Free group word problem

It cannot. Consider the free group with generator $a$, and let $b$ be its inverse, and let’s say you want to accept every string that is equivalent to $ab$. This is equivalent to the language ${w in {a,b}^* ~|~ n_a(w) = n_b(w) }$. That is, the set of strings with the same number of $a$’s and $b$’s.

Let’s use the Pumping Lemma to prove that this language isn’t regular. Let $p$ be the pumping length. The string $a^pb^p$ is in the language, and we can break it into $xyz$, where $|y| geq 1$, $|xy| leq p$. In other words, $y$ consists only of $a$’s, so $y = a^{|y|}$. If the pumping lemma were true for this language, then $xy^iz$ would also be in the language, for all $i in mathbb{N}$. This isn’t the case — for example, $xy^2z$ isn’t in the language. So, this language ain’t regular.

So, no, a DFA can’t solve the word problem for free groups. It can’t even recognize the unit element.

Versus
Set-Phrases.

Phraseological
Units, Idioms,

Word-Equivalents

Attempts
have been made to approach the problem of phraseology in different
ways. Up till
now, however, there is a certain divergence of opinion as to the
essential feature of phraseological units as distinguished from other
word-groups and the nature of phrases that can be properly termed
phraseological
units.

The
complexity of the problem may be largely accounted for by the fact
that the border-line between free or variable word-groups and
phraseological units is not clearly defined. The so-called free
word-groups are only relatively free as collocability of their
member-words is fundamentally delimited by their lexical and
grammatical valency which makes at least some of them very close to
set-phrases. Phraseological units are comparatively stable and
semantically inseparable. Between the extremes of complete motivation
and variability of member-words on the one hand and lack of
motivation combined with complete stability of the lexical components
and grammatical structure on the other hand there are innumerable
border-line ca’ses.

• However,
the existing terms,1
e.g. set-phrases, idioms, word-equivalents, reflect to a certain
extent the main debatable issues
of
phraseology which centre on the divergent views concerning the nature
and essential features of phraseological units as distinguished from
the so-called free word-groups. The term set-phrase
implies that the basic criterion of differentiation is stability of
the lexical components and grammatical structure of word-groups. The
term idioms
generally
implies
that the essential feature of the linguistic units under
consideration is idiomaticity or lack cf motivation. This term
habitually used by English and American linguists is very often
treated as synonymous with the term phraseological
unit
universally accepted in our country.2
The
term word-equivalent
stresses not only the semantic but also the functional inseparability
of certain word-groups and their aptness to function in speech as
single words.

Thus
differences in terminology reflect certain differences in the main
criteria used to distinguish between free word-groups and a specific
type of linguistic units generally known
as
phraseology. These criteria and the ensuing classification are
briefly discussed below.

§ 12. Criteria of Stability

and
Lack of Motivation

(Idiomaticity)

Phraseological
units are habitually defined as non-motivated word-groups that cannot
be freely made up in speech but are reproduced as ready-made units.
This definition proceeds from the assumption that the essential
features of

1Cf.,
e. g., the interpretation of these terms in the textbooks on
lexicology by I. V. Arnold, A. I. Smirnitsky and in A. V. Kunin’s
Англо-русский
фразеологический словарь. М., 1967.

2 For
a different interpretation of the term idiom
see: А.
И. Смирницкий.
Лексикология
английского языка. М., 1956,

74

phraseological
units are stability of the lexical components and lack of
motivation.1
It is consequently assumed that unlike components of free word-groups
which
may
vary according to the needs of communication, member-words of
phraseological units are always reproduced as single unchangeable
collocations.

Thus,
for example, the constituent red
in
the free word-group red
flower
may,
if necessary, be substituted for by any other adjective denoting
colour (blue,
white,
etc.),
without essentially changing the denotational meaning of the
word-group under discussion (a flower of a certain colour). In the
phraseological unit red
tape
(bureaucratic
“methods) no such substitution is possible, as a change of the
adjective would involve a complete change in the meaning of the whole
group. A blue
(black, white,
etc.)
tape
would
mean ‘a tape of a certain colour’. It follows that the
phraseological unit red
tape
is
semantically non-motivated, i.e. its meaning cannot be deduced from
the meaning of its components and that it exists as a ready-made
linguistic unit which does not allow of any variability of its
lexical components.

It
is also argued that non-variability of the phraseological unit is not
confined to its lexical components. Grammatical structure of
phraseological units is to a certain extent also stable. Thus, though
the structural formula of the word-groups red
flower
and
red
tape
is
identical (A
+ +N),
the
noun flower may be used in the plural (red
flowers),
whereas
no such change is possible in the phraseological unit red
tape; red tapes
would
then denote ‘tapes of red colour’ but not ‘bureaucratic
methods’. This is also true of other types of phraseological units,
e.g. what
will Mrs. Grundy
say?,
where the verbal component is invariably reproduced in the same
grammatical form.

This article is about algorithmic word problems in mathematics and computer science. For other uses, see Word problem.

In computational mathematics, a word problem is the problem of deciding whether two given expressions are equivalent with respect to a set of rewriting identities. A prototypical example is the word problem for groups, but there are many other instances as well. A deep result of computational theory is that answering this question is in many important cases undecidable.[1]

Background and motivationEdit

In computer algebra one often wishes to encode mathematical expressions using an expression tree. But there are often multiple equivalent expression trees. The question naturally arises of whether there is an algorithm which, given as input two expressions, decides whether they represent the same element. Such an algorithm is called a solution to the word problem. For example, imagine that   are symbols representing real numbers — then a relevant solution to the word problem would, given the input  , produce the output EQUAL, and similarly produce NOT_EQUAL from  .

The most direct solution to a word problem takes the form of a normal form theorem and algorithm which maps every element in an equivalence class of expressions to a single encoding known as the normal form — the word problem is then solved by comparing these normal forms via syntactic equality.[1] For example one might decide that   is the normal form of  ,  , and  , and devise a transformation system to rewrite those expressions to that form, in the process proving that all equivalent expressions will be rewritten to the same normal form.[2] But not all solutions to the word problem use a normal form theorem — there are algebraic properties which indirectly imply the existence of an algorithm.[1]

While the word problem asks whether two terms containing constants are equal, a proper extension of the word problem known as the unification problem asks whether two terms   containing variables have instances that are equal, or in other words whether the equation   has any solutions. As a common example,   is a word problem in the integer group ℤ,
while   is a unification problem in the same group; since the former terms happen to be equal in ℤ, the latter problem has the substitution   as a solution.

HistoryEdit

One of the most deeply studied cases of the word problem is in the theory of semigroups and groups. A timeline of papers relevant to the Novikov-Boone theorem is as follows:[3][4]

  • 1910: Axel Thue poses a general problem of term rewriting on tree-like structures. He states «A solution of this problem in the most general case may perhaps be connected with unsurmountable difficulties».[5][6]
  • 1911: Max Dehn poses the word problem for finitely presented groups.[7]
  • 1912: Dehn presents Dehn’s algorithm, and proves it solves the word problem for the fundamental groups of closed orientable two-dimensional manifolds of genus greater than or equal to 2.[8] Subsequent authors have greatly extended it to a wide range of group-theoretic decision problems.[9][10][11]
  • 1914: Axel Thue poses the word problem for finitely presented semigroups.[12]
  • 1930 – 1938: The Church-Turing thesis emerges, defining formal notions of computability and undecidability.[13]
  • 1947: Emil Post and Andrey Markov Jr. independently construct finitely presented semigroups with unsolvable word problem.[14][15] Post’s construction is built on Turing machines while Markov’s uses Post’s normal systems.[3]
  • 1950: Alan Turing shows the word problem for cancellation semigroups is unsolvable,[16] by furthering Post’s construction. The proof is difficult to follow but marks a turning point in the word problem for groups.[3]: 342 
  • 1955: Pyotr Novikov gives the first published proof that the word problem for groups is unsolvable, using Turing’s cancellation semigroup result.[17][3]: 354  The proof contains a «Principal Lemma» equivalent to Britton’s Lemma.[3]: 355 
  • 1954 – 1957: William Boone independently shows the word problem for groups is unsolvable, using Post’s semigroup construction.[18][19]
  • 1957 – 1958: John Britton gives another proof that the word problem for groups is unsolvable, based on Turing’s cancellation semigroups result and some of Britton’s earlier work.[20] An early version of Britton’s Lemma appears.[3]: 355 
  • 1958 – 1959: Boone publishes a simplified version of his construction.[21][22]
  • 1961: Graham Higman characterises the subgroups of finitely presented groups with Higman’s embedding theorem,[23] connecting recursion theory with group theory in an unexpected way and giving a very different proof of the unsolvability of the word problem.[3]
  • 1961 – 1963: Britton presents a greatly simplified version of Boone’s 1959 proof that the word problem for groups is unsolvable.[24] It uses a group-theoretic approach, in particular Britton’s Lemma. This proof has been used in a graduate course, although more modern and condensed proofs exist.[25]
  • 1977: Gennady Makanin proves that the existential theory of equations over free monoids is solvable.[26]

The word problem for semi-Thue systemsEdit

The accessibility problem for string rewriting systems (semi-Thue systems or semigroups) can be stated as follows: Given a semi-Thue system   and two words (strings)  , can   be transformed into   by applying rules from  ? Note that the rewriting here is one-way. The word problem is the accessibility problem for symmetric rewrite relations, i.e. Thue systems.[27]

The accessibility and word problems are undecidable, i.e. there is no general algorithm for solving this problem.[28] This even holds if we limit the systems to have finite presentations, i.e. a finite set of symbols and a finite set of relations on those symbols.[27] Even the word problem restricted to ground terms is not decidable for certain finitely presented semigroups.[29][30]

The word problem for groupsEdit

Given a presentation   for a group G, the word problem is the algorithmic problem of deciding, given as input two words in S, whether they represent the same element of G. The word problem is one of three algorithmic problems for groups proposed by Max Dehn in 1911. It was shown by Pyotr Novikov in 1955 that there exists a finitely presented group G such that the word problem for G is undecidable.[31]

The word problem in combinatorial calculus and lambda calculusEdit

One of the earliest proofs that a word problem is undecidable was for combinatory logic: when are two strings of combinators equivalent? Because combinators encode all possible Turing machines, and the equivalence of two Turing machines is undecidable, it follows that the equivalence of two strings of combinators is undecidable. Alonzo Church observed this in 1936.[32]

Likewise, one has essentially the same problem in (untyped) lambda calculus: given two distinct lambda expressions, there is no algorithm which can discern whether they are equivalent or not; equivalence is undecidable. For several typed variants of the lambda calculus, equivalence is decidable by comparison of normal forms.

The word problem for abstract rewriting systemsEdit

Solving the word problem: deciding if   usually requires heuristic search (red, green), while deciding   is straightforward (grey).

The word problem for an abstract rewriting system (ARS) is quite succinct: given objects x and y are they equivalent under  ?[29] The word problem for an ARS is undecidable in general. However, there is a computable solution for the word problem in the specific case where every object reduces to a unique normal form in a finite number of steps (i.e. the system is convergent): two objects are equivalent under   if and only if they reduce to the same normal form.[33]
The Knuth-Bendix completion algorithm can be used to transform a set of equations into a convergent term rewriting system.

The word problem in universal algebraEdit

In universal algebra one studies algebraic structures consisting of a generating set A, a collection of operations on A of finite arity, and a finite set of identities that these operations must satisfy. The word problem for an algebra is then to determine, given two expressions (words) involving the generators and operations, whether they represent the same element of the algebra modulo the identities. The word problems for groups and semigroups can be phrased as word problems for algebras.[1]

The word problem on free Heyting algebras is difficult.[34]
The only known results are that the free Heyting algebra on one generator is infinite, and that the free complete Heyting algebra on one generator exists (and has one more element than the free Heyting algebra).

The word problem for free latticesEdit

Example computation of xz ~ xz∧(xy)

xz∧(xy) ~ xz
by 5. since xz ~ xz
by 1. since xz = xz
 
 
xz ~ xz∧(xy)
by 7. since xz ~ xz and xz ~ xy
by 1. since xz = xz by 6. since xz ~ x
by 5. since x ~ x
by 1. since x = x

The word problem on free lattices and more generally free bounded lattices has a decidable solution. Bounded lattices are algebraic structures with the two binary operations ∨ and ∧ and the two constants (nullary operations) 0 and 1. The set of all well-formed expressions that can be formulated using these operations on elements from a given set of generators X will be called W(X). This set of words contains many expressions that turn out to denote equal values in every lattice. For example, if a is some element of X, then a ∨ 1 = 1 and a ∧ 1 = a. The word problem for free bounded lattices is the problem of determining which of these elements of W(X) denote the same element in the free bounded lattice FX, and hence in every bounded lattice.

The word problem may be resolved as follows. A relation ≤~ on W(X) may be defined inductively by setting w~ v if and only if one of the following holds:

  1.   w = v (this can be restricted to the case where w and v are elements of X),
  2.   w = 0,
  3.   v = 1,
  4.   w = w1w2 and both w1~ v and w2~ v hold,
  5.   w = w1w2 and either w1~ v or w2~ v holds,
  6.   v = v1v2 and either w~ v1 or w~ v2 holds,
  7.   v = v1v2 and both w~ v1 and w~ v2 hold.

This defines a preorder ≤~ on W(X), so an equivalence relation can be defined by w ~ v when w~ v and v~ w. One may then show that the partially ordered quotient set W(X)/~ is the free bounded lattice FX.[35][36] The equivalence classes of W(X)/~ are the sets of all words w and v with w~ v and v~ w. Two well-formed words v and w in W(X) denote the same value in every bounded lattice if and only if w~ v and v~ w; the latter conditions can be effectively decided using the above inductive definition. The table shows an example computation to show that the words xz and xz∧(xy) denote the same value in every bounded lattice. The case of lattices that are not bounded is treated similarly, omitting rules 2 and 3 in the above construction of ≤~.

Example: A term rewriting system to decide the word problem in the free groupEdit

Bläsius and Bürckert
[37]
demonstrate the Knuth–Bendix algorithm on an axiom set for groups.
The algorithm yields a confluent and noetherian term rewrite system that transforms every term into a unique normal form.[38]
The rewrite rules are numbered incontiguous since some rules became redundant and were deleted during the algorithm run.
The equality of two terms follows from the axioms if and only if both terms are transformed into literally the same normal form term. For example, the terms

 , and
 

share the same normal form, viz.  ; therefore both terms are equal in every group.
As another example, the term   and   has the normal form   and  , respectively. Since the normal forms are literally different, the original terms cannot be equal in every group. In fact, they are usually different in non-abelian groups.

Group axioms used in Knuth–Bendix completion

A1    
A2    
A3        
Term rewrite system obtained from Knuth–Bendix completion

R1    
R2    
R3    
R4    
R8    
R11    
R12    
R13    
R14    
R17        

See alsoEdit

  • Conjugacy problem
  • Group isomorphism problem

ReferencesEdit

  1. ^ a b c d Evans, Trevor (1978). «Word problems». Bulletin of the American Mathematical Society. 84 (5): 790. doi:10.1090/S0002-9904-1978-14516-9.
  2. ^ Cohen, Joel S. (2002). Computer algebra and symbolic computation: elementary algorithms. Natick, Mass.: A K Peters. pp. 90–92. ISBN 1568811586.
  3. ^ a b c d e f g Miller, Charles F. (2014). Downey, Rod (ed.). «Turing machines to word problems» (PDF). Turing’s Legacy: 330. doi:10.1017/CBO9781107338579.010. hdl:11343/51723. ISBN 9781107338579. Retrieved 6 December 2021.
  4. ^ Stillwell, John (1982). «The word problem and the isomorphism problem for groups». Bulletin of the American Mathematical Society. 6 (1): 33–56. doi:10.1090/S0273-0979-1982-14963-1.
  5. ^ Müller-Stach, Stefan (12 September 2021). «Max Dehn, Axel Thue, and the Undecidable». p. 13. arXiv:1703.09750 [math.HO].
  6. ^ Steinby, Magnus; Thomas, Wolfgang (2000). «Trees and term rewriting in 1910: on a paper by Axel Thue». Bulletin of the European Association for Theoretical Computer Science. 72: 256–269. CiteSeerX 10.1.1.32.8993. MR 1798015.
  7. ^ Dehn, Max (1911). «Über unendliche diskontinuierliche Gruppen». Mathematische Annalen. 71 (1): 116–144. doi:10.1007/BF01456932. ISSN 0025-5831. MR 1511645. S2CID 123478582.
  8. ^ Dehn, Max (1912). «Transformation der Kurven auf zweiseitigen Flächen». Mathematische Annalen. 72 (3): 413–421. doi:10.1007/BF01456725. ISSN 0025-5831. MR 1511705. S2CID 122988176.
  9. ^ Greendlinger, Martin (June 1959). «Dehn’s algorithm for the word problem». Communications on Pure and Applied Mathematics. 13 (1): 67–83. doi:10.1002/cpa.3160130108.
  10. ^ Lyndon, Roger C. (September 1966). «On Dehn’s algorithm». Mathematische Annalen. 166 (3): 208–228. doi:10.1007/BF01361168. hdl:2027.42/46211. S2CID 36469569.
  11. ^ Schupp, Paul E. (June 1968). «On Dehn’s algorithm and the conjugacy problem». Mathematische Annalen. 178 (2): 119–130. doi:10.1007/BF01350654. S2CID 120429853.
  12. ^ Power, James F. (27 August 2013). «Thue’s 1914 paper: a translation». arXiv:1308.5858 [cs.FL].
  13. ^ See History of the Church–Turing thesis. The dates are based on On Formally Undecidable Propositions of Principia Mathematica and Related Systems and Systems of Logic Based on Ordinals.
  14. ^ Post, Emil L. (March 1947). «Recursive Unsolvability of a problem of Thue» (PDF). Journal of Symbolic Logic. 12 (1): 1–11. doi:10.2307/2267170. JSTOR 2267170. S2CID 30320278. Retrieved 6 December 2021.
  15. ^ Mostowski, Andrzej (September 1951). «A. Markov. Névožmoinost’ nékotoryh algoritmov v téorii associativnyh sistém (Impossibility of certain algorithms in the theory of associative systems). Doklady Akadémii Nauk SSSR, vol. 77 (1951), pp. 19–20». Journal of Symbolic Logic. 16 (3): 215. doi:10.2307/2266407. JSTOR 2266407.
  16. ^ Turing, A. M. (September 1950). «The Word Problem in Semi-Groups With Cancellation». The Annals of Mathematics. 52 (2): 491–505. doi:10.2307/1969481. JSTOR 1969481.
  17. ^ Novikov, P. S. (1955). «On the algorithmic unsolvability of the word problem in group theory». Proceedings of the Steklov Institute of Mathematics (in Russian). 44: 1–143. Zbl 0068.01301.
  18. ^ Boone, William W. (1954). «Certain Simple, Unsolvable Problems of Group Theory. I». Indagationes Mathematicae (Proceedings). 57: 231–237. doi:10.1016/S1385-7258(54)50033-8.
  19. ^ Boone, William W. (1957). «Certain Simple, Unsolvable Problems of Group Theory. VI». Indagationes Mathematicae (Proceedings). 60: 227–232. doi:10.1016/S1385-7258(57)50030-9.
  20. ^ Britton, J. L. (October 1958). «The Word Problem for Groups». Proceedings of the London Mathematical Society. s3-8 (4): 493–506. doi:10.1112/plms/s3-8.4.493.
  21. ^ Boone, William W. (1958). «The word problem» (PDF). Proceedings of the National Academy of Sciences. 44 (10): 1061–1065. Bibcode:1958PNAS…44.1061B. doi:10.1073/pnas.44.10.1061. PMC 528693. PMID 16590307. Zbl 0086.24701.
  22. ^ Boone, William W. (September 1959). «The Word Problem». The Annals of Mathematics. 70 (2): 207–265. doi:10.2307/1970103. JSTOR 1970103.
  23. ^ Higman, G. (8 August 1961). «Subgroups of finitely presented groups». Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. 262 (1311): 455–475. Bibcode:1961RSPSA.262..455H. doi:10.1098/rspa.1961.0132. S2CID 120100270.
  24. ^ Britton, John L. (January 1963). «The Word Problem». The Annals of Mathematics. 77 (1): 16–32. doi:10.2307/1970200. JSTOR 1970200.
  25. ^ Simpson, Stephen G. (18 May 2005). «A Slick Proof of the Unsolvability of the Word Problem for Finitely Presented Groups» (PDF). Retrieved 6 December 2021.
  26. ^ «Subgroups of finitely presented groups». Mathematics of the USSR-Sbornik. 103 (145): 147–236. 13 February 1977. doi:10.1070/SM1977v032n02ABEH002376.
  27. ^ a b Matiyasevich, Yuri; Sénizergues, Géraud (January 2005). «Decision problems for semi-Thue systems with a few rules». Theoretical Computer Science. 330 (1): 145–169. doi:10.1016/j.tcs.2004.09.016.
  28. ^ Davis, Martin (1978). «What is a Computation?» (PDF). Mathematics Today Twelve Informal Essays: 257–259. doi:10.1007/978-1-4613-9435-8_10. ISBN 978-1-4613-9437-2. Retrieved 5 December 2021.
  29. ^ a b Baader, Franz; Nipkow, Tobias (5 August 1999). Term Rewriting and All That. Cambridge University Press. pp. 59–60. ISBN 978-0-521-77920-3.
  30. ^
    • Matiyasevich, Yu. V. (1967). «Простые примеры неразрешимых ассоциативных исчислений» [Simple examples of undecidable associative calculi]. Doklady Akademii Nauk SSSR (in Russian). 173 (6): 1264–1266. ISSN 0869-5652.
    • Matiyasevich, Yu. V. (1967). «Simple examples of undecidable associative calculi». Soviet Mathematics. 8 (2): 555–557. ISSN 0197-6788.

  31. ^ Novikov, P. S. (1955). «On the algorithmic unsolvability of the word problem in group theory». Trudy Mat. Inst. Steklov (in Russian). 44: 1–143.
  32. ^ Statman, Rick (2000). «On the Word Problem for Combinators». Rewriting Techniques and Applications. Lecture Notes in Computer Science. 1833: 203–213. doi:10.1007/10721975_14. ISBN 978-3-540-67778-9.
  33. ^ Beke, Tibor (May 2011). «Categorification, term rewriting and the Knuth–Bendix procedure». Journal of Pure and Applied Algebra. 215 (5): 730. doi:10.1016/j.jpaa.2010.06.019.
  34. ^ Peter T. Johnstone, Stone Spaces, (1982) Cambridge University Press, Cambridge, ISBN 0-521-23893-5. (See chapter 1, paragraph 4.11)
  35. ^ Whitman, Philip M. (January 1941). «Free Lattices». The Annals of Mathematics. 42 (1): 325–329. doi:10.2307/1969001. JSTOR 1969001.
  36. ^ Whitman, Philip M. (1942). «Free Lattices II». Annals of Mathematics. 43 (1): 104–115. doi:10.2307/1968883. JSTOR 1968883.
  37. ^ K. H. Bläsius and H.-J. Bürckert, ed. (1992). Deduktionsssysteme. Oldenbourg. p. 291.; here: p.126, 134
  38. ^ Apply rules in any order to a term, as long as possible; the result doesn’t depend on the order; it is the term’s normal form.

Concerning question 1: for free Burnside groups of odd exponent $ngeq 665$ the decidability was shown by S.I.Adian. Lysionok proved the same in the case of even exponent
$n=16kgeq 8000$. The corresponding deciding procedure is just Dehn’s algorithm.

It will be interesting to know how to solve the word problem for groups $B(m,n)$ when $n=2k$, where $kgeqslant 665$ and odd. These groups are infinite (it follows from the cited result of Adian), but it seems that the decidability of the word problem for these groups is an open question.

As to the question 2:

The pure existence of non-finitely presented group with undecidable w.p. easily follows from the result of S.I.Adian who proved that there are continuum non-isomorphic periodic groups with fixed number of generators $mgeqslant 2$ satisfying the periodic law $X^n=1$ if $n$ is odd and $n geq 665$.
One should mention, that the number of «additional relations» (besides all periodic) is not necessarily finite.

Later M.Sapir constructed an example of periodic group with finite number of additional relations. The paper is «On the word problem in periodic group varieties», IJAC, 1991, V.1, No.1.

Like this post? Please share to your friends:
  • Free excel templates for projects
  • Free excel books pdf
  • Free excel add on
  • Free downloading microsoft excel 2010
  • Free download word text