Как парсить данные с сайта в excel

Парсинг нетабличных данных с сайтов

Проблема с нетабличными данными

С загрузкой в Excel табличных данных из интернета проблем нет. Надстройка Power Query в Excel легко позволяет реализовать эту задачу буквально за секунды. Достаточно выбрать на вкладке Данные команду Из интернета (Data — From internet), вставить адрес нужной веб-страницы (например, ключевых показателей ЦБ) и нажать ОК:

Импорт данных с веб-страницы через Power Query

Power Query автоматически распознает все имеющиеся на веб-странице таблицы и выведет их список в окне Навигатора:

Выбираем таблицу на сайте для импорта

Дальше останется выбрать нужную таблицу методом тыка и загрузить её в Power Query для дальнейшей обработки (кнопка Преобразовать данные) или сразу на лист Excel (кнопка Загрузить).

Если с нужного вам сайта данные грузятся по вышеописанному сценарию — считайте, что вам повезло.

К сожалению, сплошь и рядом встречаются сайты, где при попытке такой загрузки Power Query «не видит» таблиц с нужными данными, т.е. в окне Навигатора попросту нет этих Table 0,1,2… или же среди них нет таблицы с нужной нам информацией. Причин для этого может быть несколько, но чаще всего это происходит потому, что веб-дизайнер при создании таблицы использовал в HTML-коде страницы не стандартную конструкцию с тегом <TABLE>, а её аналог — вложенные друг в друга теги-контейнеры <DIV>. Это весьма распространённая техника при вёрстке веб-сайтов, но, к сожалению, Power Query пока не умеет распознавать такую разметку и загружать такие данные в Excel.

Тем не менее, есть способ обойти это ограничение ;)

В качестве тренировки, давайте попробуем загрузить цены и описания товаров с маркетплейса Wildberries — например, книг из раздела Детективы:

Детективы на Wildberries

Загружаем HTML-код вместо веб-страницы

Сначала используем всё тот же подход — выбираем команду Из интернета на вкладке Данные (Data — From internet) и вводим адрес нужной нам страницы:

https://www.wildberries.ru/catalog/knigi/hudozhestvennaya-literatura/detektivy

После нажатия на ОК появится окно Навигатора, где мы уже не увидим никаких полезных таблиц, кроме непонятной Document:

Навигатор без таблиц

Дальше начинается самое интересное. Жмём на кнопку Преобразовать данные (Transform Data), чтобы всё-таки загрузить содержимое таблицы Document в редактор запросов Power Query. В открывшемся окне удаляем шаг Навигация (Navigation) красным крестом:

Удаляем ненужный шаг Навигация

… и затем щёлкаем по значку шестерёнки справа от шага Источник (Source), чтобы открыть его параметры:

Меняем тип файла

В выпадающием списке Открыть файл как (Open file as) вместо выбранной там по-умолчанию HTML-страницы выбираем Текстовый файл (Text file). Это заставит Power Query интерпретировать загружаемые данные не как веб-страницу, а как простой текст, т.е. Power Query не будет пытаться распознавать HTML-теги и их атрибуты, ссылки, картинки, таблицы, а просто обработает исходный код страницы как текст.

После нажатия на ОК мы этот HTML-код как раз и увидим (он может быть весьма объемным — не пугайтесь):

Исходный код страницы в Power Query

Ищем за что зацепиться

Теперь нужно понять на какие теги, атрибуты или метки в коде мы можем ориентироваться, чтобы извлечь из этой кучи текста нужные нам данные о товарах. Само-собой, тут всё зависит от конкретного сайта и веб-программиста, который его писал и вам придётся уже импровизировать.

В случае с Wildberries, промотав этот код вниз до товаров, можно легко нащупать простую логику:

Изучаем исходный код

  • Строчки с ценами всегда содержат метку lower-price
  • Строчки с названием бренда — всегда с меткой brand-name c-text-sm
  • Название товара можно найти по метке goods-name c-text-sm

Иногда процесс поиска можно существенно упростить, если воспользоваться инструментами отладки кода, которые сейчас есть в любом современном браузере. Щёлкнув правой кнопкой мыши по любому элементу веб-страницы (например, цене или описанию товара) можно выбрать из контекстного меню команду Инспектировать (Inspect) и затем просматривать код в удобном окошке непосредственно рядом с содержимым сайта:

Инспектирование кода HTML на веб-странице

Фильтруем нужные данные

Теперь совершенно стандартным образом давайте отфильтруем в коде страницы нужные нам строки по обнаруженным меткам. Для этого выбираем в окне Power Query в фильтре [1] опцию Текстовые фильтры — Содержит (Text filters — Contains), переключаемся в режим Подробнее (Advanced) [2] и вводим наши критерии:

Фильтруем нужные строки

Добавление условий выполняется кнопкой со смешным названием Добавить предложение [3]. И не забудьте для всех условий выставить логическую связку Или (OR) вместо И (And) в выпадающих списках слева [4] — иначе фильтрация просто не сработает.

После нажатия на ОК на экране останутся только строки с нужной нам информацией:

Отобранные строки

Чистим мусор

Останется почистить всё это от мусора любым подходящим и удобным лично вам способом (их много). Например, так:

  1. Удалить заменой на пустоту начальный тег: <span class=»price»> через команду Главная — Замена значений (Home — Replace values).
  2. Разделить получившийся столбец по первому разделителю «>» слева командой Главная — Разделить столбец — По разделителю (Home — Split column — By delimiter) и затем ещё раз разделить получившийся столбец по первому вхождению разделителя «<» слева, чтобы отделить полезные данные от тегов:

    Отделяем данные от HTML-тегов

  3. Удалить лишние столбцы, а в оставшемся заменить стандартную HTML-конструкцию &quot; на нормальные кавычки.

В итоге получим наши данные в уже гораздо более презентабельном виде:

Зачищенные данные

Разбираем блоки по столбцам

Если присмотреться, то информация о каждом отдельном товаре в получившемся списке сгруппирована в блоки по три ячейки. Само-собой, нам было бы гораздо удобнее работать с этой таблицей, если бы эти блоки превратились в отдельные столбцы: цена, бренд (издательство) и наименование.

Выполнить такое преобразование можно очень легко — с помощью, буквально, одной строчки кода на встроенном в Power Query языке М. Для этого щёлкаем по кнопке fx в строке формул (если у вас её не видно, то включите её на вкладке Просмотр (View)) и вводим следующую конструкцию:

= Table.FromRows(List.Split(#»Замененное значение1″[Column1.2.1],3))

Здесь функция List.Split разбивает столбец с именем Column1.2.1 из нашей таблицы с предыдущего шага #»Замененное значение1″ на кусочки по 3 ячейки, а потом функция Table.FromRows конвертирует получившиеся вложенные списки обратно в таблицу — уже из трёх столбцов:

Разобранная на 3 столбца таблица

Ну, а дальше уже дело техники — настроить числовые форматы столбцов, переименовать их и разместить в нужном порядке. И выгрузить получившуюся красоту обратно на лист Excel командой Главная — Закрыть и загрузить (Home — Close & Load…)

Загруженные в Excel данные с сайта

Вот и все хитрости :)

Ссылки по теме

  • Импорт курса биткойна с сайта через Power Query
  • Парсинг текста регулярными выражениями (RegExp) в Power Query
  • Параметризация путей к данным в Power Query

Парсить сайты в Excel достаточно просто если использовать облачную версию софта Google Таблицы (Sheets/Doc), которые без труда позволяют использовать мощности поисковика для отправки запросов на нужные сайты.

  • Подготовка;
  • IMPORTXML;
  • IMPORTHTML;
  • Обратная конвертация.

Видеоинструкция

Подготовка к парсингу сайтов в Excel (Google Таблице)

Для того, чтобы начать парсить сайты потребуется в первую очередь перейти в Google Sheets, что можно сделать открыв страницу:

https://www.google.com/intl/ru_ru/sheets/about/

Главная страница Google таблицы

Потребуется войти в Google Аккаунт, после чего нажать на «Создать» (+).

Создание нового документа в Google Таблицах

Теперь можно переходить к парсингу, который можно выполнить через 2 основные функции:

  • IMPORTXML. Позволяет получить практически любые данные с сайта, включая цены, наименования, картинки и многое другое;
  • IMPORTHTML. Позволяет получить данные из таблиц и списков.

Однако, все эти методы работают на основе ссылок на страницы, если таблицы с URL-адресами нет, то можно ускорить этот сбор через карту сайта (Sitemap). Для этого добавляем к домену сайта конструкцию «/robots.txt». Например, «seopulses.ru/robots.txt».

Здесь открываем URL с картой сайта:

robots.txt сайта для парсинга в Excel

Нас интересует список постов, поэтому открываем первую ссылку.

Карта сайта для парсинга в Excel

Получаем полный список из URL-адресов, который можно сохранить, кликнув правой кнопкой мыши и нажав на «Сохранить как» (в Google Chrome).

Скачивание карты сайта для парсинга в Эксель

Теперь на компьютере сохранен файл XML, который можно открыть через текстовые редакторы, например, Sublime Text или NotePad++.

Карта сайта в текстовом рекдакторе NotePad++

Чтобы обработать информацию корректно следует ознакомиться с инструкцией открытия XML-файлов в Excel (или создания), после чего данные будут поданы в формате таблицы.

Список URL чтобы можно было спарсить в Excel

Все готово, можно переходить к методам парсинга.

IPMORTXML для парсинга сайтов в Excel

Синтаксис IMPORTXML в Google Таблице

Для того, чтобы использовать данную функцию потребуется в таблице написать формулу:

=IMPORTXML(Ссылка;Запрос)

Пример использования IMPORTXML в Google Таблице

Где:

  • Ссылка — URL-адрес страницы;
  • Запрос – в формате XPath.

С примером можно ознакомиться в:

https://docs.google.com/spreadsheets/d/1xmzdcBPap6lA5Gtwm1hjQfDHf3kCQdbxY3HM11IqDqY/edit#gid=0

Примеры использования IMPORTXML в Google Doc

Парсинг названий

Для работы с парсингом через данную функцию потребуется знание XPATH и составление пути в этом формате. Сделать это можно открыв консоль разработчика. Для примера будет использоваться сайт крупного интернет-магазина и в первую очередь необходимо в Google Chrome открыть окно разработчика кликнув правой кнопкой мыли и в выпавшем меню выбрать «Посмотреть код» (сочетание клавиш CTRL+Shift+I).

Просмотр кода страницы в Google Chrome

После этого пытаемся получить название товара, которое содержится в H1, единственным на странице, поэтому запрос должен быть:

//h1

И как следствие формула:

=IMPORTXML(A2;»//h1″)

Пример использования IMPORTXML для парсинга H1 в Google Таблице

Важно! Запрос XPath пишется в кавычках «запрос».

Парсинг различных элементов

Если мы хотим получить баллы, то нам потребуется обратиться к элементу div с классом product-standart-bonus поэтому получаем:

//div[@class=’product-standart-bonus’]

Пример рассмотрения структуры XPath при рассмотрении кода сайта

В этом случае первый тег div обозначает то, откуда берутся данные, когда в скобках [] уточняется его уникальность.

Для уточнения потребуется указать тип в виде @class, который может быть и @id, а после пишется = и в одинарных кавычках ‘значение’ пишется запрос.

Однако, нужное нам значение находиться глубже в теге span, поэтому добавляем /span и вводим:

//div[@class=’product-standart-bonus’]/span

В документе:

IMPORTXML в Google Doc с запросом XPath

Парсинг цен без знаний XPath

Если нет знаний XPath и необходимо быстро получить информацию, то требуется выбрав нужный элемент в консоли разработчика кликнуть правой клавишей мыши и в меню выбрать «Copy»-«XPath». Например, при поиске запроса цены получаем:

Копирование XPath для дальнейшего парсинга

//*[@id=»showcase»]/div/div[3]/div[2]/div[2]/div[1]/div[2]/div/div[1]

Важно! Следует изменить » на одинарные кавычки ‘.

Далее используем ее вместе с IMPORTXML.

Использование IMPORTXML в Google Sheets

Все готово цены получены.

Простые формулы с IMPORTXML в Google Sheets

Чтобы получить title страницы необходимо использовать запрос:

=IMPORTXML(A3;»//title»)

IMPORTXML для парсинга title страницы в Google Sheets

Для вывода description стоит использовать:

=IMPORTXML(A3;»//description»)

IMPORTXML для парсинга description страницы в Google Таблице

Первый заголовок (или любой другой):

=IMPORTXML(A3;»//h1″)

IMPORTXML для парсинга H1 страницы в Google Doc

IMPORTHTML для создания парсера веи-ресурсов в Эксель

Синтаксис IMPORTXML в Google Таблице

Для того, чтобы использовать данную функцию потребуется в таблице написать формулу:

=IMPORTXML(Ссылка;Запрос;Индекс)

Использование IMPORTHTML с list в Google Sheets

Где:

  • Ссылка — URL-адрес страницы;
  • Запрос – может быть в формате «table» или «list», выгружающий таблицу и список, соответственно.
  • Индекс – порядковый номер элемента.

С примерами можно ознакомиться в файле:

https://docs.google.com/spreadsheets/d/1GpcGZd7CW4ugGECFHVMqzTXrbxHhdmP-VvIYtavSp4s/edit#gid=0

Пример использования IMPORTHTML в Google Doc

Парсинг таблиц

В примерах будет использоваться данная статья, перейдя на которую можно открыть консоль разработчика (в Google Chrome это можно сделать кликнув правой клавишей мыши и выбрав пункт «Посмотреть код» или же нажав на сочетание клавиш «CTRL+Shift+I»).

Просмотр кода страницы в Google Chrome

Теперь просматриваем код таблицы, которая заключена в теге <table>.

Поиск в коде страницы таблицы для парсинга через IMPORTHTML в Google Таблицах

Данный элемент можно будет выгрузить при помощи конструкции:

=IMPORTHTML(A2;»table»;1)

Пример использования IMPORTHTML c table в Google Doc

  • Где A2 ячейка со ссылкой;
  • table позволяет получить данные с таблицы;
  • 1 – номер таблицы.

Важно! Сам запрос table или list записывается в кавычках «запрос».

Парсинг списков

Получить список, заключенный в тегах <ul>…</ul> при помощи конструкции.

=IMPORTHTML(A2;»list»;1)

Пример использования IMPORTHTML c list в Google Sheets

В данном случае речь идет о меню, которое также представлено в виде списка.

Просмотр списка в коде сайта для использования с IMPORTHTML c list в Google Таблицах

Если использовать индекс третей таблицы, то будут получены данные с третей таблицы в меню:

Просмотр третьего списка в коде сайта для использования с IMPORTHTML c list с индексом 3 в Google Docs

Формула:

=IMPORTHTML(A2;»list»;2)

Просмотр третьего списка в коде сайта для использования с IMPORTHTML c list с индексом 3 в Google Docs

Все готово, данные получены.

Обратная конвертация

Чтобы превратить Google таблицу в MS Excel потребуется кликнуть на вкладку «Файл»-«Скачать»-«Microsoft Excel».

Скачивание файла MS Excel в Google Doc

Все готово, пример можно скачать ниже.

Сохраненный файл MS Excel из Google Sheets

Пример:

https://docs.google.com/spreadsheets/d/1xmzdcBPap6lA5Gtwm1hjQfDHf3kCQdbxY3HM11IqDqY/edit

Структура программы «Парсер сайтов»

Надстройка Parser для Excel — простое и удобное решение для парсинга любых сайтов (интернет-магазинов, соцсетей, площадок объявлений) с выводом данных в таблицу Excel (формата XLS* или CSV), а также скачивания файлов.

Особенность программы — очень гибкая настройка постобработки полученных данных (множество текстовых функций, всевозможные фильтры, перекодировки, работа с переменными, разбиение значения на массив и обработка каждого элемента в отдельности, вывод характеристик в отдельные столбцы, автоматический поиск цены товара на странице, поддержка форматов JSON и XML).

В парсере сайтов поддерживается авторизация на сайтах, выбор региона, GET и POST запросы, приём и отправка Cookies и заголовков запроса, получение исходных данных для парсинга с листа Excel, многопоточность (до 200 потоков), распознавание капчи через сервис RuCaptcha.com, работа через браузер (IE), кеширование, рекурсивный поиск страниц на сайте, сохранение загруженных изображений товара под заданными именами в одну или несколько папок, и многое другое.

Поиск нужных данных на страницах сайта выполняется в парсере путем поиска тегов и/или атрибутов тегов (по любому свойству и его значению). Специализированные функции для работы с HTML позволяют разными способами преобразовывать HTML-таблицы в текст (или пары вида название-значение), автоматически находить ссылки пейджера, чистить HTML от лишних данных.

За счёт тесной интеграции с Excel, надстройка Parser может считывать любые данные из файлов Excel, создавать отдельные листы и файлы, динамически формировать столбцы для вывода, а также использовать всю мощь встроенных в Excel возможностей.
Поддерживается также сбор данных из текстовых файлов (формата Word, XML, TXT) из заданной пользователем папки, а также преобразование файлов Excel из одного формата таблицы в другой (обработка и разбиение данных на отдельные столбцы)

В программе «Парсер сайтов» можно настроить обработку нескольких сайтов. Перед запуском парсинга (кнопкой на панели инструментов Excel) можно выбрать ранее настроенный сайт из выпадающего списка.

Пример использования парсера для мониторинга цен конкурентов

Дополнительные видеоинструкции, а также подробное описание функционала, можно найти в разделе Справка по программе

В программе можно настроить несколько парсеров (обработчиков сайтов).
Любой из парсеров настраивается и работает независимо от других.

Примеры настроенных парсеров (можно скачать, запустить, посмотреть настройки)

Видеоинструкция (2 минуты), как запустить готовый (уже настроенный) парсер

Настройка программы, — дело не самое простое (для этого, надо хоть немного разбираться в HTML)

Если вам нужен готовый парсер, но вы не хотите разбираться с настройкой,
— закажите настройку парсера разработчику программы. Стоимость настройки под конкретный сайт — от 2000 рублей.
(настройка под заказ выполняется только при условии приобретения лицензии на надстройку «Парсер» (3300 руб)

Инструкция (с видео) по заказу настройки парсера
По всем вопросам, готов проконсультировать вас в Скайпе.

Программа не привязана к конкретному файлу Excel.
Вы в настройках задаёте столбец с исходными данными (ссылками или артикулами),
настраиваете формирование ссылок и подстановку данных с сайта в нужные столбцы,
нажимаете кнопку, — и ваша таблица заполняется данными с сайта.

Программа «Парсер сайтов» может  быть полезна для формирования каталога товаров интернет-магазинов,
поиска и загрузки фотографий товара по артикулам (если для получения ссылки на фото, необходимо анализировать страницу товара),
загрузки актуальных данных (цен и наличия) с сайтов поставщиков, и т.д. и т.п.

Справка по программе «Парсер сайтов»

Можно попробовать разобраться с работой программы на примерах настроенных парсеров

На первый взгляд Excel и парсинг понятия несовместимые. Как с помощью табличного редактора можно получать информацию из сети? И ведь многие недооценивают Excel, а это вполне посильная задача для него. При этом все делается стандартными методами без необходимости дополнительно что-то устанавливать/настраивать.

Разберем на конкретном примере по получению информации с сайта Минюста, а именно, нам необходим перечень действующих адвокатов Российской Федерации. Кнопки «выгрузить списочно всех адвокатов» — конечно же, нет. На официальном сайте http://lawyers.minjust.ru/ выводится по 20 адвокатов на 1 странице, всего 74 754 страниц, итого на выходе мы должны получить чуть меньше 150 тыс. адвокатов.

Для начала открываем VBA и создаем объект InternetExplorer, посредством которого будем получать данные.

Затем надо определить, как будем переходить между страницами на сайте – для этого просматриваем элемент перехода на следующую страницу. Ссылка между станицами отличается значением в конце и соответствует номеру страницы – 1.

Имея информацию о ссылке страницы — осуществляем их перебор, загружаем в InternetExplorer и забираем все данные со страницы.

В коде страницы представлена структура таблицы со всеми столбцами, которые нам необходимы: реестровый номер, ФИО адвоката, субъект РФ, номер удостоверения, текущий статус.

Для получения этой информации с помощью ключевых слов осуществляем поиск по тегам и забираем требуемые данные.

В итоге получаем список всех адвокатов в таблицу Excel для дальнейшей обработки.

Парсинг данных. Эта штука может быть настолько увлекательной, что порой затягивает очень сильно. Ведь всегда интересно найти способ, с помощью которого можно получить те или иные данные, да еще и структурировать их в нужном виде. В статье «Простой пример работы с Excel в Python» уже был рассмотрен один из способов получить данные из таблиц и сохранить их в формате Excel на разных листах. Для этого мы искали на странице все теги, которые так или иначе входят в содержимое таблицы и вытаскивали из них данные. Но, есть способ немного проще. И, давайте, о нем поговорим.

00001.jpg

А состоит этот способ в использовании библиотеки pandas. Конечно же, ее простой не назовешь. Это очень мощный инструмент для аналитики самых разнообразных данных. И в рассмотренном ниже случае мы лишь коснемся небольшого фрагмента из того, что вообще умеет делать эта библиотека.

Что понадобиться?

Для того, чтобы написать данный скрипт нам понадобиться конечно же сам pandas. Библиотеки requests, BeautifulSoup и lxml. А также модуль для записи файлов в формате xlsx – xlsxwriter. Установить их все можно одной командой:

pip install requests bs4 lxml pandas xlsxwriter

А после установки импортировать в скрипт для дальнейшей работы с функциями, которые они предоставляют:

Python:

import requests
from bs4 import BeautifulSoup

import pandas as pd

Так же с сайта, на котором расположены целевые таблицы нужно взять заголовки для запроса. Данные заголовки не нужны для pandas, но нужны для requests. Зачем вообще использовать в данном случае запросы? Тут все просто. Можно и не использовать вовсе. А полученные таблицы при сохранении называть какими-нибудь составными именами, вроде «Таблица 1» и так далее, но гораздо лучше и понятнее, все же собрать данные о том, как называется данная таблица в оригинале. Поэтому, с помощью запросов и библиотеки BeautifulSoup мы просто будем искать название таблицы.

Но, вернемся к заголовкам. Взял я их в инструментах разработчика на вкладке сеть у первого попавшегося запроса.

Python:

headers = {
    'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.174 '
                  'YaBrowser/22.1.3.942 Yowser/2.5 Safari/537.36',
    'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,'
              'application/signed-exchange;v=b3;q=0.9 '
}

Теперь нужен список, в котором будут перечисляться года, которые представлены в виде таблиц на сайте. Эти года получаются из псевдовыпадающего списка. Я не стал использовать selenium для того, чтобы получить их со страницы. Так как обычный запрос не может забрать эти данные. Они подгружаются с помощью JS скриптов. В данном случае не так уж много данных, которые надо обработать руками. Поэтому я создал список, в которые эти данные и внес вручную:

Python:

num_year_dict = ['443', '442', '441', '440', '439', '438', '437', '436', '435', '434', '433', '432', '431', '426',
                 '425', '1', '2', '165', '884', '1851', '3226', '4385', '4959', '5582', '6297', '6886', '7371',
                 '8071', '8671']

Теперь нам нужно будет создать пустой словарь вне всяких циклов. Именно, чтобы он был глобальной переменной. Этот словарь мы и будем наполнять полученными данными, а также сохранять их него данные в таблицу Excel. Поэтому, я подумал, что проще сделать его глобальной переменной, чем тасовать из функции в функцию.

df = {}

Назвал я его df, потому как все так называют. И увидев данное название в нужном контексте становиться понятно, что используется pandas. df – это сокращение от DataFrame, то есть, определенный набор данных.

Ну вот, предварительная подготовка закончена. Самое время получать данные. Давайте для начала сходим на одну страницу с таблицей и попробуем получить оттуда данные с помощью pandas.

tables = pd.read_html('https://www.sports.ru/rfpl/table/?s=443&table=0&sub=table')

Здесь была использована функция read_html. Pandas использует библиотеку для парсинга lxml. То есть, примерно это все работает так. Получаются данные со страницы, а затем в коде выполняется поиск с целью найти все таблицы, у которых есть тэг <table>, а далее, внутри таблиц ищутся заголовки и данные под тэгами <tr> и <td>, которые и возвращаются в виде списка формата DataFrame.

Давайте выполним запрос. Но вот печатать данные пока не будем. Нужно для начала понять, сколько таблиц нашлось в запросе. Так как на странице их может быть несколько. Помимо той, что на виду, в виде таблиц может быть оформлен подзаголовок или еще какая информация. Поэтому, давайте узнаем, сколько элементов списка содержится в запросе, а соответственно, столько и таблиц. Выполняем:

print(len(tables))

И видим, что найденных таблиц две. Если вывести по очереди элементы списка, то мы увидим, что нужная нам таблица, в данном случае, находиться под индексом 1. Вот ее и распечатаем для просмотра:

print(tables[1])

И вот она полученная таблица:

screenshot1.png

Как видим, в данной таблице помимо нужных нам данных, содержится так же лишний столбец, от которого желательно избавиться. Это, скажем так, можно назвать сопутствующим мусором. Поэтому, полученные данные иногда надо «причесать». Давайте вызовем метод drop и удалим ненужный нам столбец.

tables[1].drop('Unnamed: 0', axis=1, inplace=True)

На то, что нужно удалить столбец указывает параметр axis, который равен 1. Если бы нужно было удалить строку, он был бы равен 0. Ну и указываем название столбца, который нужно удалить. Параметр inplace в значении True указывает на то, что удалить столбец нужно будет в исходных данных, а не возвращать нам их копию с удаленным столбцом.

А теперь нужно получить заголовок таблицы. Поэтому, делаем запрос к странице, получаем ее содержимое и отправляем для распарсивания в BeautifulSoup. После чего выполняем поиск названия и обрезаем из него все лишние данные.

Python:

url = f'https://www.sports.ru/rfpl/table/?s={num}&table=0&sub=table'
req = requests.get(url=url, headers=headers)
soup = BeautifulSoup(req.text, 'lxml')
title_table = soup.find('h2', class_='titleH3').text.split("-")[2].strip().replace("/", "_")

Теперь, когда у нас есть таблица и ее название, отправим полученные значения в ранее созданный глобально словарь.

df[title_table] = tables[1]

Вот и все. Мы получили данные по одной таблице. Но, не будем забывать, что их больше тридцати. А потому, нужен цикл, чтобы формировать ссылки из созданного ранее списка и делать запросы уже к страницам по ссылке. Давайте полностью оформим код функции. Назовем мы ее, к примеру, get_pd_table(). Ее полный код состоит из всех тех элементов кода, которые мы рассмотрели выше, плюс они запущены в цикле.

Python:

def get_pd_table():
    for num in num_year_dict:
        url = f'https://www.sports.ru/rfpl/table/?s={num}&table=0&sub=table'
        req = requests.get(url=url, headers=headers)
        soup = BeautifulSoup(req.text, 'lxml')
        title_table = soup.find('h2', class_='titleH3').text.split("-")[2].strip().replace("/", "_")
        print(f'Получаю данные из таблицы: "{title_table}"...')
        tables = pd.read_html(url)
        tables[1].drop('Unnamed: 0', axis=1, inplace=True)
        df[title_table] = tables[1]

Итак, когда цикл пробежится по всем ссылкам у нас будет готовый словарь с данными турниров, которые желательно бы записать на отдельные листы. На каждом листе по таблице. Давайте сразу создадим для этого функцию pd_save().

writer = pd.ExcelWriter('./Турнирная таблица ПЛ РФ.xlsx', engine='xlsxwriter')

Создаем объект писателя, в котором указываем имя записываемой книги, и инструмент, с помощью которого будем производить запись в параметре engine=’xlsxwriter’.

После запускаем цикл, в котором создаем объекты, то есть листы для записи из ключей списка с таблицами df, указываем, с помощью какого инструмента будет производиться запись, на какой лист. Имя листа берется из ключа словаря. А также указывается параметр index=False, чтобы не сохранялись индексы автоматически присваиваемые pandas.

df[df_name].to_excel(writer, sheet_name=df_name, index=False)

Ну и после всего сохраняем книгу:

writer.save()

Полный код функции сохранения значений:

Python:

def pd_save():
    writer = pd.ExcelWriter('./Турнирная таблица ПЛ РФ.xlsx', engine='xlsxwriter')
    for df_name in df.keys():
        print(f'Записываем данные в лист: {df_name}')
        df[df_name].to_excel(writer, sheet_name=df_name, index=False)
    writer.save()

Вот и все. Для того, чтобы было не скучно ждать, пока будет произведен парсинг таблиц, добавим принты с информацией о получаемой таблице в первую функцию.

print(f'Получаю данные из таблицы: "{title_table}"...')

И во вторую функцию, с сообщением о том, данные на какой лист записываются в данный момент.

print(f'Записываем данные в лист: {df_name}')

Ну, а дальше идет функция main, в которой и вызываются вышеприведенные функции. Все остальное, в виде принтов, это просто декорации, для того чтобы пользователь видел, что происходят какие-то процессы.

Python:

import requests
from bs4 import BeautifulSoup

import pandas as pd

headers = {
    'user-agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/96.0.4664.174 '
                  'YaBrowser/22.1.3.942 Yowser/2.5 Safari/537.36',
    'accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,image/apng,*/*;q=0.8,'
              'application/signed-exchange;v=b3;q=0.9 '
}

num_year_dict = ['443', '442', '441', '440', '439', '438', '437', '436', '435', '434', '433', '432', '431', '426',
                 '425', '1', '2', '165', '884', '1851', '3226', '4385', '4959', '5582', '6297', '6886', '7371',
                 '8071', '8671']

df = {}


def get_pd_table():
    for num in num_year_dict:
        url = f'https://www.sports.ru/rfpl/table/?s={num}&table=0&sub=table'
        req = requests.get(url=url, headers=headers)
        soup = BeautifulSoup(req.text, 'lxml')
        title_table = soup.find('h2', class_='titleH3').text.split("-")[2].strip().replace("/", "_")
        print(f'Получаю данные из таблицы: "{title_table}"...')
        tables = pd.read_html(url)
        tables[1].drop('Unnamed: 0', axis=1, inplace=True)
        df[title_table] = tables[1]


def pd_save():
    writer = pd.ExcelWriter('./Турнирная таблица ПЛ РФ.xlsx', engine='xlsxwriter')
    for df_name in df.keys():
        print(f'Записываем данные в лист: {df_name}')
        df[df_name].to_excel(writer, sheet_name=df_name, index=False)
    writer.save()


def main():
    get_pd_table()
    print(' ')
    pd_save()
    print('n[+] Данные записаны!')


if __name__ == '__main__':
    main()

И ниже результат работы скрипта с уже полученными и записанными таблицами:

screenshot2.png

Как видите, использовать библиотеку pandas, по крайней мере в данном контексте, не очень сложно. Конечно же, это только самая малая часть того, что она умеет. А умеет она собирать и анализировать данные из самых разных форматов, включая такие распространенные, как: cvs, txt, HTML, XML, xlsx.

Ну и думаю, что не всегда данные будут прилетать «чистыми». Скорее всего, периодически будут попадаться мусорные столбцы или строки. Но их не особо то трудно удалить. Нужно только понимать, что и откуда.

В общем, для себя я сделал однозначный вывод – если мне понадобиться парсить табличные значения, то лучше, чем использование pandas, пожалуй и не придумаешь. Можно просто на лету формировать данные из одного формата и переводить тут же в другой без утомительного перебора. К примеру, из формата csv в json.

Спасибо за внимание. Надеюсь, что данная информация будет вам полезна

Понравилась статья? Поделить с друзьями:
  • Как парсить xml excel
  • Как парсить excel файл
  • Как парсить excel python
  • Как парсить excel php
  • Как папки перевести в excel