Engineering is the use of scientific principles to design and build machines, structures, and other items, including bridges, tunnels, roads, vehicles, and buildings.[1] The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.
The term engineering is derived from the Latin ingenium, meaning «cleverness» and ingeniare, meaning «to contrive, devise».[2]
Definition
The American Engineers’ Council for Professional Development (ECPD, the predecessor of ABET)[3] has defined «engineering» as:
The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property.[4][5]
History
Engineering has existed since ancient times, when humans devised inventions such as the wedge, lever, wheel and pulley, etc.
The term engineering is derived from the word engineer, which itself dates back to the 14th century when an engine’er (literally, one who builds or operates a siege engine) referred to «a constructor of military engines.»[6] In this context, now obsolete, an «engine» referred to a military machine, i.e., a mechanical contraption used in war (for example, a catapult). Notable examples of the obsolete usage which have survived to the present day are military engineering corps, e.g., the U.S. Army Corps of Engineers.
The word «engine» itself is of even older origin, ultimately deriving from the Latin ingenium (c. 1250), meaning «innate quality, especially mental power, hence a clever invention.»[7]
Later, as the design of civilian structures, such as bridges and buildings, matured as a technical discipline, the term civil engineering[5] entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the discipline of military engineering.
Ancient era
The Ancient Romans built aqueducts to bring a steady supply of clean and fresh water to cities and towns in the empire.
The pyramids in ancient Egypt, ziggurats of Mesopotamia, the Acropolis and Parthenon in Greece, the Roman aqueducts, Via Appia and Colosseum, Teotihuacán, and the Brihadeeswarar Temple of Thanjavur, among many others, stand as a testament to the ingenuity and skill of ancient civil and military engineers. Other monuments, no longer standing, such as the Hanging Gardens of Babylon and the Pharos of Alexandria, were important engineering achievements of their time and were considered among the Seven Wonders of the Ancient World.
The six classic simple machines were known in the ancient Near East. The wedge and the inclined plane (ramp) were known since prehistoric times.[8] The wheel, along with the wheel and axle mechanism, was invented in Mesopotamia (modern Iraq) during the 5th millennium BC.[9] The lever mechanism first appeared around 5,000 years ago in the Near East, where it was used in a simple balance scale,[10] and to move large objects in ancient Egyptian technology.[11] The lever was also used in the shadoof water-lifting device, the first crane machine, which appeared in Mesopotamia circa 3000 BC,[10] and then in ancient Egyptian technology circa 2000 BC.[12] The earliest evidence of pulleys date back to Mesopotamia in the early 2nd millennium BC,[13] and ancient Egypt during the Twelfth Dynasty (1991-1802 BC).[14] The screw, the last of the simple machines to be invented,[15] first appeared in Mesopotamia during the Neo-Assyrian period (911-609) BC.[13] The Egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the Great Pyramid of Giza.[16]
The earliest civil engineer known by name is Imhotep.[5] As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid) at Saqqara in Egypt around 2630–2611 BC.[17] The earliest practical water-powered machines, the water wheel and watermill, first appeared in the Persian Empire, in what are now Iraq and Iran, by the early 4th century BC.[18]
Kush developed the Sakia during the 4th century BC, which relied on animal power instead of human energy.[19]Hafirs were developed as a type of reservoir in Kush to store and contain water as well as boost irrigation.[20] Sappers were employed to build causeways during military campaigns.[21] Kushite ancestors built speos during the Bronze Age between 3700 and 3250 BC.[22]Bloomeries and blast furnaces were also created during the 7th centuries BC in Kush.[23][24][25][26]
Ancient Greece developed machines in both civilian and military domains. The Antikythera mechanism, an early known mechanical analog computer,[27][28] and the mechanical inventions of Archimedes, are examples of Greek mechanical engineering. Some of Archimedes’ inventions as well as the Antikythera mechanism required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial Revolution, and are still widely used today in diverse fields such as robotics and automotive engineering.[29]
Ancient Chinese, Greek, Roman and Hunnic armies employed military machines and inventions such as artillery which was developed by the Greeks around the 4th century BC,[30] the trireme, the ballista and the catapult. In the Middle Ages, the trebuchet was developed.
Middle Ages
The earliest practical wind-powered machines, the windmill and wind pump, first appeared in the Muslim world during the Islamic Golden Age, in what are now Iran, Afghanistan, and Pakistan, by the 9th century AD.[31][32][33][34] The earliest practical steam-powered machine was a steam jack driven by a steam turbine, described in 1551 by Taqi al-Din Muhammad ibn Ma’ruf in Ottoman Egypt.[35][36]
The cotton gin was invented in India by the 6th century AD,[37] and the spinning wheel was invented in the Islamic world by the early 11th century,[38] both of which were fundamental to the growth of the cotton industry. The spinning wheel was also a precursor to the spinning jenny, which was a key development during the early Industrial Revolution in the 18th century.[39]
The earliest programmable machines were developed in the Muslim world. A music sequencer, a programmable musical instrument, was the earliest type of programmable machine. The first music sequencer was an automated flute player invented by the Banu Musa brothers, described in their Book of Ingenious Devices, in the 9th century.[40][41] In 1206, Al-Jazari invented programmable automata/robots. He described four automaton musicians, including drummers operated by a programmable drum machine, where they could be made to play different rhythms and different drum patterns.[42] The castle clock, a hydropowered mechanical astronomical clock invented by Al-Jazari, was the first programmable analog computer.[43][44][45]
A water-powered mine hoist used for raising ore, ca. 1556
Before the development of modern engineering, mathematics was used by artisans and craftsmen, such as millwrights, clockmakers, instrument makers and surveyors. Aside from these professions, universities were not believed to have had much practical significance to technology.[46]: 32
A standard reference for the state of mechanical arts during the Renaissance is given in the mining engineering treatise De re metallica (1556), which also contains sections on geology, mining, and chemistry. De re metallica was the standard chemistry reference for the next 180 years.[46]
Modern era
The application of the steam engine allowed coke to be substituted for charcoal in iron making, lowering the cost of iron, which provided engineers with a new material for building bridges. This bridge was made of cast iron, which was soon displaced by less brittle wrought iron as a structural material
The science of classical mechanics, sometimes called Newtonian mechanics, formed the scientific basis of much of modern engineering.[46] With the rise of engineering as a profession in the 18th century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering, the fields then known as the mechanic arts became incorporated into engineering.
Canal building was an important engineering work during the early phases of the Industrial Revolution.[47]
John Smeaton was the first self-proclaimed civil engineer and is often regarded as the «father» of civil engineering. He was an English civil engineer responsible for the design of bridges, canals, harbors, and lighthouses. He was also a capable mechanical engineer and an eminent physicist. Using a model water wheel, Smeaton conducted experiments for seven years, determining ways to increase efficiency.[48]: 127 Smeaton introduced iron axles and gears to water wheels.[46]: 69 Smeaton also made mechanical improvements to the Newcomen steam engine. Smeaton designed the third Eddystone Lighthouse (1755–59) where he pioneered the use of ‘hydraulic lime’ (a form of mortar which will set under water) and developed a technique involving dovetailed blocks of granite in the building of the lighthouse. He is important in the history, rediscovery of, and development of modern cement, because he identified the compositional requirements needed to obtain «hydraulicity» in lime; work which led ultimately to the invention of Portland cement.
Applied science lead to the development of the steam engine. The sequence of events began with the invention of the barometer and the measurement of atmospheric pressure by Evangelista Torricelli in 1643, demonstration of the force of atmospheric pressure by Otto von Guericke using the Magdeburg hemispheres in 1656, laboratory experiments by Denis Papin, who built experimental model steam engines and demonstrated the use of a piston, which he published in 1707. Edward Somerset, 2nd Marquess of Worcester published a book of 100 inventions containing a method for raising waters similar to a coffee percolator. Samuel Morland, a mathematician and inventor who worked on pumps, left notes at the Vauxhall Ordinance Office on a steam pump design that Thomas Savery read. In 1698 Savery built a steam pump called «The Miner’s Friend.» It employed both vacuum and pressure.[49] Iron merchant Thomas Newcomen, who built the first commercial piston steam engine in 1712, was not known to have any scientific training.[48]: 32
The application of steam-powered cast iron blowing cylinders for providing pressurized air for blast furnaces lead to a large increase in iron production in the late 18th century. The higher furnace temperatures made possible with steam-powered blast allowed for the use of more lime in blast furnaces, which enabled the transition from charcoal to coke.[50] These innovations lowered the cost of iron, making horse railways and iron bridges practical. The puddling process, patented by Henry Cort in 1784 produced large scale quantities of wrought iron. Hot blast, patented by James Beaumont Neilson in 1828, greatly lowered the amount of fuel needed to smelt iron. With the development of the high pressure steam engine, the power to weight ratio of steam engines made practical steamboats and locomotives possible.[51] New steel making processes, such as the Bessemer process and the open hearth furnace, ushered in an area of heavy engineering in the late 19th century.
One of the most famous engineers of the mid 19th century was Isambard Kingdom Brunel, who built railroads, dockyards and steamships.
The Industrial Revolution created a demand for machinery with metal parts, which led to the development of several machine tools. Boring cast iron cylinders with precision was not possible until John Wilkinson invented his boring machine, which is considered the first machine tool.[52] Other machine tools included the screw cutting lathe, milling machine, turret lathe and the metal planer. Precision machining techniques were developed in the first half of the 19th century. These included the use of gigs to guide the machining tool over the work and fixtures to hold the work in the proper position. Machine tools and machining techniques capable of producing interchangeable parts lead to large scale factory production by the late 19th century.[53]
The United States census of 1850 listed the occupation of «engineer» for the first time with a count of 2,000.[54] There were fewer than 50 engineering graduates in the U.S. before 1865. In 1870 there were a dozen U.S. mechanical engineering graduates, with that number increasing to 43 per year in 1875. In 1890, there were 6,000 engineers in civil, mining, mechanical and electrical.[51]
There was no chair of applied mechanism and applied mechanics at Cambridge until 1875, and no chair of engineering at Oxford until 1907. Germany established technical universities earlier.[55]
The foundations of electrical engineering in the 1800s included the experiments of Alessandro Volta, Michael Faraday, Georg Ohm and others and the invention of the electric telegraph in 1816 and the electric motor in 1872. The theoretical work of James Maxwell (see: Maxwell’s equations) and Heinrich Hertz in the late 19th century gave rise to the field of electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other engineering specialty.[5]Chemical engineering developed in the late nineteenth century.[5] Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants.[5] The role of the chemical engineer was the design of these chemical plants and processes.[5]
Aeronautical engineering deals with aircraft design process design while aerospace engineering is a more modern term that expands the reach of the discipline by including spacecraft design. Its origins can be traced back to the aviation pioneers around the start of the 20th century although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering.[56]
The first PhD in engineering (technically, applied science and engineering) awarded in the United States went to Josiah Willard Gibbs at Yale University in 1863; it was also the second PhD awarded in science in the U.S.[57]
Only a decade after the successful flights by the Wright brothers, there was extensive development of aeronautical engineering through development of military aircraft that were used in World War I. Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments.
Main branches of engineering
Engineering is a broad discipline that is often broken down into several sub-disciplines. Although an engineer will usually be trained in a specific discipline, he or she may become multi-disciplined through experience. Engineering is often characterized as having four main branches:[58][59][60] chemical engineering, civil engineering, electrical engineering, and mechanical engineering.
Chemical engineering
Chemical engineering is the application of physics, chemistry, biology, and engineering principles in order to carry out chemical processes on a commercial scale, such as the manufacture of commodity chemicals, specialty chemicals, petroleum refining, microfabrication, fermentation, and biomolecule production.
Civil engineering
Civil engineering is the design and construction of public and private works, such as infrastructure (airports, roads, railways, water supply, and treatment etc.), bridges, tunnels, dams, and buildings.[61][62] Civil engineering is traditionally broken into a number of sub-disciplines, including structural engineering, environmental engineering, and surveying. It is traditionally considered to be separate from military engineering.[63]
Electrical engineering
Electrical engineering is the design, study, and manufacture of various electrical and electronic systems, such as broadcast engineering, electrical circuits, generators, motors, electromagnetic/electromechanical devices, electronic devices, electronic circuits, optical fibers, optoelectronic devices, computer systems, telecommunications, instrumentation, control systems, and electronics.
Mechanical engineering
Mechanical engineering is the design and manufacture of physical or mechanical systems, such as power and energy systems, aerospace/aircraft products, weapon systems, transportation products, engines, compressors, powertrains, kinematic chains, vacuum technology, vibration isolation equipment, manufacturing, robotics, turbines, audio equipments, and mechatronics.
Bioengineering
Bioengineering is the engineering of biological systems for a useful purpose. Examples of bioengineering research include bacteria engineered to produce chemicals, new medical imaging technology, portable and rapid disease diagnostic devices, prosthetics, biopharmaceuticals, and tissue-engineered organs.
Interdisciplinary engineering
Interdisciplinary engineering draws from more than one of the principle branches of the practice. Historically, naval engineering and mining engineering were major branches. Other engineering fields are manufacturing engineering, acoustical engineering, corrosion engineering, instrumentation and control, aerospace, automotive, computer, electronic, information engineering, petroleum, environmental, systems, audio, software, architectural, agricultural, biosystems, biomedical,[64] geological, textile, industrial, materials,[65] and nuclear engineering.[66] These and other branches of engineering are represented in the 36 licensed member institutions of the UK Engineering Council.
New specialties sometimes combine with the traditional fields and form new branches – for example, Earth systems engineering and management involves a wide range of subject areas including engineering studies, environmental science, engineering ethics and philosophy of engineering.
Other branches of engineering
Aerospace engineering
The InSight lander with solar panels deployed in a cleanroom
Aerospace engineering covers the design, development, manufacture and operational behaviour of aircraft, satellites and rockets.
Marine engineering
Marine engineering covers the design,development,manufacture and operational behaviour of watercraft and stationary structures like oil platforms and ports.
Computer engineering
Computer engineering (CE) is a branch of engineering that integrates several fields of computer science and electronic engineering required to develop computer hardware and software. Computer engineers usually have training in electronic engineering (or electrical engineering), software design, and hardware-software integration instead of only software engineering or electronic engineering.
Geological engineering
Geological engineering is associated with anything constructed on or within the Earth. This discipline applies geological sciences and engineering principles to direct or support the work of other disciplines such as civil engineering, environmental engineering, and mining engineering. Geological engineers are involved with impact studies for facilities and operations that affect surface and subsurface environments, such as rock excavations (e.g. tunnels), building foundation consolidation, slope and fill stabilization, landslide risk assessment, groundwater monitoring, groundwater remediation, mining excavations, and natural resource exploration.
Practice
One who practices engineering is called an engineer, and those licensed to do so may have more formal designations such as Professional Engineer, Chartered Engineer, Incorporated Engineer, Ingenieur, European Engineer, or Designated Engineering Representative.
Methodology
Design of a turbine requires collaboration of engineers from many fields, as the system involves mechanical, electro-magnetic and chemical processes. The blades, rotor and stator as well as the steam cycle all need to be carefully designed and optimized.
In the engineering design process, engineers apply mathematics and sciences such as physics to find novel solutions to problems or to improve existing solutions. Engineers need proficient knowledge of relevant sciences for their design projects. As a result, many engineers continue to learn new material throughout their careers.
If multiple solutions exist, engineers weigh each design choice based on their merit and choose the solution that best matches the requirements. The task of the engineer is to identify, understand, and interpret the constraints on a design in order to yield a successful result. It is generally insufficient to build a technically successful product, rather, it must also meet further requirements.
Constraints may include available resources, physical, imaginative or technical limitations, flexibility for future modifications and additions, and other factors, such as requirements for cost, safety, marketability, productivity, and serviceability. By understanding the constraints, engineers derive specifications for the limits within which a viable object or system may be produced and operated.
Problem solving
A drawing for a steam locomotive. Engineering is applied to design, with emphasis on function and the utilization of mathematics and science.
Engineers use their knowledge of science, mathematics, logic, economics, and appropriate experience or tacit knowledge to find suitable solutions to a particular problem. Creating an appropriate mathematical model of a problem often allows them to analyze it (sometimes definitively), and to test potential solutions.[67]
More than one solution to a design problem usually exists so the different design choices have to be evaluated on their merits before the one judged most suitable is chosen. Genrich Altshuller, after gathering statistics on a large number of patents, suggested that compromises are at the heart of «low-level» engineering designs, while at a higher level the best design is one which eliminates the core contradiction causing the problem.[68]
Engineers typically attempt to predict how well their designs will perform to their specifications prior to full-scale production. They use, among other things: prototypes, scale models, simulations, destructive tests, nondestructive tests, and stress tests. Testing ensures that products will perform as expected but only in so far as the testing has been representative of use in service. For products, such as aircraft, that are used differently by different users failures and unexpected shortcomings (and necessary design changes) can be expected throughout the operational life of the product.[69]
Engineers take on the responsibility of producing designs that will perform as well as expected and, except those employed in specific areas of the arms industry, will not harm people. Engineers typically include a factor of safety in their designs to reduce the risk of unexpected failure.
The study of failed products is known as forensic engineering. It attempts to identify the cause of failure to allow a redesign of the product and so prevent a re-occurrence. Careful analysis is needed to establish the cause of failure of a product. The consequences of a failure may vary in severity from the minor cost of a machine breakdown to large loss of life in the case of accidents involving aircraft and large stationary structures like buildings and dams.[70]
Computer use
As with all modern scientific and technological endeavors, computers and software play an increasingly important role. As well as the typical business application software there are a number of computer aided applications (computer-aided technologies) specifically for engineering. Computers can be used to generate models of fundamental physical processes, which can be solved using numerical methods.
Graphic representation of a minute fraction of the WWW, demonstrating hyperlinks
One of the most widely used design tools in the profession is computer-aided design (CAD) software. It enables engineers to create 3D models, 2D drawings, and schematics of their designs. CAD together with digital mockup (DMU) and CAE software such as finite element method analysis or analytic element method allows engineers to create models of designs that can be analyzed without having to make expensive and time-consuming physical prototypes.
These allow products and components to be checked for flaws; assess fit and assembly; study ergonomics; and to analyze static and dynamic characteristics of systems such as stresses, temperatures, electromagnetic emissions, electrical currents and voltages, digital logic levels, fluid flows, and kinematics. Access and distribution of all this information is generally organized with the use of product data management software.[71]
There are also many tools to support specific engineering tasks such as computer-aided manufacturing (CAM) software to generate CNC machining instructions; manufacturing process management software for production engineering; EDA for printed circuit board (PCB) and circuit schematics for electronic engineers; MRO applications for maintenance management; and Architecture, engineering and construction (AEC) software for civil engineering.
In recent years the use of computer software to aid the development of goods has collectively come to be known as product lifecycle management (PLM).[72]
The engineering profession engages in a wide range of activities, from large collaboration at the societal level, and also smaller individual projects. Almost all engineering projects are obligated to some sort of financing agency: a company, a set of investors, or a government. The few types of engineering that are minimally constrained by such issues are pro bono engineering and open-design engineering.
By its very nature engineering has interconnections with society, culture and human behavior. Every product or construction used by modern society is influenced by engineering. The results of engineering activity influence changes to the environment, society and economies, and its application brings with it a responsibility and public safety.
Engineering projects can be subject to controversy. Examples from different engineering disciplines include the development of nuclear weapons, the Three Gorges Dam, the design and use of sport utility vehicles and the extraction of oil. In response, some western engineering companies have enacted serious corporate and social responsibility policies.
Engineering is a key driver of innovation and human development. Sub-Saharan Africa, in particular, has a very small engineering capacity which results in many African nations being unable to develop crucial infrastructure without outside aid.[citation needed] The attainment of many of the Millennium Development Goals requires the achievement of sufficient engineering capacity to develop infrastructure and sustainable technological development.[73]
All overseas development and relief NGOs make considerable use of engineers to apply solutions in disaster and development scenarios. A number of charitable organizations aim to use engineering directly for the good of mankind:
- Engineers Without Borders
- Engineers Against Poverty
- Registered Engineers for Disaster Relief
- Engineers for a Sustainable World
- Engineering for Change
- Engineering Ministries International[74]
Engineering companies in many established economies are facing significant challenges with regard to the number of professional engineers being trained, compared with the number retiring. This problem is very prominent in the UK where engineering has a poor image and low status.[75] There are many negative economic and political issues that this can cause, as well as ethical issues.[76] It is widely agreed that the engineering profession faces an «image crisis»,[77] rather than it being fundamentally an unattractive career. Much work is needed to avoid huge problems in the UK and other western economies. Still, the UK holds most engineering companies compared to other European countries, together with the United States.
Code of ethics
Many engineering societies have established codes of practice and codes of ethics to guide members and inform the public at large. The National Society of Professional Engineers code of ethics states:
Engineering is an important and learned profession. As members of this profession, engineers are expected to exhibit the highest standards of honesty and integrity. Engineering has a direct and vital impact on the quality of life for all people. Accordingly, the services provided by engineers require honesty, impartiality, fairness, and equity, and must be dedicated to the protection of the public health, safety, and welfare. Engineers must perform under a standard of professional behavior that requires adherence to the highest principles of ethical conduct.[78]
In Canada, many engineers wear the Iron Ring as a symbol and reminder of the obligations and ethics associated with their profession.[79]
Relationships with other disciplines
Science
Scientists study the world as it is; engineers create the world that has never been.
There exists an overlap between the sciences and engineering practice; in engineering, one applies science. Both areas of endeavor rely on accurate observation of materials and phenomena. Both use mathematics and classification criteria to analyze and communicate observations.[citation needed]
Scientists may also have to complete engineering tasks, such as designing experimental apparatus or building prototypes. Conversely, in the process of developing technology, engineers sometimes find themselves exploring new phenomena, thus becoming, for the moment, scientists or more precisely «engineering scientists».[83]
In the book What Engineers Know and How They Know It,[84] Walter Vincenti asserts that engineering research has a character different from that of scientific research. First, it often deals with areas in which the basic physics or chemistry are well understood, but the problems themselves are too complex to solve in an exact manner.
There is a «real and important» difference between engineering and physics as similar to any science field has to do with technology.[85][86] Physics is an exploratory science that seeks knowledge of principles while engineering uses knowledge for practical applications of principles. The former equates an understanding into a mathematical principle while the latter measures variables involved and creates technology.[87][88][89] For technology, physics is an auxiliary and in a way technology is considered as applied physics.[90] Though physics and engineering are interrelated, it does not mean that a physicist is trained to do an engineer’s job. A physicist would typically require additional and relevant training.[91] Physicists and engineers engage in different lines of work.[92] But PhD physicists who specialize in sectors of engineering physics and applied physics are titled as Technology officer, R&D Engineers and System Engineers.[93]
An example of this is the use of numerical approximations to the Navier–Stokes equations to describe aerodynamic flow over an aircraft, or the use of the Finite element method to calculate the stresses in complex components. Second, engineering research employs many semi-empirical methods that are foreign to pure scientific research, one example being the method of parameter variation.[citation needed]
As stated by Fung et al. in the revision to the classic engineering text Foundations of Solid Mechanics:
Engineering is quite different from science. Scientists try to understand nature. Engineers try to make things that do not exist in nature. Engineers stress innovation and invention. To embody an invention the engineer must put his idea in concrete terms, and design something that people can use. That something can be a complex system, device, a gadget, a material, a method, a computing program, an innovative experiment, a new solution to a problem, or an improvement on what already exists. Since a design has to be realistic and functional, it must have its geometry, dimensions, and characteristics data defined. In the past engineers working on new designs found that they did not have all the required information to make design decisions. Most often, they were limited by insufficient scientific knowledge. Thus they studied mathematics, physics, chemistry, biology and mechanics. Often they had to add to the sciences relevant to their profession. Thus engineering sciences were born.[94]
Although engineering solutions make use of scientific principles, engineers must also take into account safety, efficiency, economy, reliability, and constructability or ease of fabrication as well as the environment, ethical and legal considerations such as patent infringement or liability in the case of failure of the solution.[95]
Medicine and biology
The study of the human body, albeit from different directions and for different purposes, is an important common link between medicine and some engineering disciplines. Medicine aims to sustain, repair, enhance and even replace functions of the human body, if necessary, through the use of technology.
Modern medicine can replace several of the body’s functions through the use of artificial organs and can significantly alter the function of the human body through artificial devices such as, for example, brain implants and pacemakers.[96][97] The fields of bionics and medical bionics are dedicated to the study of synthetic implants pertaining to natural systems.
Conversely, some engineering disciplines view the human body as a biological machine worth studying and are dedicated to emulating many of its functions by replacing biology with technology. This has led to fields such as artificial intelligence, neural networks, fuzzy logic, and robotics. There are also substantial interdisciplinary interactions between engineering and medicine.[98][99]
Both fields provide solutions to real world problems. This often requires moving forward before phenomena are completely understood in a more rigorous scientific sense and therefore experimentation and empirical knowledge is an integral part of both.
Medicine, in part, studies the function of the human body. The human body, as a biological machine, has many functions that can be modeled using engineering methods.[100]
The heart for example functions much like a pump,[101] the skeleton is like a linked structure with levers,[102] the brain produces electrical signals etc.[103] These similarities as well as the increasing importance and application of engineering principles in medicine, led to the development of the field of biomedical engineering that uses concepts developed in both disciplines.
Newly emerging branches of science, such as systems biology, are adapting analytical tools traditionally used for engineering, such as systems modeling and computational analysis, to the description of biological systems.[100]
Art
There are connections between engineering and art, for example, architecture, landscape architecture and industrial design (even to the extent that these disciplines may sometimes be included in a university’s Faculty of Engineering).[105][106][107]
The Art Institute of Chicago, for instance, held an exhibition about the art of NASA’s aerospace design.[108] Robert Maillart’s bridge design is perceived by some to have been deliberately artistic.[109] At the University of South Florida, an engineering professor, through a grant with the National Science Foundation, has developed a course that connects art and engineering.[105][110]
Among famous historical figures, Leonardo da Vinci is a well-known Renaissance artist and engineer, and a prime example of the nexus between art and engineering.[104][111]
Business
Business Engineering deals with the relationship between professional engineering, IT systems, business administration and change management. Engineering management or «Management engineering» is a specialized field of management concerned with engineering practice or the engineering industry sector. The demand for management-focused engineers (or from the opposite perspective, managers with an understanding of engineering), has resulted in the development of specialized engineering management degrees that develop the knowledge and skills needed for these roles. During an engineering management course, students will develop industrial engineering skills, knowledge, and expertise, alongside knowledge of business administration, management techniques, and strategic thinking. Engineers specializing in change management must have in-depth knowledge of the application of industrial and organizational psychology principles and methods. Professional engineers often train as certified management consultants in the very specialized field of management consulting applied to engineering practice or the engineering sector. This work often deals with large scale complex business transformation or Business process management initiatives in aerospace and defence, automotive, oil and gas, machinery, pharmaceutical, food and beverage, electrical & electronics, power distribution & generation, utilities and transportation systems. This combination of technical engineering practice, management consulting practice, industry sector knowledge, and change management expertise enables professional engineers who are also qualified as management consultants to lead major business transformation initiatives. These initiatives are typically sponsored by C-level executives.
Other fields
In political science, the term engineering has been borrowed for the study of the subjects of social engineering and political engineering, which deal with forming political and social structures using engineering methodology coupled with political science principles. Marketing engineering and Financial engineering have similarly borrowed the term.
See also
- Lists
- List of aerospace engineering topics
- List of basic chemical engineering topics
- List of electrical engineering topics
- List of engineering societies
- List of engineering topics
- List of engineers
- List of genetic engineering topics
- List of mechanical engineering topics
- List of nanoengineering topics
- List of software engineering topics
- Glossaries
- Glossary of areas of mathematics
- Glossary of biology
- Glossary of chemistry
- Glossary of engineering
- Glossary of physics
- Related subjects
- Controversies over the term Engineer
- Design
- Earthquake engineering
- Ecotechnology
- Engineer
- Engineering economics
- Engineering education
- Engineering education research
- Engineers Without Borders
- Environmental engineering science
- Environmental technology
- Forensic engineering
- Global Engineering Education
- Green engineering
- Green building
- Industrial design
- Infrastructure
- Mathematics
- Open-source hardware
- Planned obsolescence
- Reverse engineering
- Science
- Structural failure
- Sustainable engineering
- Technology
- Women in engineering
References
- ^ definition of «engineering» from the
https://dictionary.cambridge.org/dictionary/english/ Archived February 16, 2021, at the Wayback Machine
Cambridge Academic Content Dictionary © Cambridge University - ^ «About IAENG». iaeng.org. International Association of Engineers. Archived from the original on January 26, 2021. Retrieved December 17, 2016.
- ^ «Google Chrome — Download the Fast, Secure Browser from Google». Archived from the original on July 31, 2020. Retrieved September 6, 2018.
- ^ «Engineers’ Council for Professional Development. (1947). Canons of ethics for engineers». Archived from the original on September 29, 2007. Retrieved August 10, 2021.
- ^ a b c d e f g [1] Archived July 31, 2020, at the Wayback Machine (Includes Britannica article on Engineering)
- ^ «engineer». Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
- ^ Origin: 1250–1300; ME engin < AF, OF < L ingenium nature, innate quality, esp. mental power, hence a clever invention, equiv. to in- + -genium, equiv. to gen- begetting; Source: Random House Unabridged Dictionary, Random House, Inc. 2006.
- ^ Moorey, Peter Roger Stuart (1999). Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Eisenbrauns. ISBN 978-1-57506-042-2.
- ^ D.T. Potts (2012). A Companion to the Archaeology of the Ancient Near East. p. 285.
- ^ a b Paipetis, S. A.; Ceccarelli, Marco (2010). The Genius of Archimedes – 23 Centuries of Influence on Mathematics, Science and Engineering: Proceedings of an International Conference held at Syracuse, Italy, June 8–10, 2010. Springer Science & Business Media. p. 416. ISBN 978-90-481-9091-1.
- ^ Clarke, Somers; Engelbach, Reginald (1990). Ancient Egyptian Construction and Architecture. Courier Corporation. pp. 86–90. ISBN 978-0-486-26485-1.
- ^ Faiella, Graham (2006). The Technology of Mesopotamia. The Rosen Publishing Group. p. 27. ISBN 978-1-4042-0560-4. Archived from the original on January 3, 2020. Retrieved October 13, 2019.
- ^ a b Moorey, Peter Roger Stuart (1999). Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Eisenbrauns. p. 4. ISBN 978-1-57506-042-2.
- ^ Arnold, Dieter (1991). Building in Egypt: Pharaonic Stone Masonry. Oxford University Press. p. 71. ISBN 978-0-19-511374-7.
- ^ Woods, Michael; Mary B. Woods (2000). Ancient Machines: From Wedges to Waterwheels. USA: Twenty-First Century Books. p. 58. ISBN 0-8225-2994-7. Archived from the original on January 4, 2020. Retrieved October 13, 2019.
- ^ Wood, Michael (2000). Ancient Machines: From Grunts to Graffiti. Minneapolis, MN: Runestone Press. pp. 35, 36. ISBN 0-8225-2996-3.
- ^ Kemp, Barry J. (May 7, 2007). Ancient Egypt: Anatomy of a Civilisation. Routledge. p. 159. ISBN 978-1-134-56388-3. Archived from the original on August 1, 2020. Retrieved August 20, 2019.
- ^ Selin, Helaine (2013). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Westen Cultures. Springer Science & Business Media. p. 282. ISBN 978-94-017-1416-7.
- ^ G. Mokhtar (January 1, 1981). Ancient civilizations of Africa. Unesco. International Scientific Committee for the Drafting of a General History of Africa. p. 309. ISBN 978-0-435-94805-4. Archived from the original on May 2, 2022. Retrieved June 19, 2012 – via Books.google.com.
- ^ Fritz Hintze, Kush XI; pp.222-224.
- ^ «Siege warfare in ancient Egypt». Tour Egypt. Retrieved May 23, 2020.
- ^ Bianchi, Robert Steven (2004). Daily Life of the Nubians. Greenwood Publishing Group. p. 227. ISBN 978-0-313-32501-4.
- ^ Humphris, Jane; Charlton, Michael F.; Keen, Jake; Sauder, Lee; Alshishani, Fareed (2018). «Iron Smelting in Sudan: Experimental Archaeology at The Royal City of Meroe». Journal of Field Archaeology. 43 (5): 399. doi:10.1080/00934690.2018.1479085. ISSN 0093-4690.
- ^ Collins, Robert O.; Burns, James M. (February 8, 2007). A History of Sub-Saharan Africa. Cambridge University Press. ISBN 978-0-521-86746-7. Archived from the original on July 9, 2021. Retrieved September 23, 2020 – via Google Books.
- ^ Edwards, David N. (July 29, 2004). The Nubian Past: An Archaeology of the Sudan. Taylor & Francis. ISBN 978-0-203-48276-6. Archived from the original on July 9, 2021. Retrieved September 23, 2020 – via Google Books.
- ^ Humphris J, Charlton MF, Keen J, Sauder L, Alshishani F (June 2018). «Iron Smelting in Sudan: Experimental Archaeology at The Royal City of Meroe». Journal of Field Archaeology. 43 (5): 399–416. doi:10.1080/00934690.2018.1479085.
- ^ «The Antikythera Mechanism Research Project Archived 2008-04-28 at the Wayback Machine», The Antikythera Mechanism Research Project. Retrieved July 1, 2007 Quote: «The Antikythera Mechanism is now understood to be dedicated to astronomical phenomena and operates as a complex mechanical «computer» which tracks the cycles of the Solar System.»
- ^ Wilford, John (July 31, 2008). «Discovering How Greeks Computed in 100 B.C.» The New York Times. Archived from the original on December 4, 2013. Retrieved February 21, 2017.
- ^ Wright, M T. (2005). «Epicyclic Gearing and the Antikythera Mechanism, part 2». Antiquarian Horology. 29 (1 (September 2005)): 54–60.
- ^ Britannica on Greek civilization in the 5th century — Military technology Archived June 6, 2009, at the Wayback Machine Quote: «The 7th century, by contrast, had witnessed rapid innovations, such as the introduction of the hoplite and the trireme, which still were the basic instruments of war in the 5th.» and «But it was the development of artillery that opened an epoch, and this invention did not predate the 4th century. It was first heard of in the context of Sicilian warfare against Carthage in the time of Dionysius I of Syracuse.»
- ^ Ahmad Y Hassan, Donald Routledge Hill (1986). Islamic Technology: An illustrated history, p. 54. Cambridge University Press. ISBN 0-521-42239-6.
- ^ Lucas, Adam (2006). Wind, Water, Work: Ancient and Medieval Milling Technology. Brill Publishers. p. 65. ISBN 90-04-14649-0.
- ^ Eldridge, Frank (1980). Wind Machines (2nd ed.). New York: Litton Educational Publishing, Inc. p. 15. ISBN 0-442-26134-9.
- ^ Shepherd, William (2011). Electricity Generation Using Wind Power (1 ed.). Singapore: World Scientific Publishing Co. Pte. Ltd. p. 4. ISBN 978-981-4304-13-9.
- ^ Taqi al-Din and the First Steam Turbine, 1551 A.D. Archived February 18, 2008, at the Wayback Machine, web page, accessed on line October 23, 2009; this web page refers to Ahmad Y Hassan (1976), Taqi al-Din and Arabic Mechanical Engineering, pp. 34–5, Institute for the History of Arabic Science, University of Aleppo.
- ^ Ahmad Y. Hassan (1976), Taqi al-Din and Arabic Mechanical Engineering, p. 34-35, Institute for the History of Arabic Science, University of Aleppo
- ^ Lakwete, Angela (2003). Inventing the Cotton Gin: Machine and Myth in Antebellum America. Baltimore: The Johns Hopkins University Press. pp. 1–6. ISBN 978-0-8018-7394-2. Archived from the original on April 20, 2021. Retrieved October 13, 2019.
- ^ Pacey, Arnold (1991) [1990]. Technology in World Civilization: A Thousand-Year History (First MIT Press paperback ed.). Cambridge MA: The MIT Press. pp. 23–24.
- ^ Žmolek, Michael Andrew (2013). Rethinking the Industrial Revolution: Five Centuries of Transition from Agrarian to Industrial Capitalism in England. BRILL. p. 328. ISBN 978-90-04-25179-3. Archived from the original on December 29, 2019. Retrieved October 13, 2019.
The spinning jenny was basically an adaptation of its precursor the spinning wheel
- ^ Koetsier, Teun (2001). «On the prehistory of programmable machines: musical automata, looms, calculators». Mechanism and Machine Theory. Elsevier. 36 (5): 589–603. doi:10.1016/S0094-114X(01)00005-2.
- ^ Kapur, Ajay; Carnegie, Dale; Murphy, Jim; Long, Jason (2017). «Loudspeakers Optional: A history of non-loudspeaker-based electroacoustic music». Organised Sound. Cambridge University Press. 22 (2): 195–205. doi:10.1017/S1355771817000103. ISSN 1355-7718. S2CID 143427257.
- ^ Professor Noel Sharkey, A 13th Century Programmable Robot (Archive), University of Sheffield.
- ^ «Episode 11: Ancient Robots». Ancient Discoveries. History Channel. Archived from the original on March 1, 2014. Retrieved September 6, 2008.
- ^ Howard R. Turner (1997), Science in Medieval Islam: An Illustrated Introduction, p. 184, University of Texas Press, ISBN 0-292-78149-0
- ^ Donald Routledge Hill, «Mechanical Engineering in the Medieval Near East», Scientific American, May 1991, pp. 64–9 (cf. Donald Routledge Hill, Mechanical Engineering Archived December 25, 2007, at the Wayback Machine)
- ^ a b c d Musson, A.E.; Robinson, Eric H. (1969). Science and Technology in the Industrial Revolution. University of Toronto Press. ISBN 9780802016379.
- ^ Taylor, George Rogers (1969). The Transportation Revolution, 1815–1860. ISBN 978-0-87332-101-3.
- ^ a b Rosen, William (2012). The Most Powerful Idea in the World: A Story of Steam, Industry and Invention. University of Chicago Press. ISBN 978-0-226-72634-2.
- ^ Jenkins, Rhys (1936). Links in the History of Engineering and Technology from Tudor Times. Ayer Publishing. p. 66. ISBN 978-0-8369-2167-0.
- ^ Tylecote, R.F. (1992). A History of Metallurgy, Second Edition. London: Maney Publishing, for the Institute of Materials. ISBN 978-0-901462-88-6.
- ^ a b Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia.
- ^ Roe, Joseph Wickham (1916). English and American Tool Builders. New Haven, Connecticut: Yale University Press. LCCN 16011753. Archived from the original on January 26, 2021. Retrieved November 10, 2018.
- ^ Hounshell, David A. (1984), From the American System to Mass Production, 1800–1932: The Development of Manufacturing Technology in the United States, Baltimore, Maryland: Johns Hopkins University Press, ISBN 978-0-8018-2975-8, LCCN 83016269, OCLC 1104810110
- ^ Cowan, Ruth Schwartz (1997). A Social History of American Technology. New York: Oxford University Press. p. 138. ISBN 978-0-19-504605-2.
- ^
Williams, Trevor I. (1982). A Short History of Twentieth Century Technology. US: Oxford University Press. p. 3. ISBN 978-0-19-858159-8. - ^ Van Every, Kermit E. (1986). «Aeronautical engineering». Encyclopedia Americana. Vol. 1. Grolier Incorporated. p. 226.
- ^
Wheeler, Lynde, Phelps (1951). Josiah Willard Gibbs – the History of a Great Mind. Ox Bow Press. ISBN 978-1-881987-11-6. - ^ Journal of the British Nuclear Energy Society: Volume 1 British Nuclear Energy Society – 1962 – Snippet view Archived September 21, 2015, at the Wayback Machine Quote: In most universities it should be possible to cover the main branches of engineering, i.e. civil, mechanical, electrical and chemical engineering in this way. More specialized fields of engineering application, of which nuclear power is …
- ^ The Engineering Profession by Sir James Hamilton, UK Engineering Council Quote: «The Civilingenior degree encompasses the main branches of engineering civil, mechanical, electrical, chemical.» (From the Internet Archive)
- ^ Indu Ramchandani (2000). Student’s Britannica India,7vol.Set. Popular Prakashan. p. 146. ISBN 978-0-85229-761-2. Archived from the original on December 5, 2013. Retrieved March 23, 2013.
BRANCHES There are traditionally four primary engineering disciplines: civil, mechanical, electrical and chemical.
- ^ «History and Heritage of Civil Engineering». ASCE. Archived from the original on February 16, 2007. Retrieved August 8, 2007.
- ^ «What is Civil Engineering». Institution of Civil Engineers. Archived from the original on January 30, 2017. Retrieved May 15, 2017.
- ^ Watson, J. Garth. «Civil Engineering». Encyclopaedia Britannica. Archived from the original on March 31, 2018. Retrieved April 11, 2018.
- ^ Bronzino JD, ed., The Biomedical Engineering Handbook, CRC Press, 2006, ISBN 0-8493-2121-2
- ^ Bensaude-Vincent, Bernadette (March 2001). «The construction of a discipline: Materials science in the United States». Historical Studies in the Physical and Biological Sciences. 31 (2): 223–48. doi:10.1525/hsps.2001.31.2.223.
- ^ «Archived copy» (PDF). Archived from the original (PDF) on September 29, 2011. Retrieved August 2, 2011.
{{cite web}}
: CS1 maint: archived copy as title (link) - ^ Nature, Jim Lucas 2014-08-22T00:44:14Z Human (August 22, 2014). «What is Engineering? | Types of Engineering». livescience.com. Archived from the original on July 2, 2019. Retrieved September 15, 2019.
- ^ «Theories About Engineering – Genrich Altshuller». theoriesaboutengineering.org. Archived from the original on September 11, 2019. Retrieved September 15, 2019.
- ^ «Comparing the Engineering Design Process and the Scientific Method». Science Buddies. Archived from the original on December 16, 2019. Retrieved September 15, 2019.
- ^ «Forensic Engineering | ASCE». www.asce.org. Archived from the original on April 8, 2020. Retrieved September 15, 2019.
- ^ Arbe, Katrina (May 7, 2001). «PDM: Not Just for the Big Boys Anymore». ThomasNet. Archived from the original on August 6, 2010. Retrieved December 30, 2006.
- ^ Arbe, Katrina (May 22, 2003). «The Latest Chapter in CAD Software Evaluation». ThomasNet. Archived from the original on August 6, 2010. Retrieved December 30, 2006.
- ^ Jowitt, Paul W. (2006). «Engineering Civilisation from the Shadows» (PDF). Archived from the original (PDF) on October 6, 2006.
- ^ Home page for EMI Archived April 14, 2012, at the Wayback Machine
- ^ «engineeringuk.com/About_us». Archived from the original on May 30, 2014.
- ^ «Why Does It Matter? — why are engineering skills important? — George Edwards». Archived from the original on June 19, 2014. Retrieved June 19, 2014.
- ^ «The ERA Foundation Report — George Edwards». Archived from the original on October 6, 2014. Retrieved June 19, 2014.
- ^ «Code of Ethics». National Society of Professional Engineers. Archived from the original on February 18, 2020. Retrieved July 12, 2017.
- ^ «Origin of the Iron Ring concept». Archived from the original on April 30, 2011. Retrieved August 13, 2021.
- ^ Rosakis, Ares Chair, Division of Engineering and Applied Science. «Chair’s Message, Caltech». Archived from the original on November 4, 2011. Retrieved October 15, 2011.
- ^ Ryschkewitsch, M.G. NASA Chief Engineer. «Improving the capability to Engineer Complex Systems – Broadening the Conversation on the Art and Science of Systems Engineering» (PDF). p. 8 of 21. Archived from the original (PDF) on August 14, 2013. Retrieved October 15, 2011.
- ^ American Society for Engineering Education (1970). Engineering education. Vol. 60. American Society for Engineering Education. p. 467. Archived from the original on April 16, 2021. Retrieved June 27, 2015.
The great engineer Theodore von Karman once said, «Scientists study the world as it is, engineers create the world that never has been.» Today, more than ever, the engineer must create a world that never has been …
- ^ «What is Engineering Science?». esm.psu.edu. Archived from the original on May 16, 2022. Retrieved September 7, 2022.
- ^ Vincenti, Walter G. (1993). What Engineers Know and How They Know It: Analytical Studies from Aeronautical History. Johns Hopkins University Press. ISBN 978-0-8018-3974-0.
- ^ Walter G Whitman; August Paul Peck. Whitman-Peck Physics. American Book Company, 1946, p. 06 Archived August 1, 2020, at the Wayback Machine. OCLC 3247002
- ^ Ateneo de Manila University Press. Philippine Studies, vol. 11, no. 4, 1963. p. 600
- ^ «Relationship between physics and electrical engineering». Journal of the A.I.E.E. 46 (2): 107–108. 1927. doi:10.1109/JAIEE.1927.6534988. S2CID 51673339.
- ^ Puttaswamaiah. Future Of Economic Science Archived October 26, 2018, at the Wayback Machine. Oxford and IBH Publishing, 2008, p. 208.
- ^ Yoseph Bar-Cohen, Cynthia L. Breazeal. Biologically Inspired Intelligent Robots. SPIE Press, 2003. ISBN 978-0-8194-4872-9. p. 190
- ^ C. Morón, E. Tremps, A. García, J.A. Somolinos (2011) The Physics and its Relation with the Engineering, INTED2011 Proceedings pp. 5929–34 Archived December 20, 2016, at the Wayback Machine. ISBN 978-84-614-7423-3
- ^ R Gazzinelli, R L Moreira, W N Rodrigues. Physics and Industrial Development: Bridging the Gap Archived August 1, 2020, at the Wayback Machine. World Scientific, 1997, p. 110.
- ^ Steve Fuller. Knowledge Management Foundations. Routledge, 2012. ISBN 978-1-136-38982-5. p. 92 Archived August 1, 2020, at the Wayback Machine
- ^ «Industrial Physicists: Primarily specialising in Engineering» (PDF). American Institute for Physics. October 2016. Archived (PDF) from the original on September 6, 2015. Retrieved December 23, 2016.
- ^ Classical and Computational Solid Mechanics, YC Fung and P. Tong. World Scientific. 2001.
- ^ «Code of Ethics | National Society of Professional Engineers». www.nspe.org. Archived from the original on February 18, 2020. Retrieved September 10, 2019.
- ^ «Ethical Assessment of Implantable Brain Chips. Ellen M. McGee and G.Q. Maguire, Jr. from Boston University». Archived from the original on April 7, 2016. Retrieved March 30, 2007.
- ^ Evans-Pughe, C. (May 2003). «IEEE technical paper: Foreign parts (electronic body implants).by Evans-Pughe, C. quote from summary: Feeling threatened by cyborgs?». IEE Review. 49 (5): 30–33. doi:10.1049/ir:20030503. Archived from the original on March 3, 2020. Retrieved March 3, 2020.
- ^ Institute of Medicine and Engineering: Mission statement The mission of the Institute for Medicine and Engineering (IME) is to stimulate fundamental research at the interface between biomedicine and engineering/physical/computational sciences leading to innovative applications in biomedical research and clinical practice. Archived March 17, 2007, at the Wayback Machine
- ^ «IEEE Engineering in Medicine and Biology: Both general and technical articles on current technologies and methods used in biomedical and clinical engineering …» Archived from the original on February 13, 2007. Retrieved March 30, 2007.
- ^ a b Royal Academy of Engineering and Academy of Medical Sciences: Systems Biology: a vision for engineering and medicine in pdf: quote1: Systems Biology is an emerging methodology that has yet to be defined quote2: It applies the concepts of systems engineering to the study of complex biological systems through iteration between computational or mathematical modelling and experimentation. Archived April 10, 2007, at the Wayback Machine
- ^ «Science Museum of Minnesota: Online Lesson 5a; The heart as a pump». Archived from the original on September 27, 2006. Retrieved September 27, 2006.
- ^ Minnesota State University emuseum: Bones act as levers Archived December 20, 2008, at the Wayback Machine
- ^ «UC Berkeley News: UC researchers create model of brain’s electrical storm during a seizure». Archived from the original on February 2, 2007. Retrieved March 30, 2007.
- ^ a b Bjerklie, David. «The Art of Renaissance Engineering.» MIT’s Technology Review Jan./Feb.1998: 54–59. Article explores the concept of the «artist-engineer», an individual who used his artistic talent in engineering. Quote from article: Da Vinci reached the pinnacle of «artist-engineer»-dom, Quote2: «It was Leonardo da Vinci who initiated the most ambitious expansion in the role of artist-engineer, progressing from astute observer to inventor to theoretician.» (Bjerklie 58)
- ^ a b «National Science Foundation:The Art of Engineering: Professor uses the fine arts to broaden students’ engineering perspectives». Archived from the original on September 19, 2018. Retrieved April 6, 2018.
- ^ MIT World:The Art of Engineering: Inventor James Dyson on the Art of Engineering: quote: A member of the British Design Council, James Dyson has been designing products since graduating from the Royal College of Art in 1970. Archived July 5, 2006, at the Wayback Machine
- ^ «University of Texas at Dallas: The Institute for Interactive Arts and Engineering». Archived from the original on April 3, 2007. Retrieved March 30, 2007.
- ^ «Aerospace Design: The Art of Engineering from NASA’s Aeronautical Research». Archived from the original on August 15, 2003. Retrieved March 31, 2007.
- ^ Billington, David P. (February 21, 1989). Princeton U: Robert Maillart’s Bridges: The Art of Engineering: quote: no doubt that Maillart was fully conscious of the aesthetic implications … ISBN 9780691024219. Archived from the original on April 20, 2007. Retrieved March 31, 2007.
- ^ quote:..the tools of artists and the perspective of engineers.. Archived September 27, 2007, at the Wayback Machine
- ^ Drew U: user website: cites Bjerklie paper Archived April 19, 2007, at the Wayback Machine
Further reading
- Blockley, David (2012). Engineering: a very short introduction. New York: Oxford University Press. ISBN 978-0-19-957869-6.
- Dorf, Richard, ed. (2005). The Engineering Handbook (2 ed.). Boca Raton: CRC. ISBN 978-0-8493-1586-2.
- Billington, David P. (June 5, 1996). The Innovators: The Engineering Pioneers Who Made America Modern. Wiley; New Ed edition. ISBN 978-0-471-14026-9.
- Madhavan, Guru (2015). Applied Minds: How Engineers Think. W.W. Norton.
- Petroski, Henry (March 31, 1992). To Engineer is Human: The Role of Failure in Successful Design. Vintage. ISBN 978-0-679-73416-1.
- Lord, Charles R. (August 15, 2000). Guide to Information Sources in Engineering. Libraries Unlimited. ISBN 978-1-56308-699-1.
- Vincenti, Walter G. (February 1, 1993). What Engineers Know and How They Know It: Analytical Studies from Aeronautical History. The Johns Hopkins University Press. ISBN 978-0-8018-4588-8.
External links
- The dictionary definition of engineering at Wiktionary
- Learning materials related to Engineering at Wikiversity
- Quotations related to Engineering at Wikiquote
- Works related to Engineering at Wikisource
From Wikipedia, the free encyclopedia
The Watt steam engine, a major driver in the industrial revolution, underscores the importance of engineering in modern history. This model is on display at the main building of the ETSII in Madrid, Spain
The concept of engineering has existed since ancient times as humans devised fundamental inventions such as the pulley, lever, and wheel. Each of these inventions is consistent with the modern definition of engineering, exploiting basic mechanical principles to develop useful tools and objects.
The term engineering itself has a much more recent etymology, deriving from the word engineer, which itself dates back to 1325,
when an engine’er (literally, one who operates an engine) originally referred to «a constructor of military engines.»[1] In this context, now obsolete, an «engine» referred to a military machine, i. e., a mechanical contraption used in war (for example, a catapult). The word «engine» itself is of even older origin, ultimately deriving from the Latin ingenium (c. 1250), meaning «innate quality, especially mental power, hence a clever invention.»[2]
Later, as the design of civilian structures such as bridges and buildings matured as a technical discipline, the term civil engineering[3] entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the older discipline of military engineering (the original meaning of the word «engineering,» now largely obsolete, with notable exceptions that have survived to the present day such as military engineering corps, e. g., the U. S. Army Corps of Engineers).
Ancient era[edit]
The ziggurats of Mesopotamia, the pyramids and Pharos of Alexandria in ancient Egypt, cities of the Indus Valley civilization, the Acropolis and Parthenon in ancient Greece, the aqueducts, Via Appia and Colosseum in the Roman Empire, Teotihuacán, the cities and pyramids of the Mayan, Inca and Aztec Empires, and the Great Wall of China, among many others, stand as a testament to the ingenuity and skill of the ancient civil and military engineers.
The six classic simple machines were known in the ancient Near East. The wedge and the inclined plane (ramp) were known since prehistoric times.[4] The wheel, along with the wheel and axle mechanism, was invented in Mesopotamia (modern Iraq) during the 5th millennium BC.[5] The lever mechanism first appeared around 5,000 years ago in the Near East, where it was used in a simple balance scale,[6] and to move large objects in ancient Egyptian technology.[7] The lever was also used in the shadoof water-lifting device, the first crane machine, which appeared in Mesopotamia circa 3000 BC,[6] and then in ancient Egyptian technology circa 2000 BC.[8] The earliest evidence of pulleys date back to Mesopotamia in the early 2nd millennium BC,[9] and ancient Egypt during the Twelfth Dynasty (1991-1802 BC).[10] The screw, the last of the simple machines to be invented,[11] first appeared in Mesopotamia during the Neo-Assyrian period (911-609) BC.[9] The Egyptian pyramids were built using three of the six simple machines, the inclined plane, the wedge, and the lever, to create structures like the Great Pyramid of Giza.[12]
The earliest architect known by name is Imhotep.[3] As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (a Step Pyramid) at Saqqara in Egypt around 2630-2611 BC.[13] He may also have been responsible for the first known use of columns in architecture.[14]
Kush developed the Sakia during the 4th century BC, which relied on animal power instead of human energy.[15] Reservoirs in the form of Hafirs were developed in Kush to boost irrigation.[16] Sappers were employed to build causeways during military campaigns.[17] Kushite ancestors built speos between 3700 and 3250 BC.[18] Bloomeries and blast furnaces were also created during the Meroitic period.[19][20][21][22]
The earliest practical water-powered machines, the water wheel and watermill, first appeared in the Persian Empire, in what are now Iraq and Iran, by the early 4th century BC.[23]
Ancient Greece developed machines both in the civilian and military domains. The Antikythera mechanism, an early known model of a mechanical analog computer, and the mechanical inventions of Archimedes, are examples of Greek mechanical engineering. Some of Archimedes’ inventions, as well as the Antikythera mechanism, required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial revolution and are still widely used today in diverse fields such as robotics and automotive engineering.[24]
Chinese and Roman armies employed complex military machines including the Ballista and catapult. In the Middle Ages, the Trebuchet was developed. In 132, polymath Zhang Heng invented the seismoscope for detecting earthquakes, which was not invented anywhere else in the world until 1,100 years later.[25]
Huan Tan’s Xinlun is the earliest text to describe the trip hammer device powered by hydraulics (i.e., a waterwheel), which was used to pound and decorticate grain.[26]
Middle Ages[edit]
The earliest practical wind-powered machines, the windmill and wind pump, first appeared in the Muslim world during the Islamic Golden Age, in what are now Iran, Afghanistan, and Pakistan, by the 9th century AD.[27][28][29][30] The earliest practical steam-powered machine was a steam jack steam turbine, described in 1551 by Taqi al-Din Muhammad ibn Ma’ruf in Ottoman Egypt.[31][32]
The cotton gin was invented in India by the 6th century AD,[33] and the spinning wheel was invented in the Islamic world by the early 11th century,[34] both of which were fundamental to the growth of the cotton industry. The spinning wheel was also a precursor to the spinning jenny, which was a key development during the early Industrial Revolution in the 18th century.[35]
The earliest programmable machines were developed in the Muslim world. A music sequencer, a programmable musical instrument, was the earliest type of programmable machine. The first music sequencer was an automated flute player invented by the Banu Musa brothers, described in their Book of Ingenious Devices, in the 9th century.[36][37] In 1206, Al-Jazari invented programmable automata/robots. He described four automaton musicians, including drummers operated by a programmable drum machine, where they could be made to play different rhythms and different drum patterns.[38] The castle clock, a hydropowered mechanical astronomical clock invented by Al-Jazari, was the first programmable analog computer.[39][40][41]
Al-Jazari built five machines to pump water for the kings of the Turkish Artuqid dynasty and their palaces. Besides over 50 ingenious mechanical devices, Al-Jazari also developed and made innovations to segmental gears, mechanical controls, escapement mechanisms, clocks, robotics, and protocols for designing and manufacturing methods.
European Renaissance[edit]
The first fully-functioning steam engine was built in 1712 by blacksmith Thomas Newcomen.[42] The development of this device gave rise to the industrial revolution in the coming decades, allowing for the beginnings of mass production.
With the rise of engineering as a profession in the 18th century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering, the fields then known as the mechanic arts became incorporated into engineering.
The following images are samples from a deck of cards illustrating engineering instruments in England in 1702. They illustrate a range of engineering specializations, that would eventually become known as civil engineering, mechanical engineering, geodesy and geomatics, and so on.
Each card includes a caption explaining the purpose of the instrument:
-
Four of hearts: Sea quadrant
-
Nine of diamonds: Dyals (dials)
-
Six of diamonds: Circumferentor
-
Eight of diamonds: the Compass
-
King of spades: Spheres
-
Knave of hearts: Surveying wheel and chains
-
Knave of spades: Leavell
-
One of diamonds: Mathematical instruments
-
Queen of diamonds: Projections of the sphere
-
Queen of spades: Astronomical quadrant
-
Three of diamonds: Gauger (gauges)
-
Two of clubs: Theodolet and semi-circle
Modern era[edit]
The inventions of Thomas Savery and the Scottish engineer James Watt gave rise to modern Mechanical Engineering. The development of specialized machines and their maintenance tools during the industrial revolution led to the rapid growth of Mechanical Engineering both in its birthplace Britain and abroad.[3]
The discipline of Electrical Engineering was shaped by the experiments of Alessandro Volta in the 19th century, the experiments of Michael Faraday, Georg Ohm and others and the invention of the electric motor in 1872. Electrical engineering became a profession late in the 19th century. Practitioners had created a global electric telegraph network and the first electrical engineering institutions to support the new discipline were founded in the UK and USA. Although it is impossible to precisely pinpoint a first electrical engineer, Francis Ronalds stands ahead of the field, who created the first working electric telegraph system in 1816 and documented his vision of how the world could be transformed by electricity.[43][44]
The work of James Maxwell and Heinrich Hertz in the late 19th century gave rise to the field of Electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of Electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other Engineering specialty.[3]
Chemical Engineering, like its counterpart Mechanical Engineering, developed in the 19th century during the Industrial Revolution.[3] Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants.[3] The role of the chemical engineer was the design of these chemical plants and processes.[3]
Aeronautical Engineering deals with aircraft design while Aerospace Engineering is a more modern term that expands the reach envelope of the discipline by including spacecraft design.[45] Its origins can be traced back to the aviation pioneers around the turn of the 20th century although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering.[46] Only a decade after the successful flights by the Wright brothers, the 1920s saw extensive development of aeronautical engineering through development of World War I military aircraft. Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments.
The first PhD in engineering (technically, applied science and engineering) awarded in the United States went to Willard Gibbs at Yale University in 1863; it was also the second PhD awarded in science in the U.S.[47]
In 1990, with the rise of computer technology, the first search engine was built by computer engineer Alan Emtage.
See also[edit]
- Timeline of historic inventions
- History of women in engineering
- History of chemical engineering
- History of electrical engineering
- History of structural engineering
References[edit]
- ^ Oxford English Dictionary
- ^ Origin: 1250–1300; ME engin < AF esp. mental power, hence a clever invention, equiv. to in- + -genium, equiv. to gen- begetting; Source: Random House Unabridged Dictionary, © Random House, Inc. 2006.
- ^ a b c d e f g Engineers’ Council for Professional Development definition on Encyclopædia Britannica (Includes Britannica article on Engineering)
- ^ Moorey, Peter Roger Stuart (1999). Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Eisenbrauns. ISBN 9781575060422.
- ^ D.T. Potts (2012). A Companion to the Archaeology of the Ancient Near East. p. 285.
- ^ a b Paipetis, S. A.; Ceccarelli, Marco (2010). The Genius of Archimedes — 23 Centuries of Influence on Mathematics, Science and Engineering: Proceedings of an International Conference held at Syracuse, Italy, June 8-10, 2010. Springer Science & Business Media. p. 416. ISBN 9789048190911.
- ^ Clarke, Somers; Engelbach, Reginald (1990). Ancient Egyptian Construction and Architecture. Courier Corporation. pp. 86–90. ISBN 9780486264851.
- ^ Faiella, Graham (2006). The Technology of Mesopotamia. The Rosen Publishing Group. p. 27. ISBN 9781404205604.
- ^ a b Moorey, Peter Roger Stuart (1999). Ancient Mesopotamian Materials and Industries: The Archaeological Evidence. Eisenbrauns. p. 4. ISBN 9781575060422.
- ^ Arnold, Dieter (1991). Building in Egypt: Pharaonic Stone Masonry. Oxford University Press. p. 71. ISBN 9780195113747.
- ^ Woods, Michael; Mary B. Woods (2000). Ancient Machines: From Wedges to Waterwheels. USA: Twenty-First Century Books. p. 58. ISBN 0-8225-2994-7.
- ^ Wood, Michael (2000). Ancient Machines: From Grunts to Graffiti. Minneapolis, MN: Runestone Press. pp. 35, 36. ISBN 0-8225-2996-3.
- ^ Kemp, Barry J. (May 7, 2007). Ancient Egypt: Anatomy of a Civilisation. Routledge. p. 159. ISBN 9781134563883.
- ^ Baker, Rosalie; Baker, Charles (2001). Ancient Egyptians: People of the Pyramids. Oxford University Press. p. 23. ISBN 978-0195122213.
- ^ G. Mokhtar (1981-01-01). Ancient civilizations of Africa. Unesco. International Scientific Committee for the Drafting of a General History of Africa. p. 309. ISBN 9780435948054. Retrieved 2012-06-19 – via Books.google.com.
- ^ Fritz Hintze, Kush XI; pp.222-224.
- ^ «Siege warfare in ancient Egypt». Tour Egypt. Retrieved 23 May 2020.
- ^ Bianchi, Robert Steven (2004). Daily Life of the Nubians. Greenwood Publishing Group. p. 227. ISBN 978-0-313-32501-4.
- ^ Humphris, Jane; Charlton, Michael F.; Keen, Jake; Sauder, Lee; Alshishani, Fareed (2018). «Iron Smelting in Sudan: Experimental Archaeology at The Royal City of Meroe». Journal of Field Archaeology. 43 (5): 399. doi:10.1080/00934690.2018.1479085. ISSN 0093-4690.
- ^ Collins, Robert O.; Burns, James M. (8 February 2007). A History of Sub-Saharan Africa. Cambridge University Press. ISBN 9780521867467 – via Google Books.
- ^ Edwards, David N. (29 July 2004). The Nubian Past: An Archaeology of the Sudan. Taylor & Francis. ISBN 9780203482766 – via Google Books.
- ^ Humphris J, Charlton MF, Keen J, Sauder L, Alshishani F (June 2018). «Iron Smelting in Sudan: Experimental Archaeology at The Royal City of Meroe». Journal of Field Archaeology. 43 (5): 399–416. doi:10.1080/00934690.2018.1479085.
- ^ Selin, Helaine (2013). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Westen Cultures. Springer Science & Business Media. p. 282. ISBN 9789401714167.
- ^ Wright, M T. (2005). «Epicyclic Gearing and the Antikythera Mechanism, part 2». Antiquarian Horology. 29 (1 (September 2005)): 54–60.
- ^ People’s Daily Online (June 13, 2005). China resurrects world’s earliest seismograph. Retrieved on 2005-06-13.
- ^ Needham (1986), Vol. IV, Pt. II, p. 392.
- ^ Ahmad Y Hassan, Donald Routledge Hill (1986). Islamic Technology: An illustrated history, p. 54. Cambridge University Press. ISBN 0-521-42239-6.
- ^ Lucas, Adam (2006), Wind, Water, Work: Ancient and Medieval Milling Technology, Brill Publishers, p. 65, ISBN 90-04-14649-0
- ^ Eldridge, Frank (1980). Wind Machines (2nd ed.). New York: Litton Educational Publishing, Inc. p. 15. ISBN 0-442-26134-9.
- ^ Shepherd, William (2011). Electricity Generation Using Wind Power (1 ed.). Singapore: World Scientific Publishing Co. Pte. Ltd. p. 4. ISBN 978-981-4304-13-9.
- ^ Taqi al-Din and the First Steam Turbine, 1551 A.D. Archived 2008-02-18 at the Wayback Machine, web page, accessed on line 23 October 2009; this web page refers to Ahmad Y Hassan (1976), Taqi al-Din and Arabic Mechanical Engineering, pp. 34-5, Institute for the History of Arabic Science, University of Aleppo.
- ^ Ahmad Y. Hassan (1976), Taqi al-Din and Arabic Mechanical Engineering, p. 34-35, Institute for the History of Arabic Science, University of Aleppo
- ^ Lakwete, Angela (2003). Inventing the Cotton Gin: Machine and Myth in Antebellum America. Baltimore: The Johns Hopkins University Press. pp. 1–6. ISBN 9780801873942.
- ^ Pacey, Arnold (1991) [1990]. Technology in World Civilization: A Thousand-Year History (First MIT Press paperback ed.). Cambridge MA: The MIT Press. pp. 23–24.
- ^ Žmolek, Michael Andrew (2013). Rethinking the Industrial Revolution: Five Centuries of Transition from Agrarian to Industrial Capitalism in England. BRILL. p. 328. ISBN 9789004251793.
The spinning jenny was basically an adaptation of its precursor the spinning wheel
- ^ Koetsier, Teun (2001), «On the prehistory of programmable machines: musical automata, looms, calculators», Mechanism and Machine Theory, Elsevier, 36 (5): 589–603, doi:10.1016/S0094-114X(01)00005-2.
- ^ Kapur, Ajay; Carnegie, Dale; Murphy, Jim; Long, Jason (2017). «Loudspeakers Optional: A history of non-loudspeaker-based electroacoustic music». Organised Sound. Cambridge University Press. 22 (2): 195–205. doi:10.1017/S1355771817000103. ISSN 1355-7718.
- ^ Professor Noel Sharkey, A 13th Century Programmable Robot (Archive), University of Sheffield.
- ^ «Episode 11: Ancient Robots», Ancient Discoveries, History Channel, retrieved 2008-09-06
{{citation}}
: CS1 maint: url-status (link) - ^ Howard R. Turner (1997), Science in Medieval Islam: An Illustrated Introduction, p. 184, University of Texas Press, ISBN 0-292-78149-0
- ^ Donald Routledge Hill, «Mechanical Engineering in the Medieval Near East», Scientific American, May 1991, pp. 64–9 (cf. Donald Routledge Hill, Mechanical Engineering)
- ^ study.com https://study.com/learn/lesson/steam-engine-history-impact.html#:~:text=In%201712,%20after%20ten%20years,notable%20for%20using%20a%20piston. Retrieved 2023-03-22.
- ^ Ronalds, B.F. (2016). Sir Francis Ronalds: Father of the Electric Telegraph. London: Imperial College Press. ISBN 978-1-78326-917-4.
- ^ Ronalds, B.F. (July 2016). «Francis Ronalds (1788-1873): The First Electrical Engineer?». Proceedings of the IEEE. doi:10.1109/JPROC.2016.2571358. S2CID 20662894.
- ^ Imperial College London England: Studying engineering at Imperial: Engineering courses are offered in five main branches of engineering: aeronautical, chemical, civil, electrical and mechanical. There are also courses in computing science, software engineering, information systems engineering, materials science and engineering, mining engineering and petroleum engineering.
- ^ Van Every, Kermit E. (1986). «Aeronautical engineering». Encyclopedia Americana. Vol. 1. Grolier Incorporated. p. 226.
- ^ Wheeler, Lynde, Phelps (1951). Josiah Willard Gibbs — the History of a Great Mind. Ox Bow Press. ISBN 1-881987-11-6.
Further reading[edit]
- Bix, Amy Sue. Girls Coming to Tech!: A History of American Engineering Education for Women (MIT Press, 2014)
- Hill, Donald. A history of engineering in classical and medieval times (Routledge, 2013), on Greeks, Romans, Byzantines, and Arabs
- Lawton, Brian, ed. The Early History of Mechanical Engineering — Vol. 1 (2004) online; vol 2 (2004) online
- Rae, John and Rudi Volti. The Engineer in History (2001) online
- Rhodes, Edward, ed. Engineering America: The Rise of the American Professional Class, 1838–1920 (Washington: Westphalia Press, 2014) 142 pp.
- Smith, Edgar C. A short history of naval and marine engineering (Cambridge University Press, 2013)
- Usher, Abbott Payson. A History of Mechanical Invention (2nd ed. 1954), 450 pp. online review
External links[edit]
- History of engineering at University of Minnesota
- Entertainment & Pop Culture
- Geography & Travel
- Health & Medicine
- Lifestyles & Social Issues
- Literature
- Philosophy & Religion
- Politics, Law & Government
- Science
- Sports & Recreation
- Technology
- Visual Arts
- World History
- On This Day in History
- Quizzes
- Podcasts
- Dictionary
- Biographies
- Summaries
- Top Questions
- Infographics
- Demystified
- Lists
- #WTFact
- Companions
- Image Galleries
- Spotlight
- The Forum
- One Good Fact
- Entertainment & Pop Culture
- Geography & Travel
- Health & Medicine
- Lifestyles & Social Issues
- Literature
- Philosophy & Religion
- Politics, Law & Government
- Science
- Sports & Recreation
- Technology
- Visual Arts
- World History
- Britannica Explains
In these videos, Britannica explains a variety of topics and answers frequently asked questions. - Britannica Classics
Check out these retro videos from Encyclopedia Britannica’s archives. - Demystified Videos
In Demystified, Britannica has all the answers to your burning questions. - #WTFact Videos
In #WTFact Britannica shares some of the most bizarre facts we can find. - This Time in History
In these videos, find out what happened this month (or any month!) in history.
- Student Portal
Britannica is the ultimate student resource for key school subjects like history, government, literature, and more. - COVID-19 Portal
While this global health crisis continues to evolve, it can be useful to look to past pandemics to better understand how to respond today. - 100 Women
Britannica celebrates the centennial of the Nineteenth Amendment, highlighting suffragists and history-making politicians. - Saving Earth
Britannica Presents Earth’s To-Do List for the 21st Century. Learn about the major environmental problems facing our planet and what can be done about them! - SpaceNext50
Britannica presents SpaceNext50, From the race to the Moon to space stewardship, we explore a wide range of subjects that feed our curiosity about space!
Definition:
“Engineering is the discipline and profession of applying technical and scientific knowledge and utilizing natural laws and physical resources in order to design and implement materials, structures, machines, devices, systems, and processes that safely realize a desired objective and meet specified criteria.”
The American Engineers’ Council for Professional Development (ECPD, the predecessor of ABET) has defined engineering as follows:
“The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property.”
One who practices engineering is called an engineer, and those licensed to do so may have more formal designations such as European Engineer, Professional Engineer, Chartered Engineer, or Incorporated Engineer. The broad discipline of engineering encompasses a range of more specialized sub disciplines, each with a more specific emphasis on certain fields of application and particular areas of technology.
History
The concept of engineering has existed since ancient times as humans devised fundamental inventions such as the pulley, lever, and wheel. Each of these inventions is consistent with the modern definition of engineering, exploiting basic mechanical principles to develop useful tools and objects.
The term engineering itself has a much more recent etymology, deriving from the word engineer, which itself dates back to
1325,
when an engine’er (literally, one who operates an engine) originally referred to a constructor of military engines.
The word “engine” itself is of even older origin, ultimately deriving from the Latin ingenium (
c. 1250
), meaning “innate quality, especially mental power, hence a clever invention.”
Later, as the design of civilian structures such as bridges and buildings matured as a technical discipline, the term civil engineering entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the older discipline of military engineering.
Ancient Era
The Acropolis and the Parthenon in Greece, the Roman aqueducts, Via Appia and the Colosseum, the Hanging Gardens of Babylon, the Pharos of Alexandria, the pyramids in Egypt, Teotihuacán and the cities and pyramids of the Mayan, Inca and Aztec Empires, the Great Wall of China, among many others, stand as a testament to the ingenuity and skill of the ancient civil and military engineers.
The earliest civil engineer known by name is Imhotep. As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid) at Saqqara in Egypt around 2630
—
2611 BC. He may also have been responsible for the first known use of columns in architecture.
Ancient Greece developed machines in both in the civilian and military domains. The Antikythera mechanism, the earliest known model of a mechanical computer in history, and the mechanical inventions of Archimedes are examples of early mechanical engineering. Some of Archimedes’ inventions as well as the Antikythera mechanism required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial revolution and are still widely used today in diverse fields such as robotics and automotive engineering.
Chinese and Roman armies employed complex military machines including the Ballista and catapult. In the Middle Ages, the Trebuchet was developed.
Middle Era
An Iraqi by the name of al-Jazari helped influence the design of today’s modern machines when sometime in between
1174
and
1200
he built five machines to pump water for the kings of the Turkish Artuqid dynasty and their palaces. The double-acting reciprocating piston pump was instrumental in the later development of engineering in general because it was the first machine to incorporate both the connecting rod and the crankshaft, thus, converting rotational motion to reciprocating motion.
Renaissance Era
The first electrical engineer is considered to be William Gilbert, with his
1600
publication of De Magnete, who was the originator of the term «electricity«.
The first steam engine was built in
1698
by mechanical engineer Thomas Savery. The development of this device gave rise to the industrial revolution in the coming decades, allowing for the beginnings of mass production.
With the rise of engineering as a profession in the eighteenth century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering the fields then known as the mechanic arts became incorporated into engineering.
Modern Era
Electrical Engineering can trace its origins in the experiments of Alessandro Volta in the 1800s, the experiments of Michael Faraday, Georg Ohm and others and the invention of the electric motor in
1872.
The work of James Maxwell and Heinrich Hertz in the late 19th century gave rise to the field of Electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of Electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other Engineering specialty.
The inventions of Thomas Savery and the Scottish engineer James Watt gave rise to modern Mechanical Engineering. The development of specialized machines and their maintenance tools during the industrial revolution led to the rapid growth of Mechanical Engineering both in its birthplace Britain and abroad.
Chemical Engineering, like its counterpart Mechanical Engineering, developed in the nineteenth century during the Industrial Revolution. Industrial scale manufacturing demanded new materials and new processes and by
1880
the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants. The role of the chemical engineer was the design of these chemical plants and processes.
Aeronautical Engineering deals with aircraft design while Aerospace Engineering is a more modern term that expands the reach envelope of the discipline by including spacecraft design. Its origins can be traced back to the aviation pioneers around the turn of the century from the 19th century to the 20th although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering. Only a decade after the successful flights by the Wright brothers, the
1920s
saw extensive development of aeronautical engineering through development of World War I military aircraft. Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments.
Methodology
Engineers apply the sciences of physics and mathematics to find suitable solutions to problems or to make improvements to the status quo. More than ever, Engineers are now required to have knowledge of relevant sciences for their design projects, as a result, they keep on learning new material throughout their career. If multiple options exist, engineers weigh different design choices on their merits and choose the solution that best matches the requirements. The crucial and unique task of the engineer is to identify, understand, and interpret the constraints on a design in order to produce a successful result. It is usually not enough to build a technically successful product; it must also meet further requirements. Constraints may include available resources, physical, imaginative or technical limitations, flexibility for future modifications and additions, and other factors, such as requirements for cost, safety, marketability, productibility, and serviceability. By understanding the constraints, engineers derive specifications for the limits within which a viable object or system may be produced and operated.
Problem solving
Engineers use their knowledge of science, mathematics, and appropriate experience to find suitable solutions to a problem. Engineering is considered a branch of applied mathematics and science. Creating an appropriate mathematical model of a problem allows them to analyze it (sometimes definitively), and to test potential solutions. Usually multiple reasonable solutions exist, so engineers must evaluate the different design choices on their merits and choose the solution that best meets their requirements.
Computer use
A computer simulation of high velocity air flow around the Space Shuttle during re-entry |
As with all modern scientific and technological endeavors, computers and software play an increasingly important role. As well as the typical business application software there are a number of computer aided applications specifically for engineering. Computers can be used to generate models of fundamental physical processes, which can be solved using numerical methods.
There are also many tools to support specific engineering tasks such as Computer-aided manufacture (CAM) software to generate CNC machining instructions; Manufacturing Process Management software for production engineering; EDA for printed circuit board (PCB) and circuit schematics for electronic engineers; MRO applications for maintenance management; and AEC software for civil engineering.
There exists an overlap between the sciences and engineering practice; in engineering, one applies science. Both areas of endeavor rely on accurate observation of materials and phenomena. Both use mathematics and classification criteria to analyze and communicate observations. Scientists are expected to interpret their observations and to make expert recommendations for practical action based on those interpretations.
About the Author
Hina Rehman She is a student of B.Sc in Transportation Engineering at «University of Engineering and Technology, Lahore, Pakistan»
Content
- Old age
- Machines
- Middle Ages
- High Middle Ages
- Middle Ages
- Renaissance
- Industrial Revolution
- Modernity
- Contemporary
- Information for everyone
- Genetics
- Types of engineering throughout history
- References
The engineering history It dates back to very ancient times, since the invention of tools such as the lever or the wheel, which facilitated the performance of other jobs through basic principles of mechanics.
The word engineer has its roots in Latin. Ingenium it is literally translated as the innate qualities of a person, but militarily it was used to call the war machines that were built by humans.
Those who could operate such creations were known as ingeniairus and engineer. From there the word must have been transferred to French engigneur and then to english engineer (machinist).
The first manifestations of engineering occurred in the Ancient Age with the great constructions such as the pyramids, both Egyptian and pre-Columbian. Likewise, there are the great works of the Greeks and Romans, who brought engineering to other aspects of life such as the military.
In medieval times, advances in civil engineering gave way to Gothic architecture in Europe, while in Asia important advances were made in the areas of metallurgy and hydrography.
During the Modern Age, the steam engine inaugurated the Industrial Revolution. It was then that engineering began to be a formal science. It must be taken into account that current engineering is a set of knowledge and techniques applied to problem solving.
From then on, areas of specialization such as military, mechanical, and civil engineering began to separate and new names were added to that list.
Electrical engineering emerged with Volta in the 19th century. Later, the electronics were detached from it. Also the nineteenth century, gave way to chemical engineering, which went hand in hand with mechanics trying to meet the needs of the latter.
Later aeronautics was added, which was necessary during the First and Second World War. One of the most recent became popular in the 1980s and is computer engineering.
Old age
The first recorded engineer was named Imhotep, and he was a builder of the step pyramid that is located in Saqqara, Egypt.It was built for the Pharaoh Zoser of the Third Dynasty.
Imhotep is believed to have been the first to use columns for architecture. His works date from approximately 2550 BC.
There is a theory that the great projects of antiquity could have taken the witness of the work of this Egyptian using empirical methods, at the same time that they gave use to other sciences such as geometry, physics and arithmetic.
There are few examples of ancient architecture that can be named. Among the most outstanding works are: the Lighthouse of Alexandria, the Temple of Solomon, the Roman Colosseum and, of course, the aqueducts.
Also the Greek Acropolis and Parthenon, the Mesopotamian ziggurats and the structures of the Native Americans such as the Mayans, Incas or Aztecs.
In addition, Asia is home to one of the greatest works of humanity, such as the Great Wall of China.
As for the architecture of the Romans, their principles were established in the Architecture book written by Marcus Vitruvius Pollio, where he relates his experience and what he knew about the theory of Greek architectural works, which were the basis of this discipline for the Romans.
Machines
However, the Greeks were among the first to use machines for different purposes. First, there was the military use in creating weapons. There is also a record of the first mechanical computer known as the Antikythera Mechanism, which dates back to the 2nd or 3rd century BC.
Middle Ages
High Middle Ages
Although by many it is considered that engineering did not have great advances in the High Middle Ages, the opposite can be said, since at that time thanks to the development of Christianity throughout Western civilization, the work done by slaves was not good viewed.
Then, the Catholic religion was what led to the development of techniques that allowed large jobs to be carried out with fewer personnel. However, there was a period when the quality and quantity of buildings declined.
At this time in Europe the style that dominated architecture was pre-Romanesque. Through this stream, the builders copied the design of the structures created by the Romans.
Middle Ages
In the late Middle Ages the great Gothic cathedrals were built. In addition, due to the constant clashes between Islamists and Catholics, the construction of castles and fortresses became necessary.
As for the Asians, they made great strides during that time, including their specialization in metallurgy. In addition, they were responsible for the creation of greaseproof paper and gunpowder, which changed the course of history by being brought to Europe.
In Turkey different advances were made in terms of mechanical engineering, since more than 50 mechanical devices were developed for different purposes, including pumping water to supply the city of Damascus, especially in mosques and hospitals.
On top of that, mechanical controls, clocks, and some very basic automata were devised.
In the 13th century the engineer Villard de Honnecourt created the Sketch Book. In this, his knowledge, applied to construction, of areas such as mathematics, geometry, natural sciences, physics and drawing talents is expressed.
Despite this, during that time knowledge was transferred from master to apprentice and was not standardized.
Renaissance
During 1445 Johannes Gutenberg manufactured a machine that changed the history of mankind: the printing press. Until then, books were copied by hand in an almost artisanal way and few had access to them.
But the arrival of Gutenberg’s printing press revolutionized the way of transmitting knowledge, by allowing that, thanks to a mechanical process, texts could be reproduced quickly and in large volume at a much lower cost.
This process consisted of applying ink on metal parts and transferring it to paper by pressure.
Thanks to the printing press, which allowed the dissemination of information to a greater number of people, engineering could become part of a separate task.
That means that knowledge was no longer transmitted from the apprentice teacher or from father to son, but there could be people dedicated to the study of certain aspects of science. That was what allowed the separation between engineering and architecture or mechanics and military science.
During the Renaissance the construction of large domes became popular, especially in religious buildings. This structure has existed since ancient times, but its design evolved and, during the Renaissance, a solution emerged to the problem of complicated scaffolding.
The way that was found during the Renaissance was to build two domes that were supported one by the other, one on the outside and the other internal, with a strong structural union between the two. The greatest exponent of this structure was the Basilica of Saint Peter.
Industrial Revolution
A couple of centuries later came the invention that generated a revolution in all aspects of human life as it was known until then: the steam engine.
From there, a theory that broke schemes began to explode, which indicated that heat could be used as energy.
The economy of many countries took off thanks to the application of this device, which transformed the thermal energy of water into mechanical energy thanks to a motor.
This is how the Industrial Revolution began, since thanks to this machine and its successors, the mass production of products and other devices that could take advantage of that energy was allowed.
Among the inventions that broke the established paradigms, was the automated manufacturing of textiles, which radically changed the behavior of the market and the labor system that existed until then.
In addition, another of the great mechanical developments of humanity emerged from that same period: the locomotive. This is how animal and human labor, almost artisanal, was dispensed with to give rise to mass production and a new type of society.
Modernity
After the Industrial Revolution, other processes also influenced the history of engineering. For example, the experimentation that intensified from 1816 with the communication system known as the telegraph, which eventually achieved its more stable prototypes after the contributions of Samuel Morse in 1838.
Thus the doors were opened to the electromagnetic studies that took place during the 19th century. This was one of the most necessary impulses to separate the study of electrical engineering from future telecommunications engineering, which would come later, given the multiple advances in the area.
Also, as a need to supply what the growing manufacturing and mechanical industry demanded, everything related to chemistry entered a much more careful exploration process.
Then, it was intended to get other sources of energy for the operation of the engines, and to supply the materials and products industry.
Contemporary
During the First and Second World War, the use of more sophisticated weapons was the only way to be able to outperform the opponent and at the same time demonstrate the power, not only military, but technical and scientific, of the victorious nations.
This gave impetus to various fields of engineering, including aeronautics, with the creation of aircraft for military use, and also in the naval sector, thanks to the most advanced vessels or submarines.
On the other hand, these conflicts contributed to the development of mechanical engineering, especially in war tanks and armaments, which over time became more automated.
It was thus that military engineering finally got rid of mere machinery and sought, rather, to find a path specialized in certain tasks related to the administration of resources, although without totally neglecting its mechanical and civil roots.
Nuclear engineering was another of the branches that was largely supported by the war, although it was trying to find utility as an energy source in the radiation that these elements gave off when carrying out certain processes, thinking that it would be a clean energy source.
Information for everyone
Other of the great advances that the last decades have brought to engineering studies are in the area of technology; computing, electronics and software development.
These are elements that progressively evolve allowing a greater democratization of access to information every day. That process began to increase with the massification of computers in the mid-1980s, when it became popular in homes.
Genetics
Finally, one of the types of engineering that has raised some problems in the field of professional ethics is that of genetics.
It is considered that experimentation with living beings, even if it is only animals, could go against nature, in addition to being an unknown consequence of these processes.
But in 2019 the first genetically modified twins have already been born in China, something that is unprecedented.
Types of engineering throughout history
From its birth to the present, engineering has diversified into many branches to specialize the study of some areas and allow a deeper and more delicate development of each of the fields of work.
— Aerospace Engineering
— Airport engineering
— Agricultural engineering
— Environmental engineering
— Bioengineering
— Biomedical engineering
— Civil engineering
— Building engineering
— Electrical engineering
— Electromechanical engineering
— Electronic Engineering
— Energy engineering
— Railway engineering
— Forest engineering
— Genetic engineering
— Geoengineering
— Hydraulic engineering
— Industrial engineering
— Automotive engineering
— Audio engineering
— Control engineering
— Computer engineering
— Mechanical Engineering
— Military engineering
— Mining engineering
— Naval engineering
— Petroleum engineering
— Polymer engineering
— Fire protection engineering
— Chemical engineering
— Sanitary engineering
— Systems engineering
— Software engineering
— Sound engineering
— Telecommunications engineering
— Power engineering
— Cost engineering
— Computer engineering
— Molecular engineering
— Urban engineering
References
- Smith, R. (2019).Engineering | science. [online] Encyclopedia Britannica. Available at: britannica.com [Accessed 3 Feb. 2019].
- En.wikipedia.org. (2019).History of engineering. [online] Available at: en.wikipedia.org [Accessed 3 Feb. 2019].
- Yepez, V. (2017).Notes on engineering in the Renaissance — Víctor Yepes’ blog. [online] Polytechnic University of Valencia. Available at: victoryepes.blogs.upv.es [Accessed 3 Feb. 2019].
- CK-12 Foundation (2012).A Brief History of Engineering. [on-line]. Available at: ck12.org [Accessed 3 Feb. 2019].
- Toro and Gisbert, M. and Garcia-Pelayo and Gross, R. (1970).Little Larousse illustrated. Paris: Ed. Larousse, p.578.