График параметрической функции в excel

Параметрический график функции в Excel

Отдельного типа диаграмм для вывода параметрического представления функции в Excel нет, но это легко сделать следующим образом:

  • определить ряд данных для величины t, меняющейся от 0 до 2*π c заданным шагом;
  • определить зависимые ряды данных x(t), y(t);
  • построить диаграмму типа «Точечная диаграмма» по выделенным рядам x(t), y(t).

Скрин и документ Excel 2007 или выше прилагаются. Функция взята из этой заметки.

Параметрический график в Excel, как построить, скриншот

Параметрический график в Excel, как построить, скриншот

 Скачать этот пример в архиве .zip с документом Excel .xlsx (73 Кб)

30.10.2022, 04:44 [224 просмотра]


К этой статье пока нет комментариев, Ваш будет первым

Построение
графиков 3-х видов в электронной таблице
Excel

1.
Построить несколько графиков параметрически
заданной функции при разных значениях
конcтант
а, b,
.
Оси графика – х и y,
которые зависят от аргумента t
или .

Название

кривой

Вид
графика

Параметри­ческие
уравнения

Диапазон

аргумента

Кол-во

граф.

Значения
констант

1

Циклоида

x = a(t — sin
t)

y = a(1 — cos
t)

t  0  6

шаг
0,5

5

a = 1;
1.25;
1.5; 1.75; 2

2

Циклоида

x = a(t — sin
t)

y = a(1 — cos
t)

t  0  6

шаг
0,5

6

a = 2

 = 0.4;
0.7; 1.0;
1.3; 1.6; 2.0

3

Трохоида

x = at — bsin
t

y = a — bcos
t

t  0  10

шаг
0,1

5

a = -1

b
= 0.1; 1; 2; 3; 4

4

Эпитрохоида

x = acos
(t)
— bcos
(t + t)

y = asin
(t)
— bsin
(t + t)

t  0  10

шаг
0,5

6

a = 0;
1; 2; 3; 10; 15

b = 2
 = 0.25

5

Гипотрохоида

x = acos
(t)
— bcos
(t — t)

y = asin
(t)
— bsin
(t — t)

t  0  10

шаг
0,5

6

a = 0;
1; 2; 3; 10; 15

b = 2
 = 0.25

6

Декартов

лист

x = at   / (1 + t3)

y = a
t2 / (1 + t3)

t  -6  6

шаг
0,3

6

a = 1;
2; 3; 4; 5; 6

7

Циссоида
Диоклеса

x = a
t2 / (1 + t2)

y = a
t3 / (1 + t2)

t  -6  6

шаг
0,2

6

a = 1;
2; 3; 4; 5; 6

8

Строфоида

x = a
 (t2 — 1) / (t2 + 1)

y = at(t2 — 1) / (t2 + 1)

t  -6  6

шаг
0,2

6

a = 1;
2; 3; 4; 5; 6

9

Конхоида

Никомеда

x = a + bcos
t

y = atg
t + bsin
t

t  0

10

шаг
0,2

5

a = 2

b
= 1; 10; 30; 50; 90

10

Улитка

Паскаля

x = acos2
t + bcos
t

y = a
cos

t sin
t + bsin
t

t  0  2

шаг
0,1

6

a = 1;
2; 3; 4; 5; 6

b
= 3

11

Эпици­клоида

x = (a + b)cos

— acos[(a + b)/a]

y = (a + b)
sin 
— a sin[(a + b)/a]

  0  2

Шаг
0,1

6

a
= 1

b = 1;
2; 3; 4; 5; 6

12

Эпици­клоида

x = (a + b)cos

— acos[(a + b)/a]

y = (a + b)
sin 
— a
sin[(a + b)/a]

  0  10

Шаг
0,2

6

a = 3;
b = 4

 = 0.5;
0.7; 1;
1.5; 2; 3

13

Эпици­клоида

x = (a + b)cos

— acos[(a + b)/a]

y = (a + b)
sin 
— a
sin[(a + b)/a]

  0  2

Шаг
0,1

6

a = 1;
b = 4

 = 0.5;
1; 1.5; 2; 4; 6

14

Эпици­клоида

x = (a + b)cos

— acos[(a + b)/a]

y = (a + b)
sin 
— a
sin[(a + b)/a]

  0  2

Шаг
0,1

6

a = 7;
b = 4

 = 0.5;
1; 2; 4; 6; 8

15

Гипоци­клоида

x = (b — a)cos

— acos[(b — a)/a]

y = (b — a)
sin 
— a sin[(b — a)/a]

  0  2

Шаг
0,1

6

a
= 1

b = 1.5;
2.5; 3;
3.5; 4; 5

16

Гипоци­клоида

x = (b — a)cos

— acos[(b — a)/a]

y = (b — a)
sin 
— a sin[(b — a)/a]

  0  6

Шаг
0,5

6

a
= 1.5; 2; 2.5;
3; 3,5; 4

b = 1

17

Гипоци­клоида

x = (b — a)cos

— acos[(b — a)/a]

y = (b — a)
sin 
— a
sin[(b — a)/a]

  0  2

Шаг
0,1

6

a = 1;
b = 4

 = 0.5;
1; 1.5; 2; 3; 4

18

Гипоци­клоида

x = (b — a)cos

— acos[(b — a)/a]

y = (b — a)
sin 
— a
sin[(b — a)/a]

  0  10

Шаг
0,2

6

a = 5;
b = 2

 = 0.2;
0.5; 0.7;
1; 1.5; 2

19

Спираль

x = atcos
t

y = btsin
t

t  0  10

Шаг
0,5

6

a
= 2

b = -2;
-1; 1; 2; 3; 4

20

Гиперболич.

спираль

x = (acos
t) / t

y = (b
sin
t) / t

t  -6  6

Шаг
0,3

5

a = 2

b = 1;
2; 3; 4; 5

21

Гиперболич.

спираль

x = (acos
t) / t

y = (b
sin
t) / t

t  0.5  20

Шаг
0,5

5

a = 3

b = 1;
2; 3; 4; 5

22

Астроида

x = acos3
(t / 4)

y = b
sin3
(t / 4)

t  0  8

Шаг
0,1

5

a
= 2

b = 1;
2;
3;
4;
5

23

Астроида

x = acos3
(t – b)

y = a
sin3
t

t  0  8

Шаг
0,2

5

a
= 2

b = 0;
1; 2; 3; 4

24

Астроида

x = acos3
(bt
)

y = a
sin3
t

t  0  8

Шаг
0,1

5

a
= 2

b = 0.5;
1; 1.5; 3; 3.5

25

Эволь­вента

x = acos
t + at
sin
t

y = a
sin
t + atcos
t

t  -10 10

Шаг
0,5

4

a
= -2;
-1; 1; 2

26

Эволь­вента

x = acos
t + at
sin
t

y = a
sin
t + atcos
t

t  0 20

Шаг
0,5

4

a
= -2;
-1; 1; 2

27

Эллипс

x = acos
t

y = b
sin
t

t  0  2

Шаг
0,5

5

a
= 7

b = 1;
4; 7; 10; 13

28

Эллипс

x = acos(c
+ t)

y = b
sin(c
— t)

t  0  2

Шаг
0,11

5

a
= 3 b = 2

b = 1;
2; 3; 4; 5

29

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Практическая работа: Построение графиков средствами приложения Excel.

Цель: научиться
строить графики в Excel; развить самостоятельность при получении практических
навыков на ПК; развить навыки мыслительной деятельности.

Построение
графиков функций, заданных в параметрическом виде или в полярной системе
координат
.

Параметрическое
представление кривой на плоскости – это две функции, явно выражающие обе
координаты
x и y через значение
некоторого производящего параметра:

Задание 1:
Построить окружность, координаты точек которой вычисляются по формулам:

1)     
Для построения полной окружности радиуса R=100 необходимо создать таблицу, в которой
значение параметра
t меняется от 0 до 2π с шагом 0,1 (для заполнения ячеек используйте функцию Автозапонения).

2)     
В соответствующие ячейки ввести формулы для
нахождения координат
x и y (см. выше) и скопировать формулу для всех значений  t

3)     
Для построения графика выделить столбцы x и y таблицы и выбрать тип диаграммы Точечная.
Получаем диаграмму:

Подпишите
название диаграммы Окружность.

ЗАДАНИЯ для
самостоятельного выполнения:

Спираль

   x=t*sin(t)

  
y=t*cos(t)

t[0;5π]

Астроида

   x=2sin3(t)

   y=2cos3(t)

t[0;2π]

Дельтоида

 х=2cos(t)+cos(2t)

 y=2sin(t)−sin(2t)

t[0;2π]

Сердечко

 x=16sin3(t)

y=13cos(t)−5cos(2t)−2cos(3t)−cos(4t)

t[0;2π]

Гипоциклоида
1

x=4,4(cos(t)+cos(1,1t)/1,1)

y=4,4(sin(t)−sin(1,1t)/ 1,1)

t[0;20π]

Гипоциклоида 2

x=24,8(cos(t)+cos(6,2t)/6,2)

y=24,8(sin(t)−sin(6,2t)/6,2)

t[0;10π]

Эпициклоида

x=6,2(cos(t)−cos(3,1t)/3,1)

y=6,2(sin(t)−sin(3,1t)/ 3,1)

t[0;20π]

Бабочка

x=sin(t)(ecos(t)−2cos(4t)+sin5(1t/12))

y=cos(t)(ecos(t)−2cos(4t)+sin5(1t/12))

t[0;12π]

n- лепестковая
роза

n – определяет число лепестков

Фигура Лиссажу

   x=sin(5t+π/2)

   y=sin(6t)

t[0;2π]

Указания
к оформлению работы
:

1)     
Расчёты функций делать на одном Листе,
обозначая функции для разных фигур:
x1,y1; x2,y2; x3,y3 и т.д.

2)     
Все графики подписать и расположить каждый на
отдельном Листе. Листы переименовать по названию фигуры: Окружность,
Спираль, Астроида
и т.д.

Понравилась статья? Поделить с друзьями:
  • График отсутствия сотрудников excel
  • График отставания в excel
  • График отслеживания в excel
  • График отпусков шахматка excel скачать бесплатно
  • График отпусков файл excel