При изучении интеграла вы могли бы нарисовать построенную кривую, заштриховать область под кривой, а затем вычислить площадь участка затенения. В этой статье представлены два решения для расчета площади под кривой, построенной в Excel.
- Вычислить площадь под построенной кривой с помощью правила трапеции
- Вычислить площадь под построенной кривой с помощью линии тренда диаграммы
Вычислить площадь под построенной кривой с помощью правила трапеции
Например, вы создали построенную кривую, как показано на скриншоте ниже. Этот метод разделит область между кривой и осью x на несколько трапеций, вычислит площадь каждой трапеции по отдельности, а затем суммирует эти площади.
1. Первая трапеция находится между x = 1 и x = 2 под кривой, как показано на скриншоте ниже. Вы можете легко рассчитать его площадь по этой формуле: =(C3+C4)/2*(B4-B3).
2. Затем вы можете перетащить маркер автозаполнения ячейки формулы вниз, чтобы вычислить площади других трапеций.
Внимание: Последняя трапеция находится между x = 14 и x = 15 под кривой. Поэтому перетащите дескриптор автозаполнения на предпоследнюю ячейку, как показано ниже.
3. Теперь вычислены площади всех трапеций. Выберите пустую ячейку, введите формулу = СУММ (D3: D16) чтобы получить общую площадь под нанесенной областью.
Вычислить площадь под построенной кривой с помощью линии тренда диаграммы
Этот метод будет использовать линию тренда диаграммы, чтобы получить уравнение для построенной кривой, а затем вычислить площадь под построенной кривой с определенным интегралом уравнения.
1. Выберите построенную диаграмму и нажмите Дизайн (или Дизайн диаграммы)> Добавить элемент диаграммы > Trendline > Дополнительные параметры линии тренда. Смотрите скриншот:
2. В Форматировать линию тренда панель:
(1) В Параметры линии тренда в разделе выберите один вариант, который больше всего соответствует вашей кривой;
(2) Проверьте Отображение уравнения на диаграмме опцию.
3. Теперь уравнение добавлено в диаграмму. Скопируйте уравнение в свой рабочий лист, а затем получите определенный интеграл уравнения.
В моем случае общее уравнение по линии тренда: у = 0.0219x ^ 2 + 0.7604x + 5.1736, поэтому его определенный интеграл равен Р (х) = (0.0219 / 3) x ^ 3 + (0.7604 / 2) x ^ 2 + 5.1736x + c.
4. Теперь мы подставляем x = 1 и x = 15 к определенному интегралу и вычисляем разницу между результатами обоих вычислений. Разница представляет собой площадь под построенной кривой.
Площадь = F (15) -F (1)
Area =(0.0219/3)*15^3+(0.7604/2)*15^2+5.1736*15-(0.0219/3)*1^3-(0.7604/2)*1^2-5.1736*1
Площадь = 182.225
Статьи по теме:
Лучшие инструменты для работы в офисе
Kutools for Excel Решит большинство ваших проблем и повысит вашу производительность на 80%
- Снова использовать: Быстро вставить сложные формулы, диаграммы и все, что вы использовали раньше; Зашифровать ячейки с паролем; Создать список рассылки и отправлять электронные письма …
- Бар Супер Формулы (легко редактировать несколько строк текста и формул); Макет для чтения (легко читать и редактировать большое количество ячеек); Вставить в отфильтрованный диапазон…
- Объединить ячейки / строки / столбцы без потери данных; Разделить содержимое ячеек; Объединить повторяющиеся строки / столбцы… Предотвращение дублирования ячеек; Сравнить диапазоны…
- Выберите Дубликат или Уникальный Ряды; Выбрать пустые строки (все ячейки пустые); Супер находка и нечеткая находка во многих рабочих тетрадях; Случайный выбор …
- Точная копия Несколько ячеек без изменения ссылки на формулу; Автоматическое создание ссылок на несколько листов; Вставить пули, Флажки и многое другое …
- Извлечь текст, Добавить текст, Удалить по позиции, Удалить пробел; Создание и печать промежуточных итогов по страницам; Преобразование содержимого ячеек в комментарии…
- Суперфильтр (сохранять и применять схемы фильтров к другим листам); Расширенная сортировка по месяцам / неделям / дням, периодичности и др .; Специальный фильтр жирным, курсивом …
- Комбинируйте книги и рабочие листы; Объединить таблицы на основе ключевых столбцов; Разделить данные на несколько листов; Пакетное преобразование xls, xlsx и PDF…
- Более 300 мощных функций. Поддерживает Office/Excel 2007-2021 и 365. Поддерживает все языки. Простое развертывание на вашем предприятии или в организации. Полнофункциональная 30-дневная бесплатная пробная версия. 60-дневная гарантия возврата денег.
Вкладка Office: интерфейс с вкладками в Office и упрощение работы
- Включение редактирования и чтения с вкладками в Word, Excel, PowerPoint, Издатель, доступ, Visio и проект.
- Открывайте и создавайте несколько документов на новых вкладках одного окна, а не в новых окнах.
- Повышает вашу продуктивность на 50% и сокращает количество щелчков мышью на сотни каждый день!
Комментарии (8)
Оценок пока нет. Оцените первым!
In this guide, we’re going to show you how to calculate area under curve in Excel.
Download Workbook
Unfortunately, there isn’t a single function or feature that can calculate area under curve in Excel. You can still rely on integrals to calculate area. On the other hand, Excel can help us with a simpler approach as well.
Calculating area under curve by trapezoidal rule
The trapezoidal rule is a technique for approximating the region under the graph as a trapezoid and calculating its area. The rule can be depicted as following:
Because we have the data which generates the chart, we can easily transform the above formula into a format that Excel can calculate each trapezoid’s area individually.
- Start by inserting a helper column in your data set. Adjacent columns will ease copying of the formula. This column will calculate the area of each trapezoid between data points (x).
- Enter the area formula starting from the second row. The formula will refer the data points in the same (k) and the previous row (k-1).
=(C6+C5)/2*(B6-B5) - Sum all area values to find the total area under the curve.
Using Chart Trendline
An alternative approach is to use the equation of the plotted curve. Excel can plot a trendline based on your values and generate an equation for the trendline as well.
- Select your chart.
- Either use the Chart Elements button (plus button at the top-right) or Add Chart Element command in the Chart Design tab of the Ribbon to select More Options item.
- More Options command adds a trendline and opens the properties pane at the rights side. Under Trendline Options, select Polynomial type and check the Display Equation on chart property.
- Next step is the trickiest of this article if you are not familiar with integrals. Briefly, you need the convert the equation to its definite integral and calculate the minimum and maximum values through the definite integral. The difference between the two results will give the area under curve.
You need to increase the power of each x value by 1 and divide it by the increased power value. For example, x² becomes x³/3. According to this our formula will be the following: - Next step is to calculate the definite integral values for the smallest and the largest x. You can omit the c values since the subtracting operations nullifies them. These are 1 and 10 in our example:
- Final step is to find the difference to calculate the area under curve.
Remarks
As you can realize there is a small difference between the results of each approach. Since each approach returns an approximate value, it would be better to use both and compare.
If you are a Microsoft 365 subscriber, you can use either the LET or the LAMBDA functions to simplify the use of the definite integral formula multiple times.
Давайте разберёмся, как вычислить определённый интеграл таблично заданной функции с помощью программы Excel из состава Microsoft Office.
1Постановка физической задачина расчёт определённого интеграла
Допустим, у нас есть таблично заданная некоторая величина. Для примера пусть это будет накопленная доза радиации при авиаперелёте. Скажем, был такой эксперимент: человек с дозиметром летел на самолёте из пункта А в пункт Б и периодически измерял дозиметром мощность дозы (единицы измерений – микрозиверт в час, мкЗв/ч). Возможно, Вас это удивит, но при обычном перелёте на самолёте человек попадает под радиоактивное излучение, превышающее фоновый уровень до 10 раз и даже больше. Но воздействие это кратковременное, и поэтому не столь опасное. По результатам измерений у нас есть таблица вот такого формата: Время – Мощность дозы.
Необходимо посчитать суммарную накопленную за время полёта дозу.
2Геометрический смыслопределённого интеграла
Как мы помним из курса школьной алгебры, определённый интеграл – это площадь под графиком измеряемой величины. Чтобы определить накопленную дозу радиации в рассматриваемом примере, нужно определить площадь фигуры под графиком таблично заданной мощности дозы. Накопленная доза радиации равна площади фигуры под графиком мощности дозы
3Методика вычисленияопределённого интеграла
Вычислять интеграл мы будем самым простым, но довольно точным методом – методом трапеций. Напомню, площадь фигуры под графиком любой кривой можно разделить на прямоугольные трапеции. Сумма площадей этих трапеций и будет искомым значением определённого интеграла.
Площадь трапеции определяется как полусумма оснований, умноженная на высоту: Sтрап = (A + B) / 2 × h Основания в нашем случае – это табличные измеренные значения мощности дозы за 2 последовательных промежутка времени, а высота – это разница времени между двумя измерениями.
4Согласованиеединиц измерения
В нашем примере измерения мощности дозы радиации даётся в мкЗв/час, а шкала времени – с точностью до минут. Мы не можем брать интеграл по времени, измеряемому в минутах, для величины, измеряемой в часах. Поэтому необходимо перевести мкЗв/час в мкЗв/мин.
Для перевода просто разделим мощность дозы в мкЗв/час построчно на количество минут в часе, т.е. на 60. Добавим ещё один столбец в нашу таблицу. На иллюстрации это столбец «D». В столбце «D» в строке 2 вписываем =С2/60 А потом с помощью маркера заполнения распространяем эту формулу на все остальные ячейки в столбце «D», (т.е. тянем мышью чёрный прямоугольник в правом нижнем углу ячейки). Таким образом, в столбце «D» у нас появятся значения мощности дозы радиации, измеряемые в микрозивертах в минуту для каждой минуты перелёта.
5Вычисление площадей отдельных трапеций
Теперь нужно найти площади трапеций за каждый промежуток времени. В столбце «E» будем вычислять по приведённой выше формуле площади трапеций.
Полусумма оснований – это половина суммы двух последовательных мощностей дозы из столбца «D». Так как данные идут с периодом 1 раз в минуту, а мы берём интеграл по времени, выраженному в минутах, то высота каждой трапеции будет равна единице (разница времени между каждыми двумя последовательными измерениями, например, 17ч31мин — 17ч30мин = 0ч1мин = 1мин).
Получаем формулу в ячейке «E3»: =1/2*(D3+D2)*1. Понятно, что «×1» в этой формуле можно не писать. И аналогично, с помощью маркера заполнения, распространяем формулу на весь столбец. Теперь в каждой ячейке столбца «Е» посчитана накопленная доза за 1 минуту полёта.
Если бы данные шли не через 1 минуту, то нам нужно было бы написать формулу так:
=1/2*(D3+D2)*(МИНУТЫ(A3) – МИНУТЫ(A2)).
Правда при этом, если есть переход на следующий час, то получится отрицательное значение. Чтобы этого не произошло, впишем в формулу часы:
=1/2*(D3+D2)*(ЧАС(A3)*60+МИНУТЫ(A3)) – (ЧАС(A2)*60+МИНУТЫ(A2)).
Если переходим на следующие сутки, то нужно будет уже добавлять даты, и т.д.
5Определение площадипод графиком функции
Осталось найти сумму вычисленных площадей трапеций. Можно в ячейке «F2» написать формулу: =СУММ(E:E) Это и будет сумма всех значений в столбце «E», т.е. численное значение искомого определённого интеграла. Но давайте сделаем вот что: определим накопленную дозу в разные моменты полёта. Для этого в ячейку «F4» впишем формулу =СУММ(E$3:E4) и маркером заполнения распространим на весь столбец «F».
Обозначение E$3 говорит программе Excel, что увеличивать индекс ячейки «3» в столбце «E» при переносе формулы на следующие строки не нужно. Т.е. в строке 4 формула будет определять сумму в ячейках с «Е3» по «Е4», в строке 5 – сумму с «Е3» по «Е5», в строке 6 – с «Е3» по «Е6» и т.д.
Построим график по столбцам «F» и «A». Это график изменения накопленной дозы радиации во времени. Наглядно видно монотонное увеличение накопленной дозы радиации за время полёта. Это говорит о том, что мы правильно рассчитали интеграл. И окончательное значение накопленной за двухчасовой полёт дозы радиации, которое получается в последней ячейке этого столбца, равно примерно 4,5 микрозиверт.
Таким образом, мы только что нашли определённый интеграл таблично заданной функции в программе Excel на реальном физическом примере. В качестве приложения к статье – файл Excel с нашим примером.
Содержание
- Расчет. Площадь под кривой (правило трапеции) Excel
- Как рассчитать площадь под кривой (правило трапеции) в Google Таблицах
Есть несколько способов рассчитать площадь под кривой, но этот пример покажет вам, как это сделать с помощью правила трапеции.
Начиная с вашего графика
Вы начнете с вашего базового графика, который показывает взаимосвязь между значениями X и Y. Цель состоит в том, чтобы найти общую площадь под кривой на графике.
Начиная с вашего набора данных
Затем у нас есть набор данных, с которым мы работаем. В этом случае месяц — это Ось X и продажи — это Ось Y.
Создание формулы площади
- Введите следующую формулу, которая является расчетом для определения площади под линией. Как показано ниже, каждая отдельная формула показывает область под графиком между точками данных. В этом случае мы набираем ((Значение Y 2) + (Значение Y 1)) / 2 * (Значение X 2 — Значение X 1)
2. Перетащите эту формулу вниз для просмотра данных. Кроме последняя точка данных
3. В пустой ячейке ниже просуммируйте все индивидуальные формулы площади, которые вы только что рассчитали, чтобы найти площадь всей кривой.
Конечная площадь под кривой
После вычисления суммы окончательная сумма покажет общую площадь под кривой. В этом случае мы получаем общую площадь 167.50.
Как рассчитать площадь под кривой (правило трапеции) в Google Таблицах
В этом случае вычисление площади под кривой с использованием правила трапеции в Google Таблицах такое же, как и в Excel. Используйте ту же формулу для значений X и Y, и вы сможете рассчитать площадь под кривой.
Вы поможете развитию сайта, поделившись страницей с друзьями
30 сентября 2015
Давайте разберёмся, как вычислить определённый интеграл таблично заданной функции с помощью программы Excel из состава Microsoft Office.
Вам понадобится
- — компьютер с установленным приложением MS Excel;
- — таблично заданная функция.
Инструкция
Допустим, у нас есть таблично заданная некоторая величина. Для примера пусть это будет накопленная доза радиации при авиаперелёте. Скажем, был такой эксперимент: человек с дозиметром летел на самолёте из пункта А в пункт Б и периодически измерял дозиметром мощность дозы (измеряется в микрозивертах в час). Вас, возможно, это удивит, но при обычном перелёте на самолёте человек получает дозу радиации в 10 раз больше, чем фоновый уровень. Но воздействие это кратковременное и поэтому не опасное. По результатам измерений у нас есть таблица вот такого формата: Время — Мощность дозы.
Суть метода в том, что определённый интеграл — это площадь под графиком нужной нам величины. В нашем примере, если полёт длился почти 2 часа, с 17:30 до 19:27 (см. рисунок), то чтобы найти накопленную дозу, нужно определить площадь фигуры под графиком мощности дозы — графиком таблично заданной величины.
Вычислять интеграл мы будем самым простым, но довольно точным методом — методом трапеций. Напомню, каждую кривую можно разделить на трапеции. Сумма площадей этих трапеций и будет искомым интегралом.
Площадь трапеции определяется просто: полусумма оснований, умноженная на высоту. Основания в нашем случае — это табличные измеренные значения мощности дозы за 2 последовательных промежутка времени, а высота — это разница времени между двумя измерениями.
В нашем примере измерения мощности дозы радиации даётся в мкЗв/час. Переведём это в мкЗв/мин, т.к. данные даются с периодичностью 1 раз в минуту. Это нужно для согласования единиц измерения. Мы не можем брать интеграл по времени, измеряемому в минутах, от величины, измеряемой в часах.
Для перевода просто разделим мощность дозы в мкЗв/час построчно на 60. Добавим ещё один столбец в нашу таблицу. На иллюстрации в столбце «D» в строке 2 вписываем «=С2/60». А потом с помощью маркера заполнения (тянем мышью чёрный прямоугольник в правом нижнем углу ячейки) распространяем эту формулу на все остальные ячейки в столбце «D».
Теперь нужно найти площади трапеций за каждый промежуток времени. В столбце «E» будем вычислять по приведённой выше формуле площади трапеций.
Полусумма оснований — это половина суммы двух последовательных мощностей дозы из столбца «D». Так как данные идут с периодом 1 раз в минуту, а мы берём интеграл по времени, выраженному в минутах, то высота каждой трапеции будет равна единице (разница времени между каждыми двумя последовательными измерениями, например, 17ч31м — 17ч30м = 0ч1м).
Получаем формулу в ячейке «E3»: «=1/2*(D2+D3)*1». Понятно, что «*1» можно не писать, я сделал это просто для полноты картины. Рисунок поясняет всё более наглядно.
Аналогично, с помощью маркера заполнения, распространяем формулу на весь столбец. Теперь в каждой ячейке столбца «Е» посчитана накопленная доза за 1 минуту полёта.
Осталось найти сумму вычисленных площадей трапеций. Можно в ячейке «F2» написать формулу «=СУММ(E:E)», это и будет искомым интегралом — сумма всех значений в столбце «E».
Можно сделать немного сложнее, чтобы определить накопленную дозу в разные моменты полёта. Для этого в ячейке «F4» впишем формулу: «=СУММ(E$3:E4)» и маркером заполнения распространим на весь столбец «F». Обозначение «E$3» говорит программе Excel, что менять индекс первой ячейки, от которой ведём счёт, не нужно.
Построим график по столбцам «F» и «A», т.е. изменение накопленной дозы радиации во времени. Наглядно видно увеличение интеграла, как и должно быть, и окончательное значение накопленной за двухчасовой полёт дозы радиации равно примерно 4,5 микрозиверт.
Таким образом, мы только что нашли определённый интеграл таблично заданной функции в программе Excel на реальном физическом примере.
На чтение 4 мин. Просмотров 701 Опубликовано 24.05.2021
При изучении интеграла вы могли нарисовать кривую, закрасить область под кривой, а затем вычислить площадь участка затенения. В этой статье представлены два решения для вычисления площади под построенной кривой в Excel.
- Вычислить площадь под построенной кривой с помощью правила трапеции
- Вычислить площадь под построенной кривой с линией тренда на графике
Вкладка Office Включает редактирование и просмотр с вкладками в Office и делает вашу работу намного проще …
Подробнее … Скачать бесплатно …
Kutools for Excel решает большинство ваших проблем и увеличивает вашу производительность на 80%.
- Повторное использование Что угодно: добавляйте наиболее часто используемые или сложные формулы, диаграммы и все остальное в избранное и быстро используйте их в будущем.
- Более 20 текстовых функций: извлечение числа из текстовой строки; Извлечь или удалить часть текстов; Преобразование чисел и валют в английские слова.
- Инструменты слияния: несколько книг и листов в одну; Объединить несколько ячеек/строк/столбцов без потери данных; Объедините повторяющиеся строки и суммируйте.
- Инструменты разделения: разделение данных на несколько листов в зависимости от значения; Из одной книги в несколько файлов Excel, PDF или CSV; Один столбец в несколько столбцов.
- Вставить пропуск скрытых/отфильтрованных строк; Подсчет и сумма по цвету фона; Массовая отправка персонализированных писем нескольким получателям.
- Суперфильтр: создавайте расширенные схемы фильтров и применяйте их к любым листам; Сортировать по неделе, дню, частоте и т. Д. Фильтр жирным шрифтом, формулами, комментарием …
- Более 300 мощных функций; Работает с Office 2007-2019 и 365; Поддерживает все языки; Простое развертывание на вашем предприятии или в организации.
Подробнее … Бесплатная загрузка …
Содержание
- Вычислить площадь под построенной кривой по правилу трапеции
- Вычислить площадь под построенной кривой с линией тренда диаграммы
- Статьи по теме:
Вычислить площадь под построенной кривой по правилу трапеции
Для Например, вы создали построенную кривую, как показано на скриншоте ниже. Этот метод разделит область между кривой и осью x на несколько трапеций, вычислит площадь каждой трапеции по отдельности, а затем суммирует эти площади.
1 . Первая трапеция находится между x = 1 и x = 2 под кривой, как показано на скриншоте ниже. Вы можете легко вычислить его площадь по следующей формуле: = (C3 + C4)/2 * (B4-B3) .
2 . Затем вы можете перетащить маркер автозаполнения ячейки формулы вниз, чтобы вычислить площади других трапеций.
Примечание : последняя трапеция находится между x = 14 и x = 15 под кривой. . Поэтому перетащите маркер автозаполнения на предпоследнюю ячейку, как показано на скриншоте ниже.
3 . Теперь вычислены площади всех трапеций. Выделите пустую ячейку, введите формулу = SUM (D3: D16) , чтобы получить общую площадь под нанесенной областью.
Вычислить площадь под построенной кривой с линией тренда диаграммы
Этот метод будет использовать линию тренда диаграммы, чтобы получить уравнение для построенной кривой, а затем вычислить площадь под построенной кривой с помощью определенного интеграла уравнения.
1 . Выберите построенную диаграмму и нажмите Дизайн (или Дизайн диаграммы )> Добавить элемент диаграммы > Линия тренда > Дополнительные параметры линии тренда . См. Снимок экрана:
2 . На панели Форматировать линию тренда :
(1) В разделе Параметры линии тренда выберите один вариант, который больше всего соответствует вашей кривой;
(2) Установите флажок Отображать уравнение на графике .
3 . Теперь уравнение добавлено в диаграмму. Скопируйте уравнение в свой рабочий лист, а затем получите определенный интеграл уравнения.
В моем случае общее уравнение по линии тренда имеет вид y = 0,0219x ^ 2 + 0,7604x + 5,1736 , поэтому его определенный интеграл равен F (x) = (0,0219/3) x ^ 3 + (0,7604/2) x ^ 2 + 5,1736 x + c .
4 . Теперь мы подставляем x = 1 и x = 15 к определенному интегралу и вычисляем разницу между результатами обоих вычислений. Разница представляет собой площадь под построенной кривой.
Area = F (15) -F (1)
Площадь = (0,0219/3) * 15 ^ 3 + (0,7604/2) * 15 ^ 2 + 5,1736 * 15- (0,0219/3) * 1 ^ 3- (0,7604/2) * 1 ^ 2-5,1736 * 1
Area = 182,225
Статьи по теме:
Как добавить наиболее подходящую линию/кривую и формулу в Excel?
Например, вы изучали взаимосвязь между товарными единицами и общей стоимостью, и после многих экспериментов вы получили некоторые данные. Следовательно, в настоящее время проблема состоит в том, чтобы получить кривую наилучшего соответствия для данных и вычислить ее уравнение. Фактически, мы можем легко добавить в Excel наиболее подходящую линию/кривую и формулу.
Как рассчитать решения о покупке или продаже в Excel?
Сделать что-то вроде аксессуара самостоятельно или купить его у других производителей? Обычно мы должны сравнивать затраты на изготовление и покупку, прежде чем принимать решения. Здесь я расскажу, как обработать анализ «Сделать или купить» и легко принять решение «Сделать или купить» в Excel..
Как создать шаблон диаграммы колоколообразной кривой в Excel?
Диаграмма колоколообразной кривой, называемая нормальным распределением вероятности в статистике, обычно предназначена для отображения вероятных событий, а вершина колоколообразной кривой указывает на наиболее вероятное событие. В этой статье я расскажу вам, как создать диаграмму колоколообразной кривой с вашими собственными данными и сохранить книгу как шаблон в Excel.
При стремлении постичь нечто сложное, громоздкое, непонятное следует «разбить» его на как можно большее количество простых, мелких, понятных частей, изучить их с помощью существующих инструментов, а затем «сложить» эти результаты и получить итоговый ответ.
Формулировка в предыдущем предложении определяет сущность понятия интегрирования.
Интеграл чего-либо – это сумма всех малых частей этого чего-либо. Чем больше количество этих малых частей, тем точнее значение интеграла соответствует действительности, определяя признак изучаемого объекта.
Интегрирование применимо для изучения свойств физических и философских объектов при условии, что эти свойства остаются неизменными как для «мелкой» части, так и для всего объекта в целом.
Функция – это описание зависимости некоторого признака или свойства объекта от аргумента.
Объект – плоская фигура между графиком функции и осью абсцисс.
Признак (значение функции) – высота фигуры.
Аргумент (независимая переменная) – ширина фигуры.
Функция – описание зависимости высоты от ширины.
Определенный интеграл функции – площадь фигуры. Площадь тоже является признаком фигуры, но зависит от двух переменных – высоты и ширины – и представляет собой качественно иной новый признак.
Теория.
Подробно рассмотрим два наиболее точных метода численного интегрирования функции одной переменной – метод трапеций и метод парабол или метод Симпсона. Есть еще метод прямоугольников, но мы его проигнорируем из-за невысокой точности.
Все, что требуется для понимания и применения метода трапеций и метода Симпсона на практике представлено далее на рисунке.
Площадь под кривой y = f ( x ) разбиваем на n-1 криволинейных трапеций, у которых три стороны – это прямые линии, а одна сторона – участок кривой y =f ( x ). Суммарная площадь под графиком функции на участке от x1 до xn – это и есть искомая величина, которая является определенным интегралом функции на этом участке и находится как сумма площадей всех криволинейных трапеций.
Точно вычислить аналитически площадь криволинейной трапеции бывает сложно или даже невозможно.
Для приближенного вычисления площади криволинейной трапеции можно заменить участок кривой прямой линией и, получив простую фигуру – обычную трапецию, найти по известной формуле ее площадь. В этом суть метода трапеций.
Если участок кривой линии над двумя криволинейными трапециями заменить параболой, проведенной через три характерные точки, то получим новую криволинейную трапецию с одной из сторон в виде параболы. Количество новых фигур будет в два раза меньше, чем количество исходных трапеций. Площадь этих новых фигур вычисляется по простой формуле. В этом смысл метода Симпсона.
Идею замены участка любой кривой участком параболы высказывал Исаак Ньютон, но первым вывел формулу английский математик Томас Симпсон. Метод Симпсона для вычисления интегралов является самым точным из приближенных численных методов.
Если вычисление интегралов методом трапеций не имеет ограничений, то для того, чтобы реализовать метод Симпсона необходимо выполнить два условия.
1. Разбить площадь на четное количество частей, то есть n должно быть нечетным числом!
2. Расстояния между точками по оси x должны быть одинаковыми!
Практика вычисления интегралов в Excel.
Определенной сложностью является связать вычисление интегралов с реальными задачами из жизни. Рассмотрение примеров – лучший способ устранения подобных препятствий.
Определение тепловой энергии.
Мой знакомый из города Улан-Удэ Алексей Пыкин проводит испытания воздушных солнечных PCM-коллекторов производства КНР. Воздух из помещения подается вентилятором в коллекторы, нагревается от солнца и поступает назад в помещение. Каждую минуту измеряется и записывается температура воздуха на входе в коллекторы и на выходе при постоянном воздушном потоке. Требуется определить количество тепловой энергии полученной в течение суток.
Более подробно о преобразовании солнечной энергии в тепловую и электрическую и об экспериментах Алексея я постараюсь рассказать в отдельной статье. Следите за анонсами, многим, я думаю, это будет интересно.
Запускаем MS Excel и начинаем работу – выполняем вычисление интеграла.
1. В столбец B вписываем время проведения измерения τi .
2. В столбец C заносим температуры нагретого воздуха t2i , измеренные на выходе из коллекторов в градусах Цельсия.
3. В столбец D записываем температуры холодного воздуха t1i , поступающего на вход коллекторов.
4. В столбце E вычисляем разности температур dti на выходе и входе
5. Зная удельную теплоемкость воздуха c =1005 Дж/(кг*К) и его постоянный массовый расход (измеренная производительность вентилятора) G =0,02031 кг/с, определяем мощность установки Ni в КВт в каждый из моментов времени в столбце F
Ni = c * G * dti
На графике ниже показана экспериментальная кривая зависимости мощности, развиваемой коллекторами, от времени.
Количество тепловой энергии, выработанной за промежуток времени – это интеграл этой функции, и значение интеграла – это заштрихованная площадь под кривой.
6. Вычисляем в ячейках столбца G площади трапеций, суммируем их и находим общее количество энергии, выработанной за день
Q =Σ Qi =10,395 КВт*час
7. Рассчитываем в ячейках столбца H элементарные площади по методу парабол, суммируем их и находим общее количество энергии по методу Симпсона
Q =Σ Qj =10,395 КВт*час
Как видим, значения не отличаются друг от друга. Оба метода демонстрируют одинаковые результаты!
Исходная таблица содержит 421 строку. Давайте уменьшим её в 30 раз и оставим всего 15 строк, увеличив тем самым интервалы между замерами с 1 минуты до 30 минут.
По методу трапеций: Q =10,220 КВт*час (-1,684%)
По методу Симпсона: Q =10,309 КВт*час (-0,827%)
Не смотря на оставшуюся неожиданно весьма высокую точность полученных результатов, метод трапеций дает в данном случае относительную ошибку в 2 раза большую, чем метод Симпсона.
Общие выводы.
Вычисление интегралов численными методами в Excel позволяет эффективно и быстро решать сложные практические задачи, обеспечивая очень высокую точность результатов.
Так как мы существуем в пространстве и времени, то и всё окружающее нас изменяется или в пространстве или во времени. Это означает, что аргументом x функций y интересующих нас процессов или объектов чаще всего являются длина или время. Например, пройденный путь – это интеграл функции скорости (аргумент – время), площадь плотины – это интеграл функции высоты (аргумент – длина), и т.д.
Понимание сути интегрального исчисления и умение использовать его на практике вооружает вас, как специалиста, мощным оружием в осознанном изучении окружающего мира!
Отзывы и комментарии к статье, уважаемые читатели, пишите в блоке, расположенном ниже статьи.
Чтобы получать информацию о выходе новых статей на блоге подпишитесь на анонсы в окне, расположенном вверху страницы или сразу после статьи. Введите адрес своей электронной почты, нажмите на кнопку «Получать анонсы статей» и подтвердите подписку кликом по ссылке в письме, которое придет к вам на указанную почту. С этого момента к вам на почтовый ящик будет пару раз в месяц приходить небольшое уведомление о появлении на моем блоге новой статьи.
Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.
Ссылка на скачивание файла с примером: vychisleniye-integralov (xls 216,0KB).
Примеры интегрирования по частям логарифма и обратных тригонометрических функций
Интегрирование функций рационально зависящих от тригонометрических функций
1. Интегралы вида ∫ sin n xdx , ∫ cos n xdx , n>0
a) Если n нечётное, то одну степень sinx (либо cosx ) следует внести под знак дифференциала, а от оставшейся чётной степени следует перейти к противоположной функции.
б) Если n чётное, то пользуемся формулами понижения степени
2sin 2 x=1-cos2x , 2cos 2 x=1+cos2x .
2. Интегралы вида ∫ tg n xdx , ∫ ctg n xdx , где n – целое.
Необходимо использовать формулы
3. Интегралы вида ∫ sin n x·cos m x dx
а) Пусть m и n разной чётности. Применяем подстановку t=sin x , если n – нечётное либо t=cos x , если m – нечётное.
б) Если m и n чётные, то пользуемся формулами понижения степени
2sin 2 x=1-cos2x , 2cos 2 x=1+cos2x .
4. Интегралы вида
3. Интегралы вида ∫ sin n x·cos m x dx
а) Пусть m и n разной чётности. Применяем подстановку t=sin x , если n – нечётное либо t=cos x , если m – нечётное.
б) Если m и n чётные, то пользуемся формулами понижения степени
2sin 2 x=1-cos2x , 2cos 2 x=1+cos2x .
4. Интегралы вида
Если числа m и n одинаковой чётности, то используем подстановку t=tg x . Часто бывает удобным применить приём тригонометрической единицы.
5. ∫ sin(nx)·cos(mx)dx , ∫ cos(mx)·cos(nx)dx , ∫ sin(mx)·sin(nx)dx
Воспользуемся формулами преобразования произведения тригонометрических функций в их сумму:
- sin α·cos β = ½(sin(α+β)+sin(α-β))
- cos α·cos β = ½(cos(α+β)+cos(α-β))
- sin α·sin β = ½(cos(α-β)-cos(α+β))
- Решение онлайн
- Видеоинструкция
Примеры
1. Вычислить интеграл ∫ cos 4 x·sin 3 xdx .
Делаем замену cos(x)=t . Тогда ∫ cos 4 x·sin 3 xdx =
2. Вычислить интеграл .
Делая замену sin x=t , получаем
3. Найти интеграл .
Делаем замену tg(x)=t . Подставляя, получаем
Основные тригонометрические формулы
Ниже приведены некоторые тригонометрические формулы, которые могут понадобится при интегрировании тригонометрических функций.
sin 2 a + cos 2 a = 1
sin ( a+b ) = sin a cos b + cos a sin b
cos ( a+b ) = cos a cos b – sin a sin b
sin 2 a = 2 sin a cos a
cos 2 a = cos 2 a – sin 2 a = 2 cos 2 a – 1 = 1 – 2 sin 2 a
Примеры интегрирования тангенса и котангенса
Пример 1. Найти интеграл от тангенса tan(4*x).
Вычисления: Применяем приведенную выше методику для интегрирования тангенса
Здесь в скобках мы сначала вычисляем дифференциал от косинуса, а дальше выделяем значение, которое нам нужно достать. Далее интегрирования сводим к логарифму.
Таким образом можем записать обобщенную формулу для интеграла tan(k*x)
Int(tan(k*x),x)=-1/k*(log(cos(x)).
По этой формуле интеграл от тангенса двойного угла равен логарифму косинуса двойного угла умноженному на -0,5 .
Для тангенса половины угла tan (phi / 2) интеграл равен -2 умножить на логарифм косинуса половины угла
По индукции получим формулу интеграла для тангенса одной третьей угла tan(phi/3)
Пример 2. Проинтегрировать котангенс двойного угла
Вычисления: По аналогии с формулами для тангенса мы могли бы выписать готовую формулу, но лучше выполнить промежуточные переходы чтобы Вы лучше поняли и заучили методику внесения под дифференциал
Таким образом, если имеем котангенс тройного угла то перед интегралом получим множителем 1/3
Интегралы от котангенса половины и трети угла будут иметь множителями перед логарифмом соответственно двойку и тройку
При нахождении первоначальной от тангенса и котангенса следует справа добавить постоянную
Зная данную методику, Вы знаете как найти интеграл от тангенса, аргумент которого содержит множителем произвольное число.
Вычисления определенных интегралов от тангенса и котангенса в данной статье рассматривать не будем. Если Вы вычисляли такие интегралы от простых функций то, зная синусы и косинусы углов найти определенный интеграл от тангенса или котангенса сможете без проблем.
Вычисление площадей отдельных трапеций
Теперь нужно найти площади трапеций за каждый промежуток времени. В столбце “E” будем вычислять по приведённой выше формуле площади трапеций. Полусумма оснований – это половина суммы двух последовательных мощностей дозы из столбца “D”. Так как данные идут с периодом 1 раз в минуту, а мы берём интеграл по времени, выраженному в минутах, то высота каждой трапеции будет равна единице (разница времени между каждыми двумя последовательными измерениями, например, 17ч31мин — 17ч30мин = 0ч1мин = 1мин).
Получаем формулу в ячейке “E3”: =1/2*(D3+D2)*1. Понятно, что “×1” в этой формуле можно не писать. И аналогично, с помощью маркера заполнения, распространяем формулу на весь столбец. Теперь в каждой ячейке столбца “Е” посчитана накопленная доза за 1 минуту полёта.
Вычисление площадей прямоугольных трапеций за каждый промежуток времени
Если бы данные шли не через 1 минуту, то нам нужно было бы написать формулу так:
=1/2*(D3+D2)*(МИНУТЫ(A3) – МИНУТЫ(A2)).
Правда при этом, если есть переход на следующий час, то получится отрицательное значение. Чтобы этого не произошло, впишем в формулу часы:
=1/2*(D3+D2)*(ЧАС(A3)*60+МИНУТЫ(A3)) – (ЧАС(A2)*60+МИНУТЫ(A2)).
Если переходим на следующие сутки, то нужно будет уже добавлять даты, и т.д.
Теория.
Подробно рассмотрим два наиболее точных метода численного интегрирования функции одной переменной – метод трапеций и метод парабол или метод Симпсона. Есть еще метод прямоугольников, но мы его проигнорируем из-за невысокой точности.
Все, что требуется для понимания и применения метода трапеций и метода Симпсона на практике представлено далее на рисунке.
Площадь под кривой y = f ( x ) разбиваем на n-1 криволинейных трапеций, у которых три стороны – это прямые линии, а одна сторона – участок кривой y =f ( x ). Суммарная площадь под графиком функции на участке от x1 до xn – это и есть искомая величина, которая является определенным интегралом функции на этом участке и находится как сумма площадей всех криволинейных трапеций.
Точно вычислить аналитически площадь криволинейной трапеции бывает сложно или даже невозможно.
Для приближенного вычисления площади криволинейной трапеции можно заменить участок кривой прямой линией и, получив простую фигуру – обычную трапецию, найти по известной формуле ее площадь. В этом суть метода трапеций.
Если участок кривой линии над двумя криволинейными трапециями заменить параболой, проведенной через три характерные точки, то получим новую криволинейную трапецию с одной из сторон в виде параболы. Количество новых фигур будет в два раза меньше, чем количество исходных трапеций. Площадь этих новых фигур вычисляется по простой формуле. В этом смысл метода Симпсона.
Идею замены участка любой кривой участком параболы высказывал Исаак Ньютон, но первым вывел формулу английский математик Томас Симпсон. Метод Симпсона для вычисления интегралов является самым точным из приближенных численных методов.
Если вычисление интегралов методом трапеций не имеет ограничений, то для того, чтобы реализовать метод Симпсона необходимо выполнить два условия.
1. Разбить площадь на четное количество частей, то есть n должно быть нечетным числом!
2. Расстояния между точками по оси x должны быть одинаковыми!
Стандартные подстановки при интегрировании тригонометрических функций
Здесь мы рассмотрим стандартные подстановки, с помощью которых, в большинстве случаев, выполняется интегрирование тригонометрических функций.
Применение знаний, формирование умений и навыков
Практическое задание «Вычисление определенных интегралов методом трапеции в среде Microsoft Excel.»
Состав задания:
- Ознакомиться с теоретической частью задания;
- Провести расчет для своего варианта индивидуального задания в Microsoft Excel
- Оформить презентацию в Ms PowerPoint, включающую:
– постановку задачи;
– алгоритм расчета;
– таблицу с расчетом из Ms Excel, график исходной функции;
– результат расчета и его анализ.
Индивидуальное расчетное задание:
- Найдите приближенное значение интеграла заданной функции f(x)= 1/(1+x 4 ) 1/2 на отрезке [0; 4]
по формуле трапеций, разбивая отрезок [0; 4] на 8 равных частей. Оцените погрешность приближенного вычисления интеграла при таком разбиении отрезка. - Представьте графически поставленную задачу.
Постановка задачи:
Найти: приближенное значение интеграла заданной функции по формуле трапеций, приняв предельное значение погрешности приближенного вычисления интеграла равным ε=0,02.
Таблица Исходная информация
Представление в Excel
Анализ заданной функции и результаты вычислений в Ms Excel
Расчет площади
xi
f(xi)
Коэффициенты формулы трапеций
Вычисление Ci*f(xi)
N=2
N=4
N=8
N=2
N=4
N=8
N=2
N=4
N=8
Ответ: приближенное значение интеграла заданной функции по формуле трапеций равна 1,60кв.мм, значение погрешности приближенного вычисления интеграла равным ε=0,008.
Задания для индивидуальной работы студентов по вариантам:
Найдите приближенное значение интеграла заданной функции f(x) на отрезке [a; b] (см. таблицу ) по формуле трапеций, разбивая отрезок [a; b] на 8 равных частей. Оцените погрешность приближенного вычисления интеграла при таком разбиении отрезка.
Представьте графически поставленную задачу.
отрезок [a; b]
Функция f(x)
(х 4 /(1+x 4 ) 1/2 ) 1/2
(х 5 /(1+x 4 ) 1/2 ) 1/2
На сегодняшнем занятии мы отработали навыки вычисления определенных интегралов методом трапеции в среде электронных таблиц MS Excel. Выработали умения применять теоретические знания в практических расчетах.
Распространенные примеры интегрирования косинуса
Пример 1. Найти интеграл от cos(5*x).
Решение: По формуле интегрируем косинус
Пример 2. Вычислить интеграл от cos(7*x).
Решение: Выполняем интегрирование
Пример 3. Проинтегрировать выражение cos (11*x).
Решение: Вычисляем неопределенный интеграл
Пример 4. Найти интеграл функции y= cos (x/5).
Решение: Записываем неопределенный интеграл
Пример 5. Найти интеграл функции y= cos (x/6) .
Решение: Проинтегрируем по приведенной выше формуле
Как только Вы освоите методику интегрирования на простых примерах, смело можете переходить к определенным интегралам и первообразным. Для отискания определенного интеграла проводим интегрирование, а дальше подставляем пределы интегрирования и находим изменение первообразной функции.
Пример 6. Проинтегрировать косинус двойного угла y = cos (2 * x) от 0 до 45 градусов.
Решение: Находим указанный интеграл от косинуса
Пример 7. Найти интеграл от косинуса y = cos (x) от 0 до 60 градусов.
Решение: Вычисляем интеграл и подставляем пределы интегрирования
Пример 8. Найти первоначальную от cos (x), которая при 30 градусах равна 1 .
Решение: Находим первоначальную
С наложенного условия на первоначальную вычисляем постоянную
sin(Pi/6)+C=1; C=1-
sin(Pi/6)=1-0,5=0,5.
Подставляем полученную постоянную в уравнение
На этом задача решена. На таких простых примерах Вы четко должны знать, чему равный интеграл от косинуса.
Далее полученные знания можно применять для вычисления площадей криволинейных трапеций. Это достаточно абстрактное понятие, но с помощью интегрирования находить площадь фигур достаточно просто и быстро. Следует только помнить, что площадь всегда принимает положительное значение, в то время как определенный интеграл может принимать отрицательное значение.
Например вычислим площадь и интеграл от косинуса, если переменная принадлежит интервалу от 0 до 2*Pi.
По физическому содержанию площадь равна заштрихованным поверхностям.
Находим определенный интеграл в указанных пределах
Он равен нулю. Что касается площади, то сначала следует найти точки пересечения с осью абсцисс на этом интервале
Таким образом площадь необходимо искать на трех промежутках
Ось абсцисс можем записать функцией y = 0 . Таким образом на первом промежутке площадь равна интегралу от косинуса,
на втором 0-cos (x) = – cos (x) от минус косинуса и на третьем от косинуса. Все при вычислении площади зависит от того, какая функция принимает большее значение по оси ординат (Oy) . Вычисляем площадь интегрированием в указаных пределах
Таким образом искомая площадь равна 4. Если иметь график функции перед глазами, то данное значение можно получить как 4 площади косинус функции, которые периодически повторяются
На этом знакомство с интегрированием косинуса завершается. Приведенная методика интегрирования позволяет вычислить 80% основных задач на интегрирование косинуса. Остальные 20% Вы научитесь после изучения способов нахождения интегралов от функций вида
Мы научим Вас, какие свертки и замены переменных следует использовать, в каких случаях целесообразно интегрировать по частям.
Интегралы от других тригонометрических и обратных к ним функций Вы найдете в категории “ Интегрирование функций “.
Интегрирование обратных тригонометрических функций
Интегралы, содержащие обратные тригонометрические функции
arcsin φ , arctg φ , и т.д., где φ – некоторая алгебраическая функция от x , нередко интегрируются по частям, полагая u = arcsin φ , u = arctg φ , и т.д.
Общий подход
Вначале, если это необходимо, подынтегральное выражение нужно преобразовать, чтобы тригонометрические функции зависели от одного аргумента, который совпадал бы с переменной интегрирования.
Например, если подынтегральное выражение зависит от sin( x+a ) и cos( x+b ) , то следует выполнить преобразование:
cos ( x+b ) = cos ( x+a – ( a–b ) ) = cos ( x+a ) cos ( b–a ) + sin ( x+a ) sin ( b–a ) .
После чего сделать замену z = x+a . В результате, тригонометрические функции будут зависеть только от переменной интегрирования z .
Когда тригонометрические функции зависят от одного аргумента, совпадающим с переменной интегрирования (допустим это z ), то есть подынтегральное выражение состоит только из функций типа sin z , cos z , tg z , ctg z , то нужно сделать подстановку
.
Такая подстановка приводит к интегрированию рациональных или иррациональных функций (если есть корни) и позволяет вычислить интеграл, если он интегрируется в элементарных функциях.
Однако, часто можно найти другие методы, которые позволяют вычислить интеграл более коротким способом, основываясь на специфике подынтегрального выражения. Ниже дано изложение основных таких методов.
Методика вычисленияопределённого интеграла
Вычислять интеграл мы будем самым простым, но довольно точным методом – методом трапеций. Напомню, площадь фигуры под графиком любой кривой можно разделить на прямоугольные трапеции. Сумма площадей этих трапеций и будет искомым значением определённого интеграла.
Площадь трапеции определяется как полусумма оснований, умноженная на высоту: Sтрап = (A + B) / 2 × h Основания в нашем случае – это табличные измеренные значения мощности дозы за 2 последовательных промежутка времени, а высота – это разница времени между двумя измерениями.
Метод трапеций для вычисления значения определённого интеграла
Интегрирование выражений вида R(sinx, cosx)
Пример №1 . Вычислить интегралы:
Решение.
а) Интегрирование выражений вида R(sinx, cosx) , где R — рациональная функция от sin x и cos x , преобразуются в интегралы от рациональных функций с помощью универсальной тригонометрической подстановки tg(x/2) = t .
Тогда имеем
Универсальная тригонометрическая подстановка дает возможность перейти от интеграла вида ∫ R(sinx, cosx) dx к интегралу от дробно-рациональной функции, но часто такая замена ведет к громоздким выражениям. При определенных условиях эффективными оказываются более простые подстановки:
- Если выполняется равенство R(-sin x, cos x) = -R(sin x, cos x)dx , то применяется подстановка cos x = t .
- Если выполняется равенство R(sin x, -cos x) = -R(sin x, cos x)dx , то подстановка sin x = t .
- Если выполняется равенство R(-sin x, -cos x) = R(sin x, cos x)dx , то подстановка tgx = t или ctg x = t .
В данном случае для нахождения интеграла
применим универсальную тригонометрическую подстановку tg(x/2) = t .
Тогда
Так как дробь неправильная, то, выделяя целую часть, получим
Возвращась к исходной переменной будем иметь
b) Во втором примере рассмотрим важный частный случай, когда общее выражение ∫ R(sinx, cosx) dx имеет вид ∫ sin m x·cos n xdx . В этом частном случае, если m нечетно, следует применить подстановку cos x = t . Если нечетно n , следует применить подстановку sin x = t . Если оба показателя тип — четные неотрицательные числа (в частности, одно из них может быть равным нулю), то выполняют замену по известным тригонометрическим формулам:
В данном случае
Вычисление определенных интегралов методом трапеции в среде Microsoft Excel
Цель урока: Совершенствование умений и навыков по теме «Численное интегрирование», применяя возможности MS Excel по вычисление определенных интегралов методом трапеции. Отработать практическое освоение соответствующих умений и навыков.
Задачи урока:
- Образовательные – совершенствование умений студентов при вычисление определенных интегралов методом трапеции в среде электронных таблиц MS Excel. Выработать умение применять теоретические знания в практических расчетах;
- Развивающие – познакомить студентов с применением компьютеров в качестве помощников при решении уравнений. Развивать у студентов математическую речь: создать ситуацию для применения основных понятий в речи; творческого мышления через создание условий для самореализации творческого потенциала обучающихся;
- Воспитательные – выработать у студентов умение рационально использовать время и возможности компьютерных технологий при решении задач. Воспитывать интерес к предмету через ситуацию успеха и взаимодоверия.
Тип урока: комбинированный урок.
Вид урока: практическое занятие, продолжительность – 2 часа.
Оборудование урока:
- Компьютеры с OS MS Windows;
- Программа Microsoft Excel;
- Презентация по теме, выполненная в программе PowerPoint;
- Карточки с заданиями для самостоятельной работы.
Структура урока:
1.Актуализация знаний:
1.1. Мобилизующее начало, постановка целей и задач на урок;
1.2.Фронтальный опрос с целью выявления основных этапов решения задач интегрирования и методики решения;
1.3. Постановка задачи с целью повторения алгоритма вычисления определенных интегралов методом трапеции;
1.4.Подведение итогов 1 этапа урока.
2.Применение знаний, формирование умений и навыков:
2.1.Беседа с целью формулировки задания для самостоятельной работы и инструктажа по ее организации;
2.2.Самостоятельная работа в группах по выполнению задания вычисления определенных интегралов методом трапеции в среде Microsoft Excel.
2.3.Подведение итога урока.
В данном уроке особое внимание уделено визуальному представлению информации – в ходе урока с помощью проектора демонстрируются слайды, подготовленные в пакете презентационной графики Microsoft PowerPoint.
ХОД УРОКА
1. Актуализация знаний
1.1. Мобилизующее начало, постановка целей и задач на урок.
На прошлых уроках мы с Вами изучили приближенное вычисление определенных интегралов, выделили методы их решения и решали данные интегралы ручным счетом. А на сегодняшнем занятии мы будем совершенствовать умения и навыки при вычислении определенных интегралов методом трапеции в среде Microsoft Excel.
— В чем заключается вычисление интеграла?
— Важным средством вычисления определенных интегралов является формула Ньютона-Лейбница . Ее применение на практике связано с существенными трудностями, возникающими при нахождении первообразной в случае подынтегральной функции. Поэтому применяют численные методы, позволяющие найти приближенное значение исходного интеграла с заданной точностью.
— Общий подход к ее решению состоит в том, чтобы аппроксимировать функцию какой-либо другой функцией , для которой интеграл вычисляется аналитически.
— Тогда для решения задачи строим с оценкой погрешности , и приближенно с очевидной оценкой погрешности .
— Введем на отрезке сетку , , где , и таблицу значений , .
— Рассмотрим простой вариант построения функции , приводящий к формуле трапеций.
— При этом функция строится как кусочно-линейная интерполяция значений , на равномерной сетке с шагом .
=.
— Формулы такого рода () называют механическими квадратурами, – коэффициентами (весами) квадратуры, – ее узлами.
Точность формулы трапеций зависит от гладкости функции . Если она на имеет первую производную, ограниченную числом , то , и погрешность формулы трапеций не превосходит . Если на имеет вторую производную, ограниченную числом , то погрешность формулы итераций не превосходит , поскольку .
Теоретические оценки погрешностей не всегда применяются. Если требуется вычислить интеграл с погрешностью , то мало кто сначала оценит третью производную функции и вычислит шаг сетки . Эта оценка и значение константы завышены. Кроме того, само вычисление может быть трудным, особенно если задана некоторым сложным образом.
Поэтому, вычисляя интеграл с небольшим числом узлов , получают его значение ; вычисляя интеграл с удвоенным , получают . Если модуль (где ε – предельное допустимое значение погрешности расчета), то задачу считают решенной. В противном случае вычисляют и т.д. Для гладких функций часто интеграл вычисляется очень точно при малом числе узлов.
— Объясните алгоритм вычисления интеграла различными методами?
2. Применение знаний, формирование умений и навыков
Практическое задание «Вычисление определенных интегралов методом трапеции в среде Microsoft Excel.»
Состав задания:
- Ознакомиться с теоретической частью задания;
- Провести расчет для своего варианта индивидуального задания в Microsoft Excel
- Оформить презентацию в Ms PowerPoint, включающую:
— постановку задачи;
— алгоритм расчета;
— таблицу с расчетом из Ms Excel, график исходной функции;
— результат расчета и его анализ.
Индивидуальное расчетное задание:
- Найдите приближенное значение интеграла заданной функции f(x)= 1/(1+x 4 ) 1/2 на отрезке [0; 4]
по формуле трапеций, разбивая отрезок [0; 4] на 8 равных частей. Оцените погрешность приближенного вычисления интеграла при таком разбиении отрезка. - Представьте графически поставленную задачу.
Постановка задачи:
Найти: приближенное значение интеграла заданной функции по формуле трапеций, приняв предельное значение погрешности приближенного вычисления интеграла равным ε=0,02.
Проблема собственно отображена в теме…не знаю как найти площадь под графиком (имеются только данные в таблице никаких формул). Помогите кто шарит, диплом горит . Решение с подсчётом квадратиков и метод трапеций(подходит только если его упростить до какой нибудь формулы) не подходит т.к графиков очень много
Эксель изощрён, но не злонамерен.
Давайте сюда экселевский файл с примером (рисунок уже видели).
Эксель изощрён, но не злонамерен.
Эксель изощрён, но не злонамерен.
спасиб братюни , пойду доделывать диплом…
Содержание
- Расчет. Площадь под кривой (правило трапеции) Таблицы Excel и G
- Расчет. Площадь под кривой (правило трапеции) Excel
- Начиная с вашего графика
- Начиная с вашего набора данных
- Создание формулы площади
- Конечная площадь под кривой
- Как рассчитать площадь под кривой (правило трапеции) в Google Таблицах
- Как в Excel вычислить определённый интеграл
- 1 Постановка физической задачина расчёт определённого интеграла
- 2 Геометрический смыслопределённого интеграла
- 3 Методика вычисленияопределённого интеграла
- 4 Согласованиеединиц измерения
- 5 Вычисление площадей отдельных трапеций
- 5 Определение площадипод графиком функции
- Как в excel посчитать площадь под графиком
- Вычисление интегралов в Excel
- Теория.
- Практика вычисления интегралов в Excel.
- Определение тепловой энергии.
- Общие выводы.
- Как рассчитать площадь под кривой в Excel
- Содержание:
- направления
- Использование уравнения тренда
- Приближается, если точки расположены на равном расстоянии
Расчет. Площадь под кривой (правило трапеции) Таблицы Excel и G
Расчет. Площадь под кривой (правило трапеции) Excel
Есть несколько способов рассчитать площадь под кривой, но этот пример покажет вам, как это сделать с помощью правила трапеции.
Начиная с вашего графика
Вы начнете с вашего базового графика, который показывает взаимосвязь между значениями X и Y. Цель состоит в том, чтобы найти общую площадь под кривой на графике.
Начиная с вашего набора данных
Затем у нас есть набор данных, с которым мы работаем. В этом случае месяц — это Ось X и продажи — это Ось Y.
Создание формулы площади
- Введите следующую формулу, которая является расчетом для определения площади под линией. Как показано ниже, каждая отдельная формула показывает область под графиком между точками данных. В этом случае мы набираем ((Значение Y 2) + (Значение Y 1)) / 2 * (Значение X 2 — Значение X 1)
2. Перетащите эту формулу вниз для просмотра данных. Кроме последняя точка данных
3. В пустой ячейке ниже просуммируйте все индивидуальные формулы площади, которые вы только что рассчитали, чтобы найти площадь всей кривой.
Конечная площадь под кривой
После вычисления суммы окончательная сумма покажет общую площадь под кривой. В этом случае мы получаем общую площадь 167.50.
Как рассчитать площадь под кривой (правило трапеции) в Google Таблицах
В этом случае вычисление площади под кривой с использованием правила трапеции в Google Таблицах такое же, как и в Excel. Используйте ту же формулу для значений X и Y, и вы сможете рассчитать площадь под кривой.
Источник
Как в Excel вычислить определённый интеграл
Давайте разберёмся, как вычислить определённый интеграл таблично заданной функции с помощью программы Excel из состава Microsoft Office.
1 Постановка физической задачина расчёт определённого интеграла
Допустим, у нас есть таблично заданная некоторая величина. Для примера пусть это будет накопленная доза радиации при авиаперелёте. Скажем, был такой эксперимент: человек с дозиметром летел на самолёте из пункта А в пункт Б и периодически измерял дозиметром мощность дозы (единицы измерений – микрозиверт в час, мкЗв/ч). Возможно, Вас это удивит, но при обычном перелёте на самолёте человек попадает под радиоактивное излучение, превышающее фоновый уровень до 10 раз и даже больше. Но воздействие это кратковременное, и поэтому не столь опасное. По результатам измерений у нас есть таблица вот такого формата: Время – Мощность дозы.
Таблично заданная величина для расчёта определённого интеграла
Необходимо посчитать суммарную накопленную за время полёта дозу.
2 Геометрический смыслопределённого интеграла
Как мы помним из курса школьной алгебры, определённый интеграл – это площадь под графиком измеряемой величины. Чтобы определить накопленную дозу радиации в рассматриваемом примере, нужно определить площадь фигуры под графиком таблично заданной мощности дозы. Накопленная доза радиации равна площади фигуры под графиком мощности дозы
График изменения мощности дозы во время полёта
3 Методика вычисленияопределённого интеграла
Вычислять интеграл мы будем самым простым, но довольно точным методом – методом трапеций. Напомню, площадь фигуры под графиком любой кривой можно разделить на прямоугольные трапеции. Сумма площадей этих трапеций и будет искомым значением определённого интеграла.
Площадь трапеции определяется как полусумма оснований, умноженная на высоту: Sтрап = (A + B) / 2 × h Основания в нашем случае – это табличные измеренные значения мощности дозы за 2 последовательных промежутка времени, а высота – это разница времени между двумя измерениями.
Метод трапеций для вычисления значения определённого интеграла
4 Согласованиеединиц измерения
В нашем примере измерения мощности дозы радиации даётся в мкЗв/час, а шкала времени – с точностью до минут. Мы не можем брать интеграл по времени, измеряемому в минутах, для величины, измеряемой в часах. Поэтому необходимо перевести мкЗв/час в мкЗв/мин.
Для перевода просто разделим мощность дозы в мкЗв/час построчно на количество минут в часе, т.е. на 60. Добавим ещё один столбец в нашу таблицу. На иллюстрации это столбец «D». В столбце «D» в строке 2 вписываем =С2/60 А потом с помощью маркера заполнения распространяем эту формулу на все остальные ячейки в столбце «D», (т.е. тянем мышью чёрный прямоугольник в правом нижнем углу ячейки). Таким образом, в столбце «D» у нас появятся значения мощности дозы радиации, измеряемые в микрозивертах в минуту для каждой минуты перелёта.
Согласуем единицы измерения по шкале времени и шкале мощности дозы
5 Вычисление площадей отдельных трапеций
Теперь нужно найти площади трапеций за каждый промежуток времени. В столбце «E» будем вычислять по приведённой выше формуле площади трапеций. Полусумма оснований – это половина суммы двух последовательных мощностей дозы из столбца «D». Так как данные идут с периодом 1 раз в минуту, а мы берём интеграл по времени, выраженному в минутах, то высота каждой трапеции будет равна единице (разница времени между каждыми двумя последовательными измерениями, например, 17ч31мин — 17ч30мин = 0ч1мин = 1мин).
Получаем формулу в ячейке «E3»: =1/2*(D3+D2)*1. Понятно, что «×1» в этой формуле можно не писать. И аналогично, с помощью маркера заполнения, распространяем формулу на весь столбец. Теперь в каждой ячейке столбца «Е» посчитана накопленная доза за 1 минуту полёта.
Вычисление площадей прямоугольных трапеций за каждый промежуток времени
Если бы данные шли не через 1 минуту, то нам нужно было бы написать формулу так:
=1/2*(D3+D2)*(МИНУТЫ(A3) – МИНУТЫ(A2)).
Правда при этом, если есть переход на следующий час, то получится отрицательное значение. Чтобы этого не произошло, впишем в формулу часы:
=1/2*(D3+D2)*(ЧАС(A3)*60+МИНУТЫ(A3)) – (ЧАС(A2)*60+МИНУТЫ(A2)).
Если переходим на следующие сутки, то нужно будет уже добавлять даты, и т.д.
5 Определение площадипод графиком функции
Осталось найти сумму вычисленных площадей трапеций. Можно в ячейке «F2» написать формулу: =СУММ(E:E) Это и будет сумма всех значений в столбце «E», т.е. численное значение искомого определённого интеграла. Но давайте сделаем вот что: определим накопленную дозу в разные моменты полёта. Для этого в ячейку «F4» впишем формулу =СУММ(E$3:E4) и маркером заполнения распространим на весь столбец «F».
Обозначение E$3 говорит программе Excel, что увеличивать индекс ячейки «3» в столбце «E» при переносе формулы на следующие строки не нужно. Т.е. в строке 4 формула будет определять сумму в ячейках с «Е3» по «Е4», в строке 5 – сумму с «Е3» по «Е5», в строке 6 – с «Е3» по «Е6» и т.д.
Построим график по столбцам «F» и «A». Это график изменения накопленной дозы радиации во времени. Наглядно видно монотонное увеличение накопленной дозы радиации за время полёта. Это говорит о том, что мы правильно рассчитали интеграл. И окончательное значение накопленной за двухчасовой полёт дозы радиации, которое получается в последней ячейке этого столбца, равно примерно 4,5 микрозиверт.
Вычисление суммарной площади всех трапеций, что численно равно искомому определённому интегралу
Таким образом, мы только что нашли определённый интеграл таблично заданной функции в программе Excel на реальном физическом примере. В качестве приложения к статье – файл Excel с нашим примером.
Источник
Как в excel посчитать площадь под графиком
Вычисление интегралов в Excel
При стремлении постичь нечто сложное, громоздкое, непонятное следует «разбить» его на как можно большее количество простых, мелких, понятных частей, изучить их с помощью существующих инструментов, а затем «сложить» эти результаты и получить итоговый ответ.
Формулировка в предыдущем предложении определяет сущность понятия интегрирования.
Интеграл чего-либо – это сумма всех малых частей этого чего-либо. Чем больше количество этих малых частей, тем точнее значение интеграла соответствует действительности, определяя признак изучаемого объекта.
Интегрирование применимо для изучения свойств физических и философских объектов при условии, что эти свойства остаются неизменными как для «мелкой» части, так и для всего объекта в целом.
Функция – это описание зависимости некоторого признака или свойства объекта от аргумента.
Объект – плоская фигура между графиком функции и осью абсцисс.
Признак (значение функции) – высота фигуры.
Аргумент (независимая переменная) – ширина фигуры.
Функция – описание зависимости высоты от ширины.
Определенный интеграл функции – площадь фигуры. Площадь тоже является признаком фигуры, но зависит от двух переменных – высоты и ширины – и представляет собой качественно иной новый признак.
Теория.
Подробно рассмотрим два наиболее точных метода численного интегрирования функции одной переменной – метод трапеций и метод парабол или метод Симпсона. Есть еще метод прямоугольников, но мы его проигнорируем из-за невысокой точности.
Все, что требуется для понимания и применения метода трапеций и метода Симпсона на практике представлено далее на рисунке.
Площадь под кривой y = f ( x ) разбиваем на n-1 криволинейных трапеций, у которых три стороны – это прямые линии, а одна сторона – участок кривой y =f ( x ). Суммарная площадь под графиком функции на участке от x1 до xn – это и есть искомая величина, которая является определенным интегралом функции на этом участке и находится как сумма площадей всех криволинейных трапеций.
Точно вычислить аналитически площадь криволинейной трапеции бывает сложно или даже невозможно.
Для приближенного вычисления площади криволинейной трапеции можно заменить участок кривой прямой линией и, получив простую фигуру – обычную трапецию, найти по известной формуле ее площадь. В этом суть метода трапеций.
Если участок кривой линии над двумя криволинейными трапециями заменить параболой, проведенной через три характерные точки, то получим новую криволинейную трапецию с одной из сторон в виде параболы. Количество новых фигур будет в два раза меньше, чем количество исходных трапеций. Площадь этих новых фигур вычисляется по простой формуле. В этом смысл метода Симпсона.
Идею замены участка любой кривой участком параболы высказывал Исаак Ньютон, но первым вывел формулу английский математик Томас Симпсон. Метод Симпсона для вычисления интегралов является самым точным из приближенных численных методов.
Если вычисление интегралов методом трапеций не имеет ограничений, то для того, чтобы реализовать метод Симпсона необходимо выполнить два условия.
1. Разбить площадь на четное количество частей, то есть n должно быть нечетным числом!
2. Расстояния между точками по оси x должны быть одинаковыми!
Практика вычисления интегралов в Excel.
Определенной сложностью является связать вычисление интегралов с реальными задачами из жизни. Рассмотрение примеров – лучший способ устранения подобных препятствий.
Определение тепловой энергии.
Мой знакомый из города Улан-Удэ Алексей Пыкин проводит испытания воздушных солнечных PCM-коллекторов производства КНР. Воздух из помещения подается вентилятором в коллекторы, нагревается от солнца и поступает назад в помещение. Каждую минуту измеряется и записывается температура воздуха на входе в коллекторы и на выходе при постоянном воздушном потоке. Требуется определить количество тепловой энергии полученной в течение суток.
Более подробно о преобразовании солнечной энергии в тепловую и электрическую и об экспериментах Алексея я постараюсь рассказать в отдельной статье. Следите за анонсами, многим, я думаю, это будет интересно.
Запускаем MS Excel и начинаем работу – выполняем вычисление интеграла.
1. В столбец B вписываем время проведения измерения τi .
2. В столбец C заносим температуры нагретого воздуха t2i , измеренные на выходе из коллекторов в градусах Цельсия.
3. В столбец D записываем температуры холодного воздуха t1i , поступающего на вход коллекторов.
4. В столбце E вычисляем разности температур dti на выходе и входе
5. Зная удельную теплоемкость воздуха c =1005 Дж/(кг*К) и его постоянный массовый расход (измеренная производительность вентилятора) G =0,02031 кг/с, определяем мощность установки Ni в КВт в каждый из моментов времени в столбце F
На графике ниже показана экспериментальная кривая зависимости мощности, развиваемой коллекторами, от времени.
Количество тепловой энергии, выработанной за промежуток времени – это интеграл этой функции, и значение интеграла – это заштрихованная площадь под кривой.
6. Вычисляем в ячейках столбца G площади трапеций, суммируем их и находим общее количество энергии, выработанной за день
Q =Σ Qi =10,395 КВт*час
7. Рассчитываем в ячейках столбца H элементарные площади по методу парабол, суммируем их и находим общее количество энергии по методу Симпсона
Q =Σ Qj =10,395 КВт*час
Как видим, значения не отличаются друг от друга. Оба метода демонстрируют одинаковые результаты!
Исходная таблица содержит 421 строку. Давайте уменьшим её в 30 раз и оставим всего 15 строк, увеличив тем самым интервалы между замерами с 1 минуты до 30 минут.
По методу трапеций: Q =10,220 КВт*час (-1,684%)
По методу Симпсона: Q =10,309 КВт*час (-0,827%)
Не смотря на оставшуюся неожиданно весьма высокую точность полученных результатов, метод трапеций дает в данном случае относительную ошибку в 2 раза большую, чем метод Симпсона.
Общие выводы.
Вычисление интегралов численными методами в Excel позволяет эффективно и быстро решать сложные практические задачи, обеспечивая очень высокую точность результатов.
Так как мы существуем в пространстве и времени, то и всё окружающее нас изменяется или в пространстве или во времени. Это означает, что аргументом x функций y интересующих нас процессов или объектов чаще всего являются длина или время. Например, пройденный путь – это интеграл функции скорости (аргумент – время), площадь плотины – это интеграл функции высоты (аргумент – длина), и т.д.
Понимание сути интегрального исчисления и умение использовать его на практике вооружает вас, как специалиста, мощным оружием в осознанном изучении окружающего мира!
Отзывы и комментарии к статье, уважаемые читатели, пишите в блоке, расположенном ниже статьи.
Чтобы получать информацию о выходе новых статей на блоге подпишитесь на анонсы в окне, расположенном вверху страницы или сразу после статьи. Введите адрес своей электронной почты, нажмите на кнопку «Получать анонсы статей» и подтвердите подписку кликом по ссылке в письме, которое придет к вам на указанную почту. С этого момента к вам на почтовый ящик будет пару раз в месяц приходить небольшое уведомление о появлении на моем блоге новой статьи.
Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.
Ссылка на скачивание файла с примером: vychisleniye-integralov (xls 216,0KB).
Как рассчитать площадь под кривой в Excel
Excel может быть полезным инструментом со многими функциями для ученых, студентов, экономистов, аналитиков и многих других профессий. Одна из оригинальных функций Excel заключается в том, что он позво
Содержание:
- направления
- Использование уравнения тренда
- Приближается, если точки расположены на равном расстоянии
- чаевые
- Что вам нужно
Excel может быть полезным инструментом со многими функциями для ученых, студентов, экономистов, аналитиков и многих других профессий. Одна из оригинальных функций Excel заключается в том, что он позволяет пользователям легко анализировать и отображать большие объемы данных. Люди, обладающие знаниями в области расчета, могут использовать функцию линии тренда на графике для расчета площади под кривой. Для студентов, которые не имеют вычислительных знаний, есть другой способ приблизиться к области под кривой.
направления
Вы можете рассчитать площадь под кривой без знания расчета (Изображение калькулятора от Alhazm Salemi от Fotolia.com)
Использование уравнения тренда
Щелкните правой кнопкой мыши на кривой, где вы хотите найти область на диаграмме Excel. Нажмите на опцию, чтобы добавить линию тренда.
Выберите тип линии, которая, по вашему мнению, лучше всего соответствует кривой.
Выберите параметр для отображения уравнения в диаграмме на вкладке «Параметры».
Найдите определенный интеграл уравнения, показанного на графике в течение интервала, в котором вы хотите найти область. Значением определенного интеграла является площадь под кривой. Знание расчетов требуется для этого шага.
Приближается, если точки расположены на равном расстоянии
Соедините значения y данных, в которых вы хотите найти область. Это можно сделать, добавив значения непосредственно в диаграмму или добавив значения в ячейки на листе.
Найти расстояние между точками на оси х, если они расположены равномерно.
Умножьте сумму значений y и расстояния между значениями x. Этот продукт является приблизительной площадью под кривой.
Источник