Рассмотрим Сложный процент (Compound Interest) – начисление процентов как на основную сумму долга, так и на начисленные ранее проценты.
Немного теории
Владелец капитала, предоставляя его на определенное время в долг, рассчитывает на получение дохода от этой сделки. Размер ожидаемого дохода зависит от трех факторов: от величины капитала, предоставляемого в кредит, от срока, на который предоставлен кредит, и от величины ссудного процента или иначе процентной ставки.
Существуют различные методы начисления процентов. Основное их различие сводится к определению исходной суммы (базы), на которую начисляются проценты. Эта сумма может оставаться постоянной в течение всего периода или меняться. В зависимости от этого различают метод начисления по
простым
и сложным процентам.
При использовании сложных ставок процентов процентные деньги, начисленные после каждого периода начисления, присоединяются к сумме долга. Таким образом, база для начисления сложных процентов в отличие от использования
простых процентов
изменяется в каждом периоде начисления. Присоединение начисленных процентов к сумме, которая послужила базой для их начисления, называется капитализацией процентов. Иногда этот метод называют «процент на процент».
В
файле примера
приведен график для сравнения наращенной суммы с использованием простых и сложных процентов.
В этой статье рассмотрим начисление по сложным процентам в случае постоянной ставки. О переменной ставке в случае сложных процентов
читайте здесь
.
Начисление процентов 1 раз в год
Пусть первоначальная сумма вклада равна Р, тогда через один год сумма вклада с присоединенными процентами составит =Р*(1+i), через 2 года =P*(1+i)*(1+i)=P*(1+i)^2, через n лет – P*(1+i)^n. Таким образом, получим формулу наращения для сложных процентов: S = Р*(1+i)^n где S — наращенная сумма, i — годовая ставка, n — срок ссуды в годах, (1+ i)^n — множитель наращения.
Начисление процентов несколько раз в год
В рассмотренном выше случае капитализация производится 1 раз в год. При капитализации m раз в год формула наращения для сложных процентов выглядит так: S = Р*(1+i/m)^(n*m) i/m – это ставка за период. На практике обычно используют дискретные проценты (проценты, начисляемые за одинаковые интервалы времени: год (m=1), полугодие (m=2), квартал (m=4), месяц (m=12)).
В MS EXCEL вычислить наращенную сумму к концу срока вклада по сложным процентам можно разными способами.
Рассмотрим задачу
: Пусть первоначальная сумма вклада равна 20т.р., годовая ставка = 15%, срок вклада 12 мес. Капитализация производится ежемесячно в конце периода.
Способ 1. Вычисление с помощью таблицы с формулами
Это самый трудоемкий способ, но зато самый наглядный. Он заключается в том, чтобы последовательно вычислить величину вклада на конец каждого периода. В
файле примера
это реализовано на листе
Постоянная ставка
.
За первый период будут начислены проценты в сумме
=20000*(15%/12)
, т.к. капитализация производится ежемесячно, а в году, как известно, 12 мес. При начислении процентов за второй период, в качестве базы, на которую начисляются %, необходимо брать не начальную сумму вклада, а сумму вклада в конце первого периода (или начале второго). И так далее все 12 периодов.
Способ 2. Вычисление с помощью формулы Наращенных процентов
Подставим в формулу наращенной суммы S = Р*(1+i )^n значения из задачи. S = 20000*(1+15%/12)^12 Необходимо помнить, что в качестве процентной ставки нужно указывать ставку за период (период капитализации). Другой вариант записи формулы – через функцию
СТЕПЕНЬ()
=20000*СТЕПЕНЬ(1+15%/12; 12)
Способ 3. Вычисление с помощью функции БС().
Функция
БС()
позволяет определить
будущую стоимость
инвестиции при условии периодических равных платежей и постоянной процентной ставки, т.е. она предназначена прежде всего для расчетов в случае
аннуитетных платежей
. Однако, опустив 3-й параметр (ПЛТ=0), можно ее использовать и для расчета сложных процентов.
=-БС(15%/12;12;;20000)
Или так
=-БС(15%/12;12;0;20000;0)
Примечание .
В случае переменной ставки для нахождения Будущей стоимости по методу сложных процентов
используется функция
БЗРАСПИС()
.
Определяем сумму начисленных процентов
Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. на 5 лет с ежегодным начислением сложных процентов по ставке 12 % годовых. Определить сумму начисленных процентов.
Сумма начисленных процентов I равна разности между величиной наращенной суммы S и начальной суммой Р. Используя формулу для определения наращенной суммы S = Р*(1+i )^n, получим: I = S – P= Р*(1+i)^n – Р=P*((1+i)^n –1)=150000*((1+12%)^5-1) Результат: 114 351,25р. Для сравнения: начисление по простой ставке даст результат 90 000р. (см.
файл примера
).
Определяем Срок долга
Рассмотрим задачу: Клиент банка положил на депозит некую сумму с ежегодным начислением сложных процентов по ставке 12 % годовых. Через какой срок сумма вклада удвоится? Логарифмируя обе части уравнения S = Р*(1+i)^n, решим его относительно неизвестного параметра n.
В
файле примера
приведено решение, ответ 6,12 лет.
Вычисляем ставку сложных процентов
Рассмотрим задачу: Клиент банка положил на депозит 150 000 р. с ежегодным начислением сложных процентов. При какой годовой ставке сумма вклада удвоится через 5 лет?
В
файле примера
приведено решение, ответ 14,87%.
Примечание
. Об эффективной ставке процентов
читайте в этой статье
.
Учет (дисконтирование) по сложным процентам
Дисконтирование основывается на базе концепции стоимости денег во времени: деньги, доступные в настоящее время, стоят больше, чем та же самая сумма в будущем, вследствие их потенциала обеспечить доход. Рассмотрим 2 вида учета: математический и банковский.
Математический учет
. В этом случае решается задача обратная наращению по сложным процентам, т.е. вычисления производятся по формуле Р=S/(1+i )^n Величину Р, полученную дисконтированием S, называют современной, или текущей стоимостью, или приведенной величиной S. Суммы Р и S эквивалентны в том смысле, что платеж в сумме S через n лет равноценен сумме Р, выплачиваемой в настоящий момент. Здесь разность D = S — P называется дисконтом.
Пример
. Через 7 лет страхователю будет выплачена сумма 2000000 руб. Определить современную стоимость суммы при условии, что применяется ставка сложных процентов в 15% годовых. Другими словами, известно: n = 7 лет, S = 2 000 000 руб., i = 15% .
Решение. P = 2000000/(1+15% )^7 Значение текущей стоимости будет меньше, т.к. открыв
сегодня
вклад на сумму Р с ежегодной капитализацией по ставке 15% мы получим через 7 лет сумму 2 млн. руб.
Тот же результат можно получить с помощью формулы
=ПС(15%;7;;-2000000;1)
Функция
ПС()
возвращает приведенную (к текущему моменту) стоимость инвестиции и
рассмотрена здесь
.
Банковский учет
. В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле: Р = S*(1- dсл )^n где dcл — сложная годовая учетная ставка.
При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.
Сравнив формулу наращения для сложных процентов S = Р*(1+i )^n и формулу дисконтирования по сложной учетной ставке Р = S*(1- dсл )^n придем к выводу, что заменив знак у ставки на противоположный, мы можем для расчета дисконтированной величины использовать все три способа вычисления наращения по сложным процентам, рассмотренные в разделе статьи
Начисление процентов несколько раз в год
.
Расчет сложных процентов в случае регулярного пополнения вклада
В
файле примера
(лист «С поплнением») произведен расчет суммы вклада в случае регулярного пополнения на одну и ту же сумму. Для этого использована функция
БС()
.
Если сумма вклада пополняется нерегулярно и/или различными платежами, то для расчета необходимо использовать таблицу, которая также приведена в файле примера. Естественно, в случае регулярных и равновеликих платежей итоговые суммы вычисленные с помощью таблицы и функции БС() — совпадают.
Функция ЭФФЕКТ в Excel предназначена для расчета фактической годовой процентной ставки (иное название – эффективная ставка), на основе известных данных, таких как номинальная годовая ставка, число периодов начисления сложных процентов, и возвращает соответствующее числовое значение.
Примеры использования функции ЭФФЕКТ в Excel
Пример 1. Предприниматель получил ссуду в банковской организации на 1 год с эффективной процентной ставкой 23,5%. Определить значение номинальной ставки, если по условию договора выплаты по кредиту необходимо проводить ежемесячно.
Исходная таблица данных:
Связь между значениями эффективной и номинальной ставок описывается следующей формулой:
=(СТЕПЕНЬ(B3+1;1/B2)-1)*B2
Полученный результат:
Проверим полученный результат, проведя пересчет эффективной ставки с помощью функции:
Описание аргументов:
- B4 – полученное выше числовое значение номинальной ставки;
- B2 – число периодов погашения.
Результат:
Полученное значение 0,235 соответствует 23,5% (значению эффективной ставки по условию). Расчет номинальной ставки также можно производить с помощью функции НОМИНАЛ.
Формула расчета процентов по вкладу в Excel
Пример 2. Вкладчику предложили сделать депозит в банк под 16% годовых (номинальная ставка), при этом расчете производится с использованием сложных процентов (эффективная ставка). По условиям договора вкладчик сможет снять только полученные проценты. Определить сумму к получению, если размер депозита – 1 млн. рублей, капитализация – ежемесячная.
Исходные данные:
Формула для расчета:
=ЭФФЕКТ(B3;B2)*B4
Описание аргументов:
- B2 – число периодов капитализации;
- B3 – номинальная ставка;
- B4 – сумма вклада.
Результат расчетов:
Для сравнения, доход от вклада при использовании простых процентов составил бы 1000000*0,16=160000 рублей, поэтому для вкладчика выгодно использовать предложенный вариант со сложными процентами.
Как посчитать проценты на депозит в Excel для выбора вклада
Пример 3. Два банка предлагают сделать депозитный вклад на одинаковую сумму (250000 рублей) на 1 год при следующих условиях:
- Номинальная ставка – 24%, простые проценты, 12 периодов капитализации.
- Номинальная ставка 22%, сложные проценты, начисляемые по итогам каждого периода, 4 периода капитализации.
Определить выгодный вариант, отобразить схему выплат.
Исходные данные:
В первом случае таблица выплат выглядит так:
Проценты – постоянная величина, рассчитываемая по формуле:
=$B$2*$B$3/$B$4
Описание аргументов (для создания абсолютной ссылки используйте клавишу F4):
- $B$2 – начальная сумма вклада;
- $B$3 – годовая ставка;
- $B$4 – число периодов капитализации вклада.
Сумма накопленных средств за каждый период рассчитывается как как сумма средств на счету за прошедший период и процентов, начисленных за текущий период. В итоге первый банк начислит 60000 рублей процентов, и вкладчик сможет забрать 310000 рублей.
Таблица начисления процентов по условиям второго банка:
В данном случае проценты не являются фиксированной величиной и зависят от итоговой суммы накоплений за предыдущий период (поэтому ссылка на ячейку L2 – абсолютная):
=L3*$E$3/$E$4
При расчете суммы за каждый период к текущему значению необходимо прибавить проценты за предыдущий период.
Для быстрого расчета итоговой суммы используем формулы:
- Первый банк:
- Второй банк:
Результаты расчетов:
Несмотря на то, что второй банк предлагает расчет с использованием сложных процентов, предложение первого банка оказалось выгоднее. Если бы число периодов капитализации совпадало (12), во втором банке вкладчик получил бы 310899,1 рублей, то есть больше денег, несмотря на более низкую номинальную процентную ставку.
Особенности использования функции ЭФФЕКТ в Excel
Функция имеет следующий синтаксис:
=ЭФФЕКТ(номинальная_ставка;кол_пер)
Описание аргументов:
- номинальная_ставка – обязательный аргумент, характеризующий числовое (десятичная дробь) или процентное значение номинальной годовой ставки;
- кол_пер – обязательный аргумент, характеризующий числовое значения числа периодов за год, на протяжении которых начисляются сложные проценты.
Примечания 1:
- Аргумент кол_пер может принимать дробные числа, значения которых будут усечены до целого числа (в отличие от операции округления, при усечении отбрасывается дробная часть).
- Каждый из двух аргументов функции ЭФФЕКТ должен быть представлен числовым (или процентным для аргумента номинальная_ставка) значением либо текстовой строкой, которая может быть преобразована в число. При вводе не преобразуемых к числовым значениям текстовых строк и имен, а также данных логического типа функция ЭФФЕКТ будет возвращать код ошибки #ЗНАЧ!.
- Аргумент номинальная_ставка принимает значения из диапазона положительных чисел, а кол_пер – из диапазона от 1 до +∞. Если данные условия не выполняются, например, функции =ЭФФЕКТ(0;12) или =ЭФФЕКТ(12%;0) вернут код ошибки #ЧИСЛО!.
- Функция ЭФФЕКТ использует для расчетов формулу, которая может быть записана в Excel в виде: =СТЕПЕНЬ(1+(A1/A2);A2)-1, где:
- A1 – номинальная годовая ставка;
- A2 – число периодов, в которые происходит начисление сложных процентов.
Примечания 2:
- Для понимания термина «сложные проценты» рассмотрим пример. Владелец капитала предоставляет денежные средства в долг и планирует получить прибыль, величина которой зависит от следующих факторов: сумма средств, которая предоставляется в долг; длительность периода кредитования (использования предоставленных средств); начисляемые проценты за использование.
- Проценты могут начисляться различными способами: базовая сумма остается неизменной (простые проценты) и база изменяется при наступлении каждого последующего периода выплат (сложные). При использовании сложных процентов сумма задолженности (прибыли) увеличивается быстрее при одинаковых сумме и периоде кредитования, в сравнении с применением простых процентов (особенно, если периодов начисления процентов (капитализации) достаточно много.
- Для получения результата в формате процентов необходимо установить соответствующий формат данных в ячейке, в которой будет введена функция ЭФФЕКТ.
Расчёт сложных процентов в Excel
Смотрите также получить прибыль, величина характеризующий числовое значенияСумма накопленных средств за производится с использованиемI18 на ее основании
-
- превышает ставку по ставки по кредитам,, Эффективная ставка по функцию ЧИСТВНДОХ(). Для используется для сравнения. Если задана эффективная
их рассчитать в
ставка действует один EXCEL. Постоянная ставка.
- Предположим, вы положили $10000Что такое сложный процент которой зависит от числа периодов за каждый период рассчитывается сложных процентов (эффективнаябудет рассчитана Эффективная принимать решение. Необходимо
кредиту, то это
увидим, что для кредиту для нашего
- этого нужно составить различные кредитных предложений годовая процентная ставка, MS EXCEL. период (в нашем Здесь рассмотрим ситуации,
в банк. Сколько и какая в
- следующих факторов: сумма год, на протяжении как как сумма ставка). По условиям ставка совпадающая, естественно, определиться какой график
означает, что имеется
всех платежей по случая может быть
график платежей по
- превышает ставку по ставки по кредитам,, Эффективная ставка по функцию ЧИСТВНДОХ(). Для используется для сравнения. Если задана эффективная
банков. то величина соответствующейВ MS EXCEL есть примере — 1 когда процентная ставка ваши инвестиции будут Excel есть формула средств, которая предоставляется которых начисляются сложные средств на счету
- договора вкладчик сможет с результатом формулы погашения больше Вам значительное количество дополнительных кредитам рассчитывается их вычислена по формуле кредиту и включитьЭффективная процентная ставка
ей годовой номинальной
функция ЭФФЕКТ(номинальная_ставка, кол_пер), год), т.е. размерность
- изменяется в течение стоить после 10 для его расчёта? в долг; длительность проценты. за прошедший период снять только полученные ЧИСТВНДОХ().
подходит.
платежей: убрав файле приведенная стоимость к
=ЧИСТВНДОХ(G22:G34;B22:B34). Получим 72,24%. в него все
по кредиту отражает
процентной ставки рассчитывается
которая возвращает эффективную
office-guru.ru
Сложные проценты в MS EXCEL. Переменная ставка
массива определяет количество срока действия договора. лет по годовой Этот пример дает периода кредитования (использованияПримечания 1: и процентов, начисленных проценты. Определить сумму
Функция ЭФФЕКТ в ExcelПри увеличении срока кредита расчета все дополнительные моменту выдачи кредита.Значения Эффективных ставок дополнительные платежи. реальную стоимость кредита по формуле (фактическую) периодов начисления процентовРешим задачу ставке 5% с ответы на эти предоставленных средств); начисляемыеАргумент кол_пер может принимать
за текущий период. к получению, если предназначена для расчета разница между Эффективными платежи получим эффективную И, если мы используются при сравненииПример с точки зренияили с помощью функции
годовую (в нашем примере. Договором на открытие начислением процентов каждый вопросы. проценты за использование. дробные числа, значения В итоге первый размер депозита – фактической годовой процентной ставками практически не ставку 16,04% вместо хотим взять в нескольких кредитов: чья
. Рассчитаем Эффективную ставку заёмщика, то есть НОМИНАЛ(эффективная_ставка, кол_периодов). См.процентную ставку, если
– 3 периода).
вклада предусмотрено, что месяц?
Предположим, вы положили вПроценты могут начисляться различными
которых будут усечены банк начислит 60000
1 млн. рублей,
ставки (иное название изменяется (см. файл 72,24%!). 2-х банках одну
ставка меньше, тот по кредиту со учитывает все дополнительные файл примера. заданы номинальная годоваяЕсли период капитализации =1
вклад открывается на=B2*(1+B3/B4)^(B4*B5) банк $100. Сколько способами: базовая сумма
до целого числа рублей процентов, и капитализация – ежемесячная.
– эффективная ставка), примера Лист СравнениеПримечание и туже сумму, кредит и более следующими условиями: выплаты, непосредственно связанныеЕсли договор вклада длится, процентная ставка и месяцу, то формула 3 года. ВОтвет: ваши инвестиции будут остается неизменной (простые (в отличие от
вкладчик сможет забратьИсходные данные: на основе известных схем погашения (5лет)).. то стоит выбрать
выгоден заемщику.Сумма кредита - с кредитом (помимо скажем, 3 года,количество периодов в году наращения для сложных
первый год ставка$16470. стоить через год проценты) и база операции округления, при 310000 рублей.Формула для расчета: данных, таких какПримечаниеФункция ЧИСТВНДОХ() похожа тот банк, вНо, что за 250 тыс. руб.,
excel2.ru
Расчет Эффективной ставки в MS EXCEL
платежей по самому с ежемесячным начислением, в которые начисляются процентов будет выглядеть
составляет 10%, вПредположим, вы положили в при годовой процентной
изменяется при наступлении усечении отбрасывается дробнаяТаблица начисления процентов по=ЭФФЕКТ(B3;B2)*B4 номинальная годовая ставка,. на ВСД() (используется котором получается наименьшая смысл имеет 72,24%? срок — 1 кредиту). Такими дополнительными по сложным процентам сложные проценты. Под так: S = последующие – увеличивается банк $10000. Сколько ставке 8%?
Эффективная (фактическая) годовая процентная ставка
каждого последующего периода часть). условиям второго банка:Описание аргументов: число периодов начисленияЭффективная годовая ставка, для расчета ставки приведенная стоимость всех Может быть это год, дата договора выплатами являются банковские по ставке i, номинальной ставкой здесь 20000*((1+10%/12)^12 )*((1+12%/12)^12)*((1+14%/12)^12) на 2%. Период ваши инвестиции будут
=A1*1,08 выплат (сложные). ПриКаждый из двух аргументовВ данном случае процентыB2 – число периодов сложных процентов, и рассчитанная с помощью внутренней доходности, IRR), наших платежей в соответствующая ставка по (выдачи кредита) – комиссии — комиссии то Эффективная ставка понимается, годовая ставка,
Если ставки введены капитализации процентов – стоить после 15Ответ:
использовании сложных процентов функции ЭФФЕКТ должен не являются фиксированной капитализации; возвращает соответствующее числовое
функции ЭФФЕКТ(), дает в которой используется погашение кредита. Почему
простым процентам? Рассчитаем 17.04.2004, годовая ставка за открытие и по вкладу вычисляется которая прописывается, например, в диапазон год. Сумма вклада лет по годовой$108. сумма задолженности (прибыли)
быть представлен числовым
величиной и зависятB3 – номинальная ставка; значение. значение 16,075%. При аналогичное дисконтирование регулярных же тогда не ее как мы
– 15%, число ведение счёта, за по формуле:
Эффективная ставка по вкладу
в договоре наC31:C66 20т.р. Определить сумму ставке 4% сВ следующем году на увеличивается быстрее при (или процентным для от итоговой суммы
B4 – сумма вклада.
Пример 1. Предприниматель получил ее расчете не
платежей, но на сравнивают более понятные делали в предыдущих платежей в году
приём в кассуiэфф =((1+i/12)^(12*3)-1)*(1/3) открытие вклада., то формулу можно вклада в конце
начислением процентов каждый этот процент ($8) одинаковых сумме и аргумента номинальная_ставка) значением накоплений за предыдущийРезультат расчетов: ссуду в банковской используются размеры фактических
основе номера периода приведенные стоимости, а разделах: по аннуитетной схеме наличных денег иили через функциюПредположим, что сложные
Эффективная процентная ставка по потребительским кредитам
записать так =БЗРАСПИС(20000; срока (наращенную сумму). квартал? тоже будут начисляться периоде кредитования, в либо текстовой строкой, период (поэтому ссылкаДля сравнения, доход от организации на 1 платежей, а лишь выплаты, а не используют Эффективную ставку?Мы переплатили 80,77т.р. – 12 (ежемесячно). т.п., а также
ЭФФЕКТ(): iэфф= ЭФФЕКТ(i*3;3*12)/3 проценты начисляются m C31:C66)Решение=B2*(1+B3/B4)^(B4*B5) проценты (сложный процент). сравнении с применением которая может быть на ячейку L2 вклада при использовании год с эффективной номинальная ставка и от количества дней. А для того, (в виде процентов Дополнительные расходы – страховые выплаты.Для вывода формулы
раз в год.Размер массива со. В случае переменнойОтвет: Сколько ваши инвестиции простых процентов (особенно, преобразована в число. – абсолютная): простых процентов составил процентной ставкой 23,5%. количество периодов капитализации.Представим себе ситуацию, когда
чтобы сравнивать разные и дополнительных платежей) 1,9% от суммыПо закону банк справедливы те же Эффективная годовая процентная ставками должен соответствовать ставки, формула наращения$18167. будут стоить через если периодов начисления При вводе не=L3*$E$3/$E$4 бы 1000000*0,16=160000 рублей, Определить значение номинальной Если грубо, то в 2-х разных суммы кредита: Эффективная взяв кредит в кредита ежемесячно, разовая обязан прописывать в
рассуждения, что и ставка дает возможность общему количеству периодов для сложных процентов:Урок подготовлен для Вас два года при процентов (капитализации) достаточно преобразуемых к числовым
При расчете суммы за поэтому для вкладчика ставки, если по получается, что в
банках нам предлагают ставка поможет, если размере 250т.р. Если комиссия – 3000р. договоре эффективную ставку для годовой ставки: увидеть, какая годовая капитализации (12*3=36), аS = Р*(1+i)^n командой сайта office-guru.ru годовой ставке 8%? много. значениям текстовых строк каждый период к выгодно использовать предложенный условию договора выплаты
нашем частном случае взять в кредит в одном банке рассчитать ставку по при открытии банковского
по кредиту. НоS = Р*(1+i/m)^(3*m) ставка простых процентов ставки должны быть
где S -Источник: http://www.excel-easy.com/examples/compound-interest.html=A2*1,08Для получения результата в и имен, а текущему значению необходимо
вариант со сложными по кредиту необходимо (без дополнительных платежей) одинаковую сумму на дают 250т.р. на методу простых процентов, счета. дело в том,
– для сложных позволит достичь такого указаны за период, наращенная сумма,Перевел: Антон АндроновОтвет: формате процентов необходимо также данных логического прибавить проценты за процентами. проводить ежемесячно. отличие эффективной ставки
одинаковых условиях, но одних условиях, а то она составитСначала составим График платежей что заемщик сразу процентов, где Р
же финансового результата, т.е. 10%/12, 12%/12i — годоваяАвтор: Антон Андронов$116,64. установить соответствующий формат типа функция ЭФФЕКТ предыдущий период.
Пример 3. Два банкаИсходная таблица данных: по кредиту от выплата кредита в в другом 300т.р. 80,77/250*100%=32,3% (срок кредита по кредиту с не видит кредитного – начальная сумма что и m-разовое и 14%/12 (для ставка сложных процентов,Рассмотрим Сложный процент (CompoundСколько будут стоить ваши данных в ячейке, будет возвращать кодДля быстрого расчета итоговой предлагают сделать депозитный
Связь между значениями эффективной номинальной (15%) в одном будет осуществляться на других. =1 год). Это учетом дополнительных расходов договора и поэтому вклада. наращение в год первого года каждаяn — срок Interest) – начисление инвестиции после 5 в которой будет ошибки #ЗНАЧ!. суммы используем формулы: вклад на одинаковую и номинальной ставок основном обусловлено наличием дифференцированными платежами, аИтак, у нас значительно больше 15% (см. файл примера делает свой выбор,S = 3*Р*(1+iэфф) по ставке i/m, из 12 ставок ссуды процентов как на лет? Просто протяните введена функция ЭФФЕКТ.Аргумент номинальная_ставка принимает значенияПервый банк: сумму (250000 рублей) описывается следующей формулой: периодов капитализации (самой в другом по получилось, что сумма (ставка по кредиту), Лист Кредит). ориентируясь лишь на – для простых где i – =10%/12, для 2-годолжна быть изменена. основную сумму долга, формулу до ячейкиDimas2221
из диапазона положительныхВторой банк: на 1 год=(СТЕПЕНЬ(B3+1;1/B2)-1)*B2 сутью сложных процентов). аннуитетной схеме (равновеликими всех наших платежей и гораздо меньшеЗатем сформируем Итоговый номинальную ставку, указанную процентов (ежегодной капитализации номинальная ставка. =12%/12, для 3-гоДля 3-х периодов так и наA6: Товарищи, помогите, пожалуйста! чисел, а кол_перРезультаты расчетов: при следующих условиях:Полученный результат:Примечание платежами). Для простоты в погашение основной 72,24%. Значит, это денежный поток заемщика в рекламе банка. не происходит, процентыПри сроке контракта =14%/12). капитализации она примет начисленные ранее проценты,. Как в excel – из диапазонаНесмотря на то, что
Номинальная ставка – 24%,Проверим полученный результат, проведя. Сравнение графиков погашения предположим, что дополнительные суммы кредита дисконтированных не тот подход, (суммарные платежи наДля создания расчетного начисляются раз в 1 год поРассчитаем в MS EXCEL вид: S =
Использование эффективной ставки для сравнения кредитных договоров с разными схемами погашения
в случае переменнойОтвет: оформить финансовую формулу, от 1 до второй банк предлагает простые проценты, 12 пересчет эффективной ставки дифференцированными платежами и платежи не взимаются. по ставке 72,24% чтобы разобраться в определенные даты). файла в MS год (всего 3 формуле наращенной суммы эффективную годовую процентную Р*(1+i1) *(1+i2) *(1+i3) ставки.$146,93.
которая позволит начислять +∞. Если данные расчет с использованием периодов капитализации. с помощью функции: по аннуитетной схеме Зависит ли значение равна размеру кредита сути эффективной ставкеЭффективную ставку по кредиту
EXCEL воспользуемся Указаниями раза) всегда на имеем: ставку и эффективнуюВ нашем случае периодПри начислении по методуМы всего лишь умножили сложные проценты и условия не выполняются, сложных процентов, предложениеНоминальная ставка 22%, сложные
Описание аргументов: приведено в этой эффективной ставки от (это из определения по кредиту. iэфф определим используя
Центробанка РФ от первоначальную сумму вклада).S = Р*(1+i/m)^m ставку по кредиту. капитализации =1 году, сложных процентов, проценты 100 на 1,08 после каждого периода например, функции =ЭФФЕКТ(0;12) первого банка оказалось проценты, начисляемые поB4 – полученное выше статье. графика погашения? Сразу эффективной ставки). ЕслиТеперь вспомним принцип функцию ЧИСТВНДОХ (значения, 13 мая 2008Если срок вклада – для сложныхЭффективная ставка возникает, когда
поэтому итоговая формула в конце каждого пять раз. Стало вносить/выводить средства? Спасибо! или =ЭФФЕКТ(12%;0) вернут выгоднее. Если бы
итогам каждого периода, числовое значение номинальнойПримечание. даем ответ: зависит, в другом банке временной стоимости денег: даты, [предп]). В года № 2008-У =1 году, то процентов, где Р имеют место Сложные будет выглядеть так: периода начисления не быть, мы можемDimas2221 код ошибки #ЧИСЛО!.
число периодов капитализации 4 периода капитализации. ставки;Эффективную ставку по но незначительно. для соблюдения этого всем понятно, что
excel2.ru
Функция ЭФФЕКТ для расчета годовой процентной ставки в Excel
основе этой функции «О порядке расчета Эффективная ставка по – начальная сумма проценты. S = 20000*(1+10%) выплачиваются, а присоединяются вычислить стоимость инвестиций:Функция ЭФФЕКТ использует для совпадало (12), воОпределить выгодный вариант, отобразить
Примеры использования функции ЭФФЕКТ в Excel
B2 – число периодов кредиту можно рассчитатьВ файле примера на равенства потребуется дисконтировать 100т.р. сегодня – лежит формула: и доведения до вкладу = Эффективной вклада.Понятие эффективная ставка
*(1+12%) *(1+14%)=28 089,6р.
к основной сумме через 5 лет:Dimas2221
расчетов формулу, которая
втором банке вкладчик
схему выплат. погашения. и без функции
листе Сравнение схем
- суммы платежей идущих это значительно больше,Где, Pi = сумма
- заемщика — физического (фактической) годовой процентной
S = Р*(1+iэфф)
встречается в несколькихТот же результат можно и полученная величина=A1*1,08*1,08*1,08*1,08*1,08, почитайте в Справке может быть записана получил бы 310899,1
Исходные данные:
Формула расчета процентов по вкладу в Excel
Результат: ЧИСТВНДОХ() — с погашения (1год) приведен на обслуживание долга чем 100т.р. через i-й выплаты заемщиком; лица полной стоимости ставке (См. файл – для простых определениях. Например, есть получить с помощью становится исходной дляЭто то же самое, про БС() или в Excel в
рублей, то есть
В первом случае таблица
Полученное значение 0,235 соответствует
помощью Подбора параметра.
- расчет для 2-х по б
- год при 15%
- di = дата
кредита» (приведена Формула
примера). процентов Эффективная (фактическая) функции БЗРАСПИС() (английский начисления процентов в что и: БЗРАСПИС() виде: =СТЕПЕНЬ(1+(A1/A2);A2)-1, где:
Как посчитать проценты на депозит в Excel для выбора вклада
больше денег, несмотря выплат выглядит так: 23,5% (значению эффективной Для этого в различных графиков погашенияо
- инфляции (или, наоборот i-й выплаты; d1 и порядок расчета
- Эффективная ставка по вкладуТак как финансовый результатгодовая вариант FVSCHEDULE(principal, schedule))
следующем периоде. Присоединение=A1*1,08^5
Dimas2221
A1 – номинальная годовая на более низкую
Проценты – постоянная величина, ставки по условию).
файле примера на
(сумма кредита 250льшей ставке, то условия — значительно меньше,
- = дата 1-й эффективной процентной ставки),
- и Эффективная годовая
- S должен быть,процентная ставка, есть
S =БЗРАСПИС(20000;{0,1;0,12;0,14}) – начисленных процентов кПримечание:: К сожалению, фнкции ставка; номинальную процентную ставку. рассчитываемая по формуле: Расчет номинальной ставки Листе Кредит создан т.р., срок =1 кредитного договора в если имеется альтернатива
выплаты (начальная дата, а также разъяснительным
ставка используются чаще по определению, одинаков Эффективная ставка использован массив констант сумме, которая служила Специальной функции для вычисления БС и БЗРАСПИСA2 – число периодов,
Функция имеет следующий синтаксис:
=$B$2*$B$3/$B$4 также можно производить столбец I (Дисконтированный год, выплаты производятся нем менее выгодны
положить эту сумму на которую дисконтируются
- письмом ЦБ РФ
- всего для сравнения
для обоих случаев,
по вкладу (0,1=10% и т.д.). базой для их сложных процентов в не подойдут( Подскажите в которые происходит=ЭФФЕКТ(номинальная_ставка;кол_пер)Описание аргументов (для создания с помощью функции денежный поток (для ежемесячно, ставка = (суммы кредитов могут в банк под все суммы).
Особенности использования функции ЭФФЕКТ в Excel
№ 175-Т от
доходности вкладов в
приравниваем оба уравнения
- (с учетом капитализации),Если ставки введены определения, называют капитализацией Excel не существует. еще варианты?
- начисление сложных процентов.Описание аргументов: абсолютной ссылки используйте НОМИНАЛ. Подбора параметра)). В 15%).
быть разными). Поэтому,
- 15%). Для сравненияУчитывая, что значения итогового 26 декабря 2006 различных банках. Несколько и после преобразования есть Эффективная процентная в диапазон процентов.
- Тем не менее,Чем не подходят?ПрошуПримечания 2:номинальная_ставка – обязательный аргумент, клавишу F4): окне инструмента ПодборВ случае дифференцированных платежей получается, что важнее сумм, относящихся к денежного потока находятся года, где можно иной смысл закладывается получим формулу, приведенную ставкаC14:C16
- Расчет начисления сложных можно легко создать прощения, все подошло.Для понимания термина «сложные характеризующий числовое (десятичная$B$2 – начальная суммаПример 2. Вкладчику предложили параметра введите значения Эффективная ставка по не само значение
- разным временным периодам в диапазоне найти примеры расчета при расчете Эффективной в справке MS
- по потребительским кредитам, то формулу можно
- процентов в случае калькулятор для сложных Просто неверно применял
проценты» рассмотрим пример.
- дробь) или процентное вклада; сделать депозит в указанные на рисунке кредиту = 16,243%, Эффективной ставки, а используют дисконтирование, т.е.G22:G34 эффективной ставки (см. ставки по кредитам, EXCEL для функции. Разберемся, что эти переписать без массива
- постоянной ставки рассмотрено процентов, чтобы сравнивать процент (писал в Владелец капитала предоставляет значение номинальной годовой$B$3 – годовая ставка; банк под 16% ниже. а в случае результат сравнения 2-х приведение их к, а даты выплат здесь ). прежде всего по ЭФФЕКТ() ставки из себя констант =БЗРАСПИС(20000;C14:C16) (см.
- в статье Сложные разные ставки и виде коэффициента), Спасибо денежные средства в ставки;$B$4 – число периодов
exceltable.com
Формула вычисления: сложные проценты с ежемесячным (ежегодным, ежедневным) внесением платежа
годовых (номинальная ставка),После нажатия кнопки ОК, аннуитета – 16,238%. ставок (конечно, если одному моменту времени. вЭффективную ставку по потребительским. Эффективная процентная
iэфф =((1+i/m)^m)-1 представляют и как файл примера). Каждая проценты в MS разную длительность. большое за совет!
долг и планируеткол_пер – обязательный аргумент, капитализации вклада. при этом расчете в ячейке
Разница незначительная, чтобы эффективная ставка значительно Вспомнив формулу ЭффективнойB22:B34 кредиту рассчитаем используя ставка по кредитам
CyberForum.ru
Примечание
Приветствую! Не знаю как Вы, а я люблю все за всеми перепроверять. Поэтому и свои расчеты по инвестициям для себя веду в Excel на домашнем компьютере. Ну, не доверяю я всем этим онлайн-калькуляторам в Сети! Да и вообще, когда вводишь все цифры руками, управление личными финансами становится каким-то более осознанным, что ли…
Сегодня я расскажу, как в экселе сделать формулу с процентами по вкладу (или любому другому инвестиционному инструменту). Проценты будем учитывать, естественно, не простые, а сложные. На всякий случай: это когда уже начисленный процент Вы не снимаете, а сразу присоединяете к сумме вклада.
Рассмотрим самый простой вариант – один раз вложили куда-нибудь деньги, и они там потихоньку «размножаются» без допвливаний. Простейший расчет в Excel можно сделать двумя способами: вручную и с помощью специальной функции.
Вручную
Для этого нам понадобится вот эта формула:
- ФК – это наш финальный капитал или конечный результат. В общем, та сумма, которую мы получим на финише с учетом накопительного эффекта сложных процентов. Кстати, очень настраивает на регулярные инвестиции! Полезно своими глазами увидеть, в какие суммы превращаются даже небольшие вложения через 5,10 или 20 лет
- Ко – это начальный капитал, который мы инвестируем на длительный срок по принципу «вложили – и не трогаем»
- R – годовая процентная ставка в долях (например, 12% годовых будут выглядеть как 0,12)
- m – период реинвестирования в месяцах. Проще говоря, как часто будут начисляться проценты по вкладу и плюсоваться к общей сумме. Если ставка по банковскому вкладу начисляется каждый месяц, то m будет равно 1, если ежеквартально – то 3, если раз в году – то 12
- n – количество периодов реинвестирования. Например, если проценты реинвестируются раз в месяц, то за год получается 12 периодов реинвестирования, а за пять лет n будет равно 60
Теперь осталось сформировать простенькую табличку в Excel: из пяти строчек и двух столбцов.
- Строчка №1 – начальный капитал (Ко)
- Строчка №2 – годовая процентная ставка ( R )
- Строчка №3 – период реинвестирования (m)
- Строчка №4 – количество периодов (n)
- Строчка №5 — финальный размер капитала (ФК)
Первые четыре строчки мы заполняем вручную. В каждой из них формат будет «общим», и только годовую процентную ставку нужно прописывать в формате «процентный».
А дальше в ячейке с финальным капиталом забиваем формулу (по номерам строчек): =№1*(1+(№2*№3/12))^№4. На всякий случай, значок «^» в Excel находится так: «Вставка» — «Символ» — «^» — «Вставить», или с помощью комбинации клавиш «Shift+6» в английской раскладке.
Все, простейшая таблица в Excel готова! Теперь можно «играться» с размером начального капитала, годовой ставкой и количеством периодов. И видеть, как растет (или уменьшается) величина финального капитала.
С помощью специальной функции
Excel настолько универсальная программа, что потенциальную доходность по вкладу нам поможет рассчитать специальная функция. Для начала заходим на вкладку «Формула» (в самом верху страницы) и кликаем на символ fx или «Вставить функцию» (в левом верхнем углу).
Тут же открывается окно «Мастер функций». В строке поиска вводим БС (для тех, кто не в курсе, БС – это будущая стоимость) и нажимаем Enter. Выпадает целый список непонятных названий – мы выбираем все тот же БС. Или можно просто выбрать вручную из категории «Финансовые».
В результате на экране появляется табличка, которую нужно заполнить данными из формулы, которую я приводил выше.
- Поле «Ставка» – все та же годовая процентная ставка в долях. Если проценты начисляются ежемесячно, то делим годовой процент на 12, если ежеквартально – то на 4 и т.д.
- Поле «Кпер» – количество лет инвестирования. Если выплаты производятся раз в месяц, то умножаем количество лет на 12 и т.д.
- Поле «Плт» — оставляем пустым
- Поле «ПС» — начальный размер вклада. Здесь его нужно записать со знаком минус, так как свои «кровные» мы отдаем, а не получаем
- Поле «Тип» учитывает способ выплаты процентом по вкладу
- Если проценты выплачиваются в конце срока действия вклада, то ставим «0» или оставляем поле пустым
- Если в начале срока – то «1».
Кликаем на ОК – и вуаля! Размер нашего будущего капитала уже отображен в ячейке!
Тестовый пример
Для примера я взял сумму в $10 000, размещенную на вкладе со ставкой 6% годовых сроком на 4 года.
Оба варианта дали один и тот же результат – через 4 года мой вклад вырастет до $12 704,89. Это, конечно, при условии, что капитализация процентов будет ежемесячной.
Могу сказать, что первый способ расчета отнимает чуть больше времени, зато он наглядней и «вдумчивей».
К слову, более сложными формулами можно рассчитывать и другие параметры инвестиций: доходность вклада с регулярным пополнением, переплату по кредиту, годовую процентную ставку, размер начального капитала и много чего еще.
Если вы хотите, чтобы я рассказал как рассчитывается любая из приведенных выше функций — оставляйте свои пожелания в комментариях под этой статьей. А с помощью чего Вы обычно считаете сложные проценты?
Подписывайтесь на обновления и не забывайте делиться постами в социальных сетях!
Расчет процентов по вкладу: формула, как рассчитать?
13.02.2015 142 611 49 Время на чтение: 12 мин.
Сегодня я расскажу и покажу вам, как легко и быстро произвести расчет процентов по вкладу при помощи формулы, а также как рассчитать проценты по вкладу с капитализацией по формуле и в MS Excel. Для чего это нужно?
Содержание:
- Расчет процентов по вкладу: формула
- Расчет сложных процентов по вкладу
- Расчет вклада с капитализацией процентов в Excel
- Расчет процентов по вкладу: калькулятор
Во-первых, для того, чтобы точно узнать, что вы получите в денежном выражении от размещения вклада в банке и сделать вывод о том, подойдет ли вам такой вклад или нет. Чтобы иметь возможность сравнить условия разных банков.
Во-вторых, для того, чтобы проверить банк: правильно ли он начисляет вам проценты по вкладу и верный ли вообще принцип расчета использует? Конечно же, сейчас это происходит автоматизировано, но всегда может произойти сбой, и проценты начислятся некорректно, вероятнее всего, не в вашу пользу. Если вы этого не заметите, то банк — тем более. На моей практике такое однажды было.
Итак, рассмотрим, как рассчитать проценты по депозиту в разных случаях.
Расчет процентов по вкладу: формула
Если вы оформляете вклад с простыми процентами (без капитализации), то их легко можно рассчитать по следующей формуле.
Формула расчета процентов по вкладу:
Sп = (Sв*%*Nд)/Nг
где:
- Sп — сумма процентов по вкладу;
- Sв — сумма вклада;
- % — процентная ставка в виде десятичной дроби (например, при 15% годовых, %=0,15);
- Nд — число дней начисления процентов;
- Nг — число дней в году (365 или 366).
Для точного расчета процентов по вкладу нужно точно знать, сколько дней банк будет начислять вам проценты (это указывается в условиях договора). Например, дата зачисления средств может учитываться, а может не учитываться. Дата возврата средств, как правило, не учитывается.
Расчет процентов по вкладу с пополнением и/или снятием производится путем отдельного подсчета для каждого периода нахождения на депозите определенной суммы и суммирования этих результатов.
Рассмотрим, как работает формула расчета процентов по вкладу на примерах.
Пример 1.Вопрос: я оформляю вклад в сумме 10000 рублей на 180 дней под 15% годовых. Сколько процентов я получу за весь период?
Ответ: (10000*0,15*179)/365 = 735,62 рубля. (179 — потому что дата возврата вклада не учитывается)
Пример 2.Вопрос: я оформляю вклад в сумме 50000 рублей на год под 16% годовых, с ежемесячной выплатой процентов. Сколько я буду получать с него ежемесячно?
Ответ: Это будет зависеть от того, сколько дней в каждом месяце ваша сумма пролежит на депозитном счете. Например, для месяцев, в которых 30 дней — (50000*0,16*30)/365 = 657,53 рубля. Для месяцев, в которых 31 день — (50000*0,16*31)/365 = 679,45 рублей. В феврале, а также в месяц размещения и месяц снятия вклада — меньше, исходя из того количества дней, которое сумма вклада будет находиться на счете.
Пример 3. Вопрос: У меня есть вклад с пополнением и снятием под 10% годовых. На 1 января на нем лежало 30000 рублей. 15 января я пополнил счет на 5000 рублей, а 20 января снял со счета 20000 рублей. Сколько процентов я получу за январь?
Ответ: Расчет процентов по депозиту в этом случае нужно осуществлять следующим образом. Сначала считаем количество дней, которые каждая сумма пролежала на счете:
- 30000 — с 1 по 14 — 14 дней;
- 35000 — с 15 по 19 — 5 дней;
- 15000 — с 20 по 31 — 12 дней.
Теперь осуществляем расчет процентов по вкладу: (30000*0,10*14)/365 + (35000*0,10*5)/365 + (15000*0,10*12)/365 = 212,34 рублей.
Расчет сложных процентов по вкладу
Если вам необходимо рассчитать сложные проценты по вкладу — это будет несколько сложнее. Для этого используется следующая формула.
Формула сложных процентов по вкладу:
Sп = Sв*(1+%)n-Sв
где:
- Sп — сумма процентов по вкладу;
- Sв — сумма вклада;
- % — процентная ставка в период капитализации в виде десятичной дроби. % = p*Nд/Nг (p — процентная ставка по вкладу в виде десятичной дроби, Nд — период капитализации в днях (месяцах), Nг — количество дней (месяцев) в году);
- n — число периодов капитализации.
Как вы видите, для расчета нам понадобится функция возведения в степень. Она есть на стандартном калькуляторе для Windows. Чтобы ее увидеть — измените через меню вид калькулятора на «инженерный». Xy — это и есть функция возведения в степень. Например, чтобы возвести 1,01 в 12 степень, нажмите на калькуляторе последовательно: 1,01 -> Xy -> 12 -> =.
Рассмотрим, как рассчитать сложный процент по вкладу по формуле сложных процентов на примере.
Пример. Вопрос: Я оформляю вклад в сумме 50000 рублей на год под 15% годовых с ежемесячной капитализацией процентов. Сколько процентов я получу за все время?
Ответ: Сначала рассчитаем процентную ставку в период капитализации, то есть, в один месяц: % = 0,15*1/12 = 0,0125. Теперь произведем расчет процентов по вкладу с капитализацией: 50000*(1+0,0125)12 — 50000 = 8037,73 рубля.
Расчет вклада с капитализацией процентов в Excel
И в заключение я покажу вам еще один простой способ быстро произвести расчет процентов по депозиту с капитализацией. Для этого нам понадобится стандартный табличный редактор Эксель (MS Excel).
Открываем Эксель, становимся на любую ячейку таблицы и вызываем функцию нажатием кнопки fx слева от строки ввода данных. Из списка предложенных функций выбираем БС — будущая стоимость. Если этой функции нет в появившемся списке (там отображается 10 последних использующихся), то найдите ее через поиск.
Нажимаем функцию БС и в открывшейся таблице вводим необходимые вам данные:
- Ставка — ставка по вкладу в виде десятичной дроби в период капитализации (то есть, если у вас вклад с ежемесячной капитализацией, то делим ставку по вкладу на 12 месяцев и результат вносим в эту ячейку);
- Кпер — количество периодов капитализации. Например, если у вас вклад на год, и проценты капитализируются ежемесячно, то вводим сюда 12;
- Плт — ничего не вводим. Это поле используется в том случае, когда ежемесячно происходит выплата фиксированной суммы;
- Пс — нынешняя (приведенная) сумма вклада, то есть, та сумма, которую вы кладете на депозит.
- Тип — ничего не вводим.
В результате вы сразу в форме увидите сумму, в которую превратится ваш вклад вместе с процентами за весь период — будущую стоимость вклада. Если вычесть из нее начальную сумму вклада — вы получите непосредственно сумму начисленных сложных процентов.
Например, вот так я рассчитал будущую стоимость вклада для последнего примера, приведенного выше:
Как видите, результат абсолютно тот же, что и по при расчете вклада по формуле сложных процентов (см. выше) — 58037,73 рубля — вклад вместе с процентами или 8037,73 рубля только проценты.
Расчет процентов по вкладу: калькулятор
Можно использовать и самый простой метод расчета процентов по вкладу — депозитный калькулятор, размещенный на сайте банка или каком-то стороннем финансовом сайте. Однако, здесь есть свои нюансы: вы никак не можете знать, какая формула расчета заложена в этот калькулятор, что и как он считает: так, как на самом деле должен производиться расчет процентов по вкладу (то, что я вам сегодня рассказал и показал) или так, как это выгодно банку.
Поэтому я настоятельно рекомендую производить расчет процентов по депозиту самостоятельно, при помощи вышеизложенных формул и методов, а затем делать проверку, внося данные в депозитный калькулятор банка. Если рассчитанные суммы совпадут — значит, банк считает проценты по вкладу честно, если там они получатся меньше — значит, расчет процентов по вкладу производится по какой-то другой методике, указанной в договоре, которая вам не выгодна. В последнее время подобные случаи можно наблюдать довольно часто: банки рекламируют одну процентную ставку, а по факту получается на 1-2% годовых меньше.
Теперь вы знаете, как рассчитать проценты по вкладу в каждом случае, сможете сделать это самостоятельно, сравнить условия банковских вкладов и проверить, правильно ли банк начисляет вам проценты.
Если у вас есть какие-то вопросы — задавайте их в комментариях. До новых встреч на Финансовом гении — сайте, который повысит вашу финансовую грамотность и научит эффективно распоряжаться личными финансами и семейным бюджетом.