Гидравлический расчет трубопроводов
Опубликовано 08 Апр 2014
Рубрика: Теплотехника | 66 комментариев
Системы отопления зданий, теплотрассы, водопроводы, системы водоотведения, гидравлические схемы станков, машин – все это примеры систем, состоящих из трубопроводов. Гидравлический расчет трубопроводов — особенно сложных, разветвленных…
… — является очень непростой и громоздкой задачей. Сегодня в век компьютеров решать ее стало существенно легче при использовании специального программного обеспечения. Но хорошие специальные программы дорого стоят и есть они, как правило, только у специалистов-гидравликов.
В этой статье мы рассмотрим гидравлический расчет трубопроводов на примере расчета в Excel горизонтального участка трубопровода постоянного диаметра по двум методикам и сравним полученные результаты. Для «неспециалистов» применение представленной ниже программы позволит решить несложные «житейские» и производственные задачи. Для специалистов применение этих расчетов возможно в качестве проверочных или для выполнения быстрых простых оценок.
Как правило, гидравлический расчет трубопроводов включает в себя решение двух задач:
1. При проектировочном расчете требуется по известному расходу жидкости найти потери давления на рассматриваемом участке трубопровода. (Потери давления – это разность давлений между точкой входа и точкой выхода.)
2. При проверочном расчете (при аудите действующих систем) требуется по известному перепаду давления (разность показаний манометров на входе в трубопровод и на выходе) рассчитать расход жидкости, проходящей через трубопровод.
Приступаем к решению первой задачи. Решить вторую задачу вы сможете легко сами, используя сервис программы MS Excel «Подбор параметра». О том, как использовать этот сервис, подробно описано во второй половине статьи «Трансцендентные уравнения? «Подбор параметра» в Excel!».
Предложенные далее расчеты в Excel, можно выполнить также в программе OOo Calc из свободно распространяемого пакета Open Office.
Правила цветового форматирования ячеек листа Excel, которые применены в статьях этого блога, детально описаны на странице «О блоге».
Рассмотрим порядок и формулы расчета в Excel на примере прямого горизонтального трубопровода длиной 100 метров из трубы ø108 мм с толщиной стенки 4 мм.
Исходные данные:
1. Расход воды через трубопровод G в т/час вводим
в ячейку D4: 45,000
2. Температуру воды на входе в расчетный участок трубопровода tвх в °C заносим
в ячейку D5: 95,0
3. Температуру воды на выходе из расчетного участка трубопровода tвых в °C записываем
в ячейку D6: 70,0
4. Внутренний диаметр трубопровода d в мм вписываем
в ячейку D7: 100,0
5. Длину трубопровода L в м записываем
в ячейку D8: 100,000
6. Эквивалентную шероховатость внутренних поверхностей труб ∆ в мм вносим
в ячейку D9: 1,000
Выбранное значение эквивалентной шероховатости соответствует стальным старым заржавевшим трубам, находящимся в эксплуатации много лет.
Эквивалентные шероховатости для других типов и состояний труб приведены на листе «Справка» расчетного файла Excel «gidravlicheskiy-raschet-truboprovodov.xls», ссылка на скачивание которого дана в конце статьи.
7. Сумму коэффициентов местных сопротивлений Σ(ξ) вписываем
в ячейку D10: 1,89
Мы рассматриваем пример, в котором местные сопротивления присутствуют в виде стыковых сварных швов (9 труб, 8 стыков).
Для ряда основных типов местных сопротивлений данные и формулы расчета представлены на листах «Расчет коэффициентов» и «Справка» файла Excel «gidravlicheskiy-raschet-truboprovodov.xls».
Результаты расчетов:
8. Среднюю температуру воды tср в °C вычисляем
в ячейке D12: =(D5+D6)/2 =82,5
tср=(tвх+tвых)/2
9. Кинематический коэффициент вязкости воды n в cм2/с при температуре tср рассчитываем
в ячейке D13: =0,0178/(1+0,0337*D12+0,000221*D12^2) =0,003368
n=0,0178/(1+0,0337*tср+0,000221*tср2)
10. Среднюю плотность воды ρ в т/м3 при температуре tср вычисляем
в ячейке D14: =(-0,003*D12^2-0,1511*D12+1003,1)/1000 =0,970
ρ=(-0,003*tср2-0,1511*tср+1003, 1)/1000
11. Расход воды через трубопровод G’ в л/мин пересчитываем
в ячейке D15: =D4/D14/60*1000 =773,024
G’=G*1000/(ρ*60)
Этот параметр пересчитан нами в других единицах измерения для облегчения восприятия величины расхода.
12. Скорость воды в трубопроводе v в м/с вычисляем
в ячейке D16: =4*D4/D14/ПИ()/(D7/1000)^2/3600 =1,640
v=4*G/(ρ*π*(d/1000)2*3600)
К ячейке D16 применено условное форматирование. Если значение скорости не попадает в диапазон 0,25…1,5 м/с, то фон ячейки становится красным, а шрифт белым.
Предельные скорости движения воды приведены на листе «Справка» расчетного файла Excel «gidravlicheskiy-raschet-truboprovodov.xls».
13. Число Рейнольдса Re определяем
в ячейке D17: =D16*D7/D13*10 =487001,4
Re=v*d*10/n
14. Коэффициент гидравлического трения λ рассчитываем
в ячейке D18: =ЕСЛИ(D17<=2320;64/D17;ЕСЛИ(D17<=4000; 0,0000147*D17;0,11* (68/D17+D9/D7)^0,25)) =0,035
λ=64/Re при Re≤2320
λ=0,0000147*Re при 2320≤Re≤4000
λ=0,11*(68/Re+∆/d)0,25 при Re≥4000
15. Удельные потери давления на трение R в кг/(см2*м) вычисляем
в ячейке D19: =D18*D16^2*D14/2/9,81/D7*100 =0,004645
R=λ*v2*ρ*100/(2*9,81*d)
16. Потери давления на трение dPтр в кг/см2 и Па находим соответственно
в ячейке D20: =D19*D8 =0,464485
dPтр=R*L
и в ячейке D21: =D20*9,81*10000 =45565,9
dPтр=dPтр*9,81*10000
17. Потери давления в местных сопротивлениях dPмс в кг/см2 и Па находим соответственно
в ячейке D22: =D10*D16^2*D14*1000/2/9,81/10000 =0,025150
dPмс=Σ(ξ)*v2*ρ/(2*9,81*10)
и в ячейке D23: =D22*9,81*10000 =2467,2
dPтр=dPмс*9,81*10000
18. Расчетные потери давления в трубопроводе dP в кг/см2 и Па находим соответственно
в ячейке D24: =D20+D22 =0,489634
dP=dPтр+dPмс
и в ячейке D25: =D24*9,81*10000 =48033,1
dP=dP*9,81*10000
19. Характеристику гидравлического сопротивления трубопровода S в Па/(т/ч)2 вычисляем
в ячейке D26: =D25/D4^2 =23,720
S=dP/G2
Гидравлический расчет в Excel трубопровода по формулам теоретической гидравлики выполнен!
Гидравлический расчет трубопроводов в Excel по формулам СНиП 2.04.02-84.
Этот расчет определяет потери на трение в трубопроводах по эмпирическим формулам без учета коэффициентов местных сопротивлений, но с учетом сопротивлений, вносимых стыками.
На длинных трубопроводах, каковыми являются водопроводы и теплотрассы, влияние местных сопротивлений мало по сравнению с шероховатостью стенок труб и перепадами высот, и часто коэффициентами местных сопротивлений можно пренебречь при оценочных расчетах.
Исходные данные:
Этот расчет использует ранее введенные в предыдущем расчете значения внутреннего диаметра трубопровода d и длины трубопровода L, а также рассчитанное значение скорости движения воды v.
1. Выбираем из выпадающего списка, расположенного над ячейками A30…E30 вид трубы:
Неновые стальные и неновые чугунные без внутр. защитного покр. или с битумным защитным покр., v > 1,2м/c
Результаты расчетов:
По выбранному виду трубы Excel автоматически извлекает из таблицы базы данных значения эмпирических коэффициентов. Таблица базы данных, взятая из СНиП 2.04.02–84, расположена на этом же рабочем листе «РАСЧЕТ».
2. Коэффициент m извлекается
в ячейку D32: =ИНДЕКС(H31:H42;H29) =0,300
3. Коэффициент A0 извлекается
в ячейку D33: =ИНДЕКС(I31:I42;I29) =1,000
4. Коэффициент 1000A1 извлекается
в ячейку D34: =ИНДЕКС(J31:J42;J29) =21,000
5. Коэффициент 1000A1/(2g) извлекается
в ячейку D35: =ИНДЕКС(K31:K42;K29) =1,070
6. Коэффициент С извлекается
в ячейку D36: =ИНДЕКС(L31:L42;L29) =0,000
7. Коэффициент гидравлического сопротивления i в м.вод.ст./м рассчитываем
в ячейке D37: =D35/1000*((D33+D36/D16)^D32)/((D7/1000)^(D32+1))*D16^2 =0,057
i=((1000A1/(2g))/1000)*(((A0+C/v)m)/((d/1000)(m+1)))*v2
8. Расчетные потери давления в трубопроводе dP в кг/см2 и Па находим соответственно
в ячейке D38: =D39/9,81/10000 =0,574497
dP=dP/9,81/10000
и в ячейке D39: =D37*9,81*1000*D8 =56358,1
dP=i*9,81*1000*L
Гидравлический расчет трубопровода по формулам Приложения 10 СНиП 2.04.02–84 в Excel завершен!
Итоги.
Полученные значения потерь давления в трубопроводе, рассчитанные по двум методикам отличаются в нашем примере на 15…17%! Рассмотрев другие примеры, вы можете увидеть, что отличие иногда достигает и 50%! При этом значения, полученные по формулам теоретической гидравлики всегда меньше, чем результаты по СНиП 2.04.02–84. Я склонен считать, что точнее первый расчет, а СНиП 2.04.02–84 «подстраховывается». Возможно, я ошибаюсь в выводах. Следует отметить, что гидравлические расчеты трубопроводов тяжело поддаются точному математическому моделированию и базируются в основном на зависимостях, полученных из опытов.
В любом случае, имея два результата, легче принять нужное правильное решение.
При гидравлическом расчете трубопроводов с перепадом высот входа и выхода не забывайте добавлять (или отнимать) к результатам статическое давление. Для воды – перепад высот в 10 метров ≈ 1 кг/см2.
Уважаемые читатели, Ваши мысли, замечания и предложения всегда интересны коллегам и автору. Пишите их внизу, в комментариях к статье!
Ссылка на скачивание файла: gidravlicheskiy-raschet-truboprovodov (xls 57,5KB).
Важное и, думаю, интересное продолжение темы читайте здесь.
Другие статьи автора блога
На главную
Статьи с близкой тематикой
Отзывы
Содержание
- Делаем гидравлический расчет системы отопления с помощью программ, готовых форм Excel и самостоятельно
- Назначение гидравлического расчета отопления
- Порядок расчета гидравлических параметров отопления
- Определение оптимального диаметра труб
- Учет местных сопротивлений в магистрали
- Обзор программ для гидравлических вычислений
- Oventrop CO
- Instal-Therm HCR
- Гидравлический расчет однотрубной и двухтрубной системы отопления с формулами, таблицами и примерами
- Что такое гидравлический расчёт
- Расчет гидравлики системы отопления
- Шаг 1: считаем диаметр труб
- Шаг 2: вычисление местных сопротивлений
- Шаг 3: гидравлическая увязка
- Шаг 4: определение потерь
- Обзор программ
- Как работать в EXCEL
- Ввод исходных данных
- Оформление результатов
- Пример от Александра Воробьёва
- Добавить комментарий Отменить ответ
- Гидравлический расчет системы отопления
Для эффективной работы системы отопления необходимо выполнить несколько условий – правильно подобрать комплектующие и сделать расчет. От корректного вычисления параметров системы зависит ее КПД и равномерное распределение тепла. Как сделать гидравлический расчет системы отопления — примеры, программы помогут выполнить эти вычисления.
Назначение гидравлического расчета отопления
Пример схемы отопления с учетом расчетных данных
При работе любой системы теплоснабжения неизбежно возникает гидравлическое сопротивление при движении теплоносителя. Для учета этого параметра необходим гидравлический расчет двухтрубной системы отопления. Его суть заключается в правильном выборе компонентов системы с учетом их эксплуатационных качеств.
Фактически гидравлический расчет систем водяного отопления представляет собой сложную процедуру, во время выполнения которой учитываются все тонкости и нюансы. На первом этапе следует определиться с требуемой мощностью отопления, выбрать оптимальную схему разводки трубопроводов, а также тепловой режим работы. На основе этих данных делается гидравлический расчет системы отопления в Excel или специализированной программе. Итогом вычислений должны стать следующие параметры водяного теплоснабжения:
- Оптимальный диаметр трубопровода. Исходя из этого можно узнать их пропускную способность, тепловые потери. С учетом выбора материала изготовления будет известно сопротивление воды о внутреннюю поверхность магистрали;
- Потери давления и напора на определенных участках системы. Пример гидравлического расчета системы отопления позволит заранее продумать механизмы для их компенсации;
- Расход воды ;
- Требуемую мощность насосного оборудования. Актуально для закрытых систем с принудительной циркуляцией.
На первый взгляд гидравлическое сопротивление системы отопления сложно. Однако достаточно немного вникнуть в суть вычислений и потом можно будет их сделать самостоятельно.
Для теплоснабжения небольшого дома или квартиры также рекомендуется выполнять расчет гидравлического сопротивления системы отопления.
Порядок расчета гидравлических параметров отопления
Отопление на плане дома
На первом этапе вычисления параметров системы отопления следует составить предварительную схему, на которой указывается расположение всех компонентов. Таким образом определяется общая протяженность магистралей, рассчитывается количество радиаторов, объем воды, а также характеристики отопительных приборов.
Как сделать гидравлический расчет отопления, не имея опыта подобных вычислений? Следует помнить, что для автономного теплоснабжения важно правильно подобрать диаметр труб. Именно с выполнения этого этапа и следует начать вычисления.
Лучше всего сделать схему отопления на уже готовом плане дома. Это позволит правильно рассчитать расход материала и определиться с его количеством для обустройства системы.
Определение оптимального диаметра труб
Виды труб для отопления
Самый упрощенный гидравлический расчет системы отопления включает в себя только вычисление сечения трубопроводов. Нередко при проектировании небольших систем обходятся и без него. Для этого берут следующие параметры диаметров труб в зависимости от типа теплоснабжения:
- Открытая схема с гравитационной циркуляцией. Трубы диаметром от 30 до 40 мм. Такое большего сечение необходимо для уменьшения потерь при трении воды о внутреннюю поверхность магистралей;
- Закрытая система с принудительной циркуляцией. Сечение трубопроводов варьируется от 8 до 24 мм. Чем оно меньше, тем больше давление будет в системе и соответственно – уменьшится общий объем теплоносителя. Но при этом возрастут гидравлические потери.
Если в наличии есть специализированная программа для гидравлического расчета системы отопления – достаточно заполнить данные о технических характеристиках котла и перенести отопительную схему. Программный комплект определит оптимальный диаметр труб.
Таблица выбора внутреннего диаметра трубопроводов
Полученные данные можно проверить самостоятельно. Порядок выполнения гидравлического расчета двухтрубной системы отопления вручную при вычислении диаметра трубопроводов заключается в вычислении следующих параметров:
- V – скорость движения воды. Она должна быть в пределах от 0,3- до 0,6 м/с. Определятся производительностью насосного оборудования;
- Q – тепловой поток. Это отношение количества тепла, проходящего за определенный промежуток времени – 1 секунду;
- G – расход воды. Измеряется в кг/час. Напрямую зависит от диаметра трубопровода.
В дальнейшем для выполнения гидравлического расчета систем водяного отопления понадобиться узнать общий объем отапливаемого помещения — м³. Предположим, что это значение для одной комнаты равно 50 м³. Зная мощность котла отопления (24 кВт) вычисляем итоговый тепловой поток:
таблица расхода воды в зависимости от диаметра трубы
Затем для выбора оптимального диаметра труб нужно воспользоваться данными таблицы, составленными при выполнении гидравлического расчета системы отопления в Excel.
В этом случае оптимальный внутренний диаметр трубы на конкретном участке системы составит 10 мм.
В дальнейшем для выполнения примера гидравлического расчета системы отопления можно узнать ориентировочный расход воды, который засвистит от диаметра трубы.
Производители полимерных труб указывают внешний диаметр. Поэтому для корректного расчета гидравлического сопротивления системы отопления следует отнять две толщины стенки магистралей.
Учет местных сопротивлений в магистрали
Пример гидравлического расчета отопления
Не менее важным этапом является расчет гидравлического сопротивления отопительной системы на каждом участке магистрали. Для этого вся схема теплоснабжения условно разделяется на несколько зон. Лучше всего сделать вычисления для каждой комнаты в доме.
В качестве исходных данных для внесения в программу для гидравлического расчета системы отопления понадобятся следующие величины:
- Протяженность трубы на участке, м.п;
- Диаметр магистрали. Порядок вычислений описан выше;
- Требуемая скорость теплоносителя. Также зависит от диаметра трубы и мощности циркуляционного насоса;
- Справочные данные, характерные для каждого типа материала изготовления – коэффициент трения (λ), потери на трении (ΔР);
- Плотность воды при температуре +80°С составит 971,8 кг/м³.
Зная эти данные можно сделать упрощенный гидравлический расчет отопительной системы. Результат подобных вычислений можно увидеть в таблице.
При проведении этой работы нужно помнить, что чем меньше выбранный участок отопления, тем точнее будут данные общих параметров системы. Так как сделать гидравлический расчет теплоснабжения с первого раза будет затруднительно – рекомендуется провести ряд вычислений для определенного промежутка трубопровода. Желательно, чтобы в нем было как можно меньше дополнительных приборов – радиаторов, запорной арматуры и т.д.
Для проверки гидравлического расчета двухтрубной отопительной системы нужно выполнить его в нескольких разных программах или дополнительно ручным способом самостоятельно.
Обзор программ для гидравлических вычислений
Пример программы для расчета отопления
По сути любой гидравлический расчет систем водяного теплоснабжения является сложной инженерной задачей. Для ее решения были разработаны ряд программных комплексов, которые упрощают выполнение этой процедуры.
Можно попытаться сделать гидравлический расчет системы отопления в оболочке Excel, воспользовавшись уже готовыми формулами. Но при этом возможно возникновение следующих проблем:
- Большая погрешность. В большинстве случаев в качестве примера гидравлического расчета отопительной системы берутся однотрубная или двухтрубная схемы. Найти подобные вычисления для коллекторной проблематично;
- Для правильного учета гидравлического сопротивления трубопровода необходимы справочные данные, которые отсутствуют в форме. Их нужно искать и вводить дополнительно.
Учитывая эти факторы, специалисты рекомендуют использовать программы для расчета. Большинство из них платные, но некоторые имеют демоверсию с ограниченными возможностями.
Oventrop CO
Программа для гидравлического расчета
Самая простая и понятная программа для гидравлического расчета системы теплоснабжения. Интуитивный интерфейс и гибкая настройка помогут быстро разобраться с нюансами ввода данных. Небольшие проблемы могут возникнуть при первичной настройке комплекса. Необходимо будет ввести все параметры системы, начиная от материала изготовления труб и заканчивая расположением нагревательных элементов.
Характеризуется гибкостью настроек, возможностью делать упрощенный гидравлический расчет отопления как для новой системы теплоснабжения, так и для модернизации старой. Отличается от аналогов удобным графическим интерфейсом.
Instal-Therm HCR
Программный комплекс рассчитан для профессионального гидравлического сопротивления системы теплоснабжения. Бесплатная версия имеет множество ограничений. Область применения – проектирование отопления в больших общественных и производственных зданиях.
На практике для автономного теплоснабжения частных домов и квартир гидравлический расчет выполняется не всегда. Однако это может привести к ухудшению работы системы отопления и быстрому выходу из строя его элементов – радиаторов, труб и котла. Что избежать этого нужно своевременно рассчитать параметры системы и сравнить их с фактическими для дальнейшей оптимизации работы отопления.
Пример гидравлического расчета системы отопления:
Гидравлический расчет однотрубной и двухтрубной системы отопления с формулами, таблицами и примерами
Экономичность теплового комфорта в доме обеспечивают расчет гидравлики, её качественный монтаж и правильная эксплуатация. Главные компоненты отопительной системы — источник тепла (котёл), тепловая магистраль (трубы) и приборы теплоотдачи (радиаторы). Для эффективного теплоснабжения необходимо сохранить первоначальные параметры системы при любых нагрузках независимо от времени года.
Перед началом гидравлических расчётов выполняют:
- Сбор и обработку информации по объекту с целью:
- определения количества требуемого тепла;
- выбора схемы отопления.
- Тепловой расчёт системы отопления с обоснованием:
- объёмов тепловой энергии;
- нагрузок;
- теплопотерь.
Если водяное отопление признаётся оптимальным вариантом, выполняется гидравлический расчёт.
Для расчёта гидравлики с помощью программ требуется знакомство с теорией и законами сопротивления. Если приведенные ниже формулы покажутся вам сложными для понимания, можно выбрать параметры, которые мы предлагаем в каждой из программ.
Расчёты проводились в программе Excel. Готовый результат можно посмотреть в конце инструкции.
Что такое гидравлический расчёт
Это третий этап в процессе создания тепловой сети. Он представляет собой систему вычислений, позволяющих определить:
- диаметр и пропускную способность труб;
- местные потери давления на участках;
- требования гидравлической увязки;
- общесистемные потери давления;
- оптимальный расход воды.
Согласно полученным данным осуществляют подбор насосов .
Для сезонного жилья, при отсутствии в нём электричества, подойдёт система отопления с естественной циркуляцией теплоносителя (ссылка на обзор ).
Основная цель гидравлического расчёта — обеспечить совпадение расчётных расходов по элементам цепи с фактическими (эксплуатационными) расходами. Количество теплоносителя, поступающего в радиаторы, должно создать тепловой баланс внутри дома с учётом наружных температур и тех, что заданы пользователем для каждого помещения согласно его функциональному назначению (подвал +5, спальня +18 и т.д.).
Комплексные задачи — минимизация расходов :
- капитальных – монтаж труб оптимального диаметра и качества;
- эксплуатационных:
- зависимость энергозатрат от гидравлического сопротивления системы;
- стабильность и надёжность;
- бесшумность.
Замена централизованного режима теплоснабжения индивидуальным упрощает методику вычислений
Для автономного режима применимы 4 метода гидравлического расчёта системы отопления:
- по удельным потерям (стандартный расчёт диаметра труб);
- по длинам, приведённым к одному эквиваленту;
- по характеристикам проводимости и сопротивления;
- сопоставление динамических давлений.
Два первых метода используются при неизменном перепаде температуры в сети.
Два последних помогут распределить горячую воду по кольцам системы, если перепад температуры в сети перестанет соответствовать перепаду в стояках/ответвлениях.
Расчет гидравлики системы отопления
Нам потребуются данные теплового расчёта помещений и аксонометрической схемы.
Шаг 1: считаем диаметр труб
В качестве исходных данных используются экономически обоснованные результаты теплового расчёта:
1а. Оптимальная разница между горячим (tг) и охлаждённым( tо) теплоносителем для двухтрубной системы – 20º
1б. Расход теплоносителя G, кг/час — для однотрубной системы.
2. Оптимальная скорость движения теплоносителя – ν 0,3-0,7 м/с.
Чем меньше внутренний диаметр труб — тем выше скорость. Достигая отметки 0,6 м/с, движение воды начинает сопровождаться шумом в системе.
3. Расчётная скорость теплопотока – Q, Вт.
Выражает количество тепла (W, Дж), переданного в секунду (единицу времени τ):
Формула для расчёта скорости теплопотока
4. Расчетная плотность воды: ρ = 971,8 кг/м3 при tср = 80 °С
5. Параметры участков:
- расход мощности – 1 кВт на 30 м³
- запас тепловой мощности – 20%
- объём помещения: 18 * 2,7 = 48,6 м³
- расход мощности: 48,6 / 30 = 1,62 кВт
- запас на случай морозов: 1,62 * 20% = 0,324 кВт
- итоговая мощность: 1,62 + 0,324 = 1,944 кВт
Находим в таблице наиболее близкое значения Q:
Получаем интервал внутреннего диаметра: 8-10 мм.
Участок: 3-4.
Длина участка: 2.8 метров.
Шаг 2: вычисление местных сопротивлений
Чтобы определиться с материалом труб, необходимо сравнить показатели их гидравлического сопротивления на всех участках отопительной системы.
Факторы возникновения сопротивления:
Трубы для отопления
- в самой трубе:
- шероховатость;
- место сужения/расширения диаметра;
- поворот;
- протяжённость.
- в соединениях:
- тройник;
- шаровой кран;
- приборы балансировки.
Расчетным участком является труба постоянного диаметра с неизменным расходом воды, соответствующим проектному тепловому балансу помещения.
Для определения потерь берутся данные с учётом сопротивления в регулирующей арматуре:
- длина трубы на расчётном участке/l,м;
- диаметр трубы расчётного участка/d,мм;
- принятая скорость теплоносителя/u, м/с;
- данные регулирующей арматуры от производителя;
- справочные данные:
- коэффициент трения/λ;
- потери на трение/∆Рl, Па;
- расчетная плотность жидкости/ρ = 971,8 кг/м3;
- технические характеристики изделия:
- эквивалентная шероховатость трубы/kэ мм;
- толщина стенки трубы/dн×δ, мм.
Для материалов со сходными значениями kэ производители предоставляют значение удельных потерь давления R, Па/м по всему сортаменту труб.
Чтобы самостоятельно определить удельные потери на трение/R, Па/м, достаточно знать наружный d трубы, толщину стенки/dн×δ, мм и скорость подачи воды/W, м/с (или расход воды/G, кг/ч).
Для поиска гидросопротивления/ΔP в одном участке сети подставляем данные в формулу Дарси-Вейсбаха:
Для стальных и полимерных труб (из полипропилена. полиэтилена, стекловолокна и т.д.) коэффициент трения/ λ наиболее точно вычисляется по формуле Альтшуля:
Re — число Рейнольдса, находится по упрощённой формуле (Re=v*d/ν) или с помощью онлайн-калькулятора:
Шаг 3: гидравлическая увязка
Для балансировки перепадов давления понадобится запорная и регулирующая арматура.
- проектная нагрузка (массовый расход теплоносителя — воды или низкозамерзающей жидкости для систем отопления );
- данные производителей труб по удельному динамическому сопротивлению/А, Па/(кг/ч)²;
- технические характеристики арматуры.
- количество местных сопротивлений на участке.
Задача. выровнять гидравлические потери в сети.
В гидравлическом расчёте для каждого клапана задаются установочные характеристики (крепление, перепад давления, пропускная способность). По характеристикам сопротивления определяют коэффициенты затекания в каждый стояк и далее — в каждый прибор.
Фрагмент заводских характеристик поворотного затвора
Выберем для вычислений метод характеристик сопротивления S,Па/(кг/ч)².
Потери давления/∆P, Па прямо пропорциональны квадрату расхода воды по участку/G, кг/ч:
В физическом смысле S — это потери давления на 1 кг/ч теплоносителя:
где:
- ξпр — приведенный коэффициент для местных сопротивлений участка;
- А — динамическое удельное давление, Па/(кг/ч)².
Удельным считается динамическое давление, возникающее при массовом расходе 1 кг/ч теплоносителя в трубе заданного диаметра (информация предоставляется производителем).
Σξ — слагаемое коэффициентов по местным сопротивлениям в участке.
Приведенный коэффициент:
Он суммирует все местные сопротивления:
С величиной:
которая соответствует коэффициенту местного сопротивления с учётом потерь от гидравлического трения.
Шаг 4: определение потерь
Гидравлическое сопротивление в главном циркуляционном кольце представлено суммой потерь его элементов:
- первичного контура/ΔPIк ;
- местных систем/ΔPм;
- теплогенератора/ΔPтг;
- теплообменника/ΔPто.
Сумма величин даёт нам гидравлическое сопротивление системы/ΔPсо:
Обзор программ
Для удобства расчётов применяются любительские и профессиональные программы вычисления гидравлики.
Самой популярной является Excel.
Можно воспользоваться онлайн-расчётом в Excel Online, CombiMix 1.0, или онлайн-калькулятором гидравлического расчёта. Стационарную программу подбирают с учётом требований проекта.
Главная трудность в работе с такими программами — незнание основ гидравлики. В некоторых из них отсутствуют расшифровки формул, не рассматриваются особенности разветвления трубопроводов и вычисления сопротивлений в сложных цепях.
- HERZ C.O. 3.5 – производит расчёт по методу удельных линейных потерь давления.
- DanfossCO и OvertopCO – умеют считать системы с естественной циркуляцией.
- «Поток» (Potok) — позволяет применять метод расчёта с переменным (скользящим) перепадом температур по стоякам.
Следует уточнять параметры ввода данных по температуре — по Кельвину/по Цельсию.
Как работать в EXCEL
Использование таблиц Excel очень удобно, поскольку результаты гидравлического расчёта всегда сводятся к табличной форме. Достаточно определить последовательность действий и подготовить точные формулы.
Ввод исходных данных
Выбирается ячейка и вводится величина. Вся остальная информация просто принимается к сведению.
- значение D15 пересчитывается в литрах, так легче воспринимать величину расхода;
- ячейка D16 — добавляем форматирование по условию: «Если v не попадает в диапазон 0,25…1,5 м/с, то фон ячейки красный/шрифт белый».
Для трубопроводов с перепадом высот входа и выхода к результатам добавляется статическое давление: 1 кг/см2 на 10 м.
Оформление результатов
Авторское цветовое решение несёт функциональную нагрузку:
- Светло-бирюзовые ячейки содержат исходные данные – их можно менять.
- Бледно-зелёные ячейка — вводимые константы или данные, мало подверженные изменениям.
- Жёлтые ячейки — вспомогательные предварительные расчёты.
- Светло-жёлтые ячейки — результаты расчётов.
- Шрифты:
- синий — исходные данные;
- чёрный — промежуточные/неглавные результаты;
- красный — главные и окончательные результаты гидравлического расчёта.
Результаты в таблице Эксель
Пример от Александра Воробьёва
Пример несложного гидравлического расчёта в программе Excel для горизонтального участка трубопровода.
- длина трубы100 метров;
- ø108 мм;
- толщина стенки 4 мм.
Таблица результатов расчёта местных сопротивлений
Усложняя шаг за шагом расчёты в программе Excel, вы лучше осваиваете теорию и частично экономите на проектных работах. Благодаря грамотному подходу, ваша система отопления станет оптимальной по затратам и теплоотдаче.
Добавить комментарий Отменить ответ
Гидравлический расчет системы отопления
При проектировании систем водяного обогрева в доме принято выполнять гидравлический расчёт системы отопления. Это нужно для того, чтобы гарантировать максимальную эффективность работы при минимуме финансовых затрат и при правильном функционировании всех узлов.
Целью гидравлического расчёта является:
- Правильный выбор диаметра труб на тех участках трубопроводов, где его величина постоянна;
- Определение действующего давления в магистрали;
- Правильный выбор всех узлов системы.
От того, насколько верно выполнен гидравлический расчёт, будет зависеть температурный комфорт в доме, экономический эффект и долговечность системы отопления.
Основные положения гидравлического расчёта
Для выполнения всех необходимых вычислений, нам необходимы исходные данные:
- Результаты теплового баланса комнат;
- Температуры теплоносителя – начальная и конечная;
- Схема заданной системы отопления;
- Типы обогревающих устройств и метод их соединения с магистралью;
- Гидравлические характеристики используемого оборудования (клапанов, теплообменников и т.п.);
- Циркуляционное кольцо – это контур замкнутого типа. Он состоит из отрезков с наибольшим расходом теплонесущей жидкости от точки нагрева до наиболее удалённой точки (в двухтрубной системе) или до стояка (в однотрубной) и в противоположную сторону к источнику тепла.
Участком для расчёта принимают часть трубопроводного диаметра с неизменяющимся значением расхода теплонесущей жидкости – его определяют, исходя из теплового баланса комнаты.
Перед началом вычислений определяем тепловую нагрузку каждого отопительного агрегата. Она будет соответствовать заданной тепловой нагрузке комнаты. Если в помещении используется более одного обогревающего агрегата, распределяем тепловую нагрузку на всё их количество.
Затем назначаем главное кольцо циркуляции – контур закрытого типа из последовательных отрезков. Для вертикальной однотрубной магистрали число циркуляционных колец соответствует числу стояков. Для горизонтальной двухтрубной – числу обогревающих агрегатов. Главным назначают кольцо, идущее через стояк с наибольшей нагрузкой – для вертикальной магистрали, и идущее через нижний отопительный агрегат ветки с наибольшей нагрузкой – для горизонтальной системы.
Необходимо учитывать, что значение диаметра для трубопроводов и величина действующего давления в кольце циркуляции зависят от скорости теплонесущей жидкости. При этом обязательным условием является обеспечение бесшумности движения теплоносителя.
Для того чтобы избежать возникновения пузырьков воздуха, мы должны принять скорость теплоносителя более 0,25 м/с. Следует учитывать силу сопротивления, возникающего в контуре при движении жидкости. Вследствие этого сопротивления удельные потери давления R должны составлять не более 100-200 Па/м.
Существуют величины допустимой скорости воды, обеспечивающей бесшумность работы– она зависит от удельного местного сопротивления.
Таблица 1 показывает пример величины допустимой скорости воды при разных коэффициентах местного сопротивления.
Слишком маленькая скорость может стать причиной следующих негативных последствий:
- Увеличение расхода материала на все работы по монтажу;
- Увеличение финансовых расходов на монтаж и обслуживание системы отопления;
- Увеличение объёма теплонесущей жидкости в трубах;
- Значительный рост тепловой инерции.
Пример определения величины расхода теплонесущей жидкости
Для определения диаметра труб на заданных отрезках трубопроводов нам необходимо знать величину расхода теплоносителя. Её определяем, исходя из величины теплового потока – количества тепла, необходимого для компенсации теплопотерь.
Зная величину теплового потока Q на участке 1-2, вычисляем расход теплоносителя G:
t г и t х соответственно температуры горячего и холодного (остывшего) теплоносителя;
с = 4,2 кДж/(кг·°С) — удельная теплоемкость воды.
Пример определения диаметра труб на заданном участке
Правильный выбор диаметра труб необходим для решения следующих задач:
- оптимизация эксплуатационных затрат на нейтрализацию гидравлического сопротивления при циркуляции жидкости в контуре;
- достижение необходимого экономического эффекта при монтаже и обслуживании системы отопления.
Для обеспечения экономического эффекта выбираем наименьшую возможную величину диаметра труб, однако такую, которая не приведёт к возникновению гидравлических шумов в магистрали, если скорость теплоносителя составит 0,6-1,5 м/с, в зависимости от местного сопротивления.
Если мы выполняем гидравлический расчет двухтрубной системы отопления, принимаем разницу температур в подающем и отводящем трубопроводах равной:
∆t co = 90 – 70 = 20 °С
где 90°С – температура жидкости в подающей трубе горизонтальной системы;
70°С – температура жидкости в отводящей трубе.
Зная величину теплового потока и вычислив расход теплоносителя по приведённой выше формуле, из таблицы 2 мы можем выбрать подходящий для наших условий внутренний диаметр труб.
Определение внутреннего диаметра труб для отопления
После определения внутреннего диаметра выбираем сам тип труб – он зависит от эксплуатационных условий, от поставленных задач, от требований к прочности и долговечности. Основываясь на всех этих предпосылках, выбираем тип трубы рассчитанного диаметра, который удовлетворяет заданные условия.
Пример определения действующего давления на заданном участке магистрали
Если мы выполняем гидравлический расчет двухтрубной гравитационной системы водяного отопления, нам необходимо также знать действующее давление на заданном участке магистрали.
Оно вычисляется по формуле:
ρ o – плотность остывшей воды, кг/м3 ;
ρ г – плотность нагретой воды, кг/м3 ;
g – ускорение свободного падения, м/с2 ;
h – вертикальное расстояние от точки нагрева до точки охлаждения (от средней точки высоты котла до средней точки нагревательного прибора), м;
∆p доп – дополнительное давление, возникающее за счёт остывания воды в магистрали.
Значения плотности воды для заданных температур, а также величину дополнительного давления узнаём из справочника.
Гидравлический расчёт – задача крайне ответственная. От правильного выполнения всех вычислений зависит не только экономический эффект отопления дома, но также эффективность работы всех узлов и соответствие эксплуатационных характеристик всем нормам и требованиям.
При проектировании систем водяного обогрева в доме принято выполнять гидравлический расчёт системы отопления. Это нужно для того, чтобы гарантировать максимальную эффективность работы при минимуме финансовых затрат и при правильном функционировании…
Источники: http://strojdvor.ru/otoplenie/delaem-gidravlicheskij-raschet-sistemy-otopleniya-s-pomoshhyu-programm-gotovyx-form-excel-i-samostoyatelno/, http://teplius.ru/sistemy/raschet/gidravliki.html, http://mynovostroika.ru/gidravlicheskij_raschet_sistemy_otoplenija
Как вам статья?
|
||||||
|
||||||
|
||||||
|
||||||
Сейчас Вы — Гость на форумах «Проектант». Гости не могут писать сообщения и создавать новые темы.
Преодолейте несложную формальность — зарегистрируйтесь! И у Вас появится много больше возможностей на форумах «Проектант».
Последние сообщения на форуме «Теплоснабжение и Газоснабжение»
04 Апреля 2023 года, 17:14
28 Марта 2023 года, 18:14
23 Марта 2023 года, 14:20
20 Марта 2023 года, 14:25
20 Марта 2023 года, 12:55
17 Марта 2023 года, 00:24
14 Марта 2023 года, 12:53
02 Марта 2023 года, 15:08
27 Февраля 2023 года, 11:47
08 Февраля 2023 года, 16:14
12 Января 2023 года, 10:40
12 Января 2023 года, 10:20
08 Декабря 2022 года, 11:29
07 Декабря 2022 года, 12:14
04 Декабря 2022 года, 14:39
- Файлы
- Академическая и специальная литература
- Промышленное и гражданское строительство
- Инженерно-техническое оборудование зданий и сооружений
- Теплоснабжение
- Справочники, каталоги, таблицы
Гидравлический расчет тепловых сетей
-
Файл формата
zip - размером 11,68 КБ
-
содержит документ формата
xls
- Добавлен пользователем Maestro1984 14.01.2016 23:46
- Описание отредактировано 19.07.2019 05:51
Таблица в MS Excel.
Таблица составлена по справочнику: Николаев А.А. и др. Справочник проектировщика. Проектирование тепловых сетей.1965 Глава 9 стр. №133
Подставляем номера участков, нагрузку длины скорость получаем потери давления на участке. Суммарные потери давления на участках.
1 лист.
- Чтобы скачать этот файл зарегистрируйтесь и/или войдите на сайт используя форму сверху.
- Регистрация
- Узнайте сколько стоит уникальная работа конкретно по Вашей теме:
- Сколько стоит заказать работу?
Содержание статьи:
- Немного о теории и задачах
- Составление схемы тепловых сетей
- Применения нормативного метода
- Параметры гидравлического расчета водяной тепловой сети
- Стандартная методика и стадии процесса
- Транспортировка горячей воды
- Паровые сети отопления
- Теплоноситель для конденсатной сети
- Программы проектирования
- Инструментальная геоинформационная система
- Инструмент разработчика Microsoft Excel
- Гидравлический расчет тепловых сетей
При гидравлическом расчете тепловых сетей устанавливают общий расход магистральной горячей воды отопления, кондиционирования, вентиляции и ГВС. На базе такого расчета определяются необходимые параметры насосного оборудования, теплообменников и диаметров труб магистральной сети.
Немного о теории и задачах
Главной задачей гидравлического расчета тепловых сетей является выбор геометрических параметров трубы и типоразмеров элементов управления, чтобы обеспечить:
- качественно-количественное распределения теплоносителя на отдельные отопительные приборы;
- тепло-гидравлическую надежность и экономическую целесообразность замкнутой тепловой системы;
- оптимизацию инвестиционных и эксплуатационных расходов теплоснабжающей организации.
Вам будет интересно:ОАО «Покровский рудник» (Тыгда, Магдагачинский район, Амурская область) – месторождение коренного золота, разрабатываемое открытым способом
Гидравлический расчет тепловых сетей создает предпосылки, чтобы приборы отопления и ГВС достигали требуемой мощности при заданном температурном перепаде. Например, при Т-графике 150-70 оС, он будет равен 80 оС. Это достигается с помощью создания в каждой точке нагрева требуемого водяного напора или давление теплоносителя.
Такое обязательное условие работы тепловой системы реализуется путем грамотной настройки сетевого оборудования в соответствии с проектными условиями, монтажом оборудования на основании результатов гидравлического расчета тепловых сетей.
Этапы гидравлики сети:
Первоначальная гидравлика сети выполняется:
- с помощью расчетов;
- измерительным способом.
Вам будет интересно:Металлургический завод «Петросталь», СПб
В РФ метод расчета является преобладающим, в нем определяются все параметры элементов системы теплоснабжения в отдельно взятом расчетном районе (дом, квартал, город). Без этого сеть будет разрегулирована, а теплоноситель не будет подан на верхние этажи многоэтажных домов. Вот почему начало строительства любого объекта теплоснабжения, даже самого малого, начинается с гидравлического расчета тепловых сетей.
Составление схемы тепловых сетей
Перед расчетами гидравлики выполняют предварительную схему магистрали с указанием протяженности L в метрах и D инженерных водоводов в мм и расчетных объемов сетевой воды по проектным участкам схемы. Потери напора в системах теплоснабжения делятся на линейные, возникающие в связи с тернием носителя о стенки труб, и потерь на участках, вызванных местными конструкционными сопротивлениями, из-за наличия тройников, отводов, компенсаторов, поворотов и прочих устройств.
Пример расчета гидравлический расчет тепловых сетей:
Применения нормативного метода
Вам будет интересно:Сталь Х12Ф1: характеристики и применение
Гидравлику сетей выполняют на базе таблиц предельных часовых нагрузок тепла и схемы теплоснабжения города или района с указанием источников, расположения магистральных, внутриквартальных и внутридомовых инженерных систем, с обозначением границ балансовой принадлежности собственников сетей. Гидравлический расчет трубопроводов тепловых сетей каждого участка до вышеуказанной схемы производится отдельно.
Данная методика расчета применяется не только для сетей отопления, но также для всех трубопроводов, транспортирующих жидкие среды, в том числе газоконденсата и других химических жидких сред. Для трубопроводных систем теплоснабжения должны быть внесены изменения с учетом кинематической вязкости и плотности носителей. Это связано с тем, что эти характеристики оказывают влияние на показатель удельной потери напора в трубах, а скорость потока связана с плотностью транзитной среды.
Параметры гидравлического расчета водяной тепловой сети
Расход тепла Q и количество теплоносителя G для участков указывается в таблице максимальных показателей часового потребления тепла за зимний и летний сезоны в отдельности и соответствует сумме потребления тепла для кварталов, включенных в схему.
Пример оформления гидравлического расчета тепловой сети представлен ниже.
Поскольку расчеты зависят от многих показателей, они выполняются с использованием многочисленных таблиц, диаграмм, графиков, номограмм, итоговое значение расхода тепла Q для внутридомовых систем теплоснабжения получают путем интерполяции.
Количество жидкости, циркулирующей в отопительной сети м3/час, при расчете гидравлического режима тепловой сети определяют по формуле:
G = (D2 / 4) х V,
Где:
- G — расход носителя, м3/час;
- D – диаметр трубопровода, мм;
- V — скорость потока, м/с.
Линейные падения напора при гидравлическом расчете тепловых сетей берутся из специальных таблиц. При монтаже систем отопления в них устанавливаются десятки и сотни вспомогательных элементов: клапаны, арматура, воздушники, отводы и прочие, создающие сопротивления транзитной среде.
К причинам падения давления в трубопроводах также можно отнести внутреннее состояние материалов труб и наличие солевых отложений на них. Значения коэффициента, используемые в технических расчетах, приводятся в таблицах.
Стандартная методика и стадии процесса
Согласно методике гидравлического расчета тепловых сетей, его осуществляют в две стадии:
Первым осуществляют вычисления для основной магистрали по расходам, установленным по схеме. При этом пользуются справочными данными удельных потерь напора в сетях.
Далее, вычислив диаметры труб, рассчитывают:
Потери напора высчитывают по формулам и номограммам. Затем, имея эти данные по всей сети, рассчитывают гидромеханический режим отдельных участков от места дробления потока вплоть до конечного абонента.
Расчеты увязывают с выбором диаметров труб ответвлений. Нестыковка не более 10 %. Лишний напор в теплосети погашается на элеваторных узлах, дроссельными соплами или авторегуляторами во внутридомовых исполнительных пунктах.
Вам будет интересно:Винт самолета: название, классификация и характеристика
При имеющемся располагаемом давлении магистральной теплосети и ответвлений, вначале устанавливают приблизительные удельные сопротивления Rm, Па/м.
В расчетах используют таблицы, номограммы для гидравлического расчета трубопроводов тепловых сетей и другую справочную литературу, обязательную для всех этапов, ее легко найти в интернете и специальной литературе.
Транспортировка горячей воды
Алгоритм схемы расчета установлен нормативно-технической документацией, государственными и санитарными нормами и выполняется в строгом соответствии с установленным порядком.
В статье приведен пример расчета гидравлического расчета теплосети. Процедуру выполняют в следующей последовательности:
Система нумерации должна четко подразделять виды сетей: магистральные внутриквартальные, междомовые от теплового колодца и до границ балансовой принадлежности, при этом участок устанавливается как отрезок сети, заключенный двумя ответвлениями.
На схеме указывают все параметры гидравлического расчета магистральной тепловой сети от ЦТП:
- Q — ГДж/час;
- G м3/час;
- Д – мм;
- V — м/с;
- L — длина участка, м.
Расчет диаметра устанавливается по формуле.
Паровые сети отопления
Эта тепловая сеть предназначена для системы теплоснабжения с помощью теплоносителя в виде пара.
Отличия этой схемы от предыдущей вызваны температурными показателями и давлением среды. Конструктивно эти сети отличаются более короткой протяженностью, в крупных городах к ним обычно относятся только магистральные, т. е. от источника до центрального теплового пункта. Они не применяются в качестве внутрирайонных и внутридомовых сетей, разве что на небольших промышленных площадках.
Принципиальная схема выполняется в той же очередности, что и с водяным теплоносителем. На участках указываются все параметры сети для каждого ответвления, данные берутся из сводной таблицы предельных часовых расходов тепла, с поэтапным суммированием расходных показателей от конечного потребителя к источнику.
Геометрические размеры трубопроводов устанавливаются по результатам гидравлического расчета, который выполняется в соответствии с государственными нормами и правилами, а в частности СНиП. Определяющей величиной является потеря давления газоконденсатной среды от источника теплоснабжения к потребителю. При большей потере давления и меньшем расстоянии между ними скорость движения будут большой, а диаметр паропровода потребуется меньший. Выбор диаметра осуществляют по специальным таблицам, исходя из параметров теплоносителя. После чего данные вносят в сводные таблицы.
Теплоноситель для конденсатной сети
Расчет для такой тепловой сети значительно отличается от предыдущих, поскольку конденсат одновременно пребывает в двух состояниях — в паре и в воде. Это соотношение меняется по мере продвижения к потребителю, т. е пар становится все более влажным и в конечном итоге полностью превращается в жидкость. Поэтому расчеты для труб каждой их этих сред имеют отличия и учитываются уже другими нормами, в частности СНиП 2.04.02-84.
Порядок расчета конденсатопроводов:
Конструкционные особенности данного вида сети существенно влияют на качество измерений, поскольку трубопроводы для этого типа теплоносителя изготавливаются из черной стали, участки сети после сетевых насосов из-за подсосов воздуха быстро коррозируют от избытка кислорода, после чего образуется конденсат низкого качества с окисями железа, который вызывает коррозию металла. Поэтому на этом участке рекомендовано к установке трубопроводов из нержавеющих сталей. Хотя окончательный выбор будет сделан после завершения технико-экономического обоснования тепловой сети.
Программы проектирования
Потери энергии из-за клапанов, фитингов и изгибов вызываются локализованными нарушениями потока. Потеря энергии происходит по конечному и не обязательно короткому участку трубопровода, однако для гидравлических расчетов принято считать, что весь объем этой потери учитывается в месте расположения устройства. Для трубопроводных систем с относительно длинными трубами часто бывает, что итоговые потери будут незначительными по отношению к общей потере давления в трубе.
Потери трубопроводов измеряются с использованием реальных экспериментальных данных и затем анализируются для определения локального коэффициента потерь, который может быть использован для расчета потерь при подгонке, поскольку он изменяется скоростью прохождения жидкости через это устройство.
Программные продукты Pipe Flow Software позволяют легко определять фитинговые потери и другие потери при расчете перепада давления, поскольку они поставляются с предварительно загруженной базой данных арматуры, которая содержит множество стандартных факторов для клапанов и фитингов различного размера. Внутри трубопроводной системы часто используется насос, который добавляет дополнительное давление для преодоления потерь при трении и других сопротивлениях.
Производительность насоса определяется по кривой. Напор, создаваемый насосом, изменяется в зависимости от скорости потока, поиск рабочей точки на кривой производительности насоса не всегда является легкой задачей.
Если использовать программу для гидравлического расчета тепловых сетей Pipe Flow Expert, то довольно просто можно найти точную рабочую точку на кривой насоса, с гарантией того, что потоки и давление будут сбалансированы по всей системе, чтобы принять точное решение по выбору конструкции трубопроводов.
Расчет онлайн производится с целью избрания оптимального диаметра, обеспечивающего наилучшие параметры работы, низкие показатели потерь напора и высокие скорости движения сред, что обеспечит хорошие технико-экономические показатели тепловых сетей в целом.
Он минимизирует усилия и обеспечивает более высокую точность. В него включены все необходимые справочные таблицы и номограммы. Так, потери на одном метре труб приняты в размере 81 — 251 Па/м (8,1- 25,1 мм вод. ст.), что зависит от материала труб. Скорость воды в системе зависит от диаметра установленных труб и выбирается в конкретном диапазоне. Наибольшая скорость воды для тепловых сетей составляет 1,5 м/с. Расчетом предлагаются граничные значения скорости воды в трубопроводах с внутренним диаметром:
Инструментальная геоинформационная система
ГИС Zulu — геоинформационная программа гидравлического расчета тепловых сетей. Компания специализируется на исследованиях ГИС-приложений, которым необходима визуализация 3D-геоданных в векториальном и растровом варианте, топологическом изучении и их взаимосвязи со смысловыми базами данных. Zulu разрешает создавать разные планы и рабочие схемы, включая тепловые и паровые сети с помощью топологии, может выполнять работу с растрами и приобретать данные из разных баз, например BDE или ADO.
Вам будет интересно:Промышленная установка обратного осмоса: правила, инструкция по установке, фильтры и принцип работы
Вычисления проводят в тесной интеграции с геоинформационной системой, они исполнены в варианте расширенного модуля. Сеть элементарно и живо вносится в ГИС мышью либо по данным координатам. После чего незамедлительно создается расчетная схема. После устанавливаются параметры схем, и подтверждается начало процесса. Вычисления применяются для тупиковых и кольцевых теплосетей, включая сетевые насосные установки и дросселирующие приспособления, запитанных от одного либо многих источников. Расчет отопления имеет возможность выполняться с учетом утечек из распределительных сетей и тепловых потерь в трубах отопления.
Для того чтобы установить специальную программу на ПК, скачивают в Интернете через торрент «Гидравлический расчет тепловых сетей 3.5.2».
Структура этапов определения:
Инструмент разработчика Microsoft Excel
Microsoft Excel для гидравлического расчета в тепловых сетях — самый доступный для пользователей инструмент. Его всеобъемлющий табличный редактор может разрешить много вычислительных задач. Впрочем, при выполнении расчетов тепловых систем требуется выполнения специальных требований. К таковым можно перечислить:
- нахождение предшествующего участка в направлении движения среды;
- расчет диаметра трубы по данному условному показателю и обратное вычисление;
- установление коэффициента поправки к размеру удельных потерь напора по данным и эквивалентной шероховатости материала трубы;
- вычисление плотности среды по ее температуре.
Конечно, применение Microsoft Excel для гидравлического расчета в тепловых сетях никак не дает возможность абсолютно упростить ход вычислений, который изначально создает сравнительно большие трудозатраты.
ПО для гидромеханического расчета сетей или пакет ГРТС — компьютерное приложение, которое исполняет гидромеханические подсчеты многотрубных сетей, включая тупиковую конфигурацию. Платформа ГРТС содержит языковый функционал формул, позволяющий установить необходимые характеристики расчета и подобрать формулы для точности их определения. Вследствие применения этого функционала, расчетчик имеет возможность независимо найти технологию вычислений и установить требуемую сложность.
Имеется две модификации приложения ГРТС: 1.0 и 1.1. По окончанию пользователь получит следующие результаты:
- расчет, в котором тщательно расписана методология вычислений;
- отчет в табличном виде;
- передачу вычислительных баз данных в Microsoft Excel;
- пьезометрический график;
- график температуры теплоносителя.
Приложение ГРТС 1.1 считается наиболее современной модификацией и поддерживает новейшие стандарты:
Гидравлический расчет тепловых сетей
Пример расчета представлен ниже.
Минимальные базовые параметры, необходимые для проектирования системы трубопроводов, включают:
Эти основные параметры необходимы для проектирования системы трубопроводов. Предполагая стационарный поток, существует ряд уравнений, основанных на общем энергетическом уравнении, которое может быть использовано для проектирования системы трубопроводов.
Переменные, связанные с жидкостью, паром или двухфазным потоком конденсата, влияют на результат расчета. Это приводит к выводу и разработке уравнений, применимых к конкретной жидкости. Хотя системы трубопроводов и их конструкция могут стать сложными, подавляющее большинство проблем проектирования, с которыми сталкивается инженер, могут быть решены стандартными уравнениями потока Бернулли.
Основным уравнением, разработанным для представления стационарного потока жидкости, является уравнение Бернулли, которое предполагает, что полная механическая энергия сохраняется для устойчивого, несжимаемого, невязкого изотермического потока без передачи тепла. Эти ограничительные условия действительно могут быть репрезентативными для многих физических систем.
Потери напора, связанные с клапанами и фитингами, также могут быть рассчитаны путем учета эквивалентных «длин» отрезков труб для каждого клапана и фитинга. Другими словами, расчетная потеря напора, вызванная жидкостью, проходящей через задвижку, выражается в виде дополнительной длины трубы, которая добавляется к фактической длине трубы при расчете перепада давления.
Все эквивалентные длины, вызванные клапанами и фитингами в сегменте трубы, будут добавлены вместе, чтобы вычислить падение давления для расчетного сегмента трубы.
Подводя итог, можно сказать, что целью гидравлического расчета тепловой сети в конечной точке является справедливое распределение тепловых нагрузок между абонентами тепловых систем. Тут действует простой принцип: каждому радиатору — по необходимости, то есть больший радиатор, который предназначен для обеспечения большего объема нагрева помещения, должен получать больший поток теплоносителя. Обеспечить этот принцип может правильно выполненный расчет сети.