом:
м) используя новое уравнение регрессии, получить значения выходного
y=28,894330,00124×3+0,83244×4
параметра для всех опытов;
н) построить график зависимости величины Y от номера опыта;
о) сохранить результаты.
Простая линейная регрессия — это метод, который мы можем использовать для понимания взаимосвязи между объясняющей переменной x и переменной отклика y.
В этом руководстве объясняется, как выполнить простую линейную регрессию в Excel.
Пример: простая линейная регрессия в Excel
Предположим, нас интересует взаимосвязь между количеством часов, которое студент тратит на подготовку к экзамену, и полученной им экзаменационной оценкой.
Чтобы исследовать эту взаимосвязь, мы можем выполнить простую линейную регрессию, используя часы обучения в качестве независимой переменной и экзаменационный балл в качестве переменной ответа.
Выполните следующие шаги в Excel, чтобы провести простую линейную регрессию.
Шаг 1: Введите данные.
Введите следующие данные о количестве часов обучения и экзаменационном балле, полученном для 20 студентов:
Шаг 2: Визуализируйте данные.
Прежде чем мы выполним простую линейную регрессию, полезно создать диаграмму рассеяния данных, чтобы убедиться, что действительно существует линейная зависимость между отработанными часами и экзаменационным баллом.
Выделите данные в столбцах A и B. В верхней ленте Excel перейдите на вкладку « Вставка ». В группе « Диаграммы » нажмите « Вставить разброс» (X, Y) и выберите первый вариант под названием « Разброс ». Это автоматически создаст следующую диаграмму рассеяния:
Количество часов обучения показано на оси x, а баллы за экзамены показаны на оси y. Мы видим, что между двумя переменными существует линейная зависимость: большее количество часов обучения связано с более высокими баллами на экзаменах.
Чтобы количественно оценить взаимосвязь между этими двумя переменными, мы можем выполнить простую линейную регрессию.
Шаг 3: Выполните простую линейную регрессию.
В верхней ленте Excel перейдите на вкладку « Данные » и нажмите « Анализ данных».Если вы не видите эту опцию, вам необходимо сначала установить бесплатный пакет инструментов анализа .
Как только вы нажмете « Анализ данных», появится новое окно. Выберите «Регрессия» и нажмите «ОК».
Для Input Y Range заполните массив значений для переменной ответа. Для Input X Range заполните массив значений для независимой переменной.
Установите флажок рядом с Метки , чтобы Excel знал, что мы включили имена переменных во входные диапазоны.
В поле Выходной диапазон выберите ячейку, в которой должны отображаться выходные данные регрессии.
Затем нажмите ОК .
Автоматически появится следующий вывод:
Шаг 4: Интерпретируйте вывод.
Вот как интерпретировать наиболее релевантные числа в выводе:
R-квадрат: 0,7273.Это известно как коэффициент детерминации. Это доля дисперсии переменной отклика, которая может быть объяснена объясняющей переменной. В этом примере 72,73 % различий в баллах за экзамены можно объяснить количеством часов обучения.
Стандартная ошибка: 5.2805.Это среднее расстояние, на которое наблюдаемые значения отходят от линии регрессии. В этом примере наблюдаемые значения отклоняются от линии регрессии в среднем на 5,2805 единиц.
Ф: 47,9952.Это общая F-статистика для регрессионной модели, рассчитанная как MS регрессии / остаточная MS.
Значение F: 0,0000.Это p-значение, связанное с общей статистикой F. Он говорит нам, является ли регрессионная модель статистически значимой. Другими словами, он говорит нам, имеет ли независимая переменная статистически значимую связь с переменной отклика. В этом случае p-значение меньше 0,05, что указывает на наличие статистически значимой связи между отработанными часами и полученными экзаменационными баллами.
Коэффициенты: коэффициенты дают нам числа, необходимые для написания оценочного уравнения регрессии. В этом примере оцененное уравнение регрессии:
экзаменационный балл = 67,16 + 5,2503*(часов)
Мы интерпретируем коэффициент для часов как означающий, что за каждый дополнительный час обучения ожидается увеличение экзаменационного балла в среднем на 5,2503.Мы интерпретируем коэффициент для перехвата как означающий, что ожидаемая оценка экзамена для студента, который учится без часов, составляет 67,16 .
Мы можем использовать это оценочное уравнение регрессии для расчета ожидаемого экзаменационного балла для учащегося на основе количества часов, которые он изучает.
Например, ожидается, что студент, который занимается три часа, получит на экзамене 82,91 балла:
экзаменационный балл = 67,16 + 5,2503*(3) = 82,91
Дополнительные ресурсы
В следующих руководствах объясняется, как выполнять другие распространенные задачи в Excel:
Как создать остаточный график в Excel
Как построить интервал прогнозирования в Excel
Как создать график QQ в Excel