Графики функций excel решить

Как строить график функции в Экселе

Вариант 1: График функции X^2

В качестве первого примера для Excel рассмотрим самую популярную функцию F(x)=X^2. График от этой функции в большинстве случаев должен содержать точки, что мы и реализуем при его составлении в будущем, а пока разберем основные составляющие.

  1. Создайте строку X, где укажите необходимый диапазон чисел для графика функции.
  2. Создание первой строки для построения графика функции X^2 в Excel

  3. Ниже сделайте то же самое с Y, но можно обойтись и без ручного вычисления всех значений, к тому же это будет удобно, если они изначально не заданы и их нужно рассчитать.
  4. Создание второй строки для построения графика функции X^2 в Excel

  5. Нажмите по первой ячейке и впишите =B1^2, что значит автоматическое возведение указанной ячейки в квадрат.
  6. Создание формулы для автоматического расчета значений при работе с графиком функции X^2 в Excel

  7. Растяните функцию, зажав правый нижний угол ячейки, и приведя таблицу в тот вид, который продемонстрирован на следующем скриншоте.
  8. Растягивание формулы перед создание графика функции X^2 в Excel

  9. Диапазон данных для построения графика функции указан, а это означает, что можно выделять его и переходить на вкладку «Вставка».
  10. Выделение всего диапазона данных для создания графика функции X^2 в Excel

  11. На ней сразу же щелкайте по кнопке «Рекомендуемые диаграммы».
  12. Переход в меню выбора диаграммы для создания графика функции X^2 в Excel

  13. В новом окне перейдите на вкладку «Все диаграммы» и в списке найдите «Точечная».
  14. Выбор точечного графика для создания графика функции X^2 в Excel

  15. Подойдет вариант «Точечная с гладкими кривыми и маркерами».
  16. Добавление выбранного графика на лист для создания графика функции X^2 в Excel

  17. После ее вставки в таблицу обратите внимание, что мы добавили равнозначный диапазон отрицательных и плюсовых значений, чтобы получить примерно стандартное представление параболы.
  18. Проверка созданного графика функции при работе с X^2 в Excel

  19. Сейчас вы можете поменять название диаграммы и убедиться в том, что маркеры значений выставлены так, как это нужно для дальнейшего взаимодействия с этим графиком.
  20. Редактирование графика функции X^2 в Excel после его добавления на лист

  21. Из дополнительных возможностей отметим копирование и перенос графика в любой текстовый редактор. Для этого щелкните в нем по пустому месту ПКМ и из контекстного меню выберите «Копировать».
  22. Кнопка для копирования созданного графика функции X^2 в Excel

  23. Откройте лист в используемом текстовом редакторе и через это же контекстное меню вставьте график или используйте горячую клавишу Ctrl + V.
  24. Успешная вставка построенного графика функции X^2 в Excel в текстовый редактор

Если график должен быть точечным, но функция не соответствует указанной, составляйте его точно в таком же порядке, формируя требуемые вычисления в таблице, чтобы оптимизировать их и упростить весь процесс работы с данными.

Вариант 2: График функции y=sin(x)

Функций очень много и разобрать их в рамках этой статьи просто невозможно, поэтому в качестве альтернативы предыдущему варианту предлагаем остановиться на еще одном популярном, но сложном — y=sin(x). То есть изначально есть диапазон значений X, затем нужно посчитать синус, чему и будет равняться Y. В этом тоже поможет созданная таблица, из которой потом и построим график функции.

Lumpics.ru

  1. Для удобства укажем всю необходимую информацию на листе в Excel. Это будет сама функция sin(x), интервал значений от -1 до 5 и их шаг весом в 0.25.
  2. Добавление объяснений перед построением графика функции y=sin(x) в Excel

  3. Создайте сразу два столбца — X и Y, куда будете записывать данные.
  4. Добавление двух столбцов при построении графика функции y=sin(x) в Excel

  5. Запишите самостоятельно первые два или три значения с указанным шагом.
  6. Добавление первых значений для X при построении графика функции y=sin(x) в Excel

  7. Далее растяните столбец с X так же, как обычно растягиваете функции, чтобы автоматически не заполнять каждый шаг.
  8. Растягивание значений при построении графика функции y=sin(x) в Excel

  9. Перейдите к столбцу Y и объявите функцию =SIN(, а в качестве числа укажите первое значение X.
  10. Добавление первого числа для формулы при расчете Y для построения графика функции y=sin(x) в Excel

  11. Сама функция автоматически высчитает синус заданного числа.
  12. Добавление первого числа для формулы при расчете Y для построения графика функции y=sin(x) в Excel

  13. Растяните столбец точно так же, как это было показано ранее.
  14. Растягивание формулы перед построением графика функции y=sin(x) в Excel

  15. Если чисел после запятой слишком много, уменьшите разрядность, несколько раз нажав по соответствующей кнопке.
  16. Удаление лишней разрядности перед построением графика функции y=sin(x) в Excel

  17. Выделите столбец с Y и перейдите на вкладку «Вставка».
  18. Выбор стандартного графика для построения графика функции y=sin(x) в Excel

  19. Создайте стандартный график, развернув выпадающее меню.
  20. Выбор диапазона данных для построения графика функции y=sin(x) в Excel

  21. График функции от y=sin(x) успешно построен и отображается правильно. Редактируйте его название и отображаемые шаги для простоты понимания.
  22. Успешное построение графика функции y=sin(x) в Excel и его добавление на лист

Еще статьи по данной теме:

Помогла ли Вам статья?

Графический способ решения уравнений в среде Microsoft Excel 2007

Тип урока: Обобщение, закрепление пройденного материала и объяснение нового.

Цели и задачи урока:

  • повторение изученных графиков функций;
  • повторение и закрепление графического способа решения уравнений;
  • закрепление навыков записи и копирования формул, построения графиков функций в электронных таблицах Excel 2007;
  • формирование и первичное закрепление знаний о решении уравнений с использованием возможностей электронных таблиц Excel 2007;
  • формирование мышления, направленного на выбор оптимального решения;
  • формирование информационной культуры школьников.

Оборудование: персональные компьютеры, мультимедиапроектор, проекционный экран.

Материалы к уроку: презентация Power Point на компьютере учителя (Приложение 1).

Слайд 1 из Приложения1 ( далее ссылки на слайды идут без указания Приложения1).

Объявление темы урока.

1. Устная работа (актуализация знаний).

Слайд 2 — Соотнесите перечисленные ниже функции с графиками на чертеже (Рис. 1):

у = 6 — х; у = 2х + 3; у = (х + 3) 2 ; у = -(х — 4) 2 ; .

Слайд 3 Графический способ решения уравнений вида f(x)=0.

Корнями уравнения f(x)=0 являются значения х1, х2, точек пересечения графика функции y=f(x) с осью абсцисс (Рис. 2).

Найдите корни уравнения х 2 -2х-3=0, используя графический способ решения уравнений (Рис.3).

Слайд 5 Графический способ решения уравнений вида f (x)=g (x).

Корнями уравнения f(x)=g(x) являются значения х1, х2, точек пересечения графиков функций y=f(x) и у=g(x). (Рис. 4):

Слайд 6 Найдите корни уравнения , используя графический способ решения уравнений (Рис. 5).

2. Объяснение нового материала. Практическая работа.

Решение уравнений графическим способом требует больших временных затрат на построение графиков функций и в большинстве случаев дает грубо приближенные решения. При использовании электронных таблиц, в данном случае – Microsoft Excel 2007, существенно экономится время на построение графиков функций, и появляются дополнительные возможности нахождения корней уравнения с заданной точностью (метод Подбор параметра).

I. Графический способ решения уравнений вида f(x)=0 в Excel.

Дальнейшая работа выполняется учителем в Excel одновременно с учениками с подробными (при необходимости) инструкциями и выводом результатов на проекционный экран. Слайды Приложения 1 используются для формулировки задач и подведения промежуточных итогов.

Пример1: Используя средства построения диаграмм в Excel, решить графическим способом уравнение —х 2 +5х-4=0.

Для этого: построить график функции у=-х 2 +5х-4 на промежутке [ 0; 5 ] с шагом 0,25; найти значения х точек пересечения графика функции с осью абсцисс.

Выполнение задания можно разбить на этапы:

1 этап: Представление функции в табличной форме (рис. 6):

  • в ячейку А1 ввести текст Х, в ячейку A2Y;
  • в ячейку В1 ввести число 0, в ячейку С1 – число 0,25;
  • выделить ячейки В1:С1, подвести указатель мыши к маркеру выделения, и в тот момент, когда указатель мыши примет форму черного крестика, протянуть маркер выделения вправо до ячейки V1 (Рис. 7).

При вводе формулы можно вводить адрес ячейки с клавиатуры (не забыть переключиться на латиницу), а можно просто щелкнуть мышью на ячейке с нужным адресом.

После ввода формулы в ячейке окажется результат вычисления по формуле, а в поле ввода строки формул — сама формула (Рис. 8):

  • скопировать содержимое ячейки B2 в ячейки C2:V2 за маркер выделения. Весь ряд выделенных ячеек заполнится содержимым первой ячейки. При этом ссылки на ячейки в формулах изменятся относительно смещения самой формулы.

2 этап: Построение диаграммы типа График.

  • выделить диапазон ячеек B2:V2;
  • на вкладке Вставка|Диаграммы|График выбрать вид График;
  • на вкладке Конструктор|Выбрать данные (Рис. 9) в открывшемся окне «Выбор источника данных» щелкнуть по кнопке Изменить в поле Подписи горизонтальной оси — откроется окно «Подписи оси». Выделить в таблице диапазон ячеек B1:V1 (значения переменной х). В обоих окнах щелкнуть по кнопкам ОК;

  • на вкладке Макет|Оси|Основная горизонтальная ось|Дополнительные параметры основной горизонтальной оси выбрать:

Интервал между делениями: 4;

Интервал между подписями: Единица измерения интервала: 4;

Положение оси: по делениям;

Выбрать ширину и цвет линии (Вкладки Тип линии и Цвет линии);

  • самостоятельно изменить ширину и цвет линии для вертикальной оси;
  • на вкладке Макет|Сетка|Вертикальные линии сетки по основной оси выбрать Основные линии сетки.

Примерный результат работы приведен на рис. 10:

3 этап: Определение корней уравнения.

График функции у=-х 2 +5х-4 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня: х1=1; х2=4.

II. Графический способ решения уравнений вида f(x)=g(x) в Excel.

Пример 2: Решить графическим способом уравнение .

Для этого: в одной системе координат построить графики функций у1= и у2=1-х на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки пересечения графиков функций.

1 этап: Представление функций в табличной форме (рис. 1):

  • Перейти на Лист2.
  • Аналогично Примеру 1, применив приемы копирования, заполнить таблицу. При табулировании функции у1=воспользоваться встроенной функцией Корень (Рис. 11).
  • 2 этап: Построение диаграммы типа График.

  • Выделить диапазон ячеек (А2:V3);
  • Аналогично Примеру 1 вставить и отформатировать диаграмму типа График, выбрав дополнительно в настройках горизонтальной оси: вертикальная ось пересекает в категории с номером 5.
  • Примерный результат работы приведен на Рис. 12:

    3 этап: Определение корней уравнения.

    Графики функций у1= и у2=1-х пересекаются в одной точке (0;1) и, следовательно, уравнение имеет один корень – абсцисса этой точки: х=0.

    III. Метод Подбор параметра.

    Графический способ решения уравнений красив, но далеко не всегда точки пересечения могут быть такими «хорошими», как в специально подобранных примерах 1 и 2.

    Возможности электронных таблиц позволяют находить приближенные значения коней уравнения с заданной точностью. Для этого используется метод Подбор параметра.

    Пример 3: Разберем метод Подбор параметра на примере решения уравнения —х 2 +5х-3=0.

    1 этап: Построение диаграммы типа График для приближенного определения корней уравнения.

    Построить график функции у=х 2 +5х-3, отредактировав полученные в Примере 1 формулы.

    • выполнить двойной щелчок по ячейке B2, внести необходимые изменения;
    • с помощью маркера выделения скопировать формулу во все ячейки диапазона C2:V2.

    Все изменения сразу отобразятся на графике.

    Примерный результат работы приведен на Рис. 13:

    2 этап: Определение приближенных значений корней уравнения.

    График функции у=-х 2 +5х-3 пересекает ось абсцисс в двух точках и, следовательно, уравнение -х 2 +5х-4=0 имеет два корня.

    По графику приближенно можно определить, что х1≈0,7; х2≈4,3.

    3 этап: Поиск приближенного решения уравнения с заданной точностью методом Подбор параметра.

    1) Начать с поиска более точного значения меньшего корня.

    По графику видно, что ближайший аргумент к точке пересечения графика с осью абсцисс равен 0,75. В таблице значений функции этот аргумент размещается в ячейке E1.

    • Выделить ячейку Е2;
    • перейти на вкладку Данные|Анализ «что-если»|Подбор параметра…;


    В открывшемся диалоговом окне Подбор параметра (Рис. 14) в поле Значение ввести требуемое значение функции: 0.

    В поле Изменяя значение ячейки: ввести $E$1 (щелкнув по ячейке E1).

    Щелкнуть по кнопке ОК.

    • В окне Результат подбора (Рис. 15) выводится информация о величине подбираемого и подобранного значения функции:
    • В ячейке E1 выводится подобранное значение аргумента 0,6972 с требуемой точностью (0,0001).

    Установить точность можно путем установки в ячейках таблицы точности представления чисел – числа знаков после запятой (Формат ячеек|Число|Числовой).

    Итак, первый корень уравнения определен с заданной точностью: х1≈0,6972.

    2) Самостоятельно найти значение большего корня с той же точностью. 2≈4,3029).

    IV. Метод Подбор параметра для решения уравнений вида f(x)=g(x).

    При использовании метода Подбор параметров для решения уравнений вида f(x)=g(x) вводят вспомогательную функцию y(x)=f(x)-g(x) и находят с требуемой точностью значения х точек пересечения графика функции y(x) с осью абсцисс.

    3. Закрепление изученного материала. Самостоятельная работа.

    Задание: Используя метода Подбор параметров, найти корни уравнения с точностью до 0,001.

    • ввести функцию у=и построить ее график на промежутке [ -1; 4 ] с шагом 0,25 (Рис. 16):

    • найти приближенное значение х точки пересечения графика функции с осью абсцисс (х≈1,4);
    • найти приближенное решение уравнения с точностью до 0,001 методом Подбор параметра (х≈1,438).

    4. Итог урока.

    Слайд 12 Проверка результатов самостоятельной работы.

    Слайд 13 Повторение графического способа решения уравнения вида f(x)=0.

    Слайд 14 Повторение графического способа решения уравнения вида f(x)=g(x).

    5. Домашнее задание.

    Используя средства построения диаграмм в Excel и метод Подбор параметра, определите корни уравнения х 2 -5х+2=0 с точностью до 0,01.

    Как построить график в Excel по уравнению

    Как предоставить информацию, чтобы она лучше воспринималась. Используйте графики. Это особенно актуально в аналитике. Рассмотрим, как построить график в Excel по уравнению.

    Что это такое

    График показывает, как одни величины зависят от других. Информация легче воспринимается. Посмотрите визуально, как отображается динамика изменения данных.

    А нужно ли это

    Графический способ отображения информации востребован в учебных или научных работах, исследованиях, при создании деловых планов, отчетов, презентаций, формул. Разработчики для построения графиков добавили способы визуального представления: диаграммы, пиктограммы.

    Как построить график уравнения регрессии в Excel

    Регрессионный анализ — статистический метод исследования. Устанавливает, как независимые величины влияют на зависимую переменную. Редактор предлагает инструменты для такого анализа.

    Подготовительные работы

    Перед использованием функции активируйте Пакет анализа. Перейдите:
    Выберите раздел:
    Далее:
    Прокрутите окно вниз, выберите:
    Отметьте пункт:
    Открыв раздел «Данные», появится кнопка «Анализ».

    Как пользоваться

    Рассмотрим на примере. В таблице указана температура воздуха и число покупателей. Данные выводятся за рабочий день. Как температура влияет на посещаемость. Перейдите:
    Выберите:
    Отобразится окно настроек, где входной интервал:

    1. Y. Ячейки с данными влияние факторов на которые нужно установить. Это число покупателей. Адрес пропишите вручную или выделите соответствующий столбец;
    2. Х. Данные, влияние на которые нужно установить. В примере, нужно узнать, как температура влияет на количество покупателей. Поэтому выделяем ячейки в столбце «Температура».

    Анализ

    Нажав кнопку «ОК», отобразится результат.
    Основной показатель — R-квадрат. Обозначает качество. Он равен 0,825 (82,5%). Что это означает? Зависимости, где показатель меньше 0,5 считается плохим. Поэтому в примере это хороший показатель. Y-пересечение. Число покупателей, если другие показатели равны нулю. 62,02 высокий показатель.

    Как построить график квадратного уравнения в Excel

    График функции имеет вид: y=ax2+bx+c. Рассмотрим диапазон значений: [-4:4].

    1. Составьте таблицу как на скриншоте;
    2. В третьей строке указываем коэффициенты и их значения;
    3. Пятая — диапазон значений;
    4. В ячейку B6 вписываем формулу =$B3*B5*B5+$D3*B5+$F3;

    Копируем её на весь диапазон значений аргумента вправо.
    При вычислении формулы прописывается знак «$». Используется чтобы ссылка была постоянной. Подробнее смотрите в статье: «Как зафиксировать ячейку».
    Выделите диапазон значений по ним будем строить график. Перейдите:
    Поместите график в свободное место на листе.

    Как построить график линейного уравнения

    Функция имеет вид: y=kx+b. Построим в интервале [-4;4].

    1. В таблицу прописываем значение постоянных величин. Строка три;
    2. Строка 5. Вводим диапазон значений;
    3. Ячейка В6. Прописываем формулу.

    Выделите диапазон ячеек A5:J6. Далее:
    График — прямая линия.

    Вывод

    Мы рассмотрели, как построить график в Экселе (Excel) по уравнению. Главное — правильно выбрать параметры и диаграмму. Тогда график точно отобразит данные.

    Графическое решение уравнений средствами Microsoft Excel

    Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

    Применение табличного процессора Microsoft Excel для графического решения уравнений n-ой степени

    Из курса математики известно, что корнями уравнения являются значения точек пересечения графика функции с осью абсцисс. Если же мы решаем систему уравнений, то ее решениями будут координаты точек пересечения графиков функций. Этот метод нахождения корней уравнения называется графическим. Мы уже знаем, что с помощью EXCEL можно строить практически любые графики. Воспользуемся этими знаниями для нахождения корней системы уравнений:

    Преобразуем данную систему в приведенную:

    Для оценки решений воспользуемся диаграммой, на которой отобразим графики обеих функций. Сначала построим таблицу:

    Первая строка – строка заголовков.

    При заполнении столбца А: в ячейку А2 заносится начальное значение аргумента Х = – 10, для автоматического заполнения всего столбца в ячейку А3 занести формулу “= А2 + 1” и скопировать ее до ячейки А22.

    При заполнении столбца В: в ячейку В2 заносится формула “= А2 * А2”, которая затем копируется до ячейки В22.

    При заполнении столбца С: в ячейку С2 заносится формула “ = 2 * А2 + 9”, и также копируется до С22

    С помощью Мастера диаграмм построим в одной координатной плоскости графики заданных функций для первоначальной оценки решений/

    На диаграмме видно, что оба графика имеют точки пересечения – координаты этих точек и есть решения системы. Так как шаг изменения аргумента достаточно велик, то мы получим приближенные значения решений.

    Уточним их, построив два графика в интервалах от – 3 до 0, где находится первое решение, и от 3 до 5, где находится второе решение. Составим новые таблицы. Для первого решения – рисунок 4, для второго – рисунок 5.

    Для более точного построения мы уменьшили шаг изменения аргумента. Решением нашей системы будут координаты точек пересечения графиков: Х 1 = – 2,2; Y 1 = 4,6; Х 2 = 4,2; Y 2 = 17,4. Как вы уже поняли, графическое решение системы дает приблизительные результаты.
    Это можно сделать, построив график и определив координаты точек его пересечения с осью OX, либо построив два графика: Y = X3;
    Y = 2X2 + 4X – 12 и определив точки их пересечения.

    источники:

    http://public-pc.com/kak-postroit-grafik-v-excel-po-uravneniyu/

    http://infourok.ru/graficheskoe-reshenie-uravneniy-sredstvami-microsoft-ecel-2404628.html

    Содержание статьи (кликните для открытия/закрытия)

    1. Построение графика линейной функции в Excel
    2. Подготовка расчетной таблицы
    3. Построение графика функции
    4. Построение графиков других функций
    5. Квадратичная функция  y=ax2+bx+c
    6. Кубическая парабола  y=ax3
    7. Гипербола  y=k/x
    8. Построение тригонометрических функций sin(x) и cos(x)

    Построение графика зависимости функции является характерной математической задачей. Все, кто хотя бы на уровне школы знаком с математикой, выполняли построение таких зависимостей на бумаге. В графике отображается изменение функции в зависимости от значения аргумента. Современные электронные приложения позволяют осуществить эту процедуру за несколько кликов мышью. Microsoft Excel поможет вам в построении точного графика для любой математической функции. Давайте разберем по шагам, как построить график функции в excel по её формуле

    Построение графиков в Excel 2016 значительно улучшилось и стало еще проще чем в предыдущих версиях. Разберем пример построения графика линейной функции y=kx+b на небольшом интервале [-4;4].

    Подготовка расчетной таблицы

    В таблицу заносим имена постоянных  k и b в нашей функции. Это необходимо для быстрого изменения графика без переделки расчетных формул.

    построение графиков функции в excel

    Установка шага значений аргумента функции

    Далее строим таблицу значений линейной функции:

    • В ячейки A5 и A6 вводим соответственно обозначения аргумента и саму функцию. Запись в виде формулы будет использована в качестве названия диаграммы.
    • Вводим в ячейки B5 и С5 два значения аргумента функции с заданным шагом (в нашем примере шаг равен единице).
    • Выделяем эти ячейки.
    • Наводим указатель мыши на нижний правый угол выделения. При появлении крестика (смотри рисунок выше), зажимаем левую кнопку мыши и протягиваем вправо до столбца J.

    Ячейки автоматически будут заполнены числами, значения которых различаются заданным шагом.

    как в excel сделать график функции

    Автозаполнение значений аргумента функции

    Далее в строку значений функции в ячейку B6 записываем формулу =$B3*B5+$D3

    Внимание! Запись формулы начинается со знака равно(=). Адреса ячеек записываются на английской раскладке. Обратите внимание на абсолютные адреса со знаком доллара.

    как в excel построить график функции по формуле

    Запись расчётной формулы для значений функции

    Чтобы завершить ввод формулы нажмите клавишу Enter или галочку слева от строки формул вверху над таблицей.

    Копируем эту формулу для всех значений аргумента. Протягиваем вправо рамку от ячейки с формулой до столбца с конечными значениями аргумента функции.

    как строить графики функций в excel

    Копирование формулы

    Построение графика функции

    Выделяем прямоугольный диапазон ячеек A5:J6.

    график линейной функции в excel

    Выделение таблицы функции

    Переходим на вкладку Вставка в ленте инструментов. В разделе Диаграмма выбираем Точечная с гладкими кривыми (см. рисунок ниже).Получим диаграмму.

    вставка диаграммы в excel

    Построение диаграммы типа «График»

    После построения координатная сетка имеет разные по длине единичные отрезки. Изменим ее перетягивая боковые маркеры до получения квадратных клеток.

    изменение диаграvмы excel

    График линейной функции

    Теперь можно ввести новые значения постоянных k и b для изменения графика. И видим, что при попытке изменить коэффициент график остается неизменным, а меняются значения на оси. Исправляем. Кликните на диаграмме, чтобы ее активировать. Далее на ленте инструментов во вкладке Работа с диаграммами на вкладке Конструктор выбираем Добавить элемент диаграммы — Оси — Дополнительные параметры оси..

    Работа с диаграммами в excel

    Вход в режим изменения параметров координатных осей

    В правой части окна появиться боковая панель настроек Формат оси.

    добавление координатных осей в диаграмму excel

    Редактирование параметров координатной оси
    • Кликните на раскрывающийся список Параметры оси.
    • Выберите Вертикальная ось (значений).
    • Кликните зеленый значок диаграммы.
    • Задайте интервал значений оси и единицы измерения (обведено красной рамкой). Ставим единицы измерения Максимум и минимум (Желательно симметричные) и одинаковые для вертикальной и горизонтальной осей. Таким образом, мы делаем мельче единичный отрезок и соответственно наблюдаем больший диапазон графика на диаграмме.И главную единицу измерения — значение 1.
    • Повторите тоже для горизонтальной оси.

    Теперь, если поменять значения K и b , то получим новый график с фиксированной сеткой координат.

    Построение графиков других функций

    Теперь, когда у нас есть основа в виде таблицы и диаграммы, можно строить графики других функций, внося небольшие корректировки в нашу таблицу.

    Квадратичная функция  y=ax2+bx+c

    Выполните следующие действия:

    • В первой строке меняем заголовок
    • В третьей строке указываем коэффициенты и их значения
    • В ячейку A6 записываем обозначение функции
    • В ячейку B6 вписываем формулу =$B3*B5*B5+$D3*B5+$F3
    • Копируем её на весь диапазон значений аргумента вправо

    Получаем результат

    график квадратичной функции в Excel

    График квадратичной функции

    Кубическая парабола  y=ax3

    Для построения выполните следующие действия:

    • В первой строке меняем заголовок
    • В третьей строке указываем коэффициенты и их значения
    • В ячейку A6 записываем обозначение функции
    • В ячейку B6 вписываем формулу =$B3*B5*B5*B5
    • Копируем её на весь диапазон значений аргумента вправо

    Получаем результат

    построение кубической параболы в excel

    График кубической параболы

    Гипербола  y=k/x

    Для построения гиперболы заполните таблицу вручную (смотри рисунок ниже). Там где раньше было нулевое значение аргумента оставляем пустую ячейку.

    Далее выполните действия:

    • В первой строке меняем заголовок.
    • В третьей строке указываем коэффициенты и их значения.
    • В ячейку A6 записываем обозначение функции.
    • В ячейку B6 вписываем формулу =$B3/B5
    • Копируем её на весь диапазон значений аргумента вправо.
    • Удаляем формулу из ячейки I6.

    Для корректного отображения графика нужно поменять для диаграммы диапазон исходных данных, так как в этом примере он больше чем в предыдущих.

    • Кликните диаграмму
    • На вкладке Работа с диаграммами перейдите в Конструктор и в разделе Данные нажмите Выбрать данные.
    • Откроется окно мастера ввода данных
    • Выделите мышкой прямоугольный диапазон ячеек A5:P6
    • Нажмите ОК в окне мастера.

    Получаем результат

    построить гиперболу в Excel

    График гиперболы

    Построение тригонометрических функций sin(x) и cos(x)

    Рассмотрим пример построения графика тригонометрической функции y=a*sin(b*x).
    Сначала заполните таблицу как на рисунке ниже

    таблица значений sin(x)

    Таблица значений функции sin(x)

    В первой строке записано название тригонометрической функции.
    В третьей строке прописаны коэффициенты и их значения. Обратите внимание на ячейки, в которые вписаны значения коэффициентов.
    В пятой строке таблицы прописываются значения углов в радианах. Эти значения будут использоваться для подписей на графике.
    В шестой строке записаны числовые значения углов в радианах. Их можно прописать вручную или используя формулы соответствующего вида =-2*ПИ(); =-3/2*ПИ(); =-ПИ(); =-ПИ()/2; …
    В седьмой строке записываются расчетные формулы тригонометрической функции.

    формула функции sin(x) в Excel

    Запись расчетной формулы функции sin(x) в Excel

    В нашем примере =$B$3*SIN($D$3*B6). Адреса B3 и D3 являются абсолютными. Их значения – коэффициенты a и b, которые по умолчанию устанавливаются равными единице.
    После заполнения таблицы приступаем к построению графика.

    Выделяем диапазон ячеек А6:J7. В ленте выбираем вкладку Вставка в разделе Диаграммы указываем тип Точечная и вид Точечная с гладкими кривыми и маркерами. 

    создание диаграммы график

    Построение диаграммы Точечная с гладкими кривыми

    В итоге получим диаграмму.

    график sin x

    График sin(x) после вставки диаграммы

    Теперь настроим правильное отображение сетки, так чтобы точки графика лежали на пересечении линий сетки. Выполните последовательность действий Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Сетка и включите три режима отображения линий как на рисунке.

    настройка сетки при построении графика в эксель

    Настройка сетки при построении графика

    Теперь зайдите в пункт Дополнительные параметры линий сетки. У вас появится боковая панель Формат области построения. Произведем настройки здесь.

    Кликните в диаграмме на главную вертикальную ось Y (должна выделится рамкой). В боковой панели настройте формат оси как на рисунке.

    формат оси Y графика функции
    Кликните главную горизонтальную ось Х (должна выделится) и также произведите настройки согласно рисунку.

    формат горизонтальной оси графика функции

    Настройка формата горизонтальной оси Х графика функции

    Теперь сделаем подписи данных над точками. Снова выполняем Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Подписи данных – Сверху. У вас подставятся значения числами 1 и 0, но мы заменим их значениями из диапазона B5:J5.
    Кликните на любом значении 1 или 0 (рисунок шаг 1) и в параметрах подписи поставьте галочку Значения из ячеек (рисунок шаг 2). Вам будет сразу же предложено указать диапазон с новыми значениями (рисунок шаг 3). Указываем B5:J5.

    настройка подписей диаграммы графика
    Вот и все. Если сделали правильно, то и график будет замечательным. Вот такой.

    построение графика sin(x) в эксель по шагам

    Чтобы получить график функции cos(x), замените в расчетной формуле и в названии sin(x) на cos(x).

    Аналогичным способом можно строить графики других функций. Главное правильно записать вычислительные формулы и построить таблицу значений функции. Надеюсь, что вам была полезна данная информация.

    Дополнительные статьи по теме:

    • Знакомство с таблицами в Excel 
    • Изменение строк и столбцов в Excel
    • Работа с ячейками: объединение, изменение, защита…
    • Ошибки в формулах: почему excel не считает
    • Использования условий в формулах Excel
    • Функция CЧЕТЕСЛИМН 
    • Работа с текстовыми функциями Excel
    • Все уроки по Microsoft Excel

    Дорогой читатель! Вы посмотрели статью до конца.
    Получили вы ответ на свой вопрос? Напишите в комментариях пару слов. Если ответа не нашли, укажите что искали или откройте содержание блога.

    ОЧЕНЬ ВАЖНО! Оцени лайком или дизлайком статью!
    Блог твой компьютер лайк   Блог твой компьютер дизлайк

    Тип урока: Обобщение, закрепление
    пройденного материала и объяснение нового.

    Цели и задачи урока:

    • повторение изученных графиков функций;
    • повторение и закрепление графического
      способа решения уравнений;
    • закрепление навыков записи и
      копирования формул, построения графиков
      функций в электронных таблицах Excel 2007;
    • формирование и первичное закрепление
      знаний о решении уравнений с
      использованием возможностей электронных
      таблиц Excel 2007;
    • формирование мышления, направленного на
      выбор оптимального решения;
    • формирование информационной культуры
      школьников.

    Оборудование: персональные
    компьютеры, мультимедиапроектор,
    проекционный экран.

    Материалы к уроку: презентация Power Point
    на компьютере учителя (Приложение 1).

    Ход урока

    Организационный момент.

    Слайд 1 из Приложения1 ( далее
    ссылки на слайды идут без указания
    Приложения1).

    Объявление темы урока.

    1. Устная работа (актуализация
    знаний).

    Слайд 2 — Соотнесите перечисленные
    ниже функции с графиками на чертеже (Рис. 1):

    у = 6 — х; у = 2х + 3; у = (х + 3)2; у = -(х — 4)2;
    .

    Рис. 1.

    Слайд 3 Графический способ решения
    уравнений вида f(x)=0.

    Корнями уравнения f(x)=0 являются
    значения х1, х2,точек
    пересечения графика функции y=f(x) с осью
    абсцисс (Рис. 2).

    Рис. 2.

    Слайд 4

    Найдите корни уравнения х2-2х-3=0,
    используя графический способ решения
    уравнений (Рис.3).

    Ответ: -1; 3.

    Рис. 3.

    Слайд 5 Графический способ решения
    уравнений вида f (x)=g (x).

    Корнями уравнения f(x)=g(x) являются
    значения х1, х2,точек
    пересечения графиков функций y=f(x) и у=g(x).
    (Рис. 4):

    Рис. 4.

    Слайд 6 Найдите корни уравнения ,
    используя графический способ решения
    уравнений (Рис. 5).

    Ответ: 4.

    Рис. 5.

    2. Объяснение нового материала.
    Практическая работа.

    Решение уравнений графическим способом
    требует больших временных затрат на
    построение графиков функций и в
    большинстве случаев дает грубо
    приближенные решения. При использовании
    электронных таблиц, в данном случае – Microsoft
    Excel 2007, существенно экономится время на
    построение графиков функций, и появляются
    дополнительные возможности нахождения
    корней уравнения с заданной точностью (метод
    Подбор параметра).

    I. Графический способ решения
    уравнений вида f(x)=0 в Excel.


    Дальнейшая работа выполняется учителем в
    Excel одновременно с учениками с подробными (при
    необходимости) инструкциями и выводом
    результатов на проекционный экран. Слайды
    Приложения 1 используются для формулировки
    задач и подведения промежуточных итогов.

    Слайд 7


    Пример1: Используя средства построения
    диаграмм в Excel, решить графическим способом
    уравнение —х2+5х-4=0.

    Для этого: построить график функции у=-х2+5х-4
    на промежутке [ 0; 5 ] с шагом 0,25; найти значения х точек пересечения
    графика функции с осью абсцисс.

    Выполнение задания можно разбить на этапы:

    1 этап: Представление функции в
    табличной форме
    (рис. 6):

    Рис. 6.

    Для этого:

    • в ячейку А1 ввести текст Х, в
      ячейку A2Y;
    • в ячейку В1 ввести число 0, в ячейку С1
      – число 0,25;
    • выделить ячейки В1:С1, подвести
      указатель мыши к маркеру выделения, и в
      тот момент, когда указатель мыши примет
      форму черного крестика, протянуть маркер
      выделения вправо до ячейки V1 (Рис. 7).

    Рис. 7.

    • в ячейку B2 ввести формулу =-(B1^2)+5*B1-4;

    При вводе формулы можно
    вводить адрес ячейки с клавиатуры (не
    забыть переключиться на латиницу), а
    можно просто щелкнуть мышью на ячейке с
    нужным адресом.

    После ввода формулы в ячейке
    окажется результат вычисления по
    формуле, а в поле ввода строки формул —
    сама формула (Рис. 8):

    Рис. 8.

    • скопировать содержимое ячейки B2 в
      ячейки C2:V2 за маркер выделения. Весь
      ряд выделенных ячеек заполнится
      содержимым первой ячейки. При этом ссылки
      на ячейки в формулах изменятся
      относительно смещения самой формулы.

    2 этап: Построение диаграммы типа График.

    Для этого:

    • выделить диапазон ячеек B2:V2;
    • на вкладке Вставка|Диаграммы|График
      выбрать вид График;
    • на вкладке Конструктор|Выбрать данные
      (Рис. 9) в открывшемся окне «Выбор
      источника данных» щелкнуть по кнопке Изменить
      в поле Подписи горизонтальной оси
      откроется окно «Подписи оси». Выделить в
      таблице диапазон ячеек B1:V1 (значения
      переменной х). В обоих окнах щелкнуть
      по кнопкам ОК;

    Рис. 9.

    • на вкладке Макет|Оси|Основная
      горизонтальная ось|Дополнительные
      параметры основной горизонтальной оси
      выбрать:

    Интервал между делениями: 4;

    Интервал между подписями: Единица
    измерения интервала:
    4;

    Положение оси: по делениям;

    Выбрать ширину и цвет линии (Вкладки
    Тип
    линии и Цвет линии)
    ;

    • самостоятельно изменить ширину и цвет
      линии для вертикальной оси;
    • на вкладке Макет|Сетка|Вертикальные
      линии сетки по основной оси
      выбрать Основные
      линии сетки
      .

    Примерный результат работы приведен на
    рис. 10:

    Рис. 10.

    3 этап: Определение корней уравнения.

    График функции у=-х2+5х-4
    пересекает ось абсцисс в двух точках и,
    следовательно, уравнение 2+5х-4=0 имеет
    два корня: х1=1; х2=4.

    II. Графический способ решения уравнений
    вида f(x)=g(x) в Excel.

    Слайд 8


    Пример 2: Решить графическим способом
    уравнение .

    Для этого: в одной системе координат
    построить графики функций у1=
    и у2=1-х
    на промежутке [ -1; 4 ] с шагом 0,25; найти значение х точки
    пересечения графиков функций.

    1 этап: Представление функций в
    табличной форме (рис. 1):


    • Перейти на Лист2.
    • Аналогично Примеру 1, применив
      приемы копирования, заполнить таблицу.
      При табулировании функции у1=
      воспользоваться встроенной функцией Корень
      (Рис. 11).

    Рис. 11.

    2 этап: Построение диаграммы типа График.


    • Выделить диапазон ячеек (А2:V3);
    • Аналогично Примеру 1 вставить и
      отформатировать диаграмму типа График,
      выбрав дополнительно в настройках
      горизонтальной оси: вертикальная ось
      пересекает в категории с номером 5.

    Примерный результат работы приведен на
    Рис. 12:

    Рис. 12.

    3 этап: Определение корней уравнения.

    Графики функций у1=
    и у2=1-х пересекаются в одной
    точке (0;1) и, следовательно, уравнение
    имеет один корень – абсцисса этой точки: х=0.

    III. Метод Подбор параметра.


    Слайд 9

    Графический способ решения уравнений
    красив, но далеко не всегда точки
    пересечения могут быть такими «хорошими»,
    как в специально подобранных примерах 1 и 2.

    Возможности электронных таблиц
    позволяют находить приближенные значения
    коней уравнения с заданной точностью. Для
    этого используется метод Подбор
    параметра
    .

    Слайд 10


    Пример 3: Разберем метод Подбор
    параметра
    на примере решения уравнения —х2+5х-3=0.

    1 этап: Построение диаграммы типа График
    для приближенного определения корней
    уравнения.

    Построить график функции у=х2+5х-3,
    отредактировав полученные в Примере 1
    формулы.

    Для этого:

    • выполнить двойной щелчок по ячейке B2,
      внести необходимые изменения;
    • с помощью маркера выделения
      скопировать формулу во все ячейки
      диапазона C2:V2.

    Все изменения сразу отобразятся на
    графике.

    Примерный результат работы приведен на
    Рис. 13:

    Рис. 13.

    2 этап: Определение приближенных
    значений корней уравнения.

    График функции у=-х2+5х-3
    пересекает ось абсцисс в двух точках и,
    следовательно, уравнение 2+5х-4=0 имеет
    два корня.

    По графику приближенно можно
    определить, что х1≈0,7; х2≈4,3.

    3 этап: Поиск приближенного решения
    уравнения с заданной точностью методом Подбор
    параметра.

    1) Начать с поиска более точного
    значения меньшего корня.

    По графику видно, что ближайший
    аргумент к точке пересечения графика с
    осью абсцисс равен 0,75. В таблице
    значений функции этот аргумент
    размещается в ячейке E1.

    • Выделить ячейку Е2;
    • перейти на вкладку Данные|Анализ «что-если»|Подбор
      параметра…;

    В открывшемся диалоговом окне Подбор
    параметра
    (Рис. 14) в поле Значение
    ввести требуемое значение функции: 0.

    В поле Изменяя значение ячейки:
    ввести $E$1 (щелкнув по ячейке E1).

    Щелкнуть по кнопке ОК.

    Рис. 14.

    Рис. 15.

    • В окне Результат подбора (Рис. 15)
      выводится информация о величине
      подбираемого и подобранного значения
      функции:
    • В ячейке E1 выводится подобранное
      значение аргумента 0,6972 с требуемой
      точностью (0,0001).

    Установить точность можно путем
    установки в ячейках таблицы точности
    представления чисел – числа знаков
    после запятой (Формат ячеек|Число|Числовой).

    Итак, первый корень уравнения
    определен с заданной точностью: х1≈0,6972.

    2) Самостоятельно найти значение
    большего корня с той же точностью. 2≈4,3029).

    IV. Метод Подбор параметра для
    решения уравнений вида f(x)=g(x)
    .

    При использовании метода Подбор
    параметров
    для решения уравнений вида f(x)=g(x)
    вводят вспомогательную функцию y(x)=f(x)-g(x)
    и находят с требуемой точностью значения х
    точек пересечения графика функции y(x) с
    осью абсцисс.

    3. Закрепление изученного материала. Самостоятельная
    работа.

    Слайд 11


    Задание: Используя метода Подбор
    параметров,
    найти корни уравнения
    с точностью до 0,001.

    Для этого:

    • ввести функцию у=
      и построить ее график на промежутке [ -1; 4 ] с
      шагом 0,25 (Рис. 16):

    Рис. 16.

    • найти приближенное значение х
      точки пересечения графика функции с
      осью абсцисс (х≈1,4);
    • найти приближенное решение уравнения с
      точностью до 0,001 методом Подбор
      параметра (х
      ≈1,438).

    4. Итог урока.

    Слайд 12 Проверка результатов самостоятельной
    работы
    .

    Слайд 13 Повторение графического
    способа решения уравнения вида f(x)=0.

    Слайд 14 Повторение графического
    способа решения уравнения вида f(x)=g(x).

    Выставление оценок.

    5. Домашнее задание.

    Слайд 15 .

    Используя средства построения диаграмм
    в Excel и метод Подбор параметра, определите
    корни уравнения х2-5х+2=0 с
    точностью до 0,01.

    Содержание

    1. Как по графику определить функцию в excel
    2. Часть 10. Подбор формул по графику. Линия тренда
    3. Найти функцию по ее графику (аппроксимация)
    4. Решение
    5. Как по графику в экселе определить значение точки
    6. Точки пересечения графиков в Excel
    7. Строим графики с точками пересечений
    8. Находим точку пересечения графиков в Excel
    9. Точки пересечения для трех показателей
    10. Особенности построения при неравномерном шаге по Х
    11. Построение графика функции на плоскости
    12. Построение плоских алгебраических кривых
    13. Построение диаграммы рассеяния
    14. Инструменты прогнозирования в Microsoft Excel
    15. Процедура прогнозирования
    16. Способ 1: линия тренда
    17. Способ 2: оператор ПРЕДСКАЗ
    18. Способ 3: оператор ТЕНДЕНЦИЯ
    19. Способ 4: оператор РОСТ
    20. Способ 5: оператор ЛИНЕЙН
    21. Способ 6: оператор ЛГРФПРИБЛ

    Как по графику определить функцию в excel

    Часть 10. Подбор формул по графику. Линия тренда

    Для рассмотренных выше задач удавалось построить уравнение или систему уравнений. Но во многих случаях при решении практических задач имеются лишь экспериментальные (результаты измерений, статистические, справочные, опытные) данные. По ним с определенной мерой близости пытаются восстановить эмпирическую формулу (уравнение), которая может быть использована для поиска решения, моделирования, оценки решений, прогнозов.

    Процесс подбора эмпирической формулы P(x) для опытной зависимости F(x) называется аппроксимацией (сглаживанием). Для зависимостей с одним неизвестным в Excel используются графики, а для зависимостей со многими неизвестными – пары функций из группы Статистические ЛИНЕЙН и ТЕНДЕНЦИЯ, ЛГРФПРИБЛ и РОСТ .

    В настоящем разделе рассматривается аппроксимация экспериментальных данных с помощью графиков Excel: на основе данных стоится график, к нему подбирается линия тренда, т.е. аппроксимирующая функция, которая с максимальной степенью близости приближается к опытной зависимости.

    Степень близости подбираемой функции оценивается коэффициентом детерминации R 2 . Если нет других теоретических соображений, то выбирают функцию с коэффициентом R 2 , стремящимся к 1. Отметим, что подбор формул с использованием линии тренда позволяет установить как вид эмпирической формулы, так и определить численные значения неизвестных параметров.

    Excel предоставляет 5 видов аппроксимирующих функций:

    1. Линейная – y=cx+b. Это простейшая функция, отражающая рост и убывание данных с постоянной скоростью.

    2. Полиномиальная – y=c0+c1x+c2x 2 +…+c6x 6 . Функция описывает попеременно возрастающие и убывающие данные. Полином 2-ой степени может иметь один экстремум (min или max), 3-ей степени – до 2-х экстремумов, 4-ой степени – до 3-х и т.д.

    3. Логарифмическая – y=clnx+b. Эта функция описывает быстро возрастающие (убывающие) данные, которые затем стабилизируются.

    4. Степенная – y=cx b , (х>0и y>0). Функция отражает данные с постоянно увеличивающейся (убывающей) скоростью роста.

    5. Экспоненциальная – y=ce bx , (e – основание натурального логарифма). Функция описывает быстро растущие (убывающие) данные, которые затем стабилизируются.

    Для всех 5-ти видов функций используется аппроксимация данных по методу наименьших квадратов (см. справку по F1 «линия тренда»).

    В качестве примера рассмотрим зависимость продаж от рекламы, заданную следующими статистическими данными по некоторой фирме:

    Реклама (тыс. руб.) 1,5 2,5 3,5 4,5 5,5
    Продажи (тыс. руб.)

    Необходимо построить функцию, наилучшим образом отражающую эту зависимость. Кроме того, необходимо оценить продажи для рекламных вложений в 6 тыс. руб.

    Приступим к решению. В первую очередь введите эти данные в Excel и постройте график, как на рис. 38. Как видно, график построен на основании диапазона B2:J2. Далее, щелкнув правой кнопкой мыши по графику, добавьте линию тренда, как показано на рис. 38.

    Чтобы подписать ось Х соответствующими значениями рекламы (как на рис. 38), следует в ниспадающем меню (рис. 38) выбрать пункт Исходные данные. В открывшемся одноименном окне, в закладке Ряд, в поле Подписи оси Х, укажите диапазон ячеек, где записаны значения Х (здесь $B$1:$K$1):

    В открывшемся окне настройки (рис. 39), на закладке Тип выберите для аппроксимации логарифмическую линию тренда (по виду графика). На закладке Параметры установите флажки, отображающие на графике уравнение и коэффициент детерминации.

    После нажатия ОК Вы получите результат, как на рис. 40. Коэффициент детерминации R 2 =0.9846, что является неплохой степенью близости. Для подтверждения правильности выбранной функции (поскольку других теоретических соображений нет) спрогнозируйте развитие продаж на 10 периодов вперед. Для этого щелкните правой кнопкой по линии тренда – измените формат – после этого в поле Прогноз: вперед на: установите 10 (рис. 41).

    После установки прогноза Вы увидите изменение кривой графика на 10 периодов наблюдения вперед, как на рис. 42. Он с большой долей вероятности отражает дальнейшее увеличение продаж с увеличением рекламных вложений.

    Вычисление по полученной формуле =237,96*LN(6)+5,9606 в Excel дает значение 432 тыс. руб.

    В Excel имеется функция ПРЕДСКАЗ(), которая вычисляет будущее значение Y по существующим парам значений X и Y значениям с использованием линейной регрессии. Функция Y по возможности должна быть линейной, т.е. описываться уравнением типа c+bx. Функция предсказания для нашего примера запишется так: =ПРЕДСКАЗ(K1;B2:J2;B1:J1). Запишите – должно получится значение 643,6 тыс. руб.

    Часть11. Контрольные задания

    Найти функцию по ее графику (аппроксимация)

    Дано:
    Два параметра, зависящих друг от друга (X; Y). На их основании построен график.

    Задача: найти функцию, отражающую (приблизительно) зависимость между параметрами.

    Я эту задачу пытаюсь решить с помощью инструмента в экселе (построение тренда; полиноминальная линия тренда 6й степени).
    Эксель подсказывает мне формулу функции, но по факту эта формула выдает не верные параметры (т.е. «Y» по данному формуле рассчитывается не правильно).

    Помощь в написании контрольных, курсовых и дипломных работ здесь.

    расчет.xlsx (15.9 Кб, 22 просмотров)

    Аппроксимация к графику
    Здравствуйте! Проблема такая, приходится работать с данными с осциллографа и с помощью программы.

    Найти функцию по графику(парабола)
    Нужно найти функцию по графику(только параболу), пробовал по формулам с википедии, но что то не.

    Нужно найти функцию по графику
    Вот собственно график и из него надо получить функцию для того чтобы написать программу на паскале.

    найти функцию сигнала по графику
    Доброго времени суток, как по графику сигнала найти его изображение (ну или сначала оригинал.

    расчет (1).xlsx (16.1 Кб, 55 просмотров)

    Сообщение было отмечено p1111 как решение

    Решение

    Как, оказывается, было просто.

    Спасибо огромное, очень выручили.

    Помощь в написании контрольных, курсовых и дипломных работ здесь.

    Нужно найти функцию по графику
    Здравствуйте, у меня есть данные для построения кусочка ВАХ-электрической дуги. Мне нужно найти.

    Вывести функцию по графику
    Процесс предполагается обратный от привычного, имея график, построить функцию. Как это сделать.

    Написать функцию по графику
    Помогите пожалуйста! По данному графику нужна функция (формула), чтобы я потом через if смог.

    Составить функцию по графику.
    Привет всем, помогите составить функцию, по графику, график приложен снизу функция в каком-то.

    Источник

    Как по графику в экселе определить значение точки

    Точки пересечения графиков в Excel

    Как найти точки пересечения графиков в Excel? Например, есть графики, отображающие несколько показателей. Далеко не всегда они будут пересекаться непосредственно на поле диаграммы. Но пользователю нужно показать те значения, в которых линии рассматриваемых явлений пересекаются. Рассмотрим на примере.

    Строим графики с точками пересечений

    Имеются две функции, по которым нужно построить графики:

    Выделяем диапазоны данных, на вкладке «Вставка» в группе «Диаграммы» подбираем нужный тип графика. Как:

    1. Нужно найти точки пересечения графиков со значением Х, поэтому столбчатые, круговые, пузырьковые и т.п. диаграммы не выбираем. Это должны быть прямые линии.
    2. Для поиска точек пересечения необходима ось Х. Не условная, на которой невозможно задать другое значение. Должна быть возможность выбирать промежуточные линии между периодами. Обычные графики не подходят. У них горизонтальная ось – общая для всех рядов. Периоды фиксированы. И манипулировать можно только с ними. Выберем точечную диаграмму с прямыми отрезками и маркерами.

    Для данного типа диаграммы между основными периодами 0, 2, 4, 6 и т.д. можно использовать и промежуточные. Например, 2,5.

    Находим точку пересечения графиков в Excel

    В табличном редакторе Excel нет встроенной функции для решения подобной задачи. Линии построенных графиков не пересекаются (см. рисунок), поэтому даже визуально точку пересечения найти нельзя. Ищем выход.

    Первый способ. Найти общие значения в рядах данных для указанных функций.

    В таблице с данными таковых значений пока нет. Так как мы решали уравнения с помощью формул в полуавтоматическом режиме, с помощью маркера автозаполнения продолжим ряды данных.

    Значения Y одинаковые при Х = 4. Следовательно, точка пересечения двух графиков имеет координаты 4, 5.

    Изменим график, добавив новые данные. Получим две пересекающиеся линии.

    Второй способ. Применение для решения уравнений специального инструмента «Поиск решения». Кнопка вызова инструмента должна быть на вкладке «Данные». Если нет, нужно добавить из «Надстроек Excel».

    Преобразуем уравнения таким образом, чтобы неизвестные были в одной части: y – 1,5 х = -1; y – х = 1. Далее для неизвестных х и y назначим ячейки в Excel. Перепишем уравнения, используя ссылки на эти ячейки.

    Вызываем меню «Поиск решения» — заполняем условия, необходимые для решения уравнений.

    Нажимаем «Выполнить» — инструмент предлагает решение уравнений.

    Найденные значения для х и y совпадают с предыдущим решением с помощью составления рядов данных.

    Точки пересечения для трех показателей

    Существует три показателя, которые измерялись во времени.

    По условию задачи показатель В имеет постоянную величину на протяжении всех периодов. Это некий норматив. Показатель А зависит от показателя С. Он то выше, то ниже норматива. Строим графики (точечную диаграмму с прямыми отрезками и маркерами).

    Точки пересечения имеются только у показателей А и В. Но их точные координаты нужно еще определить. Усложним задачу – найдем точки пересечения показателя C с показателями А и В. То есть в какие временные периоды и при каких значениях показателя А линия показателя С пересекает линию норматива.

    Точек у нас будет две. Их рассчитаем математическим путем. Сначала найдем точки пересечения показателя А с показателем В:

    На рисунке видно, какие значения использовались для расчета. По такой же логике находим значение х для второй точки.

    Теперь рассчитаем точки, найденных значений по оси Х с показателем С. Используем близкие формулы:

    На основе новых данных построим точечные диаграммы на том же поле (где наши графики).

    Получается такой рисунок:

    Для большей информативности и эстетики восприятия добавим пунктирные линии. Их координаты:

    Добавим подписи данных – значения показателя C, при которых он пересечет линию норматива.

    Можно форматировать графики по своему усмотрению – делать их более выразительными и наглядными.

    Особенности построения при неравномерном шаге по Х

    Пусть дана таблица с исходными данными (значения в исходной таблице расположены по оси Х равномерно с шагом 10, но точка с х=20 отсутствует).

    Построим График и Точечную диаграмму с прямыми отрезками используя одну и туже таблицу.

    Точечная диаграмма использует все данные из исходной таблицы: как значения х, так и y.

    Диаграмма График откладывает значения по оси х равномерно (значения из столбца Ось х не используются для построения).

    Значения из столбца Ось х используются в Диаграмме График только для подписей данных по оси х (значения из столбца Ось х никак не влияют на расположение точек). Это часто используется для гибкой настройки подписей по оси х (можно в качестве подписей указать любые, в том числе и текстовые значения).

    Вывод : если значения по оси х расположены неравномерно (в исходной таблице нет точки с х=20, поэтому кривая на Диаграмме График имеет излом), то использование Точечной диаграммы предпочтительней.

    В случае, если данные расположены по оси х равномерно (с определенным шагом), то можно использовать оба типа диаграммы — линии на диаграмме будут выглядеть одинаково. Но если некоторые значения по оси Х пропущены, то для настройки диаграммы типа График нужно изменить таблицу с исходными данными. Можно использовать функцию НД() см. статью Функция НД() в MS EXCEL . Эта функция позволяет сделать кривую на диаграмме График аналогичной кривой на Точечной диаграмме (вариант2).

    СОВЕТ : Для начинающих пользователей EXCEL советуем прочитать статью Основы построения диаграмм в MS EXCEL , в которой рассказывается о базовых настройках диаграмм, а также статью об основных типах диаграмм .

    Построение графика функции на плоскости

    Элементарные функции (y=sin(x), y=x 2 ) удовлетворяют условию однозначности функции: одному значению Х соответствует единственное значение Y (горизонтальная линия, параллельная оси ординат, не может пересекать график функции более чем в одной точке). Поэтому, Диаграмма типа График, как и диаграмма типа Точечная, годятся для построения графика функции на плоскости.

    Построим график функции y=sin(x) с использованием обоих типов диаграмм.

    • подписи Оси Х: на диаграмме График на оси Х указаны фактические значения Х (могут также быть указаны любые подписи, даже текст), а на Точечной — цены основных и промежуточных делений вычислены автоматически. Т.е. подписи на этих типах диаграмм не обязательно совпадают (но можно добиться, чтобы совпадали).
    • шаг вертикальной сетки: основные линии сетки на Графике проходят строго через точки значений, а на Точечной — шаг выбирается автоматически (точно предсказать не возможно, т.к. шаг зависит от размера самой диаграммы, диапазона изменения по Х и др.)

    Эти графики построены в файле примера .

    Построение плоских алгебраических кривых

    Кардиоиду, эпициклоиду, логарифмическую спираль и лемнискату Бернулли можно построить только с помощью диаграммы типа Точечная, т.к. эти кривые НЕ удовлетворяют условию однозначности функции: одному значению Х могут соответствовать несколько значений Y. Эти графики построены в этой статье.

    Построение диаграммы рассеяния

    Диаграммы рассеяния используются для анализа временных рядов и в статистическом анализе. Про построение этой диаграммы (возможно использовать только Точечную) см. эту статью.

    Инструменты прогнозирования в Microsoft Excel

    Прогнозирование – это очень важный элемент практически любой сферы деятельности, начиная от экономики и заканчивая инженерией. Существует большое количество программного обеспечения, специализирующегося именно на этом направлении. К сожалению, далеко не все пользователи знают, что обычный табличный процессор Excel имеет в своем арсенале инструменты для выполнения прогнозирования, которые по своей эффективности мало чем уступают профессиональным программам. Давайте выясним, что это за инструменты, и как сделать прогноз на практике.

    Процедура прогнозирования

    Целью любого прогнозирования является выявление текущей тенденции, и определение предполагаемого результата в отношении изучаемого объекта на определенный момент времени в будущем.

    Способ 1: линия тренда

    Одним из самых популярных видов графического прогнозирования в Экселе является экстраполяция выполненная построением линии тренда.

    Попробуем предсказать сумму прибыли предприятия через 3 года на основе данных по этому показателю за предыдущие 12 лет.

    1. Строим график зависимости на основе табличных данных, состоящих из аргументов и значений функции. Для этого выделяем табличную область, а затем, находясь во вкладке «Вставка», кликаем по значку нужного вида диаграммы, который находится в блоке «Диаграммы». Затем выбираем подходящий для конкретной ситуации тип. Лучше всего выбрать точечную диаграмму. Можно выбрать и другой вид, но тогда, чтобы данные отображались корректно, придется выполнить редактирование, в частности убрать линию аргумента и выбрать другую шкалу горизонтальной оси.

    Давайте для начала выберем линейную аппроксимацию.

    Способ 2: оператор ПРЕДСКАЗ

    Экстраполяцию для табличных данных можно произвести через стандартную функцию Эксель ПРЕДСКАЗ. Этот аргумент относится к категории статистических инструментов и имеет следующий синтаксис:

    «X» – это аргумент, значение функции для которого нужно определить. В нашем случае в качестве аргумента будет выступать год, на который следует произвести прогнозирование.

    «Известные значения y» — база известных значений функции. В нашем случае в её роли выступает величина прибыли за предыдущие периоды.

    «Известные значения x» — это аргументы, которым соответствуют известные значения функции. В их роли у нас выступает нумерация годов, за которые была собрана информация о прибыли предыдущих лет.

    Естественно, что в качестве аргумента не обязательно должен выступать временной отрезок. Например, им может являться температура, а значением функции может выступать уровень расширения воды при нагревании.

    При вычислении данным способом используется метод линейной регрессии.

    Давайте разберем нюансы применения оператора ПРЕДСКАЗ на конкретном примере. Возьмем всю ту же таблицу. Нам нужно будет узнать прогноз прибыли на 2018 год.

      Выделяем незаполненную ячейку на листе, куда планируется выводить результат обработки. Жмем на кнопку «Вставить функцию».

    В поле «Известные значения y» указываем координаты столбца «Прибыль предприятия». Это можно сделать, установив курсор в поле, а затем, зажав левую кнопку мыши и выделив соответствующий столбец на листе.

    Аналогичным образом в поле «Известные значения x» вносим адрес столбца «Год» с данными за прошедший период.

    Но не стоит забывать, что, как и при построении линии тренда, отрезок времени до прогнозируемого периода не должен превышать 30% от всего срока, за который накапливалась база данных.

    Способ 3: оператор ТЕНДЕНЦИЯ

    Для прогнозирования можно использовать ещё одну функцию – ТЕНДЕНЦИЯ. Она также относится к категории статистических операторов. Её синтаксис во многом напоминает синтаксис инструмента ПРЕДСКАЗ и выглядит следующим образом:

    =ТЕНДЕНЦИЯ(Известные значения_y;известные значения_x; новые_значения_x;[конст])

    Как видим, аргументы «Известные значения y» и «Известные значения x» полностью соответствуют аналогичным элементам оператора ПРЕДСКАЗ, а аргумент «Новые значения x» соответствует аргументу «X» предыдущего инструмента. Кроме того, у ТЕНДЕНЦИЯ имеется дополнительный аргумент «Константа», но он не является обязательным и используется только при наличии постоянных факторов.

    Данный оператор наиболее эффективно используется при наличии линейной зависимости функции.

    Посмотрим, как этот инструмент будет работать все с тем же массивом данных. Чтобы сравнить полученные результаты, точкой прогнозирования определим 2019 год.

      Производим обозначение ячейки для вывода результата и запускаем Мастер функций обычным способом. В категории «Статистические» находим и выделяем наименование «ТЕНДЕНЦИЯ». Жмем на кнопку «OK».

    Способ 4: оператор РОСТ

    Ещё одной функцией, с помощью которой можно производить прогнозирование в Экселе, является оператор РОСТ. Он тоже относится к статистической группе инструментов, но, в отличие от предыдущих, при расчете применяет не метод линейной зависимости, а экспоненциальной. Синтаксис этого инструмента выглядит таким образом:

    =РОСТ(Известные значения_y;известные значения_x; новые_значения_x;[конст])

    Как видим, аргументы у данной функции в точности повторяют аргументы оператора ТЕНДЕНЦИЯ, так что второй раз на их описании останавливаться не будем, а сразу перейдем к применению этого инструмента на практике.

      Выделяем ячейку вывода результата и уже привычным путем вызываем Мастер функций. В списке статистических операторов ищем пункт «РОСТ», выделяем его и щелкаем по кнопке «OK».

    Способ 5: оператор ЛИНЕЙН

    Оператор ЛИНЕЙН при вычислении использует метод линейного приближения. Его не стоит путать с методом линейной зависимости, используемым инструментом ТЕНДЕНЦИЯ. Его синтаксис имеет такой вид:

    =ЛИНЕЙН(Известные значения_y;известные значения_x; новые_значения_x;[конст];[статистика])

    Последние два аргумента являются необязательными. С первыми же двумя мы знакомы по предыдущим способам. Но вы, наверное, заметили, что в этой функции отсутствует аргумент, указывающий на новые значения. Дело в том, что данный инструмент определяет только изменение величины выручки за единицу периода, который в нашем случае равен одному году, а вот общий итог нам предстоит подсчитать отдельно, прибавив к последнему фактическому значению прибыли результат вычисления оператора ЛИНЕЙН, умноженный на количество лет.

      Производим выделение ячейки, в которой будет производиться вычисление и запускаем Мастер функций. Выделяем наименование «ЛИНЕЙН» в категории «Статистические» и жмем на кнопку «OK».

    Как видим, прогнозируемая величина прибыли, рассчитанная методом линейного приближения, в 2019 году составит 4614,9 тыс. рублей.

    Способ 6: оператор ЛГРФПРИБЛ

    Последний инструмент, который мы рассмотрим, будет ЛГРФПРИБЛ. Этот оператор производит расчеты на основе метода экспоненциального приближения. Его синтаксис имеет следующую структуру:

    = ЛГРФПРИБЛ (Известные значения_y;известные значения_x; новые_значения_x;[конст];[статистика])

    Как видим, все аргументы полностью повторяют соответствующие элементы предыдущей функции. Алгоритм расчета прогноза немного изменится. Функция рассчитает экспоненциальный тренд, который покажет, во сколько раз поменяется сумма выручки за один период, то есть, за год. Нам нужно будет найти разницу в прибыли между последним фактическим периодом и первым плановым, умножить её на число плановых периодов (3) и прибавить к результату сумму последнего фактического периода.

      В списке операторов Мастера функций выделяем наименование «ЛГРФПРИБЛ». Делаем щелчок по кнопке «OK».

    Прогнозируемая сумма прибыли в 2019 году, которая была рассчитана методом экспоненциального приближения, составит 4639,2 тыс. рублей, что опять не сильно отличается от результатов, полученных при вычислении предыдущими способами.

    Мы выяснили, какими способами можно произвести прогнозирование в программе Эксель. Графическим путем это можно сделать через применение линии тренда, а аналитическим – используя целый ряд встроенных статистических функций. В результате обработки идентичных данных этими операторами может получиться разный итог. Но это не удивительно, так как все они используют разные методы расчета. Если колебание небольшое, то все эти варианты, применимые к конкретному случаю, можно считать относительно достоверными.

    Мы рады, что смогли помочь Вам в решении проблемы.

    Источник

    Информация воспринимается легче, если представлена наглядно. Один из способов презентации отчетов, планов, показателей и другого вида делового материала – графики и диаграммы. В аналитике это незаменимые инструменты.

    Построить график в Excel по данным таблицы можно несколькими способами. Каждый из них обладает своими преимуществами и недостатками для конкретной ситуации. Рассмотрим все по порядку.

    Простейший график изменений

    График нужен тогда, когда необходимо показать изменения данных. Начнем с простейшей диаграммы для демонстрации событий в разные промежутки времени.

    Допустим, у нас есть данные по чистой прибыли предприятия за 5 лет:

    Год Чистая прибыль*
    2010 13742
    2011 11786
    2012 6045
    2013 7234
    2014 15605

    * Цифры условные, для учебных целей.

    Заходим во вкладку «Вставка». Предлагается несколько типов диаграмм:

    Вставка-графики и диаграммы.

    Выбираем «График». Во всплывающем окне – его вид. Когда наводишь курсор на тот или иной тип диаграммы, показывается подсказка: где лучше использовать этот график, для каких данных.

    Выбор типа графиков.

    Выбрали – скопировали таблицу с данными – вставили в область диаграммы. Получается вот такой вариант:

    Конструктор.

    Прямая горизонтальная (синяя) не нужна. Просто выделяем ее и удаляем. Так как у нас одна кривая – легенду (справа от графика) тоже убираем. Чтобы уточнить информацию, подписываем маркеры. На вкладке «Подписи данных» определяем местоположение цифр. В примере – справа.

    Подписи данных.

    Улучшим изображение – подпишем оси. «Макет» – «Название осей» – «Название основной горизонтальной (вертикальной) оси»:

    Название осей.

    Заголовок можно убрать, переместить в область графика, над ним. Изменить стиль, сделать заливку и т.д. Все манипуляции – на вкладке «Название диаграммы».

    Название диаграмм.

    Вместо порядкового номера отчетного года нам нужен именно год. Выделяем значения горизонтальной оси. Правой кнопкой мыши – «Выбрать данные» — «Изменить подписи горизонтальной оси». В открывшейся вкладке выбрать диапазон. В таблице с данными – первый столбец. Как показано ниже на рисунке:

    Данные.

    Можем оставить график в таком виде. А можем сделать заливку, поменять шрифт, переместить диаграмму на другой лист («Конструктор» — «Переместить диаграмму»).

    

    График с двумя и более кривыми

    Допустим, нам нужно показать не только чистую прибыль, но и стоимость активов. Данных стало больше:

    Таблица с данными.

    Но принцип построения остался прежним. Только теперь есть смысл оставить легенду. Так как у нас 2 кривые.

    Легенда.

    Добавление второй оси

    Как добавить вторую (дополнительную) ось? Когда единицы измерения одинаковы, пользуемся предложенной выше инструкцией. Если же нужно показать данные разных типов, понадобится вспомогательная ось.

    Сначала строим график так, будто у нас одинаковые единицы измерения.

    Вторая ось.

    Выделяем ось, для которой хотим добавить вспомогательную. Правая кнопка мыши – «Формат ряда данных» – «Параметры ряда» — «По вспомогательной оси».

    Формат ряда данных.

    Нажимаем «Закрыть» — на графике появилась вторая ось, которая «подстроилась» под данные кривой.

    Дополнительная ось.

    Это один из способов. Есть и другой – изменение типа диаграммы.

    Щелкаем правой кнопкой мыши по линии, для которой нужна дополнительная ось. Выбираем «Изменить тип диаграммы для ряда».

    Изменение типа.

    Определяемся с видом для второго ряда данных. В примере – линейчатая диаграмма.

    Линейчатая диаграмма.

    Всего несколько нажатий – дополнительная ось для другого типа измерений готова.

    Строим график функций в Excel

    Вся работа состоит из двух этапов:

    1. Создание таблицы с данными.
    2. Построение графика.

    Пример: y=x(√x – 2). Шаг – 0,3.

    Составляем таблицу. Первый столбец – значения Х. Используем формулы. Значение первой ячейки – 1. Второй: = (имя первой ячейки) + 0,3. Выделяем правый нижний угол ячейки с формулой – тянем вниз столько, сколько нужно.

    Таблица XY.

    В столбце У прописываем формулу для расчета функции. В нашем примере: =A2*(КОРЕНЬ(A2)-2). Нажимаем «Ввод». Excel посчитал значение. «Размножаем» формулу по всему столбцу (потянув за правый нижний угол ячейки). Таблица с данными готова.

    Отрицательные значения по Y.

    Переходим на новый лист (можно остаться и на этом – поставить курсор в свободную ячейку). «Вставка» — «Диаграмма» — «Точечная». Выбираем понравившийся тип. Щелкаем по области диаграммы правой кнопкой мыши – «Выбрать данные».

    Выделяем значения Х (первый столбец). И нажимаем «Добавить». Открывается окно «Изменение ряда». Задаем имя ряда – функция. Значения Х – первый столбец таблицы с данными. Значения У – второй.

    Изменение ряда.

    Жмем ОК и любуемся результатом.

    Результат.

    С осью У все в порядке. На оси Х нет значений. Проставлены только номера точек. Это нужно исправить. Необходимо подписать оси графика в excel. Правая кнопка мыши – «Выбрать данные» — «Изменить подписи горизонтальной оси». И выделяем диапазон с нужными значениями (в таблице с данными). График становится таким, каким должен быть.

    Оси подписаны.

    Наложение и комбинирование графиков

    Построить два графика в Excel не представляет никакой сложности. Совместим на одном поле два графика функций в Excel. Добавим к предыдущей Z=X(√x – 3). Таблица с данными:

    2 графика функций.

    Выделяем данные и вставляем в поле диаграммы. Если что-то не так (не те названия рядов, неправильно отразились цифры на оси), редактируем через вкладку «Выбрать данные».

    А вот наши 2 графика функций в одном поле.

    Пример с двумя графиками функций.

    Графики зависимости

    Данные одного столбца (строки) зависят от данных другого столбца (строки).

    Построить график зависимости одного столбца от другого в Excel можно так:

    Данные для графиков зависимости.

    Условия: А = f (E); В = f (E); С = f (E); D = f (E).

    Выбираем тип диаграммы. Точечная. С гладкими кривыми и маркерами.

    Выбор данных – «Добавить». Имя ряда – А. Значения Х – значения А. Значения У – значения Е. Снова «Добавить». Имя ряда – В. Значения Х – данные в столбце В. Значения У – данные в столбце Е. И по такому принципу всю таблицу.

    Графики зависимости.

    Скачать все примеры графиков

    Готовые примеры графиков и диаграмм в Excel скачать:

    Диаграммы скачать в ExcelСкачать шаблоны и дашборды с диаграммами для отчетов в Excel.
    Как сделать шаблон, дашборд, диаграмму или график для создания красивого отчета удобного для визуального анализа в Excel? Выбирайте примеры диаграмм с графиками для интерактивной визуализации данных с умных таблиц Excel и используйте их для быстрого принятия правильных решений. Бесплатно скачивайте готовые шаблоны динамических диаграмм для использования их в дашбордах, отчетах или презентациях.

    Точно так же можно строить кольцевые и линейчатые диаграммы, гистограммы, пузырьковые, биржевые и т.д. Возможности Excel разнообразны. Вполне достаточно, чтобы наглядно изобразить разные типы данных.

    Содержание

    • 1 Процедура создания графика
      • 1.1 Способ 1: создание графика зависимости на основе данных таблицы
      • 1.2 Способ 2: создание графика зависимости с несколькими линиями
      • 1.3 Способ 3: построение графика при использовании различных единиц измерения
      • 1.4 Способ 4: создание графика зависимости на основе алгебраической функции
      • 1.5 Помогла ли вам эта статья?

    Построение графиков функции в Excel – тема не сложная и Эксель с ней может справиться без проблем. Главное правильно задать параметры и выбрать подходящую диаграмму. В данном примере будем строить точечную диаграмму в Excel.

    Учитывая, что функция – зависимость одного параметра от другого, зададим значения для оси абсцисс с шагом 0,5. Строить график будем на отрезке . Называем столбец «х», пишем первое значение «-3», второе – «-2,5». Выделяем их и тянем вниз за черный крестик в правом нижнем углу ячейки.

    Будем строить график функции вида y=х^3+2х^2+2. В ячейке В1 пишем «у», для удобства можно вписать всю формулу. Выделяем ячейку В2, ставим «=» и в «Строке формул» пишем формулу: вместо «х» ставим ссылку на нужную ячейку, чтобы возвести число в степень, нажмите «Shift+6». Когда закончите, нажмите «Enter» и растяните формулу вниз.

    как сделать график уравнения в excel

    У нас получилась таблица, в одном столбце которой записаны значения аргумента – «х», в другом – рассчитаны значения для заданной функции.

    как сделать график уравнения в excel

    Перейдем к построению графика функции в Excel. Выделяем значения для «х» и для «у», переходим на вкладку «Вставка» и в группе «Диаграммы» нажимаем на кнопочку «Точечная». Выберите одну из предложенных видов.

    как сделать график уравнения в excel

    График функции выглядит следующим образом.

    как сделать график уравнения в excel

    Теперь покажем, что по оси «х» установлен шаг 0,5. Выделите ее и кликните по ней правой кнопкой мши. Из контекстного меню выберите пункт «Формат оси».

    как сделать график уравнения в excel

    Откроется соответствующее диалоговое окно. На вкладке «Параметры оси» в поле «цена основных делений», поставьте маркер в пункте «фиксированное» и впишите значение «0,5».

    как сделать график уравнения в excel

    Чтобы добавить название диаграммы и название для осей, отключить легенду, добавить сетку, залить ее или выбрать контур, поклацайте по вкладкам «Конструктор», «Макет», «Формат».

    как сделать график уравнения в excel

    Построить график функции в Эксель можно и с помощью «Графика». О том, как построить график в Эксель, Вы можете прочесть, перейдя по ссылке.

    Давайте добавим еще один график на данную диаграмму. На этот раз функция будет иметь вид: у1=2*х+5. Называем столбец и рассчитываем формулу для различных значений «х».

    как сделать график уравнения в excel

    Выделяем диаграмму, кликаем по ней правой кнопкой мыши и выбираем из контекстного меню «Выбрать данные».

    как сделать график уравнения в excel

    В поле «Элементы легенды» кликаем на кнопочку «Добавить».

    как сделать график уравнения в excel

    Появится окно «Изменение ряда». Поставьте курсор в поле «Имя ряда» и выделите ячейку С1. Для полей «Значения Х» и «Значения У» выделяем данные из соответствующих столбцов. Нажмите «ОК».

    как сделать график уравнения в excel

    Чтобы для первого графика в Легенде не было написано «Ряд 1», выделите его и нажмите на кнопку «Изменить».

    как сделать график уравнения в excel

    Ставим курсор в поле «Имя ряда» и выделяем мышкой нужную ячейку. Нажмите «ОК».

    Ввести данные можно и с клавиатуры, но в этом случае, если Вы измените данные в ячейке В1, подпись на диаграмме не поменяется.

    как сделать график уравнения в excel

    В результате получилась следующая диаграмма, на которой построены два графика: для «у» и «у1».

    как сделать график уравнения в excel

    Думаю теперь, Вы сможете построить график функции в Excel, и при необходимости добавлять на диаграмму нужные графики.

    Поделитесь статьёй с друзьями:

    Добрый день. А есть возможность в Excele создать график с тремя переменными, но на одном графике? 2 параметра как обычно, координаты х и у, а третий параметр чтоб отражался размером метки? Вот как пример, такой график —

    Построение графика зависимости функции является характерной математической задачей. Все, кто хотя бы на уровне школы знаком с математикой, выполняли построение таких зависимостей на бумаге. В графике отображается изменение функции в зависимости от значения аргумента. Современные электронные приложения позволяют осуществить эту процедуру за несколько кликов мышью. Microsoft Excel поможет вам в построении точного графика для любой математической функции. Давайте разберем по шагам, как построить график функции в excel по её формуле

    Построение графика линейной функции в Excel

    Построение графиков в Excel 2016 значительно улучшилось и стало еще проще чем в предыдущих версиях. Разберем пример построения графика линейной функции y=kx+b на небольшом интервале .

    Подготовка расчетной таблицы

    В таблицу заносим имена постоянных  k и b в нашей функции. Это необходимо для быстрого изменения графика без переделки расчетных формул.

    как сделать график уравнения в excelУстановка шага значений аргумента функции

    Далее строим таблицу значений линейной функции:

    • В ячейки A5 и A6 вводим соответственно обозначения аргумента и саму функцию. Запись в виде формулы будет использована в качестве названия диаграммы.
    • Вводим в ячейки B5 и С5 два значения аргумента функции с заданным шагом (в нашем примере шаг равен единице).
    • Выделяем эти ячейки.
    • Наводим указатель мыши на нижний правый угол выделения. При появлении крестика (смотри рисунок выше), зажимаем левую кнопку мыши и протягиваем вправо до столбца J.

    Ячейки автоматически будут заполнены числами, значения которых различаются заданным шагом.

    как сделать график уравнения в excelАвтозаполнение значений аргумента функции

    Далее в строку значений функции в ячейку B6 записываем формулу =$B3*B5+$D3

    Внимание! Запись формулы начинается со знака равно(=). Адреса ячеек записываются на английской раскладке. Обратите внимание на абсолютные адреса со знаком доллара.

    как сделать график уравнения в excelЗапись расчётной формулы для значений функции

    Чтобы завершить ввод формулы нажмите клавишу Enter или галочку слева от строки формул вверху над таблицей.

    Копируем эту формулу для всех значений аргумента. Протягиваем вправо рамку от ячейки с формулой до столбца с конечными значениями аргумента функции.

    как сделать график уравнения в excelКопирование формулыПостроение графика функции

    Выделяем прямоугольный диапазон ячеек A5:J6.

    как сделать график уравнения в excelВыделение таблицы функции

    Переходим на вкладку Вставка в ленте инструментов. В разделе Диаграмма выбираем Точечная с гладкими кривыми (см. рисунок ниже).Получим диаграмму.

    Построение диаграммы типа «График»

    После построения координатная сетка имеет разные по длине единичные отрезки. Изменим ее перетягивая боковые маркеры до получения квадратных клеток.

    График линейной функции

    Теперь можно ввести новые значения постоянных k и b для изменения графика. И видим, что при попытке изменить коэффициент график остается неизменным, а меняются значения на оси. Исправляем. Кликните на диаграмме, чтобы ее активировать. Далее на ленте инструментов во вкладке Работа с диаграммами на вкладке Конструктор выбираем Добавить элемент диаграммы — Оси — Дополнительные параметры оси..

    Вход в режим изменения параметров координатных осей

    В правой части окна появиться боковая панель настроек Формат оси.

    Редактирование параметров координатной оси

    • Кликните на раскрывающийся список Параметры оси.
    • Выберите Вертикальная ось (значений).
    • Кликните зеленый значок диаграммы.
    • Задайте интервал значений оси и единицы измерения (обведено красной рамкой). Ставим единицы измерения Максимум и минимум (Желательно симметричные) и одинаковые для вертикальной и горизонтальной осей. Таким образом, мы делаем мельче единичный отрезок и соответственно наблюдаем больший диапазон графика на диаграмме.И главную единицу измерения — значение 1.
    • Повторите тоже для горизонтальной оси.

    Теперь, если поменять значения K и b , то получим новый график с фиксированной сеткой координат.

    Построение графиков других функций

    Теперь, когда у нас есть основа в виде таблицы и диаграммы, можно строить графики других функций, внося небольшие корректировки в нашу таблицу.

    Квадратичная функция  y=ax2+bx+c

    Выполните следующие действия:

    • В первой строке меняем заголовок
    • В третьей строке указываем коэффициенты и их значения
    • В ячейку A6 записываем обозначение функции
    • В ячейку B6 вписываем формулу =$B3*B5*B5+$D3*B5+$F3
    • Копируем её на весь диапазон значений аргумента вправо

    Получаем результат

    График квадратичной функцииКубическая парабола  y=ax3

    Для построения выполните следующие действия:

    • В первой строке меняем заголовок
    • В третьей строке указываем коэффициенты и их значения
    • В ячейку A6 записываем обозначение функции
    • В ячейку B6 вписываем формулу =$B3*B5*B5*B5
    • Копируем её на весь диапазон значений аргумента вправо

    Получаем результат

    График кубической параболыГипербола  y=k/x

    Для построения гиперболы заполните таблицу вручную (смотри рисунок ниже). Там где раньше было нулевое значение аргумента оставляем пустую ячейку.

    Далее выполните действия:

    • В первой строке меняем заголовок.
    • В третьей строке указываем коэффициенты и их значения.
    • В ячейку A6 записываем обозначение функции.
    • В ячейку B6 вписываем формулу =$B3/B5
    • Копируем её на весь диапазон значений аргумента вправо.
    • Удаляем формулу из ячейки I6.

    Для корректного отображения графика нужно поменять для диаграммы диапазон исходных данных, так как в этом примере он больше чем в предыдущих.

    • Кликните диаграмму
    • На вкладке Работа с диаграммами перейдите в Конструктор и в разделе Данные нажмите Выбрать данные.
    • Откроется окно мастера ввода данных
    • Выделите мышкой прямоугольный диапазон ячеек A5:P6
    • Нажмите ОК в окне мастера.

    Получаем результат

    График гиперболыПостроение тригонометрических функций sin(x) и cos(x)

    Рассмотрим пример построения графика тригонометрической функции y=a*sin(b*x).
    Сначала заполните таблицу как на рисунке ниже

    Таблица значений функции sin(x)

    В первой строке записано название тригонометрической функции.
    В третьей строке прописаны коэффициенты и их значения. Обратите внимание на ячейки, в которые вписаны значения коэффициентов.
    В пятой строке таблицы прописываются значения углов в радианах. Эти значения будут использоваться для подписей на графике.
    В шестой строке записаны числовые значения углов в радианах. Их можно прописать вручную или используя формулы соответствующего вида =-2*ПИ(); =-3/2*ПИ(); =-ПИ(); =-ПИ()/2; …
    В седьмой строке записываются расчетные формулы тригонометрической функции.

    Запись расчетной формулы функции sin(x) в Excel

    В нашем примере =$B$3*SIN($D$3*B6). Адреса B3 и D3 являются абсолютными. Их значения – коэффициенты a и b, которые по умолчанию устанавливаются равными единице.
    После заполнения таблицы приступаем к построению графика.

    Выделяем диапазон ячеек А6:J7. В ленте выбираем вкладку Вставка в разделе Диаграммы указываем тип Точечная и вид Точечная с гладкими кривыми и маркерами. 

    Построение диаграммы Точечная с гладкими кривыми

    В итоге получим диаграмму.

    График sin(x) после вставки диаграммы

    Теперь настроим правильное отображение сетки, так чтобы точки графика лежали на пересечении линий сетки. Выполните последовательность действий Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Сетка и включите три режима отображения линий как на рисунке.

    Настройка сетки при построении графика

    Теперь зайдите в пункт Дополнительные параметры линий сетки. У вас появится боковая панель Формат области построения. Произведем настройки здесь.

    Кликните в диаграмме на главную вертикальную ось Y (должна выделится рамкой). В боковой панели настройте формат оси как на рисунке.

    Кликните главную горизонтальную ось Х (должна выделится) и также произведите настройки согласно рисунку.

    Настройка формата горизонтальной оси Х графика функции

    Теперь сделаем подписи данных над точками. Снова выполняем Работа с диаграммами –Конструктор – Добавить элемент диаграммы – Подписи данных – Сверху. У вас подставятся значения числами 1 и 0, но мы заменим их значениями из диапазона B5:J5.
    Кликните на любом значении 1 или 0 (рисунок шаг 1) и в параметрах подписи поставьте галочку Значения из ячеек (рисунок шаг 2). Вам будет сразу же предложено указать диапазон с новыми значениями (рисунок шаг 3). Указываем B5:J5.

    Вот и все. Если сделали правильно, то и график будет замечательным. Вот такой.

    Чтобы получить график функции cos(x), замените в расчетной формуле и в названии sin(x) на cos(x).

    Аналогичным способом можно строить графики других функций. Главное правильно записать вычислительные формулы и построить таблицу значений функции. Надеюсь, что вам была полезна данная информация.

    Дорогой читатель! Вы посмотрели статью до конца. Получили вы ответ на свой вопрос? Напишите в комментариях пару слов.Если ответа не нашли, укажите что искали.

    Рекомендовано Вам:

    Построение графиков функций в Excel

    Февраль 9th, 2014

    Andrey K

    (

    голос, значение:

    из 5)

    Построение графиков функций — одна из возможностей  Excel. В этой статье мы рассмотрим процесс построение графиков некоторых математических функций: линейной, квадратичной и обратной пропорциональности.

    Функция, это множество точек (x, y), удовлетворяющее выражению y=f(x). Поэтому, нам необходимо заполнить массив таких точек, а Excel построит нам на их основе график функции.

    1) Рассмотрим пример построения графика линейной функции: y=5x-2

    Графиком линейной функции является прямая, которую можно построить по двум точкам. Создадим табличку

    В нашем случае  y=5x-2. В ячейку с первым значением y введем формулу: =5*D4-2. В другую ячейку формулу можно ввести аналогично (изменив D4 на D5) или использовать маркер автозаполнения.

    В итоге мы получим табличку:

    Теперь можно приступать к созданию графика.

    Выбираем: ВСТАВКА — > ТОЧЕЧНАЯ -> ТОЧЕЧНАЯ С ГЛАДКИМИ КРИВЫМИ И МАРКЕРАМИ (рекомендую использовать именно этот тип диаграммы)

    Появиться пустая область диаграмм. Нажимаем кнопку ВЫБРАТЬ ДАННЫЕ

     Выберем данные:  диапазон ячеек оси абсцисс (х) и оси ординат (у). В качестве имени ряда можем ввести саму функцию в кавычках «y=5x-2» или что-то другое. Вот что получилось:

    Нажимаем ОК. Перед нами график линейной функции.

    2) Рассмотрим процесс построения графика квадратичной функции — параболы y=2×2-2

    Параболу по двум точкам уже не построить, в отличии от прямой.

    Зададим интервал на оси x, на котором будет строиться наша парабола. Выберу .

    Задам шаг. Чем меньше шаг, тем точнее будет построенный график. Выберу .

    Заполняю столбец со значениями х, используя маркер автозаполнения  до значения х=5.

    Столбец значений у рассчитывается по формуле: =2*B4^2-2. Используя маркер автозаполнения, рассчитываем значения у для остальных х.

    Выбираем: ВСТАВКА — > ТОЧЕЧНАЯ -> ТОЧЕЧНАЯ С ГЛАДКИМИ КРИВЫМИ И МАРКЕРАМИ и действуем аналогично построению графика линейной функции.

    Получим:

    Чтобы не было точек на графике, поменяйте тип диаграммы на ТОЧЕЧНАЯ С ГЛАДКИМИ КРИВЫМИ.

    Любые другие графики непрерывных функций строятся аналогично.

    3) Если функция кусочная, то необходимо каждый «кусочек» графика объединить в одной области диаграмм.

    Рассмотрим это на примере функции у=1/х.

    Функция определена на интервалах (- беск;0) и (0; +беск)

    Создадим график функции на интервалах: .

    Подготовим две таблички, где х изменяется с шагом :

    Находим значения функции от каждого аргумента х аналогично примерам выше.

    На диаграмму вы должны добавить два ряда — для первой и второй таблички соответственно

    Далее нажимаем кнопочку ДОБАВИТЬ и заполняем табличку ИЗМЕНЕНИЕ РЯДА  значениями из второй таблички

    Получаем график функции y=1/x

    В дополнение привожу видео — где показан порядок действий, описанный выше.

    В следующей статье расскажу как создать 3-мерные графики в Excel.

    Спасибо за внимание!

    (

    голос, значение:

    из 5)

    Вы можете

    оставить комментарий

    , или

    ссылку

    на Ваш сайт.

    Душевые термостаты, лучшие модели на

    http://tools-ricambi.ru/

    изготавливаются из материалов высшего качества

    Одной из типичных математических задач является построение графика зависимости. В нем отображается зависимость функции от изменения аргумента. На бумаге выполнить данную процедуру не всегда просто. Но инструменты Excel, если в должной мере овладеть ими, позволяют выполнить данную задачу точно и относительно быстро. Давайте выясним, как это можно сделать, используя различные исходные данные.

    Процедура создания графика

    Зависимость функции от аргумента является типичной алгебраической зависимостью. Чаще всего аргумент и значение функции принято отображать символами: соответственно «x» и «y». Нередко нужно произвести графическое отображение зависимости аргумента и функции, которые записаны в таблицу, или представлены в составе формулы. Давайте разберем конкретные примеры построения подобного графика (диаграммы) при различных заданных условиях.

    Способ 1: создание графика зависимости на основе данных таблицы

    Прежде всего, разберем, как создать график зависимости на основе данных, предварительно внесенных в табличный массив. Используем таблицу зависимости пройденного пути (y) от времени (x).

    1. Выделяем таблицу и переходим во вкладку «Вставка». Кликаем по кнопке «График», которая имеет локализацию в группе «Диаграммы» на ленте. Открывается выбор различных типов графиков. Для наших целей выбираем самый простой. Он располагается первым в перечне. Клацаем по нему.
    2. Программа производит построение диаграммы. Но, как видим, на области построения отображается две линии, в то время, как нам нужна только одна: отображающая зависимость пути от времени. Поэтому выделяем кликом левой кнопки мыши синюю линию («Время»), так как она не соответствует поставленной задаче, и щелкаем по клавише Delete.
    3. Выделенная линия будет удалена.

    Собственно на этом построение простейшего графика зависимости можно считать завершенным. При желании также можно отредактировать наименования диаграммы, её осей, удалить легенду и произвести некоторые другие изменения. Об этом подробнее рассказывается в отдельном уроке.

    Урок: Как сделать график в Экселе

    Способ 2: создание графика зависимости с несколькими линиями

    Более сложный вариант построения графика зависимости представляет собой случай, когда одному аргументу соответствуют сразу две функции. В этом случае потребуется построить две линии. Для примера возьмем таблицу, в которой по годам расписана общая выручка предприятия и его чистая прибыль.

    1. Выделяем всю таблицу вместе с шапкой.
    2. Как и в предыдущем случае, жмем на кнопку «График» в разделе диаграмм. Опять выбираем самый первый вариант, представленный в открывшемся списке.
    3. Программа производит графическое построение согласно полученным данным. Но, как видим, в данном случае у нас имеется не только лишняя третья линия, но ещё и обозначения на горизонтальной оси координат не соответствуют тем, которые требуются, а именно порядку годов.

      Сразу удалим лишнюю линию. Ею является единственная прямая на данной диаграмме — «Год». Как и в предыдущем способе, выделяем линию кликом по ней мышкой и жмем на кнопку Delete.

    4. Линия удалена и вместе с ней, как вы можете заметить, преобразовались значения на вертикальной панели координат. Они стали более точными. Но проблема с неправильным отображением горизонтальной оси координат все-таки остается. Для решения данной проблемы кликаем по области построения правой кнопкой мыши. В меню следует остановить выбор на позиции «Выбрать данные…».
    5. Открывается окошко выбора источника. В блоке «Подписи горизонтальной оси» кликаем по кнопке «Изменить».
    6. Открывается окошко ещё меньше предыдущего. В нём нужно указать координаты в таблице тех значений, которые должны отображаться на оси. С этой целью устанавливаем курсор в единственное поле данного окна. Затем зажимаем левую кнопку мыши и выделяем всё содержимое столбца «Год», кроме его наименования. Адрес тотчас отразится в поле, жмем «OK».
    7. Вернувшись в окно выбора источника данных, тоже щелкаем «OK».
    8. После этого оба графика, размещенные на листе, отображаются корректно.

    Способ 3: построение графика при использовании различных единиц измерения

    В предыдущем способе мы рассмотрели построение диаграммы с несколькими линиями на одной плоскости, но при этом все функции имели одинаковые единицы измерения (тыс. руб.). Что же делать, если нужно создать графики зависимости на основе одной таблицы, у которых единицы измерения функции отличаются? В Экселе существует выход и из этого положения.

    Имеем таблицу, в которой представлены данные по объему продаж определенного товара в тоннах и по выручке от его реализации в тысячах рублей.

    1. Как и в предыдущих случаях выделяем все данные табличного массива вместе с шапкой.
    2. Клацаем по кнопке «График». Снова выбираем первый вариант построения из перечня.
    3. Набор графических элементов сформирован на области построения. Тем же способом, который был описан в предыдущих вариантах, убираем лишнюю линию «Год».
    4. Как и в предыдущем способе, нам следует на горизонтальной панели координат отобразить года. Кликаем по области построения и в списке действий выбираем вариант «Выбрать данные…».
    5. В новом окне совершаем щелчок по кнопке «Изменить» в блоке «Подписи» горизонтальной оси.
    6. В следующем окне, производя те же действия, которые были подробно описаны в предыдущем способе, вносим координаты столбца «Год» в область «Диапазон подписей оси». Щелкаем по «OK».
    7. При возврате в предыдущее окно также выполняем щелчок по кнопке «OK».
    8. Теперь нам следует решить проблему, с которой ещё не встречались в предыдущих случаях построения, а именно, проблему несоответствия единиц величин. Ведь, согласитесь, не могут располагаться на одной панели координат деления, которые одновременно обозначают и денежную сумму (тыс. рублей) и массу (тонны). Для решения данной проблемы нам потребуется произвести построение дополнительной вертикальной оси координат.

      В нашем случае для обозначения выручки оставим ту вертикальную ось, которая уже имеется, а для линии «Объём продаж» создадим вспомогательную. Клацаем по данной линии правой кнопкой мышки и выбираем из перечня вариант «Формат ряда данных…».

    9. Запускается окно формата ряда данных. Нам нужно переместиться в раздел «Параметры ряда», если оно было открыто в другом разделе. В правой части окна расположен блок «Построить ряд». Требуется установить переключатель в позицию «По вспомогательной оси». Клацаем по наименованию «Закрыть».
    10. После этого вспомогательная вертикальная ось будет построена, а линия «Объём продаж» переориентируется на её координаты. Таким образом, работа над поставленной задачей успешно окончена.

    Способ 4: создание графика зависимости на основе алгебраической функции

    Теперь давайте рассмотрим вариант построения графика зависимости, который будет задан алгебраической функцией.

    У нас имеется следующая функция: y=3x^2+2x-15. На её основе следует построить график зависимости значений y от x.

    1. Прежде, чем приступить к построению диаграммы, нам нужно будет составить таблицу на основе указанной функции. Значения аргумента (x) в нашей таблице будут указаны в диапазоне от -15 до +30 с шагом 3. Чтобы ускорить процедуру введения данных, прибегнем к использованию инструмента автозаполнения «Прогрессия».

      Указываем в первой ячейке столбца «X» значение «-15» и выделяем её. Во вкладке «Главная» клацаем по кнопке «Заполнить», размещенной в блоке «Редактирование». В списке выбираем вариант «Прогрессия…».

    2. Выполняется активация окна «Прогрессия». В блоке «Расположение» отмечаем наименование «По столбцам», так как нам необходимо заполнить именно столбец. В группе «Тип» оставляем значение «Арифметическая», которое установлено по умолчанию. В области «Шаг» следует установить значение «3». В области «Предельное значение» ставим цифру «30». Выполняем щелчок по «OK».
    3. После выполнения данного алгоритма действий весь столбец «X» будет заполнен значениями в соответствии с заданной схемой.
    4. Теперь нам нужно задать значения Y, которые бы соответствовали определенным значениям X. Итак, напомним, что мы имеем формулу y=3x^2+2x-15. Нужно её преобразовать в формулу Excel, в которой значения X будут заменены ссылками на ячейки таблицы, содержащие соответствующие аргументы.

      Выделяем первую ячейку в столбце «Y». Учитывая, что в нашем случае адрес первого аргумента X представлен координатами A2, то вместо представленной выше формулы получаем такое выражение:

      =3*(A2^2)+2*A2-15

      Записываем это выражение в первую ячейку столбца «Y». Для получения результата расчета щелкаем по клавише Enter.

    5. Результат функции для первого аргумента формулы рассчитан. Но нам нужно рассчитать её значения и для других аргументов таблицы. Вводить формулу для каждого значения Y очень долгое и утомительное занятие. Намного быстрее и проще её скопировать. Эту задачу можно решить с помощью маркера заполнения и благодаря такому свойству ссылок в Excel, как их относительность. При копировании формулы на другие диапазоны Y значения X в формуле будут автоматически изменяться относительно своих первичных координат.

      Наводим курсор на нижний правый край элемента, в который ранее была записана формула. При этом с курсором должно произойти преображение. Он станет черным крестиком, который носит наименование маркера заполнения. Зажимаем левую кнопку мыши и тащим этот маркер до нижних границ таблицы в столбце «Y».

    6. Вышеуказанное действие привело к тому, что столбец «Y» был полностью заполнен результатами расчета формулы y=3x^2+2x-15.
    7. Теперь настало время для построения непосредственно самой диаграммы. Выделяем все табличные данные. Снова во вкладке «Вставка» жмем на кнопку «График» группы «Диаграммы». В этом случае давайте из перечня вариантов выберем «График с маркерами».
    8. Диаграмма с маркерами отобразится на области построения. Но, как и в предшествующих случаях, нам потребуется произвести некоторые изменения для того, чтобы она приобрела корректный вид.
    9. Прежде всего, удалим линию «X», которая разместилась горизонтально на отметке 0 координат. Выделяем данный объект и жмем на кнопку Delete.
    10. Легенда нам тоже не нужна, так как мы имеем только одну линию («Y»). Поэтому выделяем легенду и снова жмем по клавише Delete.
    11. Теперь нам нужно значения в горизонтальной панели координат заменить на те, которые соответствуют столбцу «X» в таблице.

      Кликом правой кнопки мыши выделяем линию диаграммы. В меню перемещаемся по значению «Выбрать данные…».

    12. В активировавшемся окне выбора источника клацаем по уже хорошо знакомой нам кнопке «Изменить», располагающейся в блоке «Подписи горизонтальной оси».
    13. Запускается окошко «Подписи оси». В области «Диапазон подписей оси» указываем координаты массива с данными столбца «X». Ставим курсор в полость поля, а затем, произведя необходимый зажим левой кнопки мыши, выделяем все значения соответствующего столбца таблицы, исключая лишь его наименование. Как только координаты отобразятся в поле, клацаем по наименованию «OK».
    14. Вернувшись к окну выбора источника данных, клацаем по кнопке «OK» в нём, как до этого сделали в предыдущем окне.
    15. После этого программа произведет редактирование ранее построенной диаграммы согласно тем изменениям, которые были произведены в настройках. График зависимости на основе алгебраической функции можно считать окончательно готовым.

    Урок: Как сделать автозаполнение в Майкрософт Эксель

    Как видим, с помощью программы Excel процедура построения графика зависимости значительно упрощается в сравнении с созданием его на бумаге. Результат построения можно использовать как для обучающих работ, так и непосредственно в практических целей. Конкретный вариант построения зависит от того, на основе чего строится диаграмма: табличные значения или функция. Во втором случае перед построением диаграммы придется ещё создавать таблицу с аргументами и значениями функций. Кроме того, график может быть построен, как на основе одной функции, так и нескольких.

    Мы рады, что смогли помочь Вам в решении проблемы.

    Задайте свой вопрос в комментариях, подробно расписав суть проблемы. Наши специалисты постараются ответить максимально быстро.

    Помогла ли вам эта статья?

    Да Нет

    Задача решения уравнения встает не только перед студентами и школьниками. В Excel можно использовать различные способы выполнения этой задачи. О способе решения путем подбора параметра пойдет речь в этой статье.

    Нахождение корней нелинейного уравнения с использованием средства

    «Подбор параметра» сводится в двум этапам:

    • определение приблизительных границ отрезков и количества корней графическим методом;
    • подбор на каждом отрезке значения корня, удовлетворяющего заданной точности вычислений.

    Примером может служить решение квадратного уравнения, которое в общем виде задается выражением

    «Y(x) = ax2 + bx +

    . Для того, чтобы построенная электронная таблица позволяла бы находить решения подобных уравнений с любыми коэффициентами, лучше вынести коэффициенты в отдельные ячейки, а в формулах для вычисления значений функции использовать ссылки на эти ячейки. Впрочем, это дело вкуса. Можно при составлении формулы использовать значения коэффициентов, а не ссылки на них.

    Чтобы оценить примерные границы отрезков и количество корней, можно использовать табличное задание значений функции, т.е. задать несколько значений переменной и вычислить соответствующие значения функции. Опять же, для того, чтобы можно было моделировать расчеты для квадратных уравнений с различными коэффициентами, шаг табулирования лучше задать в отдельной ячейке. Начальное значение переменной можно будет изменять путем ввода в ячейку «

    А6» . Для вычисления следующего значения в ячейку

    «А7» введена формула «

    =А6+$

    B$4» , т.е. использована абсолютная ссылка на ячейку с шагом табулирования.

    Далее с помощью

    маркера заполнения формируется ряд формул для вычисления последующих значений переменной, в приведенном примере используется 20 значений.

    Вводится формула для вычисления значения функции (для рассматриваемого примера в ячейку «

    В6» ) и формируется ряд аналогичных формул для остальных ячеек. В формуле использованы абсолютные ссылки на ячейки с коэффициентами уравнения.

    По построенной таблице строится

    точечная диаграмма .

    Если начальное значение Х и шаг выбраны неудачно, и на диаграмме нет пересечений с осью абсцисс, то можно ввести другие значения и добиться нужного результата.

    Можно было бы найти решение уже на этом шаге, но для этого понадобилось бы гораздо больше ячеек и шаг, равный заданной точности вычислений (0,001). Чтобы не создавать громоздких таблиц, далее используется

    «Подбор параметра» из группы

    «Прогноз» на вкладке

    «Данные» . Предварительно необходимо выделить место под начальные значения переменной (корней в примере два) и соответствующие значения функции. В качестве «

    х1» выбирается первое из значений, дающих наиболее близкое к нулю значение функции (в примере 0,5). В

    ячейку

    L6 введена формула для вычисления функции. В окне подбора параметра необходимо указать для какой ячейки (

    L6 ), какое значение (

    ) нужно получить, и в какой ячейке для этого изменять значения (

    К6 ).

    Для поиска второго корня необходимо ввести второе из значений, дающих наиболее близкое к нулю значение функции (в примере 9,5), и повторить подбор параметра для ячейки

    L9 (в ячейку скопирована формула из ячейки

    L6 ).

    Предложенное оформление коэффициентов функции в отдельные ячейки позволяет без изменения формул решать другие подобные уравнения.

    Подбор параметра имеется и в более ранних версиях программы.

    Как построить график функции в Excel

    График функции – графическое представление математического выражения, показывающее его решение. Для построения обычно используются линейные графики с точками, с чем прекрасно справляется Microsoft Excel. Кроме того, в нем еще можно выполнить автоматические расчеты, быстро подставив нужные значения.

    Существует огромное количество функций, поэтому в качестве примера я разберу только две самые наглядные, чтобы вы поняли базовые правила составления подобных элементов в таблице.

    График функции F(x) = X^2

    Функция X^2 – одна из самых популярных математических функций, которую разбирают еще на уроках в школе. На графике необходимо показать точки Y, что в Excel реализовывается следующим образом:

    1. Создайте строку на листе в программе, вписав туда известные значения X.Заполнение первой строки для построения графика функции в Excel

    2. Сделайте то же самое и с Y. Пока значения этой оси координат неизвестны. Чтобы определить их, нам нужно выполнить простые расчеты.Заполнение второй строки для построения графика функции в Excel

    3. Поэтому в качестве значения для каждой ячейки укажите формулу, которая посчитает квадрат числа, указанного в строке X. Для этого впишите =A1^2, заменив номер ячейки.Создание формулы квадрата икс для построения графика функции в Excel

    4. Теперь достаточно зажать левую кнопку мыши на нижней точки готовой ячейки и растянуть таблицу, чтобы формула автоматически подставилась в остальные ячейки, и вы могли сразу ознакомиться с результатом.Заполнение формулы квадрата икс для построения графика функции в Excel

    5. Перейдите на вкладку вставки и выберите раздел с рекомендуемыми диаграммами.Переход к вставке диаграммы для построения графика функции в Excel

    6. В списке отыщите точечную диаграмму, которая подойдет для составления подходящего графика.Вставка диаграммы для построения графика функции в Excel

    7. Вставьте ее в таблицу и ознакомьтесь с результатом. На следующем скриншоте вы видите параболу и значения X, при которых она получилась правильной (такую часто показывают в примерах на математике).Просмотр вставленной диаграммы для построения графика функции в Excel

    Всего 7 простых шагов потребовалось для достижения желаемого результата. Вы можете подставлять свои значения в таблицу и изменять их в любое время, следя за тем, как перестраивается график функций.

    Комьюнити теперь в Телеграм

    Подпишитесь и будьте в курсе последних IT-новостей

    Подписаться

    График функции y=sin(x)

    y=sin(x) – вторая функция, которую мы возьмем за пример. Может показаться, что ее составление осуществляется сложнее, хотя на самом деле это не так. Дело в том, что Excel сам посчитает значения, а вам останется только задать известные числа и вставить простой линейный график для вывода результатов на экран.

    1. Если вам будет проще, впишите в отдельную клетку функцию, укажите интервал и шаг. Так вы не запутаетесь при дальнейшем заполнении ячеек.Ввод вспомогательных значений для построения графика функции в Excel

    2. Добавьте два столбца, в которые будут вписаны значения каждой оси. Это нужно не только для обозначения чисел, но и для их вычисления при помощи функций программы.Создание стобцов для построения графика функции в Excel

    3. Начните вписывать значения X с необходимым интервалом и шагом. Кстати, вы можете заполнить всего несколько полей, а затем растянуть клетки таким же образом, как было показано в предыдущем примере, чтобы они подставились автоматически до конца вашего интервала.Заполнение первых столбцов для построения графика функции в Excel

    4. Теперь более сложное, но не страшное действие – определение значения Y. Понятно, что он равняется синусу X, значит, нужно вписать функцию =SIN(A1), где вместо A1 используйте нужную ячейку, а затем растяните функцию на оставшийся интервал.Вставка формулы синуса для построения графика функции в Excel

    5. На следующем скриншоте вы видите результат заполнения таблицы. Используйте округление для удаления лишних знаков после запятой.Результат формулы синуса для построения графика функции в Excel

    6. Вставьте обычную линейчатую диаграмму и ознакомьтесь с результатом.Вставка диаграммы синуса для построения графика функции в Excel

    На примере этих двух функций уже можно понять, как работает построение графиков в Экселе. При использовании других функций просто учитывайте особенности заполнения ячеек и не забывайте о том, что вам не нужно ничего считать, поскольку Excel все сделает за вас после указания необходимой формулы.

    Наши постоянные авторы и читатели делятся лайфхаками, основанными на личном опыте. Полная свобода самовыражения.

    Рекомендуем

    Поворот текста в Google Таблицах

    Как посмотреть упоминания в Discord

    Открытие Microsoft Excel в разных окнах

    Как удалить сервер в Discord

    Как исправить работу стрелок клавиатуры в Microsoft Excel

    Понравилась статья? Поделить с друзьями:
  • Графики формулы анализ данных в excel пошаговые примеры скачать
  • Графики формулы анализ данных в excel айзек скачать
  • Графики технического обслуживания в excel
  • Графики с разными осями excel
  • Графики с несколькими линиями excel